Topological Measurement of Protein Compressibility via Persistence Diagrams

Gameiro, Marcio
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo

Hiraoka, Yasuaki
Institute of Mathematics for Industry, Kyushu University

Izumi, Shunsuke
Department of Mathematical and Life Sciences, Hiroshima University

Kramar, Miroslav
Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey

他

http://hdl.handle.net/2324/22032
Topological Measurement of Protein Compressibility via Persistence Diagrams

Marcio Gameiro, Yasuaki Hiraoka, Shunsuke Izumi, Miroslav Kramar, Konstantin Mischaikow and Vidit Nanda

MI 2012-6

(Received June 4, 2012)
Topological Measurement of Protein Compressibility via Persistence Diagrams

Marcio Gameiro* Yasuaki Hiraoka† Shunsuke Izumi‡ Miroslav Kramar§
Konstantin Mischaikow¶ Vidit Nanda∥

Abstract

We exploit recent advances in computational topology to study the compressibility of various proteins found in the Protein Data Bank (PDB). Our fundamental tool is the persistence diagram, a topological invariant which captures the sizes and robustness of geometric features such as tunnels and cavities in protein molecules. Based on certain physical and chemical properties conjectured to impact protein compressibility, we propose a topological measurement C_P for each protein molecule P.

C_P can be efficiently computed from the PDB data of P. Our main result establishes a clear linear correlation between C_P and the experimentally measured compressibility of most proteins for which both PDB information and experimental compressibility data are available.

Keywords. Protein Compressibility, Persistent Homology, Persistence Diagram, Weighted Alpha Complex

1 Introduction

A protein is a soft material which acts as an enzyme and/or functions as a receptor. The softness of a protein is related to cavities present in its molecular structure. However, various definitions of “cavity” are used depending on which particular biochemical phenomena are being investigated (e.g., active sites). Our approach uses computational topology to deal with cavities in a rigorous manner.

Topology is a branch of mathematics which studies holes of various dimensions as well as how these holes fit together in a given geometric object. Recent progress in computational topology (e.g., [7, 14, 15]) provides pure mathematical tools which may be applied to data-driven problems in a wide variety of scientific contexts (e.g., [1, 2]). In this paper, we apply computational topology to study a physical and chemical property of proteins.

The stiffness of a protein is related to its tertiary structure and has an effect on structural stability, spatial fluctuations and functionality. One of the quantities which characterizes the stiffness of a protein is its compressibility [4, 6, 9]. The compressibility of some globular proteins has been studied experimentally

*Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos, SP, Brazil (e-mail: gameiro@icmc.usp.br).
†Institute of Mathematics for Industry, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan (e-mail: hiraoka@imi.kyushu-u.ac.jp).
‡Department of Mathematical and Life Sciences, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan (e-mail: sizumi@sci.hiroshima-u.ac.jp).
§Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd, Piscataway, NJ 08854-8019, USA (e-mail: miroslav@math.rutgers.edu).
¶Department of Mathematics and BioMaPS, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd, Piscataway, NJ 08854-8019, USA (e-mail: mischaik@math.rutgers.edu).
∥Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd, Piscataway, NJ 08854-8019, USA (e-mail: vidit@math.rutgers.edu).
one such V which equals the van der Waals radius of the atom centered at ξ. Based on certain physical and chemical properties which are conjectured to impact compressibility, we compute [11, 12] from X-ray crystallography data found in the Protein Data Bank [17] via the alpha complex representation [3]. Based on certain physical and chemical properties which are conjectured to impact compressibility, we derive a topological measurement C_P from the persistence diagrams.

Our main result shows that C_P exhibits a remarkable linear correlation with most experimental compressibility data present in [4]. We also show that the feature size of cavities which impact compressibility may be estimated from such topological computations.

2 Topological Methods

In this section we describe the abstract geometric objects called alpha complexes which will be used to model protein molecules. We also provide a heuristic introduction to persistent homology which is our primary topological tool for understanding the structure of each cavity present in a protein molecule.

2.1 Alpha Complex Models of Protein Molecules

A standard geometric representation of an atom is a ball with the van der Waals radius. Each protein is built from a one dimensional sequence of amino acids and can be modeled as a union of the van der Waals balls corresponding to the atoms in these amino acids. This model is used in [10] to estimate surface areas and the volumes of proteins, and the key tool in that analysis is the alpha complex [3].

Given a protein molecule P, let X_P be a finite set of points in \mathbb{R}^3 denoting the centers of atoms present in the amino acid sequence which comprises P. Associate to each $\xi \in X_P$ a number $w(\xi) > 0$ which equals the van der Waals radius of the atom centered at ξ.

For each $x \in \mathbb{R}^3$ and $r > 0$, let $B_r(x)$ denote the three dimensional solid ball centered at x with radius r. Then, $B(P) = \{B_w(\xi) \mid \xi \in X_P\}$ is a collection of solid balls which provides a simple geometric model for the molecule P. However, this static model is very sensitive to errors in the measurement of atom centers X_P as well as the radii $w(\xi)$. In order to provide some robustness to these types of errors, we consider a one-parameter family of such models.

For each $\xi \in X_P$, define the radius function $r_\xi : [0, \infty) \to \mathbb{R}$ by

$$r_\xi(\alpha) = \sqrt{\alpha + w(\xi)^2},$$

and define $B_\alpha(P) = \{B_{r_\xi(\alpha)}(\xi) \mid \xi \in X_P\}$. For any given value of α, $B_\alpha(P)$ is a collection of balls centered at the points in X_P; at $\alpha = 0$ we recover the static model $B(P)$ defined above and as α increases, so does the radius of each ball in $B_\alpha(P)$.

For each $\xi \in X_P$, we define the weighted distance function $d_\xi : \mathbb{R}^3 \to \mathbb{R}$ by

$$d_\xi(x) = \|x - \xi\|^2 - w(\xi)^2,$$

where $\| \cdot \|$ denotes the standard Euclidean distance. These functions may be used to partition \mathbb{R}^3 into finitely many pieces $\{V_\xi \mid \xi \in X_P\}$ called Voronoi cells defined as follows:

$$V_\xi = \{x \in \mathbb{R}^3 \mid d_\xi(x) \leq d_{\xi'}(x) \text{ for each } \xi' \neq \xi \text{ in } X_P\}.$$

That is, V_ξ is the set of all those points in \mathbb{R}^3 whose weighted distance to ξ is less than or equal to their weighted distances to all other points in X_P. It is easy to check that each point x in \mathbb{R}^3 lies in at least one such V_ξ whenever X_P is non-empty.
The Voronoi cells also partition the union U_α of balls in $B_\alpha(P)$ for each α. In order to keep track of these partitions systematically, we define new sets $W_\xi(\alpha) = B_{r_\xi(\alpha)}(\xi) \cap V_\xi$. Then, for each $\alpha \geq 0$ we have the decomposition

$$U_\alpha = \bigcup_{B \in B_\alpha(P)} B = \bigcup_{\xi \in \mathcal{X}_P} W_\xi(\alpha),$$

and moreover, $W_\xi(\alpha) \subset W_\xi(\alpha')$ whenever $\alpha \leq \alpha'$ for any $\xi \in \mathcal{X}_P$.

Definition 2.1 Given a topological space U and a finite collection of subsets $W = \{W_k \mid 1 \leq k \leq n\}$ whose union $\bigcup_k W_k$ equals U, the nerve of W is the abstract simplicial complex $\mathcal{N}(W)$ defined as follows: to each collection of $p+1$ distinct elements of W whose intersection is non-empty, we associate a p-simplex.

In particular, for each subset of U in W, there is a vertex of $\mathcal{N}(W)$. There is an edge between two such vertices if the corresponding subsets intersect. Each triangle of $\mathcal{N}(W)$ corresponds to three such subsets with at least a point of common intersection, and so on for higher dimensional simplices.

It is a consequence of the well-known Nerve lemma that if each subset of U in the collection W is convex, then the simplicial complex $\mathcal{N}(W)$ has the same homology groups as those of U. In particular, the finite combinatorial object $\mathcal{N}(W)$ accurately captures all the connected pieces, tunnels and cavities of the topological object U. With this in mind, we define the alpha complex.

Definition 2.2 (Alpha Complex) For each $\alpha \geq 0$, the alpha complex X_α associated to $B_\alpha(P)$ is the nerve of the collection of subsets $\{W_\xi(\alpha) \mid \xi \in \mathcal{X}_P\}$ of U_α.

We show an example of the alpha complex in Figure 1.

Figure 1: A union of balls in the plane. The dashed lines indicate partitions by Voronoi cells and the associated alpha complex is overlaid.

It should be noted that the alpha complexes X_α and $X_{\alpha'}$ with $\alpha \leq \alpha'$ satisfy an inclusion relation $X_\alpha \subset X_{\alpha'}$. This follows from the fact that each $W_\xi(\alpha)$ is a subset of $W_\xi(\alpha')$ and therefore each p-simplex of X_α uniquely determines a p-simplex of $X_{\alpha'}$. It is helpful to think of α as a scale. Simplices introduced at larger values of α correspond to larger feature sizes than those introduced at smaller values of α.

In the next section, we see how the collection of simplicial complexes $\{X_\alpha \mid \alpha \geq 0\}$ can be used to study topological structures (e.g., tunnels and cavities) in the unions of balls $\{U_\alpha \mid \alpha \geq 0\}$. More importantly, the inclusion induced by increasing α provides information regarding the size and robustness of these topological structures.

2.2 Persistent Homology

The homology groups $H_n(X)$ of a simplicial complex X provide information about the topological features of X. The n-dimensional holes may be heuristically thought of as connected components, tunnels and
cavities for $n = 0, 1, \text{ and } 2$, respectively (see [5, Ch. 2] for a thorough introduction). Let X_α be the alpha complex defined in Section 2.1. Then, the homology groups $H_n(X_\alpha)$ with \mathbb{R}-coefficients may be represented as

$$H_n(X_\alpha) \cong \begin{cases} \mathbb{R}^{\beta_n(\alpha)}, & n = 0, 1, 2, \\ 0, & n > 2. \end{cases}$$

Here, the dimension $\beta_n(\alpha)$ expresses a count of n-dimensional holes in U_α and is called the n-th Betti number of U_α.

A filtration is an increasing sequence of simplicial complexes. Recall from the previous section that the collection X of alpha complexes defined by $\{X_\alpha \mid \alpha \geq 0\}$ is naturally a filtration because $X_\alpha \subset X_\alpha'$ whenever $\alpha < \alpha'$. The inclusion of simplices across the sequence X allows one to systematically track values of α at which n-dimensional holes appear and disappear.

More precisely, pick any n-dimensional hole z in X_{α_0}. It is possible to unambiguously define positive real numbers $b_z \leq \alpha_0 \leq d_z$ called the birth and death scales of z such that b_z is the smallest value of α for which z is an n-dimensional hole in X_α and d_z is the largest such value. The quantity $d_z - b_z$ provides an effective measure of the robustness of z to fluctuations in the scale α.

The persistence diagram $PD_n(X)$ of the filtration X is defined to be the set of points $(b_z, d_z) \in \mathbb{R}^2$ where z ranges over all the n-dimensional holes in X. An important feature of persistence diagrams is their stability [8]. If one perturbs each point in the set X_P of atom centers by an amount $\delta > 0$, the points in the associated persistence diagrams $PD_n(X)$ are perturbed by an amount smaller than δ. In this precise sense, persistence diagrams are stable to errors in measurement.

Figure 2 shows a sample filtration X and Figure 3 shows its corresponding persistence diagram $PD_1(X)$. Note that the two cycles which appear in the filtration are represented by the two points in the persistence diagram.

Finally, we remark that persistence diagrams of a given filtration X are efficiently computable [11, 12].

3 Main Results

In this section we outline the construction of persistence diagrams for a given protein P, define a topological quantity C_P and show that this quantity is closely related to experimentally available compressibility data of P.
3.1 Persistence Diagrams of Proteins

For each protein P in the Protein Data Bank (PDB), we extract the set \mathcal{X}_P of atom centers. The van der Waal radius associated to each atom type in \mathcal{X}_P is provided in Table 1 below. The alpha complexes are constructed using the CGAL software library [13] and the parameter α ranges over $[0, 12]$. Note that $\alpha = 0$ corresponds to the van der Waal ball model of P by (2.1). The persistence diagrams are computed using the Perseus software available at [16].

<table>
<thead>
<tr>
<th>Atom</th>
<th>Radius(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.70</td>
</tr>
<tr>
<td>N</td>
<td>1.55</td>
</tr>
<tr>
<td>O</td>
<td>1.52</td>
</tr>
<tr>
<td>P</td>
<td>1.80</td>
</tr>
<tr>
<td>S</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Table 1: van der Waals radii

Figure 4 shows the persistent diagrams PD_n, $n = 1, 2$, of ovalbumin (PDB ID: 1OVA). As explained in Section 2, each point in PD_1 corresponds to a tunnel and each point in PD_2 corresponds to a cavity in the filtration \mathcal{X}. The x and y coordinates of each point provide the birth and death scale respectively of the tunnel or cavity being represented by that point.

![Figure 4: PD_1 (left) and PD_2 (right) of 1OVA.](image)

Such persistence diagrams provide topological insight into protein structures and are of independent interest. For example, the points near the diagonal in PD_1 and PD_2 correspond to non-robust tunnels and cavities, respectively. More importantly, the tunnels and cavities which are robust to fluctuations of scale and locations of atom centers are located far from the diagonal.

We are constructing a database of persistence diagrams of PDB proteins. We encourage the readers to freely download these computational results from our website [14].

3.2 Compressibility from Persistence Diagrams

We define a topological quantity which is well-correlated to the experimental compressibility of proteins as follows. Fix a protein P and let PD_n denote the n dimensional persistence diagram associated to the alpha complex filtration \mathcal{X} of P. Given real numbers $\ell \leq u$, let us use $|\text{PD}_n(\ell, u)|$ to denote the number of points (x, y) in PD_n such that $\ell \leq x \leq u$ and $y - x \geq 1$. Then, define

$$C_P := \frac{|\text{PD}_2(5.9, 8.8)|}{|\text{PD}_1(5.9, 8.6)|}.$$

(3.1)
For comparison, we use the experimental compressibility data of proteins from [4]. We restrict our analysis to only those proteins whose PDB data under similar experimental conditions is also available. The numerical result is summarized in Figure 5. The experimental compressibility data from [4] is laid along the vertical axis of the figure and the topological quantity from equation (3.1) is on the horizontal axis. Each plotted point in the figure represents a protein and is labeled with its corresponding PDB ID.

![Figure 5: Topological measurement C_P and the compressibility of the proteins](image)

The figure clearly shows a linear correlation between the topological quantity C_P and the compressibility for most such proteins, with the only exceptions being 1A4V, 1E7I, and 1BUW. The points used in computing C_P for 1OVA are colored red in Figure 6.

![Figure 6: PD$_1$ (left) and PD$_2$ (right) of 1OVA. The points used in the computations of C_P are colored red. The green points correspond to non-robust features and are excluded.](image)

3.3 The Derivation of C_P

The derivation of C_P has two fundamental aspects. First, we investigate some structural features of protein molecules which are reasonably expected to impact compressibility. Once these features have been determined, we conduct parameter searches to isolate those pieces of persistence diagrams which correspond to the relevant features.
Before providing details, we remark that even though it is reasonable to expect the presence of holes in protein molecules to impact compressibility, measurements derived from Betti numbers alone did not yield any quantities which correlated nicely with experimental compressibility. Only after we incorporated the stable framework of persistent homology did it become possible to identify robust noise-independent features in a given molecule. As it turns out, isolating those robust features was an extremely important step towards obtaining the linear correlation shown in Figure 5.

One begins the analysis with the reasonable assumption that non-robust topological features do not have a large effect on compressibility. Hence, we introduce a noise parameter $\delta > 0$ such that for $i \in \{1, 2\}$, the points

$$N_i(\delta) := \{(b, d) \in \text{PD}_i \mid d - b < \delta\}$$

will be treated as a topological noise and be removed from consideration.

Persistent homology enables us to systematically treat the sparseness of holes as a by-product of knowing the birth scales. Let us consider the cross-sections of two such holes in Figure 7. Clearly, the sparse hole on the right is deformable to a much larger extent than the dense hole on the left. Thus, we assume that a larger number of sparse holes leads to greater compressibility. The distinction between dense and sparse holes is also readily captured by persistence diagrams: the denser the hole, the smaller its birth scale. In light of this assumption, we introduce four more sparseness parameters $(\ell(i), u(i))$ for $i \in \{1, 2\}$ so that the point sets

$$S_i = \{(x, y) \in \text{PD}_i \mid \ell(i) \leq x \leq u(i)\}$$

comprise the effective sparse holes which are expected to increase compressibility.

![Figure 7: Dense hole (left) and sparse hole (right). Solid balls correspond to the van der Waals radii and dashed balls have radii slightly larger than the birth scale.](image)

We do not introduce similar parameters to control the death scales of holes for the following reasons. The death scale of a hole is closely related to the size of that hole (see Figure 8). Introducing an upper bound on the size would remove large holes from consideration and compromise the analysis of

![Figure 8: Death radii of holes and their size.](image)
compressibility. On the other hand, a lower bound on death scales is readily available using the existing parameters. Note that the death scale of any hole corresponding to a point in S_i must exceed the value $\ell_i + \delta$.

The final structural feature under consideration is the **length of tunnels**. By a tunnel we mean a cylindrical structure inside a protein molecule. A longer tunnel generically surrounds more space than a shorter one, and so we expect the presence of longer tunnels to contribute towards higher compressibility.

Even though tunnels themselves appear as points in PD_1, their lengths are not encoded directly into PD_1. In our analysis, we focus on increasing the radii of balls comprising a given tunnel. This results in the formation of cavities as the expanded walls of the tunnel get pinched together. In general, longer tunnels correspond to more undulant surface regions, and hence to a larger number of cavities generated. This phenomenon is illustrated in Figures 9 and 10.

![Figure 9: Cross section of a long cylinder](image)

Recall that cavities are points in PD_2. Thus, the value of interest is the **ratio of cavities to tunnels** in relevant regions of the associated persistence diagrams.

Based on the above explanation, we executed a parameter search in $|PD_2(\ell(2), u(2))|/|PD_1(\ell(1), u(1))|$ by changing the parameters $\ell(i), u(i), i = 1, 2,$ and δ in order to obtain the best-fitting line in Figure 5. The optimal set of the parameters found by the parameter search is provided in the definition of C_P given by (3.1). In Figure 11, we show the plot the least square errors against the deviation from optimal parameters.

4 Conclusions

Figure 5 clearly indicates that the topological measurement C_P successfully extracts at least some of the essential structural features which determine protein compressibility. We believe that further modifications of C_P by studying physical, chemical and geometric properties of proteins might yield even better fits to experimental compressibility.

Moreover, it is possible to estimate the sizes of holes which have a significant impact on the compressibility of a given protein in the following manner. Pick a point in $PD_2(5.9, 8.8)$ with the death scale α_d and recall that this point represents a cavity. For simplicity, let us assume that this cavity is constructed
Figure 11: Least squares error against parameter deviation, both in terms of the L^2 norm. The red point indicates the minimal error at the parameters used to define C_P.

by piecewise linear convex regions whose vertices are given by the atoms which have an average van der Waals radius w. At the scale α_d, the union of these van der Waals balls has trivial topology and therefore these balls must have a point of common intersection. Then, we may use equation (2.1) to estimate the diameter of the cavity by $2\sqrt{\alpha_d + w^2}$.

We hope that this estimate will be useful for further understanding the connection between the geometry of a protein molecule and its compressibility. We leave such analysis to future work.

Acknowledgments

The authors would like to thank Fumihide Nouno for valuable discussions. M. G. was partially supported by Fapesp Processo 2010/00875-9 and CNPq Processo 306453/2009-6. Y. H. and S. I. were partially supported by JSPS Grant-in-Aid for Challenging Exploratory Research. M. K., K. M., and V. N. were partially supported by NSF grants DMS-0915019, DMS-1125174, and CBI-0835621 and by contracts from DARPA and AFOSR.

References

[14] CHomP webpage: http://chomp.rutgers.edu/

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAIITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric \square-functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain
MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection
MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type$(A_2 + A_1)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map
MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments
Variable selection via the grouped weighted lasso for factor analysis models

Derivation of specific conditions with Comprehensive Groebner Systems

Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

On simulation of tempered stable random variates

Non-existence of certain Galois representations with a uniform tame inertia weight

Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

The value distribution of the Gauss map of improper affine spheres

On the classification of rank 2 almost Fano bundles on projective space

Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions
MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide FUKUMOTO & Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing

MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine
MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints

MI2012-1 Kazufumi KIMOTO & Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms

MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency

MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO
MI2012-4 Yasuhide FUKUMOTO & Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field

MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW & Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams