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Topological Measurement of Protein Compressibility via

Persistence Diagrams

Marcio Gameiro∗ Yasuaki Hiraoka† Shunsuke Izumi‡ Miroslav Kramar§

Konstantin Mischaikow¶ Vidit Nanda‖

Abstract

We exploit recent advances in computational topology to study the compressibility of various pro-
teins found in the Protein Data Bank (PDB). Our fundamental tool is the persistence diagram, a
topological invariant which captures the sizes and robustness of geometric features such as tunnels and
cavities in protein molecules. Based on certain physical and chemical properties conjectured to impact
protein compressibility, we propose a topological measurement CP for each protein molecule P .

CP can be efficiently computed from the PDB data of P . Our main result establishes a clear linear
correlation between CP and the experimentally measured compressibility of most proteins for which
both PDB information and experimental compressibility data are available.

Keywords. Protein Compressibility, Persistent Homology, Persistence Diagram, Weighted Alpha Complex

1 Introduction

A protein is a soft material which acts as an enzyme and/or functions as a receptor. The softness of a
protein is related to cavities present in its molecular structure. However, various definitions of “cavity”
are used depending on which particular biochemical phenomena are being investigated (e.g., active sites).
Our approach uses computational topolgy to deal with cavities in a rigorous manner.

Topology is a branch of mathematics which studies holes of various dimensions as well as how these
holes fit together in a given geometric object. Recent progress in computational topology (e.g., [7, 14, 15])
provides pure mathematical tools which may be applied to data-driven problems in a wide variety of
scienctific contexts (e.g., [1, 2]). In this paper, we apply computational topology to study a physical and
chemical property of proteins.

The stiffness of a protein is related to its tertiary structure and has an effect on structural stability,
spatial fluctuations and functionality. One of the quantities which characterizes the stiffness of a protein is
its compressibility [4, 6, 9]. The compressibility of some globular proteins has been studied experimentally
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[4]. From these experimental studies, it is conjectured that cavities in protein molecules play an important
role in spatial fluctuations even though proteins have a relatively dense packed structure.

The main objective of this paper is to study compressibility by persistence diagrams [1, 12]. In par-
ticular, we discuss geometric and topological sub-structures of protein molecules whose presence impacts
compressibility. Persistence diagrams indicate the presence of holes as well as the robustness of each hole
to the locations and sizes of atoms in a given protein molecule. Moreover, these diagrams can be efficiently
computed [11, 12] from X-ray crystallography data found in the Protein Data Bank [17] via the alpha
complex representation [3]. Based on certain physical and chemical properties which are conjectured to
impact compressibility, we derive a topological measurement CP from the persistence diagrams.

Our main result shows that CP exhibits a remarkable linear correlation with most experimental com-
pressibility data present in [4]. We also show that the feature size of cavities which impact compressibility
may be estimated from such topological computations.

2 Topological Methods

In this section we describe the abstract geometric objects called alpha complexes which will be used to
model protein molecules. We also provide a heuristic introduction to persistent homology which is our
primary topological tool for understanding the structure of each cavity present in a protein molecule.

2.1 Alpha Complex Models of Protein Molecules

A standard geometric representation of an atom is a ball with the van der Waals radius. Each protein
is built from a one dimensional sequence of amino acids and can be modeled as a union of the van der
Waals balls corresponding to the atoms in these amino acids. This model is used in [10] to estimate
surface areas and the volumes of proteins, and the key tool in that analysis is the alpha complex [3].

Given a protein molecule P , let XP be a finite set of points in R3 denoting the centers of atoms
present in the amino acid sequence which comprises P . Associate to each ξ ∈ XP a number w(ξ) > 0
which equals the van der Waals radius of the atom centered at ξ.

For each x ∈ R3 and r > 0, let Br(x) denote the three dimensional solid ball centered at x with radius
r. Then, B(P ) =

{
Bw(ξ)(ξ) | ξ ∈ XP

}
is a collection of solid balls which provides a simple geometric

model for the molecule P . However, this static model is very sensitive to errors in the measurement of
atom centers XP as well as the radii w(ξ). In order to provide some robustness to these types of errors,
we consider a one-parameter family of such models.

For each ξ ∈ XP , define the radius function rξ : [0,∞) → R by

rξ(α) =
√

α + w(ξ)2, (2.1)

and define Bα(P ) =
{

Brξ(α)(ξ) | ξ ∈ XP

}
. For any given value of α, Bα(P ) is a collection of balls centered

at the points in XP ; at α = 0 we recover the static model B(P ) defined above and as α increases, so does
the radius of each ball in Bα(P ).

For each ξ ∈ XP , we define the weighted distance function dξ : R3 → R by

dξ(x) = ‖x− ξ‖2 − w(ξ)2,

where ‖ · ‖ denotes the standard Euclidean distance. These functions may be used to partition R3 into
finitely many pieces {Vξ | ξ ∈ XP } called Voronoi cells defined as follows:

Vξ =
{
x ∈ R3 | dξ(x) ≤ dξ′(x) for each ξ′ 6= ξ in XP

}
.

That is, Vξ is the set of all those points in R3 whose weighted distance to ξ is less than or equal to their
weighted distances to all other points in XP . It is easy to check that each point x in R3 lies in at least
one such Vξ whenever XP is non-empty.
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The Voronoi cells also partition the union Uα of balls in Bα(P ) for each α. In order to keep track of
these partitions systematically, we define new sets Wξ(α) = Brξ(α)(ξ) ∩ Vξ. Then, for each α ≥ 0 we
have the decomposition

Uα =
⋃

B∈Bα(P )

B =
⋃

ξ∈XP

Wξ(α),

and moreover, Wξ(α) ⊂ Wξ(α′) whenever α ≤ α′ for any ξ ∈ XP .

Definition 2.1 Given a topological space U and a finite collection of subsets W = {Wk | 1 ≤ k ≤ n}
whose union

⋃
k Wk equals U , the nerve of W is the abstract simplicial complex N (W) defined as follows:

to each collection of p+1 distinct elements ofW whose intersection is non-empty, we associate a p-simplex.

In particular, for each subset of U in W, there is a vertex of N (W). There is an edge between two
such vertices if the corresponding subsets intersect. Each triangle of N (W) corresponds to three such
subsets with at least a point of common intersection, and so on for higher dimensional simplices.

It is a consequence of the well-known Nerve lemma that if each subset of U in the collection W is
convex, then the simplicial complex N (W) has the same homology groups as those of U . In particular,
the finite combinatorial object N (W) accurately captures all the connected pieces, tunnels and cavities
of the topological object U . With this in mind, we define the alpha complex.

Definition 2.2 (Alpha Complex) For each α ≥ 0, the alpha complex Xα associated to Bα(P ) is the
nerve of the collection of subsets {Wξ(α) | ξ ∈ XP } of Uα.

We show an example of the alpha complex in Figure 1.

Figure 1: A union of balls in the plane. The dashed lines indicate partitions by Voronoi cells and the
associated alpha complex is overlaid.

It should be noted that the alpha complexes Xα and Xα′ with α ≤ α′ satisfy an inclusion relation
Xα ⊂ Xα′ . This follows from the fact that each Wξ(α) is a subset of Wξ(α′) and therefore each p-simplex
of Xα uniquely determines a p-simplex of Xα′ . It is helpful to think of α as a scale. Simplices introduced
at larger values of α correspond to larger feature sizes than those introduced at smaller values of α.

In the next section, we see how the collection of simplicial complexes {Xα | α ≥ 0} can be used to study
topological structures (e.g., tunnels and cavities) in the unions of balls {Uα | α ≥ 0}. More importantly,
the inclusion induced by increasing α provides information regarding the size and robustness of these
topological structures.

2.2 Persistent Homology

The homology groups Hn(X) of a simplicial complex X provide information about the topological features
of X. The n-dimensional holes may be heuristically thought of as connected components, tunnels and
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cavities for n = 0, 1, and 2, respectively (see [5, Ch. 2] for a thorough introduction). Let Xα be the
alpha complex defined in Section 2.1. Then, the homology groups Hn(Xα) with R-coefficients may be
represented as

Hn(Xα) ∼=
{

Rβn(α), n = 0, 1, 2,
0, n > 2.

Here, the dimension βn(α) expresses a count of n-dimensional holes in Uα and is called the n-th Betti
number of Uα.

A filtration is an increasing sequence of simplicial complexes. Recall from the previous section that
the collection X of alpha complexes defined by {Xα | α ≥ 0} is naturally a filtration because Xα ⊂ Xα′

whenever α < α′. The inclusion of simplices across the sequence X allows one to systematically track
values of α at which n-dimensional holes appear and disappear.

More precisely, pick any n-dimensional hole z in Xα0 . It is possible to unambiguously define positive
real numbers bz ≤ α0 ≤ dz called the birth and death scales of z such that bz is the smallest value of α for
which z is an n-dimensional hole in Xα and dz is the largest such value. The quantity dz − bz provides
an effective measure of the robustness of z to fluctuations in the scale α.

The persistence diagram PDn(X) of the filtration X is defined to be the set of points (bz, dz) ∈ R2

where z ranges over all the n-dimensional holes in X. An important feature of persistence diagrams is
their stability [8]. If one perturbs each point in the set XP of atom centers by an amount δ > 0, the
points in the associated persistence diagrams PDn(X) are perturbed by an amount smaller than δ. In
this precise sense, persistence diagrams are stable to errors in measurement.

Figure 2 shows a sample filtration X and Figure 3 shows its corresponding persistence diagram PD1(X).
Note that the two cycles which appear in the filtration are represented by the two points in the persistence
diagram.

X
0

X1 X2 X3 X4

Figure 2: Filtration X

1 2 3 4

1

2

3

4

0 birth

death

Figure 3: Persistence diagram PD1(X)

Finally, we remark that persistence diagrams of a given filtration X are efficiently computable [11, 12].

3 Main Results

In this section we outline the construction of persistence diagrams for a given protein P , define a topolog-
ical quantity CP and show that this quantity is closely related to experimentally available compressibility
data of P .
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3.1 Persistence Diagrams of Proteins

For each protein P in the Protein Data Bank (PDB), we extract the set XP of atom centers. The van
der Waal radius associated to each atom type in XP is provided in Table 1 below. The alpha complexes
are constructed using the CGAL software library [13] and the parameter α ranges over [0, 12]. Note that
α = 0 corresponds to the van der Waal ball model of P by (2.1). The persistence diagrams are computed
using the Perseus software available at [16].

atom radius(Å)
C 1.70
N 1.55
O 1.52
P 1.80
S 1.80

Table 1: van der Waals radii

Figure 4 shows the persistent diagrams PDn, n = 1, 2, of ovalbumin (PDB ID: 1OVA). As explained
in Section 2, each point in PD1 corresponds to a tunnel and each point in PD2 corresponds to a cavity
in the filtration X. The x and y coordinates of each point provide the birth and death scale respectively
of the tunnel or cavity being represented by that point.
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Figure 4: PD1 (left) and PD2 (right) of 1OVA.

Such persistence diagrams provide topological insight into protein structures and are of independent
interest. For example, the points near the diagonal in PD1 and PD2 correspond to non-robust tunnels
and cavities, respectively. More importantly, the tunnels and cavities which are robust to fluctuations of
scale and locations of atom centers are located far from the diagonal.

We are constructing a database of persistence diagrams of PDB proteins. We encourage the readers
to freely download these computational results from our website [14].

3.2 Compressibility from Persistence Diagrams

We define a topological quantity which is well-correlated to the experimental compressibility of proteins
as follows. Fix a protein P and let PDn denote the n dimensional persistence diagram associated to the
alpha complex filtration X of P . Given real numbers ` ≤ u, let us use |PDn(`, u)| to denote the number
of points (x, y) in PDn such that ` ≤ x ≤ u and y − x ≥ 1. Then, define

CP :=
|PD2(5.9, 8.8)|
|PD1(5.9, 8.6)|

. (3.1)
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For comparison, we use the experimental compressibility data of proteins from [4]. We restrict our
analysis to only those proteins whose PDB data under similar experimental conditions is also available.
The numerical result is summarized in Figure 5. The experimental compressibility data from [4] is laid
along the vertical axis of the figure and the topological quantity from equation (3.1) is on the horizontal
axis. Each plotted point in the figure represents a protein and is labeled with its corresponding PDB ID.
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Figure 5: Topological measurement CP and the compressibility of the proteins

The figure clearly shows a linear correlation between the topological quantity CP and the compress-
ibility for most such proteins, with the only exceptions being 1A4V, 1E7I, and 1BUW.

The points used in computing CP for 1OVA are colored red in Figure 6.
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Figure 6: PD1 (left) and PD2 (right) of 1OVA. The points used in the computations of CP are colored
red. The green points correspond to non-robust features and are excluded.

3.3 The Derivation of CP

The derivation of CP has two fundamental aspects. First, we investigate some structural features of
protein molecules which are reasonably expected to impact compressibility. Once these features have
been determined, we conduct parameter searches to isolate those pieces of persistence diagrams which
correspond to the relevant features.

6



Before providing details, we remark that even though it is reasonable to expect the presence of holes
in protein molecules to impact compressibility, measurements derived from Betti numbers alone did not
yield any quantities which correlated nicely with experimental compressibility. Only after we incorporated
the stable framework of persistent homology did it become possible to identify robust noise-independent
features in a given molecule. As it turns out, isolating those robust features was an extremely important
step towards obtaining the linear correlation shown in Figure 5.

One begins the analysis with the reasonable assumption that non-robust topological features do not
have a large effect on compressibility. Hence, we introduce a noise parameter δ > 0 such that for i ∈ {1, 2},
the points

Ni(δ) := {(b, d) ∈ PDi | d− b < δ}

will be treated as a topological noise and be removed from consideration.
Persistent homology enables us to systematically treat the sparseness of holes as a by-product of

knowing the birth scales. Let us consider the cross-sections of two such holes in Figure 7. Clearly, the
sparse hole on the right is deformable to a much larger extent than the dense hole on the left. Thus, we
assume that a larger number of sparse holes leads to greater compressibility. The distinction between
dense and sparse holes is also readily captured by persistence diagrams: the denser the hole, the smaller
its birth scale. In light of this assumption, we introduce four more sparseness parameters (`(i), u(i)) for
i ∈ {1, 2} so that the point sets

Si =
{

(x, y) ∈ PDi | `(i) ≤ x ≤ u(i)
}

comprise the effective sparse holes which are expected to increase compressibility.

Figure 7: Dense hole (left) and sparse hole (right). Solid balls correspond to the van der Waals radii and
dashed balls have radii slightly larger than the birth scale.

We do not introduce similar parameters to control the death scales of holes for the following reasons.
The death scale of a hole is closely related to the size of that hole (see Figure 8). Introducing an

Figure 8: Death radii of holes and their size.

upper bound on the size would remove large holes from consideration and compromise the analysis of
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compressibility. On the other hand, a lower bound on death scales is readily available using the existing
parameters. Note that the death scale of any hole corresponding to a point in Si must exceed the value
`i + δ.

The final structural feature under consideration is the length of tunnels. By a tunnel we mean a
cylindrical structure inside a protein molecule. A longer tunnel generically surrounds more space than a
shorter one, and so we expect the presence of longer tunnels to contribute towards higher compressibility.

Even though tunnels themselves appear as points in PD1, their lengths are not encoded directly into
PD1. In our analysis, we focus on increasing the radii of balls comprising a given tunnel. This results
in the formation of cavities as the expanded walls of the tunnel get pinched together. In general, longer
tunnels correspond to more undulant surface regions, and hence to a larger number of cavities generated.
This phenomenon is illustrated in Figures 9 and 10.

Figure 9: Cross section of a long cylinder

Figure 10: Cross section of a short cylinder

Recall that cavities are points in PD2. Thus, the value of interest is the ratio of cavities to tunnels in
relevant regions of the associated persistence diagrams.

Based on the above explanation, we executed a parameter search in |PD2(`(2), u(2))|/|PD1(`(1), u(1))|
by changing the parameters `(i), u(i), i = 1, 2, and δ in order to obtain the best-fitting line in Figure
5. The optimal set of the parameters found by the parameter search is provided in the definition of CP

given by (3.1). In Figure 11, we show the plot the least square errors against the deviation from optimal
parameters.

4 Conclusions

Figure 5 clearly indicates that the topological measurement CP succesfully extracts at least some of the
essential structural features which determine protein compressibility. We believe that further modifica-
tions of CP by studying physical, chemical and geometric properties of proteins might yield even better
fits to experimental compressibility.

Moreover, it is possible to estimate the sizes of holes which have a significant impact on the compress-
ibility of a given protein in the following manner. Pick a point in PD2(5.9, 8.8) with the death scale αd

and recall that this point represents a cavity. For simplicity, let us assume that this cavity is constructed
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Figure 11: Least squares error against parameter deviation, both in terms of the L2 norm. The red point
indicates the minimal error at the parameters used to define CP .

by piecewise linear convex regions whose vertices are given by the atoms which have an average van der
Waals radius w. At the scale αd, the union of these van der Waals balls has trivial topology and therefore
these balls must have a point of common intersection. Then, we may use equation (2.1) to estimate the
diameter of the cavity by 2

√
αd + w2.

We hope that this estimate will be useful for further understanding the connection between the
geometry of a protein molecule and its compressibility. We leave such analysis to future work.
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(1)
8

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic De-
composition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and
its applications

MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on Lp spaces associated with the lin-
earized compressible Navier-Stokes equation in a cylindrical domain



MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic
functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expan-
sions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expan-
sions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with
symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally
Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter
Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error esti-
mates for H2

0 -projection



MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic
three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable
finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of
translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemo-
taxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme
of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type(A2 + A1)

(1)

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA&Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using
DtN map



MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck pro-
cesses

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price
model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-
Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete
observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
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processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro
OHTA
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