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Abstract

This note is a nutshell of our previous note which aims to support
the arguments of information loss by Unruh andWald (arXiv:1703.02140).

1 Introduction

First we mention two extreme answers to the information paradox of the
black-hole evaporation. Hawking [1] claimed the recovery of the information.
Unruh and Wald [2] argued the loss of the information.

Why were they led to different conclusions? We ascribe it to the difference
of the type of the algebra. Our discussion1 proceeds in the framework of
the algebraic quantum theory [3, 4]. The algebra of observables is the von
Neumann algebra.

Hawking’s claim is based on the unitarity of the evolution of the state
vector. This unitary evolution is only allowed for the type-I von Neumann al-
gebra. The Hilbert space employed is finite dimensional. The non-relativistic
quantum mechanics is described by the type-I von Neumann algebra [5, 6].

On the other hand, the relativistic quantum field theory is described by
the type-III von Neumann algebra [5, 6]. The Hilbert space employed is
infinite dimensional. The evolution of the state is non-unitary so that the
information loss occurs without a blackhole.

Unruh and Wald pointed out that any system which we can observe is
an open system2. Such an open system [3] is described by the type-III von
Neumann algebra in the relativistic quantum field theory.

∗Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
1This note is a nutshell of our previous note, http://hdl.handle.net/2324/1955688.
2Unruh and Wald’s example of an open system, a living room, also has nothing to do

with a blackhole.
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In the following we concentrate on the property of the vacuum in the
relativistic quantum field theory. The vacuum shows apparently contradic-
tory properties, entanglement and mixing. The mixing leads to the loss of
information.

2 Entanglement

2.1 Local net

The algebraic quantum theory starts with the algebra A(O) of observables
at the space-time region O. The net A of local algebras A(O) constitutes
the intrinsic mathematical description [3].

2.2 GNS construction

In the GNS construction3 the vacuum vector Ω can be identified with the
identity operator I of the net A. We can think both the vacuum and the
identity as an object which contains every possibility.

2.3 Reeh-Schlieder property

The Reeh-Schlieder property, the denseness of A(O)Ω in AΩ, is a direct
consequence of the weak additivity [4]. Loosely speaking, an event which
occurs in a space-time region O can occur in any other space-time region.
This kind of vector Ω is called cyclic. If Ω is cyclic, it is shown to be separating
[4]. Thus the vacuum vector Ω is cyclic and separating.

Although the Reeh-Schlieder property is for the vector in the Hilbert space
with infinite degrees of freedom, we can catch its image in the following toy
space4 with finite degrees of freedom. Let us consider the space-time with
only two domains, L and R. The dimension of the Hilbert space d is the
same for L and R. Via the Schmidt decomposition the vacuum vector Ω of
the total system is expressed as

Ω =
d∑

i=1

√
λi

∣∣ϕL
i

⟩ ∣∣ϕR
i

⟩
. (1)

The Reeh-Schlieder property is embodied if all λi’s are positive. In this case
Ω is entangled. Thus the Reeh-Schlieder property leads to the entanglement.

3In the GNS construction everything is described by operators. Thus the Reeh-
Schlieder property can be understood within the algebra.

4See, for example, the section 2.2 in arXiv:1811.05052v1.
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If all λi’s are the same, Ω is maximally entangled. In this case the reduced
density matrix ρL

ρL =
d∑

i=1

λi

∣∣ϕL
i

⟩ ⟨
ϕL
i

∣∣, (2)

is proportional to the identity operator. This is consistent with the choice of
the vacuum in the GNS construction.

2.4 Unruh effect

Two space-time domains also appear in the discussion of the Unruh effect.
They are the Rindler wedges. The Unruh effect results from the entanglement
in the Lorentz vacuum. The reduced density5 matrix becomes thermal. The
degrees of freedom unseen from the observer’s wedge plays the role of the
reservoir.

3 Mixing

3.1 Causality

The (Einstein) causality requires that the observations at O1 and O2 are
independent, if O1 and O2 are space-like.

Apparently such a requirement seems to conflict with the entanglement
of the vacuum. However, in the following we will guarantee the causality.

3.2 Statistical independence

According to the abstract of [5], one of von Neumann’s motivations for de-
veloping the theory of operator algebras and the classification of factors was
the question of possible decompositions of quantum systems into independent
parts.

The entanglement prevents us from decomposing the state vector. How-
ever, even in the presence of the entanglement we can accomplish an inde-
pendence of the observations at O1 and O2 in space-like separation. The
independence is expressed in the expectation value [5, 6] as

ω(A1A2) = ω(A1) · ω(A2), (3)

5The density matrix is a convenient tool in the quantum mechanics with finite degrees
of freedom. In the algebraic quantum theory with infinite degrees of freedom the Unruh
effect is explained via the Bisognano-Wichmann theorem [3].
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where ω is the map to give the expectation value and Ai is an observable in
the space-time region Oi with i = 1, 2.

3.3 Split property

The statistical independence in the expectation value described in the pre-
vious subsection is the consequence of the mixing property explained in the
following. The mixing property of the expectation value is led from the split
property [5, 6] of the algebra.

The local algebra has the isotony property: A(O1) ⊂ A(Õ1) if O1 ⊂ Õ1.
When the difference between O1 and Õ1 consists of finite number of space-
time points, we can say

ω(A1) = ω̃(A1), (4)

since O1 consists of infinite number of space-time points. Here ω is the
expectation value for O1 and ω̃ for Õ1. Thanks to the split property ω̃ is
expressed in terms of a density matrix of a mixed state. The expectation
values of these mixed states show the statistical independence. At the same
time the information is lost.

3.4 Takesaki property

The vacuum expectation value of the local observables, A1 and B1, shows
the KMS property ⟨

Ω
∣∣A1(t)B1

∣∣Ω⟩ = ⟨
Ω
∣∣B1A1(t− i)

∣∣Ω⟩. (5)

This vacuum fluctuation [7, 8] clearly shows the mixing property.

4 Summary

• The vacuum of the relativistic quantum field theory is entangled.

• The vacuum expectation value shows the mixing property.

• Due to the mixing the information is lost.
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