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Abstract—We propose a distance-based exclusive strategy to
extend fireworks algorithm as a niche method to find out multiple
global/local optima. This strategy forms sub-groups consisting
of a firework individual and its generated spark individuals,
each sub-group is guaranteed not to search overlapped areas
each other. Finally, firework individuals are expected to find
different global/local optima. The proposed strategy checks the
distances between a firework and other fireworks which fitness
is better than that of the firework. If the distance between two
firework individuals is shorter than the sum of their searching
radius, i.e. amplitude of firework explosions, these two firework
individuals are considered to search overlapped area. Thus, the
poor firework is removed and replaced by its opposite point
to track multiple optima. To evaluate the performance of our
proposed strategy, enhanced fireworks algorithm (EFWA) is used
as a baseline algorithm and combined with our proposal. We
design a controlled experiment, and run EFWA and (EFWA + our
proposal) on 8 benchmark functions from CEC 2015 test suite,
that is dedicated to single objective multi-niche optimization. The
experimental results confirmed that the proposed strategy can
find multiple different optima in one trial run.

Index Terms—fireworks algorithm, multimodal optimization,
niching, exclusive strategy

I. INTRODUCTION

Evolutionary computation (EC) is a form of population-
based optimization techniques and simulates biological evolu-
tion and the survival of the fittest repeatedly to find the global
optimum. Many practitioners gained novel inspirations from
natural phenomenon and human society to propose efficient
EC algorithms, such as differential evolution (DE) [1], particle
swarm optimization (PSO) [2], fireworks algorithm (FWA) [3]
and others [4], [5], [6]. These EC algorithms have attracted
extensive attentions thanks to their various excellent features,
such as, simplicity, parallelism and intelligence. Realistic
optimization problems become so complicate and difficult
to model mathematically that traditional methods, e.g. linear
programming and Newton method, are powerless to solve
them. On the other hand, EC algorithms have been applied
to these realistic problems widely because of their various
powerful characteristics. For example, the nose cone of the
N700 series Shinkansen is redesigned by genetic algorithm to
reduce pressure wave caused by a tunnel energy consumption.
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Most of realistic optimization problems are multimodal,
and sometimes their many different optima or sub-optima
are necessary to be find out rather than only one optimum.
Unfortunately, enough attention has not paid to this kind of
niche in the EC community, and most practitioners focus on
only finding the global optimum and ignore other acceptable
candidate solutions. Actually, some users not only want to get
the global optimum but also expect to have several available
sub-optima for making a final decision. Niching techniques as
a highly focused option are the extension of EC and can find
multiple optima during one trial run.

So far, there are many well-known niching methods that
have been proposed in the past few decades, including clearing
[7], restricted tournament selection [8], crowding [9], fitness
sharing [10], species [11] and others [12]. Although these
methods have shown satisfactory performance, they need intro-
duce new parameters to track multiple optima. It increases the
complexity and computational cost, and there are still some
limitations that need to be addressed, e.g. low convergence,
high computational cost and parameter tuning.

The main objective of this paper is to extend original FWA
to slove multimodal optimization problems by introducing a
distance-based exclusive strategy to find out multiple different
optima. The proposed strategy uses the characteristics of
FWA to avoid fireworks searching in the same area and
motivate them to converge toward different optima. Finally,
each firework can maintain a niching at the end of one trial run.
Subsequently, we analyze the performance and applicability of
our proposed strategy. We also introduce some topics which
are open to discussion.

Following this introductory section, we summarize the im-
plementation mechanism of the original FWA in the Section
II. The proposed strategy is presented in detail in the Section
III. We compare our proposal with the famous fitness sharing
method using 8 benchmark functions from CEC 2015 test suite
in the Section IV. Finally, we discuss and analyze the effects
of our proposal and conclude our works in the Sections V and
VI, respectively.



II. FIREWORKS ALGORITHM

When a firework is launched into the sky, it generates many
sparks around itself to form a beautiful pattern. Inspired by
the explosion of real fireworks, the explosion process can
be abstracted as a local search around a particular point
(firework). In summary, FWA generates some initial firework
individuals randomly and adaptively determines a search range
or explosion amplitude as well as the number of generated
spark individuals for each firework individual according to
its fitness. Then, each firework generates a certain amount
of spark individuals within its explosion amplitude as an
explosion operation. Finally, all individuals including spark
individuals and current firework individuals are mixed together
to select the next generation. FWA simulates this explosion
process iteratively until a termination condition is satisfied.
Fig. 1 illustrates the process of conventional FWA that con-
sists principally of three operations: explosion, mutation and
selection.
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Fig. 1: The search process of FWA. Black stars are firework
individuals, red dots are generated spark individuals and
irregularly shaped blue dots are mutant spark individuals.
(a) Firework individuals are generated randomly, (b) spark
individuals are generated around each firework individual,
and mutation sparks are also generated, and (c) new firework
individuals are selected from all search individuals in the (b)
for the next generation. Steps (b) and (c) are iterated until a
termination condition is satisfied.

Because there are several limitations in the original FWA
and its performance is also not very prominent among all sub-
sequent variants [13], [14], [15], [16] we use more powerful
EFWA as our baseline algorithm and evaluate the performance
of our proposed strategy in the following experiments. The
enhanced FWA (EFWA) [17] introduces five major improve-
ments into the original FWA to improve its performance
without changing the principle and framework of the original
FWA.

III. PROPOSED DISTANCE-BASED EXCLUSIVE STRATEGY

FWA extracts the characteristics of the explosion of real
fireworks and simulates these explosion patterns repeatedly
to ensure convergence. Firework individuals take on differ-
ent search capabilities including exploitation and exploration
according to their fitness. A better firework individual with
higher fitness generates more sparks within a narrow range,
while a poor firework individual generates a fewer spark within
a wide range. A firework individual and its generated spark
individuals locate in a similar area and can be grouped for
the same niche area. Inspired by the explosion search, each

firework individual would search in a niche area, and no
extra operations are required to divide the generated sparks
individuals into other niche areas. The core idea of our
proposal is to generate individuals into each niche area and
make them search independently without overlapping. Finally,
each firework individual locates in a different global/local
optimum area. Here is the implementation of our proposal
in detail.
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Fig. 2: A demonstration of proposed distance-based exclusive
strategy. Once the explosion radius of two firework individuals
overlaps, i.e. the sum of black dotted line segments is longer
than the purple dotted line segment, the poor firework indi-
vidual is removed from the local area. Then, a new seaching
firework individual (the red five pointed star) is generated
to take over an explosion operation of the poor firework
individual according to the opposite-based generation strategy.

The key issue is how to avoid overlapping search among
firework individuals. To address this issue, we propose a
distance-based exclusive strategy to ensure that there is no
overlapping search among firework individuals. Since each
firework individual has its own explosion radius assigned adap-
tively according to its fitness, it can be used to detect overlap
easily without introducing any new parameters. We determine
that there is overlap search between two firework individuals
if the Euclidean distance between the two individuals is less
than the sum of the search radii of these two individuals.

We check the distances between each firework individual
and other fireworks which fitness is better than that of the
reference firework and mark the poor firework individual if
their searching radius overlaps. Until all firework individuals
are sequentially detected, we delete the marked firework indi-
viduals and generate new firework individuals to replace them.
These generated new firework individuals participate in the
next round of explosion operations rather than deleted firework
individuals. Note that we use synchronous update detection
in this paper. Asynchronous detection is also acceptable and



may be more reasonable, where a marked firework individual
is immediately replaced by a new generated one. In fact,
there are many methods to generate new firework individuals.
We employ the opposite-based generation strategy shown by
the Eq. (1) to generate new firework individuals assigned to
unexplored areas as much as possible.

xipposite = Xﬁnar + anzn - ‘Tz (1
Where 7 and j mean the i-th firework individual and its j-th
dimension, respectively. X7 . and X7 . are the upper and
lower bound of the j-th dimension. Thus, 2 and xf)pposite are
symmetrical with respect to the center of a search space.
The next point to be solved is how to keep multiple different
niche areas as much as possible. Although random selection
and distance-based selection are widely used in the original
FWA and several its variants, these selection methods may
lose the diversity and the ability to search multiple niche areas.
To overcome these limitations, local optima-based selection
strategy [18] is used to ensure each local optimum firework
individual kept in the next generation and maximize the
diversity for searching more local optima areas. Note that
the mutation operation is not used in our proposal, which
means all firework individuals are independent and the optimal
individual (spark or current firework) in each niche area is
copied to the next generation to form the next population.
The Algorithm 1 shows the flow of our proposal combining
with FWA.

Algorithm 1 The framework of our proposal combining with
FWA. Steps 4-10 are our proposed strategy.

1: Initialize n firework individuals randomly.

2: Evaluate the fitness of each firework.

3: while a termination condition is not satisfied do

4. fort=0;i <n;t++ do

5: Check whether the explosion radius is overlapped

among firework individuals.

6 if If there are overlaps then

7: Mark the poor firework individuals.

8 end if

9:  end for

10:  Replace the marked fireworks individuals with new
individuals generated by the opposite-based generation
strategy.

11:  Generate explosion sparks for each firework.

12:  Use Gauss mutation to obtain Gauss sparks (optional).

13:  if sparks are generated outside search area then

14: use a mapping rule for bringing back to the area.

15:  end if

16:  Evaluate the fitness of each generated sparks.

17:  Use local optima-based selection strategy to select n
new fireworks for the next generation.

18: end while

19: end of program.

IV. EXPERIMENTAL EVALUATIONS

We use eight benchmark functions with different dimensions
from the CEC2015 multi-niche benchmark test suite [19]
in our experimental evaluations; they are designed for real
parameter bound constrained single-objective optimization.
Table IT shows their types, characteristics, variable ranges, and
the number of global/local optima. These landscape character-
istics include shifted, rotated, combination and multi-modal.
The EFWA [17] is used as the test baseline algorithm and
combine it with our proposed strategy. The parameter settings
used in our experiments are described in the Table I, where
the definition of the symbols can be found in the original
literatures [3], [17].

TABLE I: Parameter setting of EFWA. D: Dimension

Parameters Values
# of fireworks for any dimension search 10
# of sparks m 50
# of Gauss mutation sparks 5
constant parameters a=0.04b=0.8
Maximum amplitude Apyqq 20
Dimensions D 2,3,4,5,6, 8, 10, 16 and 20
Max. # of fitness evaluations 20,000D
# of trial runs 30

TABLE II: Benchmark Function.

No. Functions Dimension | # of global/local
Shifted and Rotated Expanded 5 1715
1 Two-Peak Trap 10 1/55
20 1/210
Shifted and Rotated Expanded 2 4/21
F> Five-Uneven-Peak Trap 5 32/0
8 256/0
Shifted and Rotated Expanded 2 25/0
F3 Equal Minima 3 125/0
4 625/0
Shifted and Rotated Expanded 5 1/15
Fy Decreasing Minima 10 1/55
20 1/210
Shifted and Rotated Expanded 2 25/0
Fs Uneven Minima 3 125/0
4 625/0
Shifted and Rotated Expanded 4 16/0
Fs Himmelblau’s Function 6 64/0
8 256/0
Shifted and Rotated Expanded 6 8/0
Fr Six-Hump Camel Back 10 32/0
16 256/0
Shifted and Rotated Modified 2 36/0
Fy Vincent Function 3 216/0
4 1296/0
All Search Range: [-100,100]

To evaluate the performance of our proposal, we not only
compare it with the conventional EFWA, but also with a well-
known niching method, fitness sharing [20], [21]. The basic
idea of fitness sharing is to restrict and share resources (e.g.
fitness value) at each niche for decreasing redundancy in the
population. Since the search range in all dimensions is limited
to [-100,100], we set the niche radius at a fixed value 5 for
fitness sharing in our experiments. It means that if a distance



between two firework individuals is less than the niche radius,
it is regarded that they are in the same area and thus need
to share fitness. Fitness sharing is used to reassign fitness
for firework individuals before the explosion operation is
performed. Then, the reassigned fitness of firework individuals
is used to determine the number of generated sparks and their
explosion radius. The above description demonstrates how to
integrate fitness sharing into the conventional EFWA.

We evaluate convergence against the number of fitness calls
rather than generations for fair evaluations. We test each
benchmark function with 30 trial runs in different dimensional
spaces. The fitness accuracy error is set to 10~#, which means
that if the error between a found optimum and a true optimum
is less than this value, then the found optimum is considered
to converge to the true optimum. The maximum number of
fitness calculations is set to 20,000D, where D is the spatial
dimension.

To analyze the performance among these algorithms, we
record the average number of found optima after the 30 trial
runs, as well as the maximum and minimum number of found
optima at the stop condition, e.g. the maximum number of
fitness calculations. The results are shown in the Table III.
We apply Friedman test and Holm’s multiple comparison for
average number of found optima at the stop condition of three
methods to check the significance difference among them. The
Tables IV shows the statistical test result of average number
of the found optima.

V. DISCUSSIONS

We begin our discussion on an explanation of the superiority
of our proposed strategy. Our proposal uses the explosion
pattern of FWA fully to make each firework individual stay in a
different niche area. The independent selection mechanism can
keep the diversity of the population and ensure that multiple
niche areas are kept well.

In comparison to other existing niching methods, the pro-
posed strategy does not introduce any new parameters to
divide individuals into different niche areas because each
local explosion operation can be considered a niche. The
proposed strategy needs extra fitness calculations to generate
new firework individuals when search areas are overlapped.
However, it can avoid multiple firework individuals searching
in the same local area repeatedly, and the possibility that new
generated firework individuals locate in an unexplored area
becomes high. Besides, our proposal always keeps the optimal
area unreplaced, and the poorer the area is, the higher the
possibility that the area is cleared is. Thus, this strategy can
avoid the wandering search in the same area and keep multiple
niches with low increased cost. We can say that it is a low risk,
high return strategy.

Secondly, we want to discuss on the potential and usability
of our proposal. The proposed strategy can be combined with
any other FWA variations easily to track multiple different
niches without changing their main framework; it is not limited
to EFWA used in our experiments. It can be further extended
to other EC algorithms. For example, each particle in PSO

has a maximum evolutionary step (maximum speed) that
can be used to detect whether the particles located in the
same local area. Subsequently, worse particles in the same
local area are replaced with newly generated particles to
keep multiple niche search. It is only a preliminary idea,
and a more perfect framework still needs to be discussed.
The opposite-based generation strategy is adopted to generate
new firework individuals in this paper, but other generation
strategies are also acceptable, e.g. random generation, Forex
trade strategy generation, and others. Thus, how to generate
firework individuals appropriately at different search stages
can be developed as a new potential topic. Overall, we can
say that the proposed strategy has a strong plasticity and
promising.

To analyze the performance of our proposal, the Friedman
test and Holm’s multiple comparison are applied to check the
significant differenceat the stop condition. From the results of
the statistical tests, we have found that our proposal does not
weaken the performance of FWA on all benchmark functions,
and satisfactory performance was obtained on Fs, F3, Fy, Fg
and Fg. On the other hand, fitness sharing does not play any
role in finding multiple optima. It may be because it can re-
allocate resources, i.e. explosion radius of a firework and the
number of its generated sparks, to avoid duplicate searches,
but it cannot keep multiple niche search with convergence and
converge to the same local optimum area. It also implies that
our proposal can keep diversity well. Both, F; and Fj have
only one global optimum and multiple local optima. None of
three algorithms converge to the global optimal area of these
two benchmark functions, which may be caused by the fact
that the global optimum is hard to find. Our proposal had no
effect on Fr. Its specific reasons are still unclear, and we will
investigate in our future work, which may help us to design
more reasonable strategies to optimize multimodal problems.

Some open topics and possible improvements are given.
Thanks to the explosion search of FWA, it can be devel-
oped easily for multimodal optimization problems. But, it
limits the population size not to be set too large because
abundant resources (fitness evaluations) are used to generate
spark individuals for local search. The local optima-based
selection strategy may facilitate the implementation of parallel
computing, though it is not conducive to exchange information
among firework individuals and not easy to jump out of local
optima. Things have pro and con, and it is necessary to further
consider how to balance these conflicts to pursue maximum
performance. Thus, our proposal can ensure each firework
individual may locate an optimum, that determines that it is
not suitable for optimization problems with massive optima.

Finally, we want to discuss on parameter settings. Since
there are no mature methods to guide the parameter set-
tings, all parameters used in experiments are set based on
our experiences. Actually, adaptive detection mechanisms are
potential approaches rather than a fixed strategy according to
the convergence progresses or the characteristics of a fitness
landscape. Thus, developing an adaptive version has become
a challenge in our future works.



TABLE III: We record the mean of 30 trial runs, as well as the maximum and minimum number of found optima at the stop
condition. EFWA: enhanced FWA; EFWAWithFS: apply fitness sharing to EFWA; Poposal: apply our proposed strategy to

EFWA.
No Dimension EFWA EFWAWi‘thFS Propogal
) Mean Min. | Max. Mean Min. | Max. Mean Min. | Max.

5 0 0 0 0.033333 0 1 0 0 0

F1 10 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 2.166667 1 4

F2 5 0.833333 0 1 0.933333 0 1 4.933333 2 9
8 0.3 0 1 0.366667 0 1 1.933333 0 4
2 1 1 1 1 1 1 7.133333 4 9

F3 3 1 1 1 1 1 1 3.333333 1 7
4 1 1 1 0.9 0 1 1.4 0 5
5 0.033333 0 1 0 0 0 0 0 0

F4 10 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 6.833333 4 9

F5 3 1 1 1 1 1 1 5.966667 3 8
4 1 1 1 0.933333 0 1 1.833333 0 6
4 1 1 1 1 1 1 8.033333 6 9

F6 6 1 1 1 1 1 1 9 9 9
8 1 1 1 1 1 1 9 9 9
6 0.266667 0 1 0.233333 0 1 0.233333 0 1

F7 10 0.033333 0 1 0.033333 0 1 0 0 0
16 0 0 0 0 0 0 0 0 0
2 1.8 1 6 1.833333 1 7 6.4 3 9

F8 3 1.633333 1 5 1.333333 1 3 8.766667 8 9
4 1.4 1 4 1.133333 1 3 8.4 6 9

VI. CONCLUSION

We introduced a distance-based exclusive strategy to FWA
to solve multimodal tasks. Each individual can stay in different
niche area and can converge to different optima. The experi-
ments have confirmed that our proposed strategy is effective
and can ensure that FWA locates in multiple different optima
areas.

In our future work, we will consider the fitness characteris-
tics of optimization problems and use the collected feedback
in EC process to develop a more intelligent version to improve
performance of our proposal.
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