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Abstract : We study holomorphic mappings from I<ahler manifolds relating to the 

hyperbolicity or parabolicity of the don1ain manifolds. First, we study the existence of 

bounded harmonic functions and bounded holomorphic functions on Kahler Cartan­

Hadamard manifolds. Next, we survey the Schwarz lemma on Kahler manifolds, and 

raise some problen1s to estimate the gradient of holomorphic mappings. In the last, 

we prove 2 types of the general Schwarz lemma on a Kahler CH manifold as a partial 

answer to the above proble1n. 
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Summary 

In this thesis, we study holomorphic mappings from Kahler manifolds relating to the 

existence of bounded holomorphic functions and to the hyperbolicity or parabolicity of 

the domain manifolds. All over this work, under the theory of several complex variables, 

evaluations of the Hessian and Laplacian of the distance function play important roles 

in the proof of our results. 

In Chapter 1, we study the existence of bounded harmonic functions and bounded 

holomorphic functions on Kahler Cartan-Hadamard(CH) manifolds. In the first, we 

solve the Dirichlet problem at infinity on a Riemann manifold whose sectional curvature 

is bounded above by a quadratic decaying function and below by a negative constant. 

Next, we apply the above solution to Complex Analysis on a Kahler CH manifold, 

whose metric restricted to every geodesic sphere is conformal to that of the standard 

sphere. And we show that there exists a holomorphic extension from the sphere at 

infinity and it coincides with the solution of the Dirichlet problem at infinity, if the 

problem is solvable. So we see that such a manifold admits many bounded holomorphic 

functions. Moreover we show that a Kahler CH manifold of the same type whose 

sectional curvature is bounded above by a quadratic decaying function is biholomophic 

to a bounded strictly pseudoconvex domain in en . 

On the other hand, it is well known that the Schwarz-type lemrna is closely re­

lated to the Liouville's theorem which shows the nonexistence of bounded holon1orphic 

functions. So we survey the Schwarz lemma on Kahler manifolds tracing back to the 

classical Schwarz-Pick lemma in Chapter 2 . And we raise some problems relating to 

the Schwarz lemma, that is, let F( r ) be a negative monotone-decreasing or monotone­

increasing function of r , the distance from a point, and if the Ricci curvature of a 
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Kahler CH manifold is bounded below by F( r) , does the Schwarz type len1n1a hold 

up to F(r)? 

As a partial answer to the above problem we give 2 types of the general Schwarz 

lemma. One is the general schwarz lemma on a Kahler CH manifold whose Ricci 

curvature is bounded below by a quadratic decaying function of r , and the other is by 

a quadratic growing function. Using these results, we give some formula to estimate a 

growth of a bounded holomorphic function. 

The author wish to express many thanks to his supervisor Professor Joji Kaji­

wara for his help and encouragement, and to Professor Katsuhiro Shiohama, Professor 

Hideaki Kazama and Professor Seiki Nishikawa for their ad vices during this work. And 

he would like to thank to Professor Shunichi Tanaka and to Professor Ikuo Kimura who 

were his supervisors, respectively, in Osaka University and in Kobe University. 

At the same time, the author is greatly indebted to Director Toshihiko Ohsaki and 

many staffs of Fuji Research Institute Corporation who permit him to study exclusively 

at Kyushu University during this academical year. 

Takashi YASUOKA 

January 1994 

3 



Contents 

1 The Dirichlet Problem at Infinity and Complex Analysis on Cartan­

Hadamard Manifolds 

1.1 Introduction .. 

1.2 Dirichlet problem at infinity 

1.3 Complex analysis on l(ahler Cart an-Hadamard manifold 

2 Gradient Estimates of Holomorphic Maps and A General Schwarz 

Lemma on Kahler CH Manifolds 

2.1 Introduction . 

2.2 Preliminaries 

2.3 Survey of the Schwarz lemma 

2.4 Kahler CH manifolds . . . . . 

2.5 Schwarz lemma on Kahler CH manifolds 

2.6 Laplacian estimates of the distance function 

2.7 Quadratic decaying condition 

2.8 Quadratic growing condition . 

4 

5 

5 

6 

12 

22 

22 

23 

25 

27 

29 

31 

33 

42 



Chapter 1 

The Dirichlet Problem at Infinity 

and Complex Analysis on 

Cartan-Hadamard Manifolds 

1.1 Introduction 

In this paper we shall study hyperbolicity of Cartan-Hadamard manifolds. 

In Section 1.1 we shall define and solve the Dirichlet problem at infinity for Lapla­

cian � , which gives a partial extension of the result of Anderson [1] and Sullivan [15) 

in Theorem 1.1(cf.[4]). In Section 1.2 we apply the solution of the Dirichlet problem 

at infinity to a complex analysis on a I<ahler Cartan-Hadamard manifold whose metric 

restricted to every geodesic sphere is conformal to that of the standard sphere. It seems 
� 

that the sphere at infinity of such a manifold admits a CR-structure. In fact we can 

define a CR-function at infinity on the sphere at infinity. We shall show in Theorem 

1.2 that there exists a holomorphic extension from the sphere at infinity and it coin­

cides with the solution of the Dirichlet problem at infinity, if the Dirichlet problem at 

infinity is solvable. So we see that such a manifold admits many bounded holomorphic 

functions. By the similar method we shall show in Theoren1 1.3 that such a n1anifold is 

biholomorphic to a strictly pseudoconvex domain in en ' if the holomorphic sectional 

curvature I<h(x) is less than -1/(1 +r(x)2), where r(x) is a distance function from 

a pole. Theore1n 1.3 is a partial answer to a conjecture raised by Green and vVu[8). 
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1.2 Dirichlet problem at infinity 

Let M be a Riemannian manifold of dimension n with metric 9ii . We denote 

by TPM the tangent space at p E A1 . For a C2 function u , we define the Hessian 

D2u of u at p by 

D2u(X, Y) == X(Y.u)- (Dx Y)u 

for X, Y E TPM , where Dx is the covariant derivative. The Laplacian 6.u of u 

is the trace of D2u , which is expressed by 

in a local coordinates (x1 , · · · ,xn ) , where g == det(gij) and (gii) == (gij)-1. By 

the definition, for an orthonormal basis X1, · · · , Xn of TPM we see that 6.uP == 

�i(D2u)(Xi, Xi) . 

A C2 function u on M is said to be harmonic if 6. u == 0 . u is subharmonic if 

6.u � 0, and u is superharmonic if 6.u ::; 0 . A continuous function u is subharmonic 

if it is everywhere a subsolution of the Dirichlet problem [7]. The maximum principle 

and the Harnack's principle are valid for harmonic functions globally on M [2,3]. 

Let M be a simply connected complete Riemannian manifold of nonpositive sec­

tional curvature, M is called a Cartan-Hadamard manifold. By the well known 

theorem of Cartan-Hadamard, for any p E M exp: TPM � M is a diffeomorphism. 

We can construct the boundary of M following Everlein and 0 'Neil [5]. 

DEFINITION. Two normal geodesic rays /I (t), 12(t)(t > 0 ) in M are said to be 

asymptotic if there is a constant c > 0 such that dist (/I ( t), 12 ( t)) < c for all t > 0 . 

We see that the asymptotic relation is an equivalence relation. 

DEFINITION. Sphere at infinity S( oo ) is the set of asymptotic classes of geodesic 

rays in NJ . 
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Let M = M U S( oo) and fix a point o E M . For v E T01V! we define the cone 

around v of angle o by 

C(v,o) = {x EM :-<o (v,i'x(O)) < 8}, 

where rx(t) is the normal geodesic rays through x starting from o ,  and -<o denotes 

angle in TPM. Let T(v, o, r) = C(v, o) \ Bo(r) be the truncated cone of radious r ,  

where Bo(r) is the geodesic r -ball around o. The set of all T(v,o,r) , for all 

v E ToM , and r > 0 , and Bq(r) , for all q E M and r > 0 , defines a local basis of 

topology on M [5). It is called the cone topology. The cone topology is independent 

of the choice of the origin o E M . In this topology M is homeomorphic to a closed 

ball B in Rn , and S(oo) is h meomorphic to the boundary 8B. 

Dirichlet problem at infinity. Given a continuous function f on S( oo) , find 

u E C0(M) satisfying 6u = 0 on M and u = f on S(oo). 

The maximum principle implies that if the Dirichlet problem at infinity is solvable, 

then there are many bounded harmonic functions on such a manifold. Anderson [1] and 

Sullivan [15) showed that the Dirichlet problem at infinity is solvable if the sectional 

curvature K(x) satisfies -a2 ::; K(x) ::; -b2 , where a and b are positive constants. 

Theorem 1.1 is a partial extension of the result of Anderson[1] and Sullivan[15), and 

the proof is based on Anderson-Sullibvan[2). The second inequality of (1.1) in Theorem 

1.1 is a little similar to the inequality: curvature( x) < r( x) -2 , in fact the condition: 

curvature( x) < r( x) -2 implies several properties relating to hyperbolicity ( cf. Greene­

Wu[9]). 

THEOREM 1.1. Let M be a Cartan-Hadamard manifold and I<(x) be the 

sectional curvature at x E M . Suppose relative to some o E M , 

2 }/( ) 
1 

-a < '\. x < - ---;;:---
- - 1 + r(x)2-E 

f or x EM (1.1) 

for two constants a > 0 and 2 > E > 0 , then the DiTichlet problem at infinity is 

uniquely solvable, where r(x) = dist( o, x) . 
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In the following of this section M always denotes a Cartan-Hadamard manifold 

with metric g = (gii) , and o E M is fixed. 

LEMMA 1.1. If the sectional curvature K( x) satisfies 

1 
K(x) < 

-----=--­- 1 + r(x?-c: 
for x EM (1.2) 

for a constant 2 > c > 0 , then for any two normal geodesic rays 11 ( t), 12 ( t) starting 

from o EM with angle B =-<o (1'1(0),1'2(0)) < 7r/4 , we have 

dist(11(t),12(t)) > 2t + 2(2 + t)1-c:l2(1ogB - 1). (1.3) 

Proof. For every integer m , we see that K(x) < -1/(1 + m)2-c: on Ba(m) . 

Comparing (1.2) with the space of constant curvature -1/(1 + m)2-c: , by the Rauch's 

comparison theorem we obtain 

dist(11(t), 12(t)) > 2t + 2(1 + m)1-c:/2(1ogB - 1) for 0 < t < m. 

Define the function f(t) on t E [0, oo ) by 

We get 

f(t) = 2t + 2(1 + m)1-c:/2(1ogB- 1), if t E [m - 1, m). 

dist ( /1 ( t), 12 ( t)) > f ( t) on t E [ 0, oo ) 

. On the other hand 

f(t) � 2t + 2(2 + t)1-c:f2(1ogB- 1) on t E [0, oo ) 

since B < Jr/4. Then we have (1.3) for all t > 0. 

LEMMA 1.2. If K(x) satisfies (1.2) on M , then for any positive constant 8 

with 1 > 8 > 1 - c/2 there exist positive constants r1 ,and C1 such that 

exp(-r1-8) 
� exp( -r(x)1-8) < -C1 (1.4) 

r(x)2 
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Proof. If K(x) � -C2 for a positive constant C , then the Hessian comparison 

theorem of Greene-Wu [9] implies 

D2r(x) � C coth(Cr(x) )  · G 

, where G == g- dr ® dr . By the same reason of the proof of Lemma 1.1, we have 

if m - 1 � r < m . All of the above inequalities on each interval [m, m + 1) implies 

1 
D2r(x) > · G 

- (2 + r(x))l-c/2 

on M . Direct computations give 

c c -13.r(x) + r(x)-8 
13. exp( - r(x) 1-u ) < (1- 8) exp( - r(x)1-u ) for r(x) > 1. 

r8 ' 

By (1.5) we have 

� exp( -r(x) l-8 ) < (1- 8) 
exp( -r(x) l-8 ) 

[1- Cr(x)8 
) . 

r(x ?8 (2 + r(x) )l-c/2 

Since 1- c/2 < 8 we obtain (1.4) for sufficiently large r1 . 

(1.5) 

Let h be a continuous function on the geodesic unit sphere So( 1) in M with 

center at o E M . We extend h radially along rays from o to a function ho on 

M \ o with boundary values h on S( oo) . Let ;\: [0, oo ) � [0, 1) be a C2 function 

satisfying 

.-\ (t) == { 1, t E [0, 1) 
0, t E [2,oo). 

We define a C2 function H ( x) on M by 

1 .-\(r(x, v?)ho(y)dy 
H(x) == M , JM .-\((r(x, y)2)dy 
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where r( x, y) == dist (x, y) and the integral is with respect to the volu1ne form on 

M . We see that H(x) is continuous on M and H == h on S(oo) . If we 

put ;\1( t )  == ;\( t2) , we have D2;\( r2) == � 1dr 0 dr + �1D2r . If K(x) satisfies 

0 > K(x) � -a2 , then we have 

for any x, y E M by the Hessian comparison theorem [9], where r y( x) == r( x, y) . 

Thus we obtain 

x,y EM, 

for a positive constant C2 . We see that 

�H(xo) == �[H- ho(xo)](xo) 

{ ;\(r(xo, Y?)(ho(Y)- ho(xo))dy 
�[ )M ]. 

J
M 

;\( r( xo, Y?)dy 

The curvature bounds imply that the volumes of Bx(1) and Bx(2) are bounded from 

below and above for any x E M. Then we have the following lemma. 

LEMMA 1.3. If 0 > K(x) � -a2 on M , then we ha ve 

I �H(x) I< c3 sup I ho(Y)- ho(x) I 
yEBz(2) 

where c3 is a positive constant. 

for x EM, (1.7) 

Proof of the theorem. We identify S( oo) with the set of geodesic rays starting 

from o . We can approximate h of C0( S( oo)) by Lipshitz continuous functions on 

So(l) ""' S( oo) . By the maximu1n principle and the Harnack's principle, if a sequence 

of harmonic functions uk E C0(M) converges uniformly on S( oo), uk converges 

uniformly on M to a harmonic function u E C0(M) . Thus we may assume that 

h is Lipshits continuous on So( 1) . We extend h radially on M . Define H ( x) 

by( 1.6). From Lemma 1.3 for a positive constant C4 we get 

H(x) < c4 Inax �0 (x, y) 
yEBz(2) 
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since H is Lipshitz continuous with respect to -<o ( x, y) . By Lemma 1.1 we obtain 

max -<o (x, y) < exp(5- (2 + r(x)YI2) 
yEBx(2) 

if r( x) > 2 . Then there exits a positive constant C5 such that 

I flH(x) I< Cs exp( -(2 + r)c:l2), r(x) > 2. (1.8 ) 

Choose a constant o with 1 > o > 1 - c /2, and for arbitraly positive constant C6 

we define function p+ ( x) and p-( x) on M by 

p+(x) = H(x) + C6 exp( -r(x)1-8), 

p-(x) = H(x)- C6 exp( -r(x)1-8). 

From (1.4 )and (1.8) we have 

+ c:/2 exp( -r(x)1-8) flF (x)<C5exp(- (2+r(x)) )-C1C6 r(x)28 , 

exp( -r(x )1-8) flF-(x) > - Cs exp( -(2 + r(x)Y12) + C1C6 
r(x)28 

on x E M \ Bo(r1) . If we fix a constant r2 with r2 > r1 , p+ and p- is 

superharmonic and subharmonic respectively on M \ Bo(r2) since c/2 > 1 - o . 

Moreover we choose C6 such that 

max.H(x)- minH(x) < C6exp(-r�-8) 
xEM xEM 

Now we define c+(x) and c-(x) by 

c+(x) =min { inf H(x) + C6 exp( -r�-8), p+(x)} 
xEBo(r2) 

c-(x) =max{ sup H(x)- C6 exp( -r�-8), F-(x)} 
xEBo(r2) 

(1.9 ) 

We have that c+(x) and c-(x) are continuous on M and constant on Bo(r2) . 

Then c+(x) is superharmonic and c-(x) is subharn1onic on M. By (1.9 ) we can 

check c+ ( x) > c-( x) on M, moreover we can find a constant r3 > r2 such that 

C6 exp( -r�-8)- (maxH(x)- min H(x)) > C6 exp(-r�-8). (1.10 ) 
xEM xEM 
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( 1.10 )implies 

p+(x) < inf H(x) + C6 exp( -r�-8) 
xEBo(r2) 

F-(x) > sup H(x)- C6 exp( -r�-8) 
xE Bo(r2) 

for r E M \ Bo(r3). The above inequalities mean F+(x) == c+(x) and F-(x) == 

c-(x) on M \ Bo(r3) . Hence c+(x) == c-(x) == h(x) on S(oo) . c+(x) and 

c-(x) are barrier functions to solve the Dirichlet problem at infinity by the Perron 

method. Consequently there is the Perron solution which is exactly the solution of 

the Dirichlet problem at infinity. The uniqueness follows from the maximum principle. 

This completes the proof. 

Remark. Professor H. Wu informed the author that H. \tVu and R. Schoen proved 

that if -a · r ( x )2 :<::; K ( x) :<::; -r ( �) 2 ( b ?: 2), then the Dirichlet problem at infinity 

is solvable. 

1.3 Complex analysis on Kahler Cartan-Hadamard 

manifold 

Now we prove the existence of bounded holon1orphic functions on Kahler Cartan­

Hadamard manifold (in short Kahler CH manifold) M in a special class. For this 

purpose we will consider the Dirichlet problem at infinity for 8 like that for 6. . If the 

sphere at infinity S( oo) should admit a CR-structure and M should be hyperbolic 

in a sense, there would be a holomorphic extension to M . However, in general 

S( oo) admits no differentiable structure. We shall define a CR-function on S( oo) 

for a special class of Kahler CH manifolds, and extend to a holomorphic function on 

M . The boundedness of the extended function follows from the absolute maximum 

principle. 

Furthermore we shall show in Theorem 1.3 that a manifold in the special class is 

biholomorphic to a bounded domain in en under some curvature condition. 
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Let M be a complex manifold of dimension n , n � 2. Let J be the complex 

structure of M. For a real coo hypersurface N of M and a point p of N , we 

define the vector subspace H p(N) of TPN ® C by 

We see that dime H P == n - 1. Let h be a complex valued function on N . If 

Z h == 0 for every Z E H p( N) , we call that h satisfies the tangential Cauchy-Riemann 

equation at p . If h satisfies the tangential Cauchy-Riemann equation at every point 

of N , we call h a CR-function on N . 

In the following let M be a Kahler CH manifold of complex dimension n, n � 2 . 

Suppose that the metric of M is of the form 

(1.11) 

where in terms of the geodesic polar coordinates at o, e == ( e2, ... ) e2n) is a spherical 

angle of So( 1) , and r denotes the distance from o , i.e. each geodesic sphere with 

center at o is conformal to the standard sphere in R2n . The Dirichlet problem 

at infinity on such manifolds is studied by Choi [4] . For example, every rotationally 

symmetric manifold satisfies this condition ( cf. Milnor [12], Shiga [14] ). Identifying 

S0(1) with S(oo), for any hE C0(S(oo)) we define a continuous function ho on 

M\o by 

ho(r,B) == h(B) for BE S(oo) rv So(1). 

DEFFINITION. We call hE C0(S(oo)) a CR-function at infinity with respect to 

o EM, if ho(!,B) is differentiable on ME o and h0(1,B) is a CR-function on 

So(l). 

The following lemma shows that our definition is natural for the above manifolds. 

We denote by C Ro( oo) the set of all CR-functions at infinity with respect to o E M . 
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Note that there exists a bijection between C Ro( oo) and the set of all CR-functions 

on So(l) . Regarding Bo(2) a domain in en , we see that CRo(oo) is not empty. 

LEMMA 1.4. Let M be a Kahler CH manifold of complex dimension n(n 2: 2) . 
Assume that the Kahler metric in terms of the geodesic polar coordinates at o is of 

the form {1.11}. If hE CRo(oo) , then hoI So(t) is a CR-function on So(t) for all 

t > 0. 

Proof. It is sufficient to show that for any rays 1( t) starting from o E Jvf, Z h = 0 

at 1(t) for all Z E H1(to)(So(t)) and t > 0. Then we fix a ray 1(t) and t0 > 0 .  

In the geodesic polar coordinates we denote !(1) by (1, B) , and we may assume that 

sine�, .. ·,sin e�n are not 0. 

For any Z0 E H1(to)(So(t0)) we denote by Z(t) the parallel vector field along 

1(t) with Z(t0) = Z0 . Since J is parallel and Z(t) is always orthogonal to 1(t) , 

we see that Z(l) E H1(1)(So(1)). 
We define the vector field Xi(t) along 1(t) by 

1 a 
xi(t) = ( B1) • B1 • B1 ae ' g t, S1n 2 · · · S1n i-1 i 

i � 2, · · · , 2n . Therefore 

a9 1 a 
\7 1-(t)./Yi(t) = -- 2 I I at g sin e2 . . . sin ei-1 aei 

where we put 

rk a r1 a �2n 1i 1i 
+ k-2 · 81 • 81 ae + . B1 • B1 a ' - gs1n 2 · · · s1n i-1 k gs1n 2 · · · s1n i-1 r 

a 1 a 2n k a 
\7 'Y(t) aei = r 1i ar + �k=2r 1i aek. 

(1.12) 

We see that r�i = 0 and rL = f-1a f I ar. Since the metric tensor is diagonal with 

respect to the polar coordinates, other rt 's are vanished. Then \7 'Y(t)Xi(t) = 0 , that 

is, Xi(t) is parallel for all i 2: 2. 
{Xi(t0)} is an orthonormal fra1ne of T1(to)(So(t)) . So we may set 
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. Thus we have 

(1.13) 

hE CRo(oo) implies Z(1)ho = 0 at 1(1) . In the geodesic polar coordinates we 

have 

-1.E
2n { ak oho(1,B') 

9 k=2 · B' 
· 

B' �B S1n 2 · · · S1n k-1 u k 

� bk 8ho(1, B')
} 

_ 
+ v - 1 . 

B' . B' �B - o 
S1n 2 · · · S1n k-1 u k 

by ( l.12 ) and (1.13). Similarly 

Z(t )h (t B') = -1_E2n { ak Bho( to, B') 
o o o, g k=2 . 

B' . B' �B S1n 2 · · · Sin k-1 u k 

� bk oho(to, B')
} 

= 
0 +v -1 · 

B' · B' aB Sin 2 · · · Sin k-1 k 

(1.14) 

Recall that ho(to, B) 

completes the proof. 

ho(1, B) , hence Z(to)ho 
= 

0 at !(to) by (1.14). This 

.THEOREM 1.2. Let M be a Kahler CH manifold of complex dimension n, n � 2 . 

Assume that the Dirichlet problem at infinity is solvable on M , and the Kahler metric 

in terms of the geodesic polar coordinates at o E M is of the form 

Then for any h E C Ro( oo) , there exists a holomorphic function H on M with 

boundary values h , and H coincides with the solution of the Dirichlet problem at 

infinity. 

Remark. Trivial exa1nples of Kahler manifolds as above are en and the unit ball 

B in en with the invariant metric. For the ball B we may identify a CR-function 

at infinity with respect to the origin as a CR-function on oB , hence we can extend it 
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to a holomorphic function on B by the well known method (Hormander[10, Theoren1 

2.3.2'] ). On one hand by Liouville's theorem we see that any CR-function at infinity on 

the sphere at infinity of en can not be extended to a holomorphic function on en . 

So in order to extend a function of C Ro( oo ) to a holomorphic functin, we need son1e 

hypothesis on N relating to hyperbolicity. The hypothesis that the Dirichlet problem 

at infinity be solvable is fulfilled if, for example, the sectional curvature I<( x) satisfies 

-a2 � K(x) � -1/ (1 + r(x)2-c:) by Theorem 1.1. 

Proof We denote h by h = h1 + A.h2 , where h1 = Re h, h2 = Im h. Since 

the Dirichlet problem at infinity is solvable on M , there exist harmonic functions H1 

and H2 on M with H1 = h1 and H2 = h2 on S( oo) . Thus we have only to show 

that H = H1 + A.H2 is holomorphic on M . 

It is shown in Greene-Wu[9] that a Kahler CH manifold is a Stein manifold. By 

Lemma 1.4 ho is a CR-function on So(r) for all r > 0 . We see that the boundary 

S0(r) of Bo(r) is connected and Bo(r) is relatively compact in M. Then we can find 

a holomorphic function Hr on B0(r) with Hr = ho on S0(r) (Shiga [13, Theorem 

2-5] ). So we have a sequence of holomorphic functions { Hk} with Hk = ho on So(k) 

for kEN . Put H� = Re Hk and H'f. = Im Hk. Then H� and H'/. are harmonic 

on Bo(r) since M is l{ahler. In the polar coordinates we have h�(k, B) = H�(k, B), 

and h�(k, B) = H'/.(k, B) on So(k) . Since H1 and H2 are continuous on M , for 

any E > 0 there is a large integer k0 such that 

I H � ( k' B) - H j ( k' B) I< c for j = 1 ' 2 

on So(k) for all k > k0 . The maximum principle implies 

I H � - Hi I< E for j = 1, 2 

on Bo( k) for all k > k0 . This means that { Hk} converges to H uniformly on 

every compact subset of M . Then H is holomorphic since { Hk} is a sequence of 

holomorphic functions. 
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If the Dirichlet problem at infinity is solvable on a Cartan-Hadan1ard manifold 

M , then we see that there is the harmonic measure p,x on S ( oo ) from the Riesz 

representation theorem. Then we have the following corollary ( cf.Anderson [l] and 

Anderson-Sullivan [2)). 

COROLLARY. Let M be a K iihler CH manifold of complex dimension n, n � 2 . 

Assume that the Dirichlet problem at infinity is solvable on M , and the K iihler metric 

in terms of the geodesic polar coordinates at o E M is of the form 

And let p,x is the harmonic measure on S( oo ) . Then for every h E C Ro( oo ) , 

h(x) = 1 hdp,x 
s(oo) 

is a holomorphic function on M with boundary values h . 

Let M1 and M2 be complex manifolds of comples dimension n, n � 2. Let D1 

and D2 be bounded domains with smooth boundaries 8D1, 8D2 respectively. We call 

a coo mapping f of 8D1 to 8D2 a CR-mappping if f*(Hp(BDI)) c Hf(p)(8D2) 

for all p E 8D1. Note that f is a CR-mapping if and only if for any CR-function h 

on 8D2, f o h is a CR-function on 8D1 Shiga [l3) . 

Let M be a complex manifold and dM the Kobayashi pseudodistance. If dM 

is a distance and M is complete with respcet to dM , M is said to be complete 

hyperbolic. 

Let D be a domain in en . D is called a strictly pseudoconvex domain with Ck 

boundary if there exist an open neighborhood U of D and a strictly plurisubharmonic 

functiori r(z) on U of class Ck such that D = {z E U: r(z) < 0} and grad r(z) :f. 0 

for all z E 8D . 

THEOREM 1.3. Let M be a K iihler CH manifold of complex dimension n, n � 2 . 

Assume that the K iihler metric in terms of the geodesic polar coordinates at o is of 
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the form 

and the holomorphic sectional curvature Kh(x) satisfies Kh(x) < -1/(1 + r(x)2) . 

Then M is biholomorphic to a strictly pseudoconvex domain in en . 

Remark. It is shown in Shiga [14] that if g(r,B) = g(r), and the holomorphic 

radial curvature K ( x) satisfies K ( x) < -
( ) 

� t c 

( ) 
, then M is biholomorphic 

. r x ogr x 
to the unit ball in en ( cf. Milnor [12]). 

The following lemma is given in Fridman [ 6]. 

LEMMA 1.5. Let D =:) en be a bounded strictly pseudoconvex domain with C3 

boundary, and M is a completely hyperbolic manifold of complex dimension n. Suppose 

that M can be exhausted by biholomorphic images of D, that is ,for any compact 

K c M there is a biholomorphic imbedding Fk : D ---+ M such that Fk(D) c K. 

Then M is biholomorphically equivalent either to D or to the unit ball in en . 

Proof of the theorem. Recall that M is a Stein manifold. Choose a holomorphic 

coordinate neighborhood U of M such that Eo( c ) c c U for a positive c . By 

the Hessian comparison theorem Greene-Wu [9], r( x )2 is strictly plurisu bharmonic on 

M since M is Kahler. We see that grad r(x? i= 0 on M \ o. Then we may regard 

Bo( c ) as a strictly pseudoconvex domain with coo boundary in en . We define a 

diffeomorphism fk from So( c ) to So( k) E N by 

!k(c, B) = (k, B) 

where ( r, B) is the polar coordinates at o . Lemrna 1.4 implies that fk is a 

CR-diffeomorphism. We see that S0(c) and So(k) are connected. From the Bochner­

Hartogs' theorem on Stein manifolds (Shiga [13]) we see that B0(c) is biholomorphic 

to Bo(k) for all integer k. For any compact set K in M , there exists an integer 

k so that Bo(k) =:) J-( since exp0 : T0M-+M is a diffeomorphism. So M is 
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exhausted by biholomorphic images of the strictly pseudoconvex domain Bo( E). Since 

Kh(x) < -1/(1 + r(x)2) and M is complete, M is complete hyperbolic from the 

theorem of Green and Wu ([9], Theorem E). 

It follows that M is biholomorphically equivalent either to the unit ball B in 

en or to Bo(E) from Lemma 1.5. Both Bo(E) and B are strictly pseudoconvex, 

then the theorem is proved. 
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Chapter 2 

Gradient Estimates of 

Holomorphic Maps and A General 

Schwarz Lemma on Kahler CH 

Manifolds 

2.1 Introduction 

In this chapter we shall survey the Schwarz lemma on Kahler manifolds, and raise 

some problems to estimate the gradient of holomorphic mappings. In the latter part of 

this chapter we prove 2 types of the general Schwarz lemma on a Kahler CH manifold 

as a. partial answer to the above problem. 

The classical Schwarz-Pick lemma states that every holomorphic map from unit 

disc into itself is distance-decreasing with respect to the Poincare metric. From the 

geometrical viewpoint , the distance-decreasing or volume-decreasing property of a 

holomorphic map has been studied succesfully in Ahlfors [1], Chern [3], Kobayashi 

[6], Lu [7] and Yau [12]. From the analytical viewpoint, we are interested in that the 

gradient of a holomorphic map is estimated by curvature conditions. This was also 

studied in Ahlfors [1] and Yau [12]. 

Relating to these works, we recall the following question raised by Greene-Wu [4]. 

What is the largest metric on the unit disc for which a Schwarz-type lemma holds ? 

In this connection the following question is raised naturally for a Kahler CH man­

ifold M . Let F( r) be a negative monotone-decreasing or monotone-increasing 
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function of r , where r is the distance function on M from a point of !vi . If the 

Ricci curvature is bounded below by F(r) , does the Schwarz- type lernma hold up to 

F(r)? 

In a more explicit style we can describe the above as follows: If f is a holomorophic 

map from M to a Hermitian manifold whose curvature is bounded above by a constant 

-{32 , and if the Ricci curvature of M satisfies Ric 2: -a2r(x)6 , then does f*ds� ::; 

(i��x ) " ds1- holds ? In particular if 8 is negative, it may give more exact estimates 

of the gradient of holomorphic maps. Moreover if o is less than -2, it may give some 

information for studying hyperbolicity or parabolicity of M . On one hand if o is 

positive, it means that Schwarz-type lemma holds under unbounded Ricci curvature 

conditions. Here we shall give two theorems which are corresponding to the cases that 

o is equal to -2 and equal to 2 of the above problem. So we may expect that these 

results show the possibility that the above problem be solved affirmatively. 

2.2 Preliminaries 

Let M be a Rien1annian manifolds of dimension m and p be a point of Jvf . 

We denote by TPM the tangent space at p , and by X a tangent vector of Tplvf . 

Let ( , ) be the Riemannian inner product of M , and lXI be a length of the 

vector X E TPM . For a C2 function u on M , we define the Hessian D2u of u 

at p EM by 

D2u(X, y·) = X(Yu)- (DxY)u 

for .X, Y E TpM , where D x Y is the covariant derivative associated with the Riemann 

connection. The Laplacian f::..u of u is defined as the trace of D2u . In other words, 

if { Xi } is an orthonormal basis of TPM , then 

The curvature tensor R is defined by 

R(X, Y)Z = -DxDvZ + DvDxZ + D[x,v]Z, 
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so that (R(./Y, Y )X, Y ") has the same sign as the sectional curvature of the plane 

spanned by X and Y . The Ricci tensor Ric(Y, Z ) is defined by 

Ric(Y, Z) = �i (R(Xi, Y ) Z, Xi ) . 

We say that the Ricci curvature is bounded below -a2 if Ric(X, X) 2:: -a2IXI2 for 

all X . 

The well-known theorem of Cartan-Hadamard says that if M is simply connected, 

complete Riemannian manifold of nonpositive curvature, then the exponential n1ap 

exp P : TpM � M is a diffeomorphisrn. In this case we call M a Cartan-Hadarnard 

manifold. 

Let M and N be a Riemann manifold of dimension m and n respectively. 

And we denote by ds� and ds� a Riemannian metric of Jvf and N respectively. 

Let f be a differential map from m to N . We define the 2-form f*ds� on M by 

for arbitraly p E M and X, Y E TPM . For a positive number C , the inequality 

f*d� < C ds� at p means that the inequality f*4(X, Y ) < C ds�(X, Y ) is valid 

for any X, Y E TpM . In this case we say that the gradient of f is estimated by 

C in. this paper. Moreover if there is a real-valued function C(x) on M such that 

f*d� < C(x)ds� for all x E M , we say that f is distance-decreasing up to C(x) 

in this paper. 

Also, we shall give some definitions with respect to a complex manifold. Let M be a 

Hermitian manifold, and let ( , ) be a Hermitian inner product. X denotes a tangent 

vector of type (1,0) of holomorphic tangent space TPM . If R is the curvature tensor 

of the canonical Hermitian connection on M , the holomorphic bisectional curvature 

determined by X, Y is defined by 

(R(X, X)Y, Y) 

I-X"I2 . IYI2 
f or IXI,IYI /0 

We say that the holomorphic bisectional curvature is bounded above - {32 if 
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for all X, Y . Similarly as in a Riemannian case, the Ricci tensor is defined as 

Ric(Y, Z ) == �i (R(Xi, Y ) Z, Xi) . 

We say the Ricci curvature is bounded below -a2 if R(X, X) � -a2 I X I 2 for all X. 

If a complete I<:ahler mainfold Jvf is simply connected with nonpositive sectional 

curvature, we call M a Kahler CH manifold. A Kahler CH manifold is also diffeo­

morphic to its tangent space. 

2.3 Survey of the Schwarz lemma 

In the first, we recall the classical Schwarz-Pick lemma: 

Let D be the unit disc in the complex plane C , and f be a holomorphic map 

from D into itself. Then for the Poincare metric ds'b , it follows that f* ds'b :s; ds'b 

and the inequality holds everywhere unless f is biholomorphic. 

This means every holomorphic map from D into itself decreases distance with respect 

to the Poincare metric. And the distance-decreasing property of holomorphic map has 

been generalized to various forms . For example, it is generalized to higher din1ensional 

case by Bochner-Martin [2]. 

However Ahlfors [1] was the first to generalize Schwarz lemma by considering the 

curvature conditions. His result is stated as follows: 

Let D be the unit disc in C with the invariant metric ds'b whose Gaussian 

curvature is equal to a negative constant -a2 . And let M be a Riemann surface 

with hermitian metric dsL- whose Gaussian curvature is bounded above by a negative 

constant -/32 . Then every holomorphic map f from D to Jvf satisfies j* ds11 :s; 

a2 
? 

7FdSb 
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Moreover this was generalized by Kobayashi [5] and by others to higher din1en­

sional case. Most of these generalizations of Schwarz Lemma originate from Ahlfors's 

generalization. 

Next, we consider the higher dimensional case for general manifolds. Let Jvf and 

N be same dimensional manifolds, and f be a holomorphic map fron1 M to N . Now 

we define the general elementary symmetric function u associated with f according 

to Chern [3] and Lu [7]. So u is defined by u = ldet( df) 12 according to Chern [3]. 

We can see that u means ·the volume ratio of f . The following result is shown in 

Chern [3]: 

Let R be the scalar curvature of M , and Ric be the Ricci curvature of N . 

Then it follows that i� log u � R- Tr(j*(Ric)) , where Tr(j*(Ric)) means the trace 

of the inverse image of the Ricci form of N . 

Using this formula, Chern [3] generalized the Schwarz lemma as follows: 

Let B be the n-dimensional unit ball in en with the standard K iihler metric, 

and N be an n-dimensional hermitian Einstein manifold with scalar curvature < 

- 2n( n + 1) . Then every holomorphic map f : B ---* N is volume-decreasing. 

This was also generalized by Kobayashi [6] to more general manifolds . 

After that Lu [7] showed a similar formula relating to a distance ratio. Let M and 

N be a Hermitian manifods of complex dimension m , and n respectively. And let 

f be a holomorphic map from M to N . According to Lu, the general symmetric 

function is defined by u = l:i ldfl2 The following result is shown in Lu [7]. 

Suppose that the Ricci curvature of M satisfies Ric > a at a point p E Jvf , and 

the holomorphic bisectinal curvature of N is bounded above by {3 at f (p) . Then, 

at p ,  we have �u � 2(au - {Ju2) and � log u � 4(a- {Ju). 
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About ten years later Yau showed the Schwarz lemma in the n1ost general style [12] 

using Lu's formula. It is mentioned as follows: 

Let M be a complete Kahler manifold with Ricci curvature bounded below by -a2 

(a > 0) , and N be a Hermitian manifold with holomorphic bisectional c·ur·vature 

bounded from above by -(32 ((3 > 0) . Then every holomorphic map f from Jvf to 

2 a2 2 N satisfies f* ds N � {Fds M. 

The points of this result are that the domain manifold is a general manifold, the 

gradient of f is estimated by the Ricci curvature of domain manifold, and moreover 

this lemma immediately implies the Liouville's theorem, that is: 

A complete Kahler manifold with non-negative Ricci curvature does not admit any 

bounded holomorphic functions. 

Before introducing new Schwarz-type lemma, we would like to mention some results 

related to Kahler CH manifolds. 

2.4 Kahler CH manifolds 

Here we turn to study Kahler CH manifold. From 1970's a Kahler CH manifold has 

been studied succesfully. And it has been always studied that: When NJ is hyperbolic 

or when M is parabolic? Note that we frequently see various partial differential 

equations in considering these problen1s. Now we shall make reference to the most 

typical results relating to these problems . 

Let o be a fixed point of M , and we denote by r(x) the distance function from 

o to x in M . The following result is shown in Siu-Yau [1 0] . 

If M is a Kahler CH manifold of complex dimension n with sect. curv. � 
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a? ______:=...,.,-,,...-- for positive constants a and E ' then M is biholmorphic to en . r(x?+c 

Note that the proof of this theoren1 uses the L2 estimates of the CJ problem. And the 

curvature condition of this theorem was improved by Greene-Wu [4). 

On the other hand Greene-Wu proved the following in [4]: 

If M is a Kahler CH manifold of complex dimension n with sect. curv. < 
2 

-( 1 + �( x )2) 
then Jvf is complete hyperbolic in the sense of Kobayashi. 

Moreover we recall some results for restricted cases in this direction. For a rotationally 

symmetric case the following is shown by Milnor [8) and Shiga [9): 

Let M be a Kahler CH manifold of complex dimension n . Suppose that the Kahler 
metric of M is of the form ds2 = dr2 + g( r )2d82 ' where ( r, e) be the geodesic polar 
coordinates on M . We denote by I<( r) the holomorphic radial curvature. Then 
{1) If K(r) � - 2/ , then M is biholomorphic to en . r ogr 
(2) If K(r) �- f + E for positive c: , then M is biholomorphic to the unit ball in 

r'2log r 

en . 

And we have the following result. However we have few results in this direction. 

Let M be a Kahler CH manifold of complex dimension n . Suppose that the 
Kahler metric of M is of the form ds2 = dr2 + g(r, 8)2d82 with respect to the 

geodesic polar coordinates on M . If sed. curv. � - 1 + ; ( x? for positive c , then 

M is biholomorphic to a strictly pseudoconvex domain in en . 

Proof. M is a Stein manifold since a Kahler CH manifold is always a Stein 

manifold by Greene-Wu[4) . Choose a holomorphic coordinate neighborhood U of 

M such that Eo( E ) c c U for a positive c: . By the Hessian comparison theorem of 

Greene-Wu[4), r(x )2 is strictly plurisubharmonic on M since M is Kahler. We have 
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that grad r( x )2 # 0 on M \ o . Then we may regard Eo( c) as a strictly pseudoconvex 

domain with coo boundary in en . We define a diffeomorphism h.: from So( c) to 

So(k) EN by 

!k(E, e) = (k, e) 

where (r, B) is the polar coordinates at o . Len1ma 1.4 in Chapter 1 implies that 

fk is a CR-diffeon1orphism. We see that S0(c) and So(k) are connected. From 

the Bochner-Hartogs' theorem on Stein manifolds we see that Eo(c) is biholon1orphic 

to Eo(k) for all integer k. For any compact set K in M , there exists an integer 

k so that Eo(k) � ]{ since exp0 : T0M--M is a diffeomorphism. So M is 

exhausted by biholomorphic images of the strictly pseudoconvex domain Eo( c). Since 

Kh(x) < -1/(1 + r(x)2) and M is complete, M is complete hyperbolic fron1 the 

theorem of Greene-Wu ([4), Theorem E). 

It follows that M is biholomorphically equivalent either to the unit ball E in 

en or to Eo(c) from Lemma 1.5. Both Eo(c) and E are strictly pseudoconvex, 

then the theorem is proved. 

2.5 Schwarz lemma on Kahler CH manifolds 

Now we return to estimate the gradient of holomorphic maps from a Kahler CH 

manifold. In this section let o be a fixed point of M , and we denote by r( x) the 

distance function frorn o to x in M . 

Here we notice that the ordinary Schwarz lemma does not tell us a local estin1ate 

of a holmorphic map, in other words, the gradient is bounded by a very constant on a 

manifold. Hence the following question is raised naturally: 

Can we estimate the gradient of holomorphic map locally by a local ratio of the 

domain's curvature and the object's curvatute? 

On one hand, in connection with the Liouville's theorern, the following conjecture 
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has been raised for about twenty years ( cf. Wu [13]): 

Let M be a complete K iihler CH manifold, For positive numbers a and E 

. a2 
suppose that R1c � -r( x ?+c , then does M admit non-constant bounded holomorphic 

functions? 

However we know few results in this direction. In connection with these questions 

and the Schwarz lemma, the following question is raised for a I<ahler CH manifold M . 

Let F( r) be a negative monotone-decreasing or monotone-increasing function of 

r . If the Ricci curvature of M is bounded below by F( r) on M , does the Schwarz 

type lemma hold up to F( r) on M ? 

This formulation means that the gradient of a holomorphic map can be estimated 

locally by its Ricci curvature. We expect this formulation will show more presice 

estimates than ordinary Schwarz-type lemma. In a more explicit style we can reform 

the above question as follows : 

If f is a holomorophic map from M to a Hermitian rnanifold whose curvature is 

bounded above by a constant -(32 , and if the Ricci curvature of M satisfies Ric � 
a2r(x )8 

-a2r( x )8 for constants a and fJ , then does f* ds� :::; 
(3

2 ds� holds ? 

In particular if this problen1 is solved affirmatively for a negative number fJ , it 

may give more exact estimates of the gradient of holomorphic maps for large r . 

Furthemore if fJ is less than -2, we expect that it 1nay give some inforn1ation for 

deciding hyperbolicity or parabolicity of M . On one hand if fJ is positive, it means 

that the Schwarz-type le1nma holds under unbounded Ricci curvature conditions. And 

it also assurts that every holomorphic map from such a manifold is destance-decreasing 

up to its Ricci curvature. Moreover these two theorems suggest us that we may expect 
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a good many various forms of the Schwarz-type lemma for a general manifold. 

In the following we shall give two theore1ns which will be an affirmative answers to 

the above problem for the cases: 8 = 2 and 8 = -2 . 

2.6 Laplacian estimates of the distance function 

First, we shall estimate the Laplacian of the distance function on our manifolds. 

LEMMA 2.1. Let M be a Cartan-Hadamard manifold of d'imension rn . Let o 

be a point of M , and r(x) = dist(x, o) . Then we have the followings : 

{A) �r(x) � rr:(�)l on M . 

{B) Let p be a point of M such that dist(o,p) 2:: 1 , and l(x) = dist(x,p) . If the 
2 Ricci curvature satisfies Ric � -( ? for a positive constant ex on NI , then we 

l+r x  
have 

6./(x) ::; m- 1 + ���;(2+ A 2) 

for all x EM ,where A= dist(o,p) . 

Proof. (A) follows directly from the Laplacian comparison theorem Greene-Wu[4] 

since M is a nonpositive curved manifold and �r(x) = rr:(�)1 for the Euclidean 

space Rn . 

For arbitrarily point x E M , let 1( t) be a minimal geodesic joining p and x . 

And we denote by 7(t) the tangent vector of 1 . Once again fron1 Siu-Yau[10] we 

have 

m- 1 1 rl(x) 
�l(x) � � - l(x)2 Jo t2 Ric( 7(t))dt. (2.1 ) 

The trigonometric inequality implies that ll(!(t))-AI< r(1(t)) for all t > 0. Note 

that l ( 1( t)) = t . Then the curvature condition leads 

-
cx2 

-
cx2 

Ric(:Y(t)) > > . 
' - l+r(1(t))2- 1+(t-A)2 

31 



If l(x) > 2A , we get 

rl(x) 
Jo t2 Ric(')t(t))dt i2A 

hl(x) t2 Ric( i'( t) )dt + t2 Ric( i'( t) )dt 
0 2A 

since Ric � - a2 on M . 

Direct computations give 

i2A 2 2 hl(x) -t2a2 
> t ( -(X )dt + 

( f 
dt 

0 2A 1 + t- A -

d t2 2t(1 + A2- tA) 
dt { { 1 + ( t - A) 2 } == { 1 + ( t - A) 2} 2 

< 
2t(1 - A2) 

{1 + (t- A)2}2 
< 0 

t2 because t � 2A and A > 1 . Therefore ( A)2 is monotone decreasing and 1 + t-
2 

less than 4. Then we have 1 + (J _A? � 4 for t � 2A . Hence we obtain 

il(x) 8 hl(x) t2 Ric( i'(t))dt � --a2 A3- 4a2dt. 
0 3 2A 

Using (2.1) and (2.2) we have 

m-1 8a2 A3 4a2 m-1 + 2a2(2 + A2) 
�l(x) � � + 3l(x? 

+ 
l(x) � l(x) 

The last inequality follows from l(x) > 2A. 
If l(x) � 2A, we get 

rl(x) a2l(x)3 
Jo t2 Ric(')t(t))dt �- 3 

since Ric � -a2 . From (2.1) we have 

t\ l( ) 
m-1 a2l(x) m -1 + 4a2A2/3 m -1 + 2a2A2 

D X < + < < · - l(x) 3 - l(x) - l(x) 

Thus we have proved (B) for all x E M . 

(2.2) 

LEMMA 2.2. Let M be a Cartan-Hadamard manifold of dirnension m . Let 

o be a point of M , and r(  x) == dist( x, o) . If the Ricci curvature of Jvf satisfies 
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Ric� -cx2(1 +r(x)2) on M, then we have the follow-ings: 

2 cx2r(x)3 {A) M(x) � n:.(�)l +
a 1x) + � on M . 

{B) Let p be a point of M such that p -1 o, and l(x) = dist(x,p) . Then we have 

m- 1 cx2(1 + A2)l(x) cx2 Al(x)2 cx2l(x)3 �l(x) � 
l(x) + 3 

+ 
2 

+ 
5 

for x EM, where A= dist(o,p) . 

Proof. From (2.1) we have 

m- 1 Q2 rr(x) 
�r(x) � 

r(x) + r(x? lo t2 (1 + t2)dt. 

Integrating (2.3), we obtain (A) . 

(2.3) 

Let 1(t) be a minimal geodesic joining p and arbitrarily x E Jvf . From 

A + l ( 1 ( t)) � r ( 1 ( t)) and ( 2. 3), we have 

m- 1 Q2 {l(x) 
�l(x) � l(x) + l(x)2 Jo e (1 + (t + A)2)dt. 

Integrating the above, we have directly (B) . 

2. 7 Quadratic decaying condition 

In this section we shall give gradient estimetes of a holomorophic rnap fron1 a Kahler 

CH n1anifold whose Ricci curvarure is bounded from below by a quadratic decaying 

function. Again we recall Yau's general Schwarz lemma [12) 

GENERAL SCHWARZ LEMMA. Let M be a Kahler manifold with Ricci curvature 

bounded below by - a2 (a > 0) , and N be a Hermitian manifold with holom01phic 

bisectional curvature bounded from above by -{32 ({3 > 0) . Then if there is a 

2 a2 2 nonconstant holomorphic map f from M to N , we have f* ds N � p
ds M. 
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The following theorem is a partial answer to our problem raised in Section 2.5, and 

gives more accuracy of gradient estimates adding the curvature conditions of quadratic 

decay. And Theorem 2.1 shows that every holomorphic map between manifolds satis­

fying the conditions of the theorem is destance-decreasing up to their Ricci curvatures. 

The proof is essentially based on Yau [11) and Yau[12). However in order to simplify 

the proof, we shall use the argument of Ahlfors [1] and Wu [13). 

THEORElVI 2.1. Let M be a Kahler CH manifold of complex dimension m( m � 

2) , and N be a Hermitian manifold of complex dimension n with holornorphic 

bisectional curvature bounded from above by -{32 ({3 > 0) . Suppose that the Ricci 

curvature of M satisfies Ric � -cx2 /(1 + r(x )2) , where r(x) is the distance function 

from a fixed point o of Jvf . Then if there is a nonconstant holomorphic map f 

from M to N , we have 

Let M and N be a Hermitian manifods of complex dimension m , and n 

respectively. And let f be a holomorphic map from M to N . According to Lu 

[7), we define the general elementary symmetric function u( x) associated with f on 

M . By choosing a orthonormal basis {Xi} of type ( 1,0) at x E M , and we define 

u(x) by 

u(x) == l:i l df(Xi) l 2 f or x EM. (2.4) 

From the definition we can see f* ds� ::; u( x )ds'it . The following result is shown in 

Lu[7). 

PROPOSITION 2.1 Let M and N be a Herrnitian manifold of dirnension m, n 

respectively. And let u( x) be the general elementary symmetric function on NJ of a 

holomorphic map f from Jvf to JV defined as above. Suppose that for a point p in 

M the R·icci curvature of M satisfies Ric > a at p , and the holomorphic bisectinal 
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curvature of N is bounded above by /3 at f(p) . Then we have at p , 

ll u(p) � 2( au(p) - f3u(p ?) 

lllogu(p) � 4(a-f3u(p)) . 

(2.5) 

(2.6) 

Proof of Theorem 2.1. By the definition of the general elementary sym1netric 

function u(x) , it suffices to prove that u(x) � a2 j {/32 (1 + r(x )2)} . And we have 

(2.7) 

on M fr01n Yau[12], since the Ricci curvature of M is bounded below by -a2 . For 

a sufficiently small positive number c 'we define a ceo function (1 + r(x?-£)u(x) 

on M. Then either (1 + r(x)2-c:)u(x) attains its supremum at some point or, there 

is a sequence { qk} in M such that 

lim sup (1 + r(qk)2-c;)u(qk) = sup(1 + r(x?-c:)u(x). 
k-+co xEM 

First, we suppose that (1 + r(x)2-c:)u(x) attains its supremum at q E M . In this 

case we shall consider for three cases ; r(q) = 0, r(q) < 1 , and r(q) � 1 . 

If q = o , it follows from (2. 7) that 

(1 + r(x)2-c;)u(x) < (1 + r(o)2-c;)u(o) 

u(o) 
a2 

< 
/32 . 

a2 Therefore we have that u(x) � 
f3
2

(1 + r(x?-c;) 
on M if q=o. 

Next, we assume q-:/: o , and (1+r(q)2-c:)u(q) > 0. Hence log{(1+r(x)2-c;)u(x)} 

is well defined near q . We see that log(1 + r(x)2-c:)u(x) also achieves its n1aximu1n 

at q . From the maximum principle we have 

illog{(1 + r(q?-c:)u(q)} � 0. (2.8) 
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Direct co1nputation implies 

2- c (2 -c)r(x)2-2£ 
= _ {r(x)1-c�r(x) + (1-c)r(x)-c- } 1+r(x)2 £ 1+r(x)2-c 

2-E 

( y 
( )2 ( r(x)�r(x)-1) 

rx +rx 
> 

According to Lemma 2.1( A), we see �r(x) � (2n�-1)/r(x) . Then we have 

From (2.8) we see that 

� log( 1 + r(x?-£) > 
(2-c)(2m-2) 

r(xY + r(x)2 
3m-4 

> 

r(xY + r(x? · 

0 � �log{(1 + r(q)2-c)u(q)} = �log u(q) + �log(1 + r(q)2-c). 

Using (2.6) and (2.9), we get 

since m � 2 . Therefore we have 

Hence we have for all x E M 

In particular if we suppose r(q) � 1 , then we have i1nmediately from (2.10) 

(1 +r(x)2-£)u(x) < (1 + r(q)2-£)u(q) 

< (1 + r2(q))u(q) 

< 
o

? 

{32
. 
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(2.9) 

(2.10) 



2 Then we obtain u(x) ::; ,82(1 :r(x)2-c: 
on M if r(q) 2: 1 . Thus we have proved 

that for any small positive constant E if (1 +r(x)2-c:)u(x) achieves its supremum at 

some point Qc: , then it follows that 

a2 a2(1 + r(qc:?-c:) 
u(x) <max{ }. (2 11) - ,82(1 + r(x)2-c:)' ,82(1 + r(qc:?)(1 + r(x?-c:) · 

on M , where qc: satisfies 0 < r( Qc:) < 1 . Hence it remains to consider the case that 

( 1 + r( x )2-c: )u( x) does not achieves its supremum. 

Now let { qk} be a sequence in Jvf such that 

lim sup (1 + r(qk)2-c:)u(qk) == sup ( 1 + r(x)2-c:)u(x). k-oo xEM 

Choosing a subsequence adequately we may assurne that limk-oo r(qk) == oo , and 

sup (1 + r(x?-c:)u(x) 
xEBo(r(qk)) 

(2.12) 

for all integer k, where Bo(r(qk)) is the ball of radious r(qk) arround o E Jvf. Let 

Bk(R) be the ball of radious R arround Qk E Jvf, and let l(x) be the distance from 

qk . So we define a real-valued coo function <I>(x) on Bk(R) by 

<I>(x) == (1 + r(x)2-c:)u(x)(R2 -l(x??. 

We see that <I>(x) = 0 on the boundary 8Bk(R) of Bk(R) , and <I>(x) > 0 in 

Bk(R) . Hence <I>(x) attains its maximun1 at an interior point Pk of Bk(R) . From 

(2.13), we see 

(2.13) 

Since <I>(pk) > 0 , log <I>( x) is well defined as a coo function near Pk . Then 

log <I>( x) also attains its n1aximum at Pk , hence �log <I>(pk) ::; 0 . Therefore, at Pk 

we have, 

0 > �log { (1 + r(pk)2-c:)u(pk)(R2-l(pk)2)2} 

� log(1 + r(pk)2-c:) + � log u(pk) + 2� log(R2 -l(pk)2) . 
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Since (2.6) and (2.9) , we obtain at Pk 

3m -4 { -cx2 ( ) 2} . 2 2 0� ( r: ( ?
+4 ( ?

+u pk(J +2�log(R -l(pk) ) .  r Pk + r Pk 1 + r Pk (2.14) 

So that we shall estimate the third term of the right-hand side. Direct computation 

g1ves 

We may assume r(qk) � 1 . So from Lemma 2.1(B) we have 

2Cl 2R2 + 2l(pk)2 � log(R2-l(Pk?) > - R2- l(pk)2 (R2 -l(Pk?)2 

= 
_ 2 ( C 1 + 1) R2 -( C 1 - 1) l (p k) 2 

(R2- l(Pk?? ' 

(2.15) 

where we set C1 = m-1 +2 a2(2+r(qk?) . We define the real valued function cp(�, rJ) 

for �' '17 E R by 

(2.16) 

Using (2.16) and (2.14) we have 

-a2 3m-4 4cp(R, l(pk)) 
0 � 4( 1 + r(pk)2 + u(pk)f32) + (r(pky + r(pk)2) - (R2 -l(pk)2)2 ' (2.17) 

Deviding (2.1 7) by 4(32 , we get 

u(pk) < 
�{ cx2 _ (3/4)m- 1 + cp(R, l(pk)) } 
(32 1 + r(pk)2 r(pky: + r(Pk? (R2 -l(pk)2)2 
1 cx2 cp(R,l(pk)) 

< (32 
{ 

1 + r(pk)2-c: + (R2- l(pk)2)2 } . (2.18) 

Here we assumed that r(pk) > 1 fron1 (2.1 3). So the last inequality follows fro1n 

m � 2 and 1 + r(pk)2-E < 1 + r(Pk? . Since <J? attains its Inaxi1nun1 at Pk , we 

obtain from (2.1 8) that 
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Deviding (2.19) by R4 , and combining �(qk) = u(qk)(1 + r(qk)2-c:)R4 , we have 

u(qk)(1 + r(qk?-<) :0::: ;: + (
1 + r(pk)��1�(R, l(pk)) 

(2.20) 

Next, we shall show that (1 + r(pk)2-c:)cp(R, l(pk))/ R4 tends to zero, when R � oo. 

The definition of C1 implies C1 � 1 . Then we see that 

by (2.16). From (2.13) it follows that r(pk) s 2R if R is large enough. Hence we 

have 

for sufficiently large R . Since the right-hand side tends to zero when R � oo , thus 

we have proved 

This implies from (2.20) that 

2 
(1 + r(qd-')u(qk) :0::: ;2 · 

2 By the definition of qk , (1 + r(x)2-c:)u(x) s 7F follows for all x E B0(r(qk)) . 

Letting k � oo such that r(qk)) � oo , we have 

on M. 

Combining ( 2.11) we have proved that for arbitrarily small const atn t c > 0 
a2 a2 a2(1 + r(qc:)2-c:) 

u(x) < max { } . -
{32(1 + r(x?-c:)' {32(1 + r(x)2)' {32(1 + r(qc:?)(1 + r(x)2-c:) 

for all x in 1\II, where qc: is the maxin1um point of (1 +r(x)2-c:)u(x) while it attains 

its maximum satisfying r( qc:) < 1 . Since the right-hand side is continuous relative to 

E near c = 0 , then we have 
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on lvf . This completes the proof. 

Next, we shall estimate a growth of a holomorphic map fron1 a Kahler CH manifold 

whose Ricci curvature satisfies the condition of Theorem 2.1. The following corollaries 

are immediately applications of Theorem 2.1. 

COROLLARY 2.1. Let M be a Kahler CH manifold of complex dimension rn(m � 2), 

and N be a Hermitian manifold of complex dimension n with holomorphic bisectional 

curvature bounded from above by -{32 (/3 > 0) . Suppose the Ricci curvature of M 

satisfies Ric� -a2/(1 + r(x)2) , where r(x) is the distance function from a fixed 

point o of M . And let f be a holomorphic map from M to N . Then we have 

distN(J(x), f(o)) ::; � log{r(x) + (r(x? + 1)112} 

on M. 

Proof. We may assume that f is a nonconstant map. We denote by IXIM 
and IYIN the length of tangent vectors X E T M, Y E TN measured by each metric 

of M and N respectively. Let 1(t) be a unit speed geodesic in M from o to x . 

So we can define the piecewise-smooth curve O" ( t) on N by O" ( t) = f( 1( t)) . Hence 

we have, 

rr
(
x

) 

distN( f(x), f(o)) � 
J

o ID-(t)iN dt 

We see that ID-(t)l� = lf*(i'(t))l� = f*ds�(i'(t),i'(t)) . And Theorern 2.1 gives 

2 
I&( t 

l I� :::: !32(1 +�(I( t 
l ?l 

ds7vrb( t ), 
1( 

t) 
l 

Since 1( t) is paran1etrized by its arclength, then we have 

!or

(

x
) a -----:-dt 

0 {3(1 + t2)1/2 

� log{r(x) + (r(x? + 1)112}. 
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Thus we complete the proof. 

COROLLARY 2.2. Let M be a Kahler CH manifold of complex dimension m( m � 2) . 

Suppose the Ricci curvature of M satisfies Ric � -a2 / ( 1 + r ( x )2) , where r ( x ) is 

the distance function from a fixed point o of M . If there is a bounded holomorphic 

function f on M such that f ( o) = 0 , then we have 

on M. 

(2r(x ) + 1)012- 1 
IJ(x)l � {:�E lf(x)l} (2r (x ) + 1)af2 + 1 

Proof. We may assume that sup If I = 1 deviding f by sup 1!1 . Therefore we 

can regard f as a holomorphic map from M into the unit disc D in C. Let ds'b 

be the Poincare-Bergman metric of D defined by 

2 1 dsD= 22
d z/\az, 

(1 -lzl ) 
which has the constant holomorphic curvature -4 . Mesuring the distance from o to 

z E D by this metric , it follows that 

. 1 1 + l z l 
d1st0 (z, 0) = -log 

I 1. 2 1- z 

Combining Corollary 2.1, we have 

Hence we obtain 

1 1 + lf(x)l 
og 1 -lf(x)l 

< � log {r (x ) + (r(x)2 + 1)112} 
2 
a 

< 2 log(2r (x ) +1). 

1 + lf(x)l < (2r (x ) + l)a/2. 
1 -lf(x)l -

Simplifying above equation, we get 

(2r (x ) + 1)012- 1 
lf(x)l � (2r (x ) + l)a/2 + 1 

for all x E M . This completes the proof. 
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2.8 Quadratic growing condition 

In this section we shall extend the general Schwarz lemma for l(ahler CH 1nanifolds 

whose Ricci curvature is greater than a negative function with quadratic growth. The 

point of Theorem 2.2 is that it is the Schwarz-type len1ma under unbounded Ricci cur­

vature conditions. And Theorem 2.2 also shows that every holornorphic map between 

manifolds satisfying the conditions of the theorem is destance-decreasing up to their 

Ricci curvatures. It is described as follows. 

THEOREM 2.2. Let M be a Kahler CH manifold of complex dimension m ( m � 

1) , and N be a Hermitian manifold of complex dimension n with holomorphic 

bisectional curvature bounded from above by -(32 ((3 > 0) . Suppose the Ricci curvature 

of M satisfies Ric � -a2(1 + r(x )2) , where r(x) is the distance function from a 

fixed point o of }..if . Then if there is a nonconstant holomorphic map f from M 

to N, we have 

where the constant Cm,a is given by Cm,a = max { 3a2, 4m + 2a2} 

Proof. In the first, we have frorn direct computation that 

6log ( 1 + r ( x?) 

< 

2 2r(x)2 
( )2

{r (x )6r(x)+1- ( )2 } 
1+rx 1+rx 

2 

( )2
{r (x)6r(x) + 1}. 

1+rx 

According to Len1ma 2.2(A ) , we have on }..if 

2{2m + a2r(x)2 /3 + a2r(x)4/5} 
< 

1+r(x)2 
4m 2a2r(x)2 

< +---
1+r(x)2 3 

(2.21) 

Note that Lem1na 2.2(A) holds for q -:j:. o , but (2.21) holds globally on Jvf since 

6log ( 1+r (x )2) is continuous on M. Let u(x) be the general elementary syrn1netric 
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function associated with f . So it suffices to prove that 

() 
Cma-(1+r(x)2) 

U X < --' --:::------
/32 

on M . After the 1nanner of the proof of Theorem 2.1, we define a coo function 

u(x)/(1 + r(x)2) on M. Then either u(x)/(1 + r(x)2) attains its supre1num at some 

point or, there is a sequence { qk } in M such that 

. u(qk) _ 
u(x) hm SUPk--.oo 1 ( )2 - SUPxEM 1 ( )2 + r qk + r x 

We suppose that u(x)/(1 + r(x)2) attains its supremun1 at some point q EM . 

So log{u(x)/(1+r(x)2)} iswell defined near q .  We see that log{u(x)/(1+r(x)2)} 

also achieves its maximum at q . From the maximum principle we see that 

u(q) 
6.log 

()2
�0. 

1 + r q 

Hence we have 

0 � 6log 
u( �) 

)2 = 6log u(q) - 6log(l + r( q)2). 
1+rq 

Using (2.6) and (2.21), we get 

at q . Therefore we obtain 

u(q) 
1+r(q)2 

2a2 + 4m 
< 

/32 

Sl.nce u(x) 
< 

u(q) h d tl t ·f u(x) tt · ·t s e m 
1+r(x? _ 1+r(q? ,we ave prove 1a 1 

1+r(x? 
a a1ns 1 s upr mu 

at so1ne point in M , then for all x E M 

(2.22) 

43 



Suppose that u/(1 + r2) does not achieve its supremum in any compact subset 

1n M . So we can find a sequence {qk} in lvf satisfying r(qk) < r(qk+l) , 

limk�oo r( qk) == oo and 

u(x) u(qk) 
sup 

2 == 2
, 

xEBo(r(qk)) 1 + r(x) 1 + r(qk) 

for all integer k . So it follows that 

. u(qk) u(x) 
hm sup 

2 
== sup 

2. k�oo1+r(qk) xEM1+r(x) 

(2.23) 

Let Bk(R) be the R -ball around qk , and l(x) be the distance from qk . So we 

define a real-valued coo function �(x) on Bk(R) by 

(R2 -l(x??u(x) 
�(x) == 

( ? l+rx 

We see that �(x) attains its maximum at an interior point Pk of Bk(R) since 

�(x) ?:: 0 in Bk(R) and �(x) == 0 on fJBk(R) . From (2.23), we see 

Since �(Pk) > 0 , we get 6.log �(Pk) ::; 0 . Hence we have at Pk , 

0 > 6.log 
(R2- l(Pk?)2u(pk) 

1 + r(pk)2 
== 26.log(R2-l(Pk?) + 6.log u(pk)- 6.log(1 + r(Pk?). 

Since (2.6) and (2.21) , we obtain 

at Pk . We define a real valued function cp( R, �, 17) of R, � and TJ E R by 
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(2.25) 

(2.26) 



So using (2.15) and Lemma 2.2(B), the fourth term of the right-hand side of (2.25) 
becomes 

2R2 + 2l(pk)2 2o? 2m- 1 
= 

(R2 -l(Pk?)2 R2- l(pk)2 
{ 

o? 

(1 + r(qk?)l(Pk? r(qk)l(pk)3 l(pk)4} + 3 + 2 + -5 -
2<p(R, l(pk), r(qk)) 

= 

(R2-l(Pk?)2 ' 

Substituting (2.27) into (2.25) we have at Pk 

{ 2 2 2} 4m 
0 > 4 -a ( 1 + r (p k) ) + u (p k) f3 -

( ) 2 1 + T Pk 
2 a2r(pk)2 4<p(R, l(pk), r(qk)) 

3 (R2- l(pk)2? 
. 

Deviding (2.28) by 4(1 + r(pk)2)j32 and simplifying it we have 

(2.27) 

(2.28) 

u (p k) 1 7 2 m cp ( R, l (p k), r ( q k)) 
1 + r(pk)2 � /32 { 6a + (1 + r(x)2? + (R2- l(Pk??(l + r(pk)2) 

}. (2.29) 

Since <P attains its maximum at Pk , we obtain from (2.29) 

<P( ) <P( ) { 7a2(R2 -l(pk)2)2 m(R2 -l(Pk?)2 cp(R, l(pk), r(qk))} Qk � Pk � 6132 + /32(1 + r(pk)2)2 + /32(1 + r(pk)2) · 

Hence we get from <P(qk) = u(qk)R4/(1 + r(qk)2) that 

u(qk) 7a2 m cp(R,l(pk),r(qk)) 
----= < - + + -----:---=----� 1 + r( Qk)2 - 6/32 /32(1 + r(Pk?)2 R4 /32(1 + r(pk)2)" 

We may put R = r(qk) , then from R > l(pk) and (2.26) we see 

( ( 2 
3 

2 6 cp R, l (p k), r q k)) < (2m + 1) r ( Qk) + 2 a r ( q k) . 

Fro1n (2.24) we have 

Therefore we obtain 
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for x E Bo(r(qk)) . Letting k-+ oo such that r(qk)-+ oo , then we have proved that 

u(x) 3o? 
-----:::- < -

1 + r(x? - {32 

on M if u(x)/(1 + r(x)2) does not attain its supremun1. Combining ( 2.22) we 

complete the proof. 

Note that we need not the condition m � 2 in Theorem 2.2. Using the estin1ate 

of Theorem 2.2, we can get the following corollaries. 

COROLLARY 2.3. Let M be a Kahler CH manifold of complex dirnension m(m � 

2) , and N be a Hermitian manifold of complex dimension n with holomorphic 

bisectional curvature bounded from above by - {32 ({3 > 0) . Suppose the Ricci curvature 

of M satisfies Ric � -a2(1 + r(x)2) , where r(x) is the distance function from a 

fixed point o of M . And let f be a holomorph ic map frorn M to N . Then we 

have 

.jcma 
distN( f(x), f(o)) � 2{3' {2r(x) + r(x)2} 

on M , where Cm,a = max { 3a2, 4rn + 2a2} . 

Proof. We may also assume that f is a non constant map. vVe denote by j .. Yj 
M 

and I YIN the length of tangent vectors ./y E T M, Y E TN rneasured by each metric 

of M and N respectively. Let 1(t) be a unit speed geodesic in M from o to x . 

So we can define the piecewise-smooth curve CJ(t) on N by CJ(t) = f (l(t)) . Hence 

we have, 

We see that 

lir(t)l� = lf*('Y(t))l� = f*ds�('Y(t),')t(t)). 
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And Theorem 2.2 gives 

Since 1(t) is parametrized by its arclength, then we have 

< 

rr(x) Jcm,a(1 + t2) 
dt Jo {3 

Jcm,a(2r(x) + r(x)2) 
2{3 

Thus we complete the proof. 

COROLLARY 2.4. Let M be a K iihler CH manifold of complex dimension m( rn � 1) . 

Suppose the Ricci curvature of M satisfies Ric � -a2(1 + r(x)2) , where r(x) is 

the distance function from a fixed point o of M . If there is a bounded holomorphic 

function f on M such that f ( o) = 0 , then we have 

r;:;-(2r(x) + r(x)2) 
lf(x )I � { sup If I} tanh{ V vm,a } xEM 8 

Proof. We may assume that sup l f l = 1 deviding f by sup 1!1 . Therefore we 

can regard f as a holomorphic map from M into the unit disc D in C. Let ds1 

be the Poincare-Bergman metric of D defined by 

2 1 -ds D = ? 
2 

dz 1\ dz, 
(1 -lzl-) 

which has the constant holomorphic curvature -4 . Mesuring the distance from o to 

z E D by this metric , it follows that 

. 1 1 + lzl d1st0 (z, 0) = 2 1og 1 _ lz l .  
Fr01n Corollary 2.3, we have 

log 
1 + if(x)i < � {2r(x) + r(xj2} 1 -lf(x)l - 4 
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Hence we obtain 

1 + lf(x)l Jcm,a: ? --- :::; exp { (2r(x) + r(x)-)} 
1 -lf(x)l 4 

Simplifying above equation, we get 

Jcm,a:(2r(x) + r(x)2) 
If ( x) I :::; tanh 

8 

for all x E M . This completes the proof. 

Remark. In the last, the we remark that it is still an open problen1 whether the 

exponent 2 of r(x) appeared in those theorems is best possible or not. However we 

think it is not easy to improve the exponent larger than 2 after the same manner. 
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