Expression of Glycosylated Mucin-like Domain Using Baculovirus Expression System in Silkworm, Bombyx mori

Nagata, Yudai
Laboratory of Silkworm Sciences, Division of Genetics and Plant Breeding, Department of Applied Genetics and Pest Management, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

Sakashita, Kosuke
Laboratory of Silkworm Sciences, Division of Genetics and Plant Breeding, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University

Imanishi, Shigeo
National Institute of Agrobiological Sciences

Lee, Jae Man
Laboratory of Silkworm Sciences, Division of Genetics and Plant Breeding, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University

http://hdl.handle.net/2324/22053

Yudai NAGATA¹, **Kosuke SAKASHITA**³, **Shigeo IMANISHI**³, **Jae Man LEE**³ and **Takahiro KUSAKABE**³*

Laboratory of Silkworm Sciences, Division of Genetics and Plant Breeding, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University Graduate School 6–10–1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan

(Received October 27, 2011 and accepted November 9, 2011)

Baculovirus expression systems (BES) are widely used for recombinant protein production in lepidopteran cells or larvae. It is known that insect cells have a glycosylation pathway similar to that of mammalian cells. Thus, BES are possible to be used to produce recombinant proteins with higher eukaryotic modifications. In insect cells, the N–glycosylation pathway has been well-researched. However, the O–glycosylation pathway is poorly understood. In this study, we expressed a partial recombinant HsPRG4 (rPRG4) as a reporter for O–glycosylation and investigated whether BES in silkworm could produce the proteins with mucin–like clustered O–glycans. Analysis by SDS–PAGE and glycosidase digestion indicated that rPRG4 had Core 1 and Core 2 O–glycan chains. These results suggested that BES could produce the protein containing mucin–type O–glycosylation in *Bombyx mori*.

Key words: baculovirus expression system, *Bombyx mori*, O–glycosylation

INTRODUCTION

Baculovirus expression systems (BES) are valuable and popular tools for the production of recombinant proteins. Because insect cells have a posttranslational modifications similar to those of mammalian cells, such as glycosylation, phosphorylation, and protein folding, BES are used to produce proteins from higher eukaryotes, for example, canine interferons–α, human serine–threonine kinase 11, and human acidic and basic fibroblast growth factors (Liu et al., 2005; Martínez et al., 2005; Gouveia et al., 2007). As regards the glycosylation in insect cells, the N–glycosylation pathway has been studied with a view to production of human–like N–glycosylated proteins, but there are few reports of O–glycosylation. In this study, to investigate whether the mucin–type O–glycosylation occurs in silkworm, *Bombyx mori*, we performed recombinant protein expression of a mucin–like protein as a target using BES in silkworm.

Mucins are heavily O–glycosylated glycoproteins found in secreted mucous and as transmembrane glycoproteins of the cell surface to serve as a last protective barrier against extracellular environmental factors like low pH or hydrolytic enzymes (Strouss et al., 1992). Mucins have serine and threonine rich domains called variable number of tandem repeat (VNTR) regions. Mucins may have hundreds of O–GalNAc glycans attached to serine or threonine residues in the VNTR regions and these abundant O–glycan chains may comprise 80% of the molecule by weight (Lan et al., 1987). Four main O–glycan core structures are well known in mammals (Daniel., 2009). The most common O–GalNAc glycan is Gal β 1–3GalNAc α–Ser/Thr (Fig. 1). It is termed a Core 1 or T–antigen and forms many longer, more complex structures. Another common structure is Core 2, contains a branching N–acetylglucosamine attached to core 1 (Fig. 1). Core1 and Core 2 O–GalNAc glycans are found in both glycoproteins and mucins from a variety of cells and tissues. Core 3 and Core 4 structures (Fig. 1) are found in a few tissues, such as colon (Podolsky., 1985), bronchi (Lamblin., 1984) and salivary glands (Wieruszewski et al., 1987). In insects, Core 1 type mucin has been observed (E Tian et al., 2008), but other type mucins are yet to be detected.

Fig. 1. Biosynthesis of O–GalNAc glycans core structures.

¹ Laboratory of Silkworm Sciences, Division of Genetics and Plant Breeding, Department of Applied Genetics and Pest Management, Graduate School of Bioresource and Bienvironmental Sciences, Kyushu University
² National Institute of Agrobiological Sciences, Owashi, Tsukuba, Ibaraki, Japan.
³ Laboratory of Silkworm Sciences, Division of Genetics and Plant Breeding, Department of Applied Genetics and Pest Management, Faculty of Agriculture, Kyushu University
* Corresponding author (E-mail: kusakabe@agr.kyushu-u.ac.jp)
To assess whether BES in silkworm was capable of producing the proteins with mucin–like clustered O–glycans, we constructed the reporter for O–glycosylation, which contains the portion of mucin–like repeat domain of PRG4 (proteoglycan 4). PRG4, also known as luricin, has been identified as megakaryocyte stimulating factor and articular cartilage superficial zone protein (Ikegawa et al., 2000). PRG4 contains a large, central, mucin–like repeat domain supporting attachment of O–glycan chains (Jay GD, 2004). PRG4 has mainly Core 1 type O–glycans and low amounts of Core 2 type O–glycans (Estrella RP et al., 2010). In this report, we show that BES can produce mucin glycoproteins.

MATERIALS AND METHODS

Cells and silkworm strain

The cell line PS140 (a laboratory stock of Dr. Imanishi, National Institute of Agrobiological Sciences) and the d17 silkworm strain (Kawakami et al., 2008) used in this study were provided by the Institute of Genetic Resources, Graduate School of Agriculture, Kyushu University, Japan. The cell line was maintained in IPL–41 medium (Invitrogen, CA, USA) with 10% fetal bovine serum. The cells were grown at 27˚C. Before cell transfection, the medium was replaced by COSMEDIUM 2007). After the purification, the recombinant bacmid DNA were transfected into the B. mori PS140 cells by lipofection method to generate recombinant baculoviruses. Three days after transfection, the culture medium was collected, and the infection was repeated twice for to prepare high–titer virus stock.

Expression and purification of recombinant protein

Larvae on day 3 of the fifth instar were carefully injected into a hemocoel with the recombinant HsPRG4–His8 baculovirus. Four days after infection, larval legs were cut and hemolymph was collected from each larva. The collected hemolymph was diluted with extraction solution (20 mM sodium phosphate, 0.5 M NaCl, 10 mM 2–mercaptoethanol, 1 mM phenylmethylsulfonyl fluoride, Complete EDTA–free protease inhibitor cocktail [1 tablet/100 mL] (Roche Applied Science), 20 mM 1–phe

Endoglycosidase digestions

To cleave O–glycan chains, purified rPRG4 was incubated in 1xGlycoprotein Denaturing Buffer (NEB) at 95˚C for 10 min. The 2–μL cleavage reaction contained 2 μL of 10×G7 Reaction Buffer (NEB), 2 μL of 10% NP40, 2 μL of Neuraminidase (NEB), and 1 μL of Endo–α–N–Acetylglactosaminidase (NEB). The reaction mixture was incubated at 37˚C for 4 h. The digested product was analyzed by SDS–PAGE.

RESULTS AND DISCUSSION

Clustered mucin–type O–glycans exist on recombinant PRG4

To construct the partial recombinant PRG4 (rPRG4), we amplified the DNA fragment from a human liver cDNA library with the PRG4–5NcoI and PRG4–3XhoI primers. We had cloned a partial DNA fragment encoding N–terminal signal peptide, somatomedin B–like domains, heparin–binding domain, and a part of mucin–like repeat

Generation of recombinant baculovirus

The DNA fragment of HsPRG4 was transposed to pDEST8 (Invitrogen) by means of Gateway LR clonase reaction (Invitrogen). The obtained pDEST8–PRG4–His8 transfer vector was transformed into E. coli BmDH10Bac (Motohashi et al., 2005) and transposed to bacmid DNA mediated by Tn7 transposase (Park et al., 2007). After the purification, the recombinant bacmid DNA were transfected into the B. mori PS140 cells by lipofection method to generate recombinant baculovi

Expression and purification of recombinant protein

Larvae on day 3 of the fifth instar were carefully injected into a hemocoel with the recombinant HsPRG4–His8 baculovirus. Four days after infection, larval legs were cut and hemolymph was collected from each larva. The collected hemolymph was diluted with extraction solution (20 mM sodium phosphate, 0.5 M NaCl, 10 mM 2–mercaptoethanol, 1 mM phenylmethylsulfonyl fluoride, Complete EDTA–free protease inhibitor cocktail [1 tablet/100 mL] (Roche Applied Science), 20 mM 1–phe

Endoglycosidase digestions

To cleave O–glycan chains, purified rPRG4 was incubated in 1xGlycoprotein Denaturing Buffer (NEB) at 95˚C for 10 min. The 2–μL cleavage reaction contained 2 μL of 10×G7 Reaction Buffer (NEB), 2 μL of 10% NP40, 2 μL of Neuraminidase (NEB), and 1 μL of Endo–α–N–Acetylglactosaminidase (NEB). The reaction mixture was incubated at 37˚C for 4 h. The digested product was analyzed by SDS–PAGE.

RESULTS AND DISCUSSION

Clustered mucin–type O–glycans exist on recombinant PRG4

To construct the partial recombinant PRG4 (rPRG4), we amplified the DNA fragment from a human liver cDNA library with the PRG4–5NcoI and PRG4–3XhoI primers. We had cloned a partial DNA fragment encoding N–terminal signal peptide, somatomedin B–like domains, heparin–binding domain, and a part of mucin–like repeat

Generation of recombinant baculovirus

The DNA fragment of HsPRG4 was transposed to pDEST8 (Invitrogen) by means of Gateway LR clonase reaction (Invitrogen). The obtained pDEST8–PRG4–His8 transfer vector was transformed into E. coli BmDH10Bac (Motohashi et al., 2005) and transposed to bacmid DNA mediated by Tn7 transposase (Park et al., 2007). After the purification, the recombinant bacmid DNA were transfected into the B. mori PS140 cells by lipofection method to generate recombinant baculovi

Expression and purification of recombinant protein

Larvae on day 3 of the fifth instar were carefully injected into a hemocoel with the recombinant HsPRG4–His8 baculovirus. Four days after infection, larval legs were cut and hemolymph was collected from each larva. The collected hemolymph was diluted with extraction solution (20 mM sodium phosphate, 0.5 M NaCl, 10 mM 2–mercaptoethanol, 1 mM phenylmethylsulfonyl fluoride, Complete EDTA–free protease inhibitor cocktail [1 tablet/100 mL] (Roche Applied Science), 20 mM 1–phe

Endoglycosidase digestions

To cleave O–glycan chains, purified rPRG4 was incubated in 1xGlycoprotein Denaturing Buffer (NEB) at 95˚C for 10 min. The 2–μL cleavage reaction contained 2 μL of 10×G7 Reaction Buffer (NEB), 2 μL of 10% NP40, 2 μL of Neuraminidase (NEB), and 1 μL of Endo–α–N–Acetylglactosaminidase (NEB). The reaction mixture was incubated at 37˚C for 4 h. The digested product was analyzed by SDS–PAGE.

RESULTS AND DISCUSSION

Clustered mucin–type O–glycans exist on recombinant PRG4

To construct the partial recombinant PRG4 (rPRG4), we amplified the DNA fragment from a human liver cDNA library with the PRG4–5NcoI and PRG4–3XhoI primers. We had cloned a partial DNA fragment encoding N–terminal signal peptide, somatomedin B–like domains, heparin–binding domain, and a part of mucin–like repeat

Generation of recombinant baculovirus

The DNA fragment of HsPRG4 was transposed to pDEST8 (Invitrogen) by means of Gateway LR clonase reaction (Invitrogen). The obtained pDEST8–PRG4–His8 transfer vector was transformed into E. coli BmDH10Bac (Motohashi et al., 2005) and transposed to bacmid DNA mediated by Tn7 transposase (Park et al., 2007). After the purification, the recombinant bacmid DNA were transfected into the B. mori PS140 cells by lipofection method to generate recombinant baculovi

Expression and purification of recombinant protein

Larvae on day 3 of the fifth instar were carefully injected into a hemocoel with the recombinant HsPRG4–His8 baculovirus. Four days after infection, larval legs were cut and hemolymph was collected from each larva. The collected hemolymph was diluted with extraction solution (20 mM sodium phosphate, 0.5 M NaCl, 10 mM 2–mercaptoethanol, 1 mM phenylmethylsulfonyl fluoride, Complete EDTA–free protease inhibitor cocktail [1 tablet/100 mL] (Roche Applied Science), 20 mM 1–phe

Endoglycosidase digestions

To cleave O–glycan chains, purified rPRG4 was incubated in 1xGlycoprotein Denaturing Buffer (NEB) at 95˚C for 10 min. The 2–μL cleavage reaction contained 2 μL of 10×G7 Reaction Buffer (NEB), 2 μL of 10% NP40, 2 μL of Neuraminidase (NEB), and 1 μL of Endo–α–N–Acetylglactosaminidase (NEB). The reaction mixture was incubated at 37˚C for 4 h. The digested product was analyzed by SDS–PAGE.

RESULTS AND DISCUSSION

Clustered mucin–type O–glycans exist on recombinant PRG4

To construct the partial recombinant PRG4 (rPRG4), we amplified the DNA fragment from a human liver cDNA library with the PRG4–5NcoI and PRG4–3XhoI primers. We had cloned a partial DNA fragment encoding N–terminal signal peptide, somatomedin B–like domains, heparin–binding domain, and a part of mucin–like repeat
Expression of Mucin in Silkworm
domain into pENTR11 (Fig. 2). To facilitate the protein purification, 8–histidine tag was added to C–terminus.

The recombinant baculovirus was produced by transfecting the bacmid DNA into PS140 cells, and the amplified P3 virus was injected into the hemocoels of silkworm larvae as described under MATERIALS AND METHODS. The hemolymph containing secreted rPRG4 was collected and purified by means of histidine affinity chromatography. The purified rPRG4 was analyzed by separation on SDS–PAGE (Fig. 3). After coomassie brilliant blue staining, the purified rPRG4 was detected at the fractions containing 20 mM and 100 mM imidazole. Although the molecular weight of rPRG4 without modification, calculated from the amino acid sequence, was to be 32.019 kDa, a smear band was appeared above 55 kDa. This result strongly suggested that clustered O–glycan chains exist on mucin–like repeat domain of rPRG4, and observed, suggesting that the rPRG4 produced using BES has a complicated modification other than Core 1 and Core 3 O–GalNAc glycans.

ACKNOWLEDGEMENTS

This work was supported in part by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated research project for plant, insect and animal using genome technology INSECT–1201), and KAKENHI no. 22248003, 22248004 and 23580077 from the Japan Society for the Promotion of Science.

REFERENCES

