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Abstract

We propose a new approach to large-scale machine learning, learning over
compressed data: First compress the training data somehow and then em-
ploy various machine learning algorithms on the compressed data, with the
hope that the computation time is significantly reduced when the training
data is well compressed. As a first step toward this approach, we consider
a variant of the Zero-Suppressed Binary Decision Diagram (ZDD) as the
data structure for representing the training data, which is a generalization
of the ZDD by incorporating non-determinism. For the learning algorithm
to be employed, we consider a boosting algorithm called AdaBoost∗ and its
precursor AdaBoost. In this paper, we give efficient implementations of the
boosting algorithms whose running times (per iteration) are linear in the size
of the given ZDD.

Keywords: data compression, optimization, machine learning, boosting,
ZDD

1. Introduction

Most tasks in machine learning are formulated as optimization problems
of various types. Recently, the amount of data to be treated is growing
enormously large, and so the demands on scalable optimization methods
are increasing. Probabilistic approach such as stochastic gradient descent
methods [1] is now widely employed as standard techniques for large scale
machine learning. Obviously, these methods require the time and/or the
space complexity to be proportional to the size of given data.

In this paper, we propose a new approach: learning over compressed
data. That is, we first compress given data somehow, and then employ var-
ious machine learning algorithms on the compressed data without explicitly
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re-constructing the original data. To be more precise, for any target machine
learning algorithm to be employed, we apply an efficient algorithm running
over the compressed data, which simulates the behavior of the target algo-
rithm running over the original data, with the hope that the time and space
complexity are significantly reduced when the data is well compressed. Al-
though we need extra computation for compressing a given sample data set,
we can expect great improvement of time and space complexity, especially
when high compression ratio is achieved.

The methodology of working over compressed data has gained much at-
tention in the areas of database and data mining, where various methods
have been developed for string search from a compressed string and frequent
word extraction from compressed texts [2, 3, 4]. But, as far as the authors
are aware, most methods developed so far are limited to simple tasks such as
search and counting, and few results are known for more complex tasks such
as optimization in machine learning. Notable exceptions contain the results
of Nishino et al. [5] and Tabei et al. [6], where they apply string compression
techniques to matrix-based computations so as to reduce space complexity,
rather than to reduce time complexity.

As a first step toward establishing a general methodology of learning
from compressed data, we consider a variant of the Zero-Suppressed Binary
Decision Diagram (ZDD) as the data structure for representing the training
data. The ZDD is a general data structure for representing a family of
sets [7, 8], and is appropriate for our purpose. Many results reported that
the ZDD indeed has ability of compactly representing various data in various
domains [9, 10, 11].

In this paper, we slightly generalize the ZDD by incorporating non-
determinism and propose a new data structure called the non-deterministic
ZDD (NZDD, for short). The NZDD has more flexibility for representing
data because of the non-determinism. Also, the NZDD naturally fit to the
boosting algorithms to be simulated. On the other hand, it seems to be
NP-hard to construct an NZDD of minimal size from a given training data.
An efficient construction method of succinct NZDDs is left as future work.
Practically, the ZDD and the DFA may provide good alternatives since they
are easy to construct.

For the learning algorithm to be employed over the NZDD represen-
tation of the training data, we consider a boosting algorithm called the
AdaBoost∗ [12]. The AdaBoost∗ is a refined version of the seminal boost-
ing algorithm AdaBoost [13] and is guaranteed to find a hyperplane that
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maximizes the margin.
In this paper, we give an algorithm running over the given NZDD that

efficiently simulates the AdaBoost∗. Its running time (per iteration) does not
depend on the size of training data but is only linear in the size of the given
NZDD. In addition, the implementation also works for the AdaBoost as well
and a similar guarantee also holds. So, our method takes advantage when the
size of the NZDD is significantly smaller than the size of the training data,
provided that the time complexity of constructing the NZDD is moderately
small.

We conduct preliminary experiments over artificial data, where we use
ZDDs instead of NZDDs for representing the training data. It turns out
that the construction time is negligible and the size of ZDDs constructed are
indeed very small. Hence, the results show that our method outperforms the
AdaBoost∗ as expected.

2. Problem statement and AdaBoost∗

First we describe the problem of 1-norm hard margin maximization and
then briefly review the AdaBoost∗ which is one of the boosting algorithms
that solve the problem.

2.1. 1-norm hard margin maximization

Let X be a set called the instance space, and assume that we are given a
finite set of base hypotheses H = {h1, h2, . . . , hn} ⊆ {h : X → {0, 1}}. Note
that the base hypotheses are usually assumed to take values in {−1, 1}, but
since any function g : X → {−1, 1} can be represented as the difference of
0-1 valued functions (e.g., g(x) = 1[g(x) = 1]−1[g(x) = −1]), we can assume
0-1 valued hypotheses without loss of generality. The base hypothesis class H
defines a feature map, which maps any instance x ∈ X to the feature vector
(h1(x), h2(x), . . . , hn(x)) in the feature space {0, 1}n. Later we will regard
the feature vector for x as the set H(x) = {hj | hj(x) = 1} and thanks to the
assumption above, any base hypothesis hj ̸∈ H(x) takes value 0 for x, which
is a crucial property that makes our algorithm work.

Now we give the problem statement of 1-norm hard margin maximization.
The input is a sample S = {(x1, y1), . . . , (xm, ym)} ⊆ X × {−1, 1}, where xi

for yi = 1 is called a positive instance and xi for yi = −1 a negative instance,
and the output is a hyperplane in the feature space that separates the positive
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instances from the negative instances as much as possible. More precisely,
the goal is to find

α∗ = arg max
α∈{Rn|∥α∥1=1}

min
1≤i≤m

yi

n∑
j=1

αjhj(xi). (1)

We denote by α ∈ {Rn | ∥α∥1 = 1} the hyperplane whose normal vec-
tor is α, which also represents the convex combination of base hypothe-
ses f(x) =

∑n
j=1 αjhj(x). (Here we extend the base hypotheses to include

{−h1,−h2 . . . ,−hn} as well, so that we allow the weights αj to take negative
values.) Note that since the 1-norm of α is normalized, |f(x)| denotes the
distance of the feature vector (h1(x), . . . , hn(x)) to the hyperplane α mea-
sured by ∞-norm. Thus, the signed distance yif(xi) (which is positive if
and only if f correctly classifies xi) is called the margin of the hyperplane
α with respect to the labeled instance (xi, yi). Let ρ = mini yif(xi) be the
minimum margin of α over all labeled instances in the sample. Note that
α∗ is the hyperplane that maximizes ρ. It is well known that if ρ > 0, which
means that the sample S is linearly separable, then the combined hypothesis
f has a generalization error bound that is proportional to 1/ρ [14]. So, the
goal of maximizing ρ is natural. Let ρ∗ = mini yi

∑
j α

∗
jhj(xi) be the optimal

margin.
In what follows, we assume without loss of generality that all labeled

feature vectors (h1(xi), . . . , hn(xi), yi) are distinct.

2.2. AdaBoost∗
The optimization problem (1) can be formulated as a linear programming

problem of size O(nm) and hence efficiently solved by an LP solver. However,
in many cases, the number n of base hypotheses is very large (sometimes
infinite), and thus the problem is infeasible for LP solvers. In such cases,
boosting may provide an alternative way. In particular, the AdaBoost∗ of
Rätsch and Warmuth [12] provably converges to the maximum margin ρ∗

within precision ν ∈ (0, 1] in 2 logm
ν2

iterations. Below we describe how the
AdaBoost∗ behaves when applied to the base hypothesis class H. On each
round t = 1, 2, . . . , T , it (i) computes a distribution dt over the sample S, (ii)
finds a base hypothesis hjt ∈ H with the maximum edge (average margin)
with respect to dt, and (iii) updates the coefficient αjt . Finally, normalizing
the coefficient α, it obtains a final hypothesis f . A pseudocode is given in
Algorithm 1, where part (ii) above is implemented in a very naive manner:
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Algorithm 1 AdaBoost∗
Input: S = {(x1, y1), . . . , (xm, ym)} ⊆ X × {−1, 1}, ν ∈ (0, 1]
Output: f

1. Let αj = 0 for j = 1, . . . , n

2. Let d1(i) = 1/m for i = 1, . . . ,m

3. For t = 1, . . . , T

(a) Compute the edges
γt,j =

∑m
i=1 dt(i)yihj(xi) for j = 1, . . . , n.

(b) Let jt = argmax1≤j≤n |γt,j|; γt = γt,jt .
(c) Set ρt = minr=1,...,t |γr| − ν;
(d) Update coefficients αjt = αjt +

1
2
log 1+γt

1−γt
− 1

2
log 1+ρt

1−ρt

(e) Update weights
dt+1(i) = dt(i) exp(−αjtyihjt(xi))/Zt

for i = 1, . . . ,m, where
Zt =

∑m
i=1 dt(i) exp (−αjtyihjt(xi))

4. Let f(x) =
∑n

j=1
αj

∥α∥1hj(x)

compute the edges of all base hypotheses (line 3-(a)) and then choose the
maximum among them (line 3-(b)). So, this implementation is inefficient
for a very large n. But, AdaBoost∗ (and any other boosting algorithm) has
a considerable advantage over LP solvers when the hypothesis class H has
an efficient implementation, called the base learner, for this part: to find a
base hypothesis with the maximum edge from a given distribution over the
sample. In this case, the two lines (3-(a) and 3-(b)) are replaced by the base
learner. The next theorem shows a performance guarantee of the AdaBoost∗.
Theorem 1 (Rätsch and Warmuth [12]). If T ≥ 2 logm

ν2
, then AdaBoost∗

(Algorithm 1) outputs a combined hypothesis f such that min1≤i≤m yif(xi) ≥
ρ∗ − ν.

In this paper, we consider the situation where the size n of H is small
but the sample size m is very large, as is often the case, and both the direct
applications of LP solvers and the AdaBoost∗ may be useless.

2.3. AdaBoost

The AdaBoost, proposed by Freund and Schapire [13], is a precursor
of the AdaBoost∗. The algorithm, unlike the AdaBoost∗, is not shown to
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Figure 1: An NZDD representation for {{a, b}, {a, b, c}, {a, d, e}, {b, c, d}, {b, d}}.

provably maximize the hard margin. However, it is shown that it achieves at
least half of the maximum hard margin asymptotically under weak technical
conditions [15, 12]. Besides, the AdaBoost is much more popular because of
its simplicity and the empirical performances. The behavior of the AdaBoost
is almost the same as the AdaBoost∗. More precisely, instead of 3-(c) and
3-(d) in Algorithm 1, the AdaBoost updates the coefficient as αjt = αjt +
1
2
log 1+γt

1−γt
. Therefore, the theoretical results we will show also are applicable

to the AdaBoost.

3. A dag representation for samples

As a data structure for storing the sample, we propose a dag represen-
tation for a family of sets called the non-deterministic ZDD (NZDD, for
short). It can be seen as a generalization of the ZDD by incorporating non-
determinism.

3.1. Non-deterministic ZDD (NZDD)

An NZDD is specified by a 4-tuple G = (V,E,Σ,Φ), where (V,E) is a
directed acyclic graph with a single root and a single leaf, Σ is a ground
set, and Φ : E → 2Σ is a function that assigns to each edge e a subset Φ(e)
of Σ. Note that Φ(e) can be the empty set ∅. Furthermore we require the
additional properties as described below. Let PG be the set of all paths from
the root to the leaf in G, where a path P in PG is specified by the set of
edges in P , i.e., P ⊆ E.

1. Every path P ∈ PG represents a subset Ψ(P ) ⊆ Σ defined as Ψ(P ) =∪
e∈P Φ(e). Thus, the NZDD G defines a subset family as L(G) =

{Ψ(P ) | P ∈ PG} ⊆ 2Σ.
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2. For every path P ∈ PG, Φ(e) ∩ Φ(e′) = ∅ for any e, e′ ∈ P with e ̸= e′.

3. For every pair of paths P, P ′ ∈ PG, Ψ(P ) ̸= Ψ(P ′) if P ̸= P ′.

The second property says that every element a ∈ Σ appears at most once
in every path P ∈ PG. That is, letting E(a) = {e ∈ E | a ∈ Φ(e)}, we have
|E(a) ∩ P | ≤ 1 for every P ∈ PG. The third property says that there exists
a one-to-one correspondence between the set of paths PG and the subset
family L(G). In particular, we have |PG| = |L(G)|. Note that while the
second property is crucial for our algorithm to work, the third property does
not need to be strictly satisfied. More precisely, the duplication of a subset
does not matter for our algorithm, except that the number of duplications
affects the convergence rate.

Finally, we define the size of G as |G| =
∑

e∈E |Φ(e)|. Note that the size
|G| can be significantly small as compared with the number of paths |PG|. In
other words, the NZDD G is a compact representation for the subset family
L(G). As an example, we give in Fig. 1 an NZDD that represents a subset
family.

3.2. NZDD representation for the sample

Now we describe how we represent the sample S as an NZDD.
Recall that H(x) = {hj ∈ H | hj(x) = 1} for each instance x ∈ X.

Let Z+ = {H(xi) | (xi, 1) ∈ S} and Z− = {H(xi) | (xi,−1) ∈ S} be the
subset families with the ground set Σ = H, which correspond to the positive
and the negative instances in the sample S, respectively. Let G+ and G−

be NZDDs for the families Z+ and Z−, respectively. That is, L(G+) = Z+

and L(G−) = Z−. Finally, the NZDD G for the sample S is obtained by (i)
putting an additional node as the global root with two outgoing edges labeled
with ∅, where one edge is connected to the root of G+ and the other is to the
root of G−, and (ii) merging the leaves of G+ and G− to a single leaf (See
Fig. 2 for example). Note that G is not necessarily a minimal NZDD even
if G+ and G− are minimal, because G may be further simplified by merging
a node in G+ and a node in G−. But, we define G in this way, so that any
path in G+ and any path in G− are disjoint.

3.3. Relations to ZDDs and NFAs

We show that the ZDD representation is a special case of the NZDD
representation. To see this, we consider the class of NZDDs of the following
form:
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(i) (ii)
(iii)

Figure 2: (i) An NZDD G+ for Z+ = {{h1, h3}, {h2, h3}}; (ii) An NZDD G− for Z− =
{{h1, h2, h4}, {h2, h4}, {h3}}; (iii) An NZDD for the sample consisting of positive instances
Z+ and negative instances Z−

1. Each edge e is labeled with either a singleton or the empty set. That
is, |Φ(e)| ≤ 1.

2. Each internal node has one or two outgoing edges. If it has two outgoing
edges, one of them is labeled with the empty set.

3. There exists a fixed ordering over Σ such that for any pair of edges
e and e′ labeled with singletons {a} and {a′}, respectively, if e is an
ancestor of e′, then a precedes a′ in this ordering.

It is easy to see that any ZDD can be seen as an NZDD in this form, by letting
each 0-edge be associated with the empty set and 1-edge with a singleton {a}
where a is the node label of the origin of the 1-edge. This characterization
gives an alternative definition of ZDDs.

NZDDs are more flexible than ZDDs even if we restrict them to be or-
dered. For example, for each pair of edges e and e′ outgoing from a common
node, we allow non-determinism in the sense that Φ(e)∩Φ(e′) ̸= ∅. Another
example is that when taking the union of two (disjoint) subset families L(G1)
and L(G2) represented by NZDDs G1 and G2, respectively, we can easily con-
struct an NZDD that represents L(G1) ∪ L(G2) in the following way: just
put an additional node as the global root with two outgoing edges labeled
with ∅, where one edge is connected to the root of G1 and the other is to the
root of G2. This construction ensures that the NZDD size for the union is
bounded by the sum |G1| and |G2|. This contrasts with the fact that, for the
ZDD case, the size for the union is bounded by the product |G1||G2| even if
G1 and G2 are ZDDs.

Next we consider the relation of ordered NZDDs to NFAs. Under the
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ordering over Σ, we can identify a subset {a1, a2, . . . , ak} ⊆ Σ with a string
a1a2 · · · ak ∈ Σ∗ over the alphabet Σ, where a1 < a2 < · · · < ak under the
ordering <. Note that the empty set corresponds to the empty string ϵ. In
this way, a subset family can be seen as a language. From this viewpoint, we
can regard an NZDD G as an NFA that recognizes the language L(G), with
the root identified with the start state and the leaf with the unique accepting
state. The difference is that, in the NZDD representation, we have only a
single accepting path for each string in the language. This implies that any
DFA for such a language can be converted to an NZDD in an obvious way.
Note that in order to make the accepting state unique, we may need to put
an additional leaf and connecting every accepting state to the leaf by an
additional edge labeled with the empty set (ϵ-transition).

3.4. Complexity of constructing NZDDs

When given a subset family L ⊆ 2Σ, we want to compute a minimal
NZDD G with L(G) = L. So far, the time complexity of the problem is
unknown, but it seems to be NP-hard because so are the closely related
problems, namely, construction of a minimal ZDD (over all ordering) [8] and
construction of a minimal NFA [16]. On the other hand, we have a very effi-
cient algorithm for constructing a minimal ZDD when given an ordering [17]
and a linear time algorithm for constructing a minimal DFA for a finite lan-
guage [18]. So, practically, we can use these algorithms for constructing an
ordered NZDD of small size.

4. Simulating AdaBoost∗ over an NZDD representation for the
sample

In this section, we give an algorithm that efficiently simulates the AdaBoost∗
over an NZDD G that represents a sample S = {(x1, y1), . . . , (xm, ym)}, with-
out explicitly reconstructing the sample S from G. In particular, the running
time (per iteration) of our algorithm does not depend on the sample size m
but is linear in the size of G. First we state the main theorem.

Theorem 2. There exists an algorithm that, when given an NZDD G that
represents a sample S, exactly simulates AdaBoost∗ whose running time is
O(|G|) per iteration.

So, if the sample is significantly compressed in the NZDD representation,
our algorithm runs much faster than the direct application of the AdaBoost∗
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when the computation time of constructing G from S is negligible. More
specifically, if we use a linear time algorithm for constructing an NZDD from
a minimal DFA as described in the previous section, then the total running
time of our algorithm is O(nm + T |G|), whereas the total running time of
the direct application of the AdaBoost∗ is O(nmT ). So, if |G| ≪ nm, then
our algorithm would be faster1.

Further, since the AdaBoost is almost identical to the AdaBoost∗ in an
algorithmic sense, we have the following corollary as well.

Corollary 1. There exists an algorithm that, when given an NZDD G rep-
resenting S, simulates AdaBoost whose running time is O(|G|) per iteration.

Below we describe a basic idea of the algorithm. Obviously, we cannot ex-
plicitly maintain the distribution dt over the sample S. Instead, we maintain
one weight wt,e for each edge e of G, so that the edge weights wt implicitly
represents dt. The same idea is used in [19] to efficiently simulate online
prediction algorithms with multiplicative update rules, where the decision
space is the set of paths of a given directed acyclic graph.

To describe the idea formally, we need some additional notations. Recall
that there exists a one-to-one correspondence between the sample S and
the set of all root-to-leaf paths PG in G. So, we identify a labeled instance
(xi, yi) ∈ S with a path P ∈ PG, and we will denote the weight for the
instance by dt(P ) instead of dt(i). Furthermore, let P+

G and P−
G denote the

set of paths that pass through G+ and the set of paths that pass through
G−, respectively.

Now we give the two conditions C1 and C2 that the edge weights wt need
to satisfy, so as to represent the path distribution dt.

C1. The edge weights wt need to satisfy

dt(P ) =
∏
e∈P

wt,e

for every path (labeled instance) P ∈ PG.

C2. The outflow from each internal node should be one. That is, wt need
to satisfy ∑

a:(u,a)∈E(G)

wt,(u,a) = 1

1Note that it always holds that |G| ≤ nm.
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Algorithm 2 Initializing the path distribution

1. Let w′
e = 1 for all edges in G.

2. Apply the Weight Pushing algorithm to w′ and get w1.

for every internal node u, where E(G) denotes the set of edges of G.

What we need to show is how to simulate AdaBoost∗ efficiently by using
the edge weights wt. More precisely, we need to simulate the two parts of
AdaBoost∗:

(a) updating the path distributions dt (corresponding to Line 2 and Line
3-(e) of Algorithm 1), and

(b) computing the edges γt,j (corresponding to Line 3-(a)).

In the following subsections, we give algorithms that simulate the two parts.

4.1. Updating the path distributions dt

To simulate this part, we use the Weight Pushing algorithm developed
by [20], which rearranges the edge weights so that relative weights on the
path remain unchanged but again satisfy the two conditions. More precisely,
the Weight Pushing algorithm has the following property.

Proposition 1 (Mohri [20]). When given arbitrary edge weights w′
e ≥ 0, the

Weight Pushing algorithm produces edge weights we in time O(|E|) such that
we satisfies condition C2 and∏

e∈P

we =

∏
e∈P w′

e∑
P∈PG

∏
e∈P w′

e

for every path P ∈ PG.

The initialization of the path weights (d1(P ) = 1/m) of Line 2 of Algo-
rithm 1 can be realized by the two steps as described in Algorithm 2. It is
justified by Proposition 1 which implies∏

e∈P

w1,e =
1

|PG|
= 1/m = d1(P ).

Moreover, the running time of Algorithm 2 is O(|E|).
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Algorithm 3 Updating the path distribution

1. Forall e ∈ E(G), let w′
e = wt,e

2. Forall e ∈ E(G+) such that hjt ∈ Φ(e), let w′
e = w′

e exp(−αjt)

3. Forall e ∈ E(G−) such that hjt ∈ Φ(e), let w′
e = w′

e exp(αjt)

4. Apply the Weight Pushing algorithm to w′ and get wt+1.

The update of path distributions of Line 3-(e) of Algorithm 1 can be
realized by multiplying the weights of the edges e such that hjt ∈ Φ(e), and
applying the Weight Pushing algorithm. See Algorithm 3 for more details.

Below we give a justification of Algorithm 3.

Lemma 1. Algorithm 3 exactly simulates Line 3-(e) of Algorithm 1 in time
O(|E|).
Proof. Let P be a path in PG that corresponds to a labeled instance (xi, yi)
and examine the quantity

∏
e∈P w′

e. Recall that∪
e∈P

Φ(e) = {hj ∈ H | hj(xi) = 1}

by the definition of the NZDD construction for S.
First consider the case where hjt(xi) = 0. In this case, there is no edge

e ∈ P such that hjt ∈ Φ(e). Therefore, w′
e = wt,e for all edges e in P . Thus,∏

e∈P

w′
e =

∏
e∈P

wt,e = dt(P )

= dt(P ) exp(−αjtyihjt(xi))

= dt(i) exp(−αjtyihjt(xi)).

Next consider the case where yi = 1 (i.e., P passes through G+) and
hjt(xi) = 1. In this case, there exists a unique edge e ∈ P such that
hjt ∈ Φ(e). The uniqueness comes from Property 2 of the NZDD. So,
w′

e = wt,e exp(−αjt) for the edge e. Since hjt ̸∈ Φ(e′) for any other edge
e′ ∈ P , we have ∏

e∈P

w′
e =

(∏
e∈P

wt,e

)
exp(−αjt)

= dt(P ) exp(−αjtyihjt(xi))

= dt(i) exp(−αjtyihjt(xi)).
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For the last case where yi = −1 and hjt(xi) = 1, a similar argument to
the case above gives

∏
e∈P

w′
e =

(∏
e∈P

wt,e

)
exp(αjt)

= dt(P ) exp(−αjtyihjt(xi))

= dt(i) exp(−αjtyihjt(xi)).

Hence for all paths P , we have∏
e∈P

w′
e = dt(i) exp(−αjtyihjt(xi)).

Therefore, Proposition 1 ensures that wt+1 represents the path distribution
dt+1 as desired.

4.2. Computing the edges γt,j

To compute γt,j, we first compute the following quantity

fe =
∑

P∈PG:e∈P

dt(P )

for all edges e, which can be interpreted as the probability flow of edge e,
i.e., the probability that the path P goes through edge e when P is chosen
according to the distribution dt. Since G is a directed acyclic graph, we
can compute fe for all edges e by dynamic programming (e.g., the forward-
backward algorithm) in linear time. Then, it is not hard to see that γt,j can
be computed by

γt,j =
∑

e∈E(G+):hj∈Φ(e)

fe −
∑

e∈E(G−):hj∈Φ(e)

fe.

We summarize the result as in the following lemma.

Lemma 2. There exists an algorithm that exactly simulates Line 3-(a) of
Algorithm 1 in time O(|G|).

Theorem 2 follows from Lemma 1 and Lemma 2.
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4.3. On Property 3 of the NZDD

Finally, we remark on the necessity of Property 3 of the NZDD.
Assume that an NZDD G representing a sample given by Z+ and Z−

does not satisfy Property 3. That is, some instances H(xi) are represented
by two or more paths in G. In this case, letting the sample be redefined
as multisets Z̃+ =

∪
P∈P+ Ψ(P ) and Z̃− =

∪
P∈P− Ψ(P ), we can see that

our algorithm simulates AdaBoost∗ running over the new sample (Z̃+, Z̃−),
where the sample size is now m̃ = |PG|, which is greater thanm. Fortunately,
the optimization problem (1) remains unchanged with some labeled instances
(xi, yi) duplicated, the AdaBoost∗ works and hence our algorithm works. The
difference is that the convergence rate becomes worse, which is 2(log m̃)/ν2.
But the dependence on the sample size is only logarithmically, the negative
effect seems not very serious.

5. Experiments

In this section, we show some preliminary experimental results on artifi-
cial data comparing our method with the direct application of the AdaBoost∗.
The experiments were performed on a server with four cores of Intel Xeon
CPU X5560 2.80GHz and 198 GB memory. We implemented algorithms in C
and C++. For a practical reason, we consider ZDDs instead of NZDDs. For
an algorithm to compress input data Z+ and Z− into ZDDs G+ and G−, we
used the zcomp of Toda [17] 2, which is a very fast algorithm for constructing
a ZDD of minimal size from a given subset family. More precisely, we sim-
plified each of the ZDDs G = (V,E,Σ,Φ) obtained by zcomp by replacing
every isolated paths (a sequence of edges (e1, e2, . . . , ek) of outdegree 1) with
a single edge e′ with edge label Φ′(e′) =

∪k
i=1 Φ(e). The resultant NZDD

G′ = (V,E ′,Σ,Φ′) is of the same size as G, but may have much less number
of edges than G, that is, |E ′| ≪ |E|.

For the AdaBoost∗ and our implementation, we set T = 100 and ν = 0.01.
Note that T = 100 rounds may not be large enough for the margin of the
combined hypothesis to converge to within ρ∗ − ν. But the purpose of the
experiment is to see how fast our method runs relative to the AdaBoost∗,
and so we could choose T large enough, so that the time for constructing

2http://www.sd.is.uec.ac.jp/toda/code/zcomp.html
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NZDDs are negligible. Indeed, the zcomp is very fast and it produces all the
ZDDs in the experiments in less than 10% of the total computation time.

We generate artificial data in the following way. The domain is X =
{0, 1}n. We choose a set of m instances (without repetition) uniformly at
random from {0, 1}n. To each instance x ∈ {0, 1}n, we assign a label +1 if
the sum of the first k components of x is more than or equal to r and −1
otherwise. That is, the label for x is +1 if and only if x1 + x2 + · · · + xk ≥
r, where xi is the i-th component of x. We consider the hypothesis class
H = {h0, h1, h2, . . . , hn}, where h0 is the constant function that maps any
instance to 1, and hj is a projection function defined as hj(x) = xj for
1 ≤ j ≤ n. Finally, we transform the sample S of size m obtained as
described above into the subset families Z+ = {H(x) | (x, 1) ∈ S} and
Z− = {H(x) | (x,−1) ∈ S}, where H(x) = {j | hj(x) = 1}. (Note that the
hypothesis hj is simply named j.) Then, we apply the zcomp to Z+ and Z−

and obtain an NZDD representation G for the sample. In our experiments,
we set k = 10, r = 5, and examine the performance of AdaBoost∗ and our
method for various dimensions n chosen from {20, 40, 60, 80, 100} and sample
sizes m from {100000, 200000, . . . , 1000000}, respectively.

We first examined the compression ratio for each sample (Z+, Z−). The
compression ratio is naturally defined as the ratio of the output NZDD size
|G| over the input size, where the input size, denoted by |(Z+, Z−)|, is the
sum of |H(x)| for all instances x in the sample. That is, |(Z+, Z−)| =∑

H∈Z+∪Z− |H|. In Table 1 (second and fifth columns) we show the input
size |(Z+, Z−)| and the NZDD size |G| for the case n = 40, and in Fig. 3
(left) we show the compression ratio when we increase the sample size m for
several choices of n. As can be seen in the table and the figure, the sam-
ples are well compressed and the compression ratio becomes smaller as m
increases, which is a desired property for our purpose of large scale machine
learning.

Next we examined the computation time of our method and the AdaBoost∗.
Note that we implemented the AdaBoost∗ in a standard way. More specifi-
cally, it receives (Z+, Z−), a sparse representation of the sample, and runs in
time proportional to its size |(Z+, Z−)| per iteration. Note also that the com-
putation time of our method includes the time for constructing NZDDs. In
Table 1 (last two columns) we summarize the running time of the Adaboost∗
and our method for the case n = 40, and in Figure 3 (right), we plot their ra-
tio, which is defined as the ratio of the computation time of our method over
that of AdaBoost∗. As can be seen in the table and the figure, our method
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Table 1: Summary of the results for n = 40

Sample Input size NZDD size Computation time (sec.)
size m |(Z+, Z−)| |V | |E| |G| AdaBoost∗ Our method

100000 2000505 157459 257457 594640 12.28 6.78
200000 3998893 312040 512038 996607 30.85 12.50
300000 5997874 462764 762762 1335236 47.70 18.26
400000 7999842 608798 1008796 1638201 64.06 23.68
500000 9998653 750227 1250225 1916730 79.43 29.13
600000 11997933 886971 1486969 2178909 95.70 34.20
700000 13998692 1019425 1719422 2429716 111.65 38.70
800000 15998475 1147999 1947996 2672657 127.30 43.41
900000 17999692 1272759 2172756 2909786 143.45 47.95
1000000 19999611 1394369 2394362 3141135 159.40 52.11

runs much faster than the standard implementation of the AdaBoost∗. More-
over, the behavior of the time ratio roughly reflects that of the compression
ratio. On the other hand, as n increases, our method has less advantages
over AdaBoost∗ both on time and space. This is probably because we need
more instances to make our method effective as n grows.

Note that we can see in Table 1 that the NZDDs G obtained have the
property that |E| is much smaller than |G|. Since our algorithm simulates the
initialization and update of distributions dt in O(|E|) time (see Lemma 1),
the bottoleneck is to compute the edges of all hypotheses, which takes O(|G|)
time (see Lemma 2). Improving this part is left for a future work.

6. Conclusions

We proposed the data structure NZDDs, a variant of ZDDs for repre-
senting the training data succinctly and gave algorithms that, when given an
NZDD representation of the sample, exactly simulate AdaBoost∗ (as well as
AdaBoost) in time proportional to the size of the NZDD. This result sug-
gests that some sort of linear programming problems can be efficiently solved
over the NZDD-compressed data, rather than meaning that just boosting
algorithms are simulated. As future work, the investigation of efficient con-
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Figure 3: Compression ratio and time ratio for the artificial data. Here, the compression
ratio is defined as |G|/|(Z+, Z−)|. The time ratio is the ratio of the computation time of
our method over that of the AdaBoost∗.

struction of small NZDDs is important. We also need to evaluate empirical
performances of our method on real datasets. One of the open problems is to
extend our method to the 1-norm soft margin maximization, which is very
important from the machine learning perspective, because its solution has a
guarantee of generalization error even when the sample is not linearly sepa-
rable. Also, the problem of obtaining similar results for the 2-norm support
vector machine remains open.
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