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INTRODUCTION

 Richards function includes Mitscherlich, logistic, 
Gompertz and basic growth functions as special cases 
(Richards, 1959), a kind of generality that Richards func-
tion has.  This is also shown by many subsequent studies, 
for example, Yoshida (1979), Naito and Shiraishi (1983), 
Osumi and Ishikawa (1983), and Ito and Osumi (1984).  
This generality of Richards function goes back to the dif-
ferential equation for Bertalanffy function (1949, 1957), 
from which Richards function was derived (Richards, 
1959).  There was a study in which growth was analyzed 
using Richards function and its first, second and third 
derivatives (Nath and Moore III, 1992).  Shimojo et al. 
(2011) made comparisons between the above five func-
tions, except Bertalanffy function, by relating them to 
their first and second derivatives. 

 The present study was designed to derive the above 
five growth functions from Bertalanffy function using 
symmetry and complexity of them by relating each func-
tion to its first and second derivatives. 

DERIVING FIVE GROWTH FUNCTIONS FROM 
BERTALANFFY FUNCTION

Bertalanffy (WV), Richards (WR), Mitscherlich 
(WM), logistic (WL), Gompertz (WG) and basic 
growth (WB) functions

The growth rate given by Bertalanffy (1949, 1957) is 
 

 
             = αWV

m – βWV　,   (1)

where WV = weight, t = time, α= anabolic constant, β= 
catabolic constant, m = constant.  As reported by 
Bertalanffy (1957), solving (1) gives Bertalanffy function 
(2), 

 
WV = (α/β– (α/β–W0

1–m )exp(–β(1–m)t))1/(1–m)
　, 

      (2)

where W0
1–m= weight at t = 0, m ≠ 1. 

The other five growth functions (Richards, 1959; 
Osumi and Ishikawa, 1983; Ito and Osumi, 1984) are as 
follows, 

WR = A(1–bexp(–kt))1/(1–m),    (3)
 
WM = A(1–bexp(–kt)),    (4) 
 
WL = A/(1+bexp(–kt)),    (5) 

WG = Aexp(–bexp(–kt)),    (6)

WB = W0 exp(rt),     (7)

where W = weight, t = time, A, b, k and m are constants, 
W0 = weight at t = 0, r = relative growth rate. 

Relating each function to its first and second deriv-
atives

 Relating each function to its first and second deriva-
tives gives the following equations, 
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 =                                                                                  .
 
                (2–1)

                            =                                     ,         (3–1)

                            =                                 ,             (4–1)

                            =                                 ,             (5–1)

                            =                                 ,             (6–1)

                            = 1.                                            (7–1)

 Equation (7–1) shows that the form of function (7) 
is not changed by differential calculus, a kind of symme-
try that is essential to exponential function.  In equations 
(2–1)~(6–1), the left–hand sides are constructed to show 
the same form as that of equation (7–1), and thus, the 
right–hand sides show differences from the symmetry of 
exponential function.  These differences from the sym-
metry are related to complexity of functions approaching 
asymptotes.  The asymptotic properties in equations 
(2–1)~(6–1) are shown by phenomena that the right–
hand sides tend to zero as t tends to infinity.  Six growth 
functions arranged by the complexity are as follows: 
Bertalanffy > Richards > Mitscherlich = logistic = 
Gompertz > basic growth.  Despite different function 
forms, Mitscherlich, logistic and Gompertz functions are 
not distinguished each other from the viewpoint of com-
plexity, a kind of symmetry that exists at the base of 
them. 

Deriving five growth functions from Bertalanffy 
function

 If there is a replacement (8) in equation (2–1) for 
Bertalanffy function, 

 

α/β–W0
1–m = b,  α/β= 1,   β(1–m) = k,  m ≠ 1  (8)

then this gives equation (9–1) whose form is the same as 
equation (3–1) for Richards function, 

 
                             =                                    .         (9–1)

Equations (4–1)~(6–1) are derived from equation 
(2–1) by the replacement (9), 

α/β–W0
1–m = b,  α/β= 1,   β(1–m) = k,  m = 0.    (9)

 
Equation (7–1) is derived from equation (2–1) by 

the replacement (10), 

α/β≠ 1,  m = 1.                                        (10)
 
These replacements, though A and W0 should be 

determined to obtain actual growth functions, show a 
hierarchic structure of growth functions from Bertalanffy 
function on down.  The replacement for deriving basic 
growth function with an exponential increase is different 
from those for deriving the other functions approaching 
asymptotes.  Five growth functions are derived from 
Bertalanffy function using symmetry and complexity of 
them.  Turner et al. (1976) reported, using a more generic 
function, the highly hierarchic structure of growth func-
tions. 

Conclusions
The present study suggests that Richards, 

Mitscherlich, logistic, Gompertz and basic growth func-
tions are derived from Bertalanffy function using sym-
metry and complexity of them. 
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