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Abstract

Support vector machine (SVM) is an efficient machine learning method for
classification. In this paper, we propose two variable selection criteria for SVM
that use wrapper methods. The criteria measure the contribution of each variable
for a target function. The variable importance is quantified on the basis of the
measured amount. The methods have high computational efficiency because they
evaluate the importance of all variables without recursive calculations. They were
applied to several artificial and real-world data sets, and their results were superior
to those of existing methods.

Key Words and Phrases: Binary classification, Feature selection, Kernel functions

1. Introduction

Support vector machine (SVM) is one of the most powerful classifiers, and many
researchers have proposed modifications, developed the mathematical behind them, and
applied them to problems in various fields [Wang (2005)], including medical science
[Furey et al. (2000)] and economics [Shin et al. (2005)]. In the context of classification,
SVM maps samples to a high dimensional space, called a feature space, in which linear
classifications are conducted. Thanks to this mapping operation, it can handle nonlinear
classifications in the sample space. SVM has other good properties, in particular, efficient
parameter estimation and the capability of using the kernel trick, which is a way of
replacing inner products in feature space with kernel functions.

Variable selection is an important issue in pattern recognition in the following
points. First, it helps to reduce the risk of overfitting and improves prediction accuracy.
Second, it can be a helpful way of clarifying causal relationships between input variables
and class labels in real-world data analysis. Third, it reduces computational costs by
eliminating unnecessary variables.

Variable selection methods in SVM are categorized into filter, embedded, and wrap-
per [George et al. (2001)], which will be briefly described in section 2. In this paper,
we will deal with the wrapper method and propose new variable selection criteria for it.
First, we define a target function related to the classification ability of the model. Then,
we evaluate the effect that each variable exerts on the function in two ways. Finally, we
quantify the importance of the variables based on the evaluated effects. The proposed
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methods can evaluate a variable’s importance by using only one optimization process.
Therefore, they speed up the variable selection procedure. They were applied to datasets
from the MLC++ [Kohavi et al. (1994)], UCI [Lichman (2013)] and LIBSVM [Chang
et al. (2001)] databases to ascertain their ability. It turned out that they outperformed
other methods in almost all cases.

The remainder of this paper is organized as follows. In section 2, we briefly explain
the algorithm of SVM classification analysis and review the conventional variable selec-
tion strategies. The new variable selection methods are described in section 3. Section
4 shows the results of applying them to benchmark datasets for classification. Section 5
summarizes the paper.

2. Support Vector Machine

In this section, we briefly explain the SVM algorithm and the notation used in the
paper. We also review the variable selection methods in the literature.

2.1. Brief Review of SVM

Suppose we want to classify a sample x = (x1, . . . , xd)T ∈ Rd into one of two classes
C1 or C−1. The classification function used in SVM takes the following linear form:

f(x) = wTφ(x) + b (1)

where φ(x) ∈ Rp denotes a fixed feature-space transformation called a feature map. The
parameters w and b are to be optimized. The sample x is assigned to one of the classes
according to the sign of f(x). Here, a kernel function is defined by

K(x, x̃) = φ(x)Tφ(x̃), x, x̃ ∈ Rd (2)

which calculates an inner product in the feature space. The following kernel functions
are frequently used in SVM.

• Linear: KL(x, x̃) = xTx̃

• Polynomial: KP (x, x̃) = (xTx̃+ r)k, r > 0, k ∈ N

• Gaussian: KG(x, x̃) = exp(−γ∥x− x̃∥2), γ > 0

• Sigmoid: KS(x, x̃) = tanh(γxTx̃+ r), γ > 0, r > 0.

Now, let us suppose that training data (xi, yi) in Rd × {±1} are given for i = 1, . . . , n,
where yi denotes the class label. The decision boundary which separates the sample space
is determined by maximizing a geometric margin in feature space under constraints. The
margin means the distance between the boundary hyperplane and any of the samples.
The optimization formula is given as

min
w,ξ

{
1

2
∥w∥2 + C

n∑

i=1

ξi

}
, ξ = (ξ1, . . . , ξn)

T (3)

subject to

yi(w
Tφ(xi) + b) ≥ 1− ξi with ξi ≥ 0 for i = 1, . . . , n.
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Here, ∥w∥2 is the inverse margin, and ξi is a slack variable giving a penalty to miss-
classification. A positive constant C, called a cost parameter, represents the trade-
off between classification accuracy and the complexity of the decision boundary. This
optimization problem can be solved using the Lagrange multiplier method. In solving
its dual problem, the optimal parameter w is given by

w =
n∑

i=1

aiyiφ(xi), (4)

where ai (0 ≤ ai ≤ C) is the Lagrange multiplier obtained in the optimization process.
Consequently, the classification function is derived as

f(x) =
n∑

i=1

aiyiK(xi,x) + b (5)

where the intercept b is estimated using support vectors with ai > 0.

2.2. Three Groups of Variable Selection Methods

The classification methods of SVM are divided into three types: filter, embedded,
and wrapper [George et al. (2001)]. We will describe them below.

Filter methods measure each variable importance individually. They utilize uni-
variate metrics like correlation coefficients [Hall (1999)], F score [Polat et al. (2009)],
mutual information [Ding et al. (2005)] and so on. This enables them to be used for not
only classification analysis but also regression. The main drawback is that their variable
selection ability is less accurate compared with the other two types. Hence, they are
typically used in a preliminary variable screening stage.

Embedded methods simultaneously conduct variable selection and parameter op-
timization. Methods with the l1 norm penalty [Bradley et al. (1998)] may be the most
well-known methods of this type. Some elements of the parameter vector w would be
optimized to be exactly zero, which implies that the corresponding variables are not
important for classification.

Typical wrapper methods use a target function derived from the SVM training such
as ||w||2. The target functions do not normally have any clear aspects for prediction, but
there are methods like the theoretical leave-one-out cross validation error bound [Vapnik
et al. (2000)] that keep these aspects. The main concern of wrapper methods is to find a
target function that selects the best variable subset for prediction. The genetic algorithm
is an example of such a search method [Yan et al. (1998)]; it generates candidate
variable subsets as comprehensively as possible; then it chooses the best model from
the candidates according to criteria. This method is, however, computationally very
expensive.

A representative wrapper type method, the SVM-RFE (recursive feature elimina-
tion) algorithm [Guyon et al. (2002)], makes use of the margin ||w||2 as the target
function and searches for the best variable subset by using backward elimination. To il-

lustrate it, suppose that x(−k)
i denotes a sample vector eliminating the k-th variable xik,

w(−k) denotes an estimated SVM parameter based on a training set
{(

x(−k)
i , yi

)
| i = 1,

..., n}, and a∗i is the optimized Lagrange multiplier for the training samples in Rd−1.
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squared norms of the weight vectors w and w(−k) are derived as

∥w∥2 =
∑

i,j

aiajyiyjK(xi,xj), (6)

∥w(−k)∥2 =
∑

i,j

a∗i a
∗
jyiyjK

(
x(−k)
i ,x(−k)

j

)
, (7)

where K(xi,xj) and K
(
x(−k)
i ,x(−k)

j

)
are kernel functions on Rd×Rd and Rd−1×Rd−1.

We denote them using the same notation. The SVM-RFE algorithm uses the margin as
follows:

| ∥w∥2 − ∥w(−k)∥2 |, k = 1, . . . , d. (8)

If Eq. 8 takes a small value, the variable xk should be removed. In actual analysis, a∗i is
substituted with ai to reduce computational costs. Another wrapper method [Byvatov
et al. (2004)] quantifies the variation caused by variable xk through differentiation:

∑

xj∈SV

(
∑

xi∈SV

aiyi
∂K(x,xj)

∂xk

∣∣∣
x=xi

+ b

)/( ∑

xi∈SV
1≤l≤d

aiyi
∂K(x,xj)

∂xl

∣∣∣
x=xi

+ b

)
, (9)

where SV = {xi | ai > 0, i = 1, . . . , n} is the set of support vectors. Variables with
small values of Eq. 9 are removed from the model. This method regards the classifier
itself as the target function and differentiates it w.r.t each variable.

The RFE-type algorithms select variables based on recursive feature elimination
processes. On the other hand, the proposed method evaluates every variable importance
with the estimated parameters obtained at the first training phase. The method without
iterative steps makes variable selection simpler. ɹ

3. Proposed Classifiers

We propose two variable selection criteria for SVM classification. In what follows,
we use data which have already been normalized in terms of their mean and standard
deviation.

First, we define the target function. Since samples are classified into two classes
according to the sign of the function f(x) of Eq. 1, correctly classified samples satisfy
the inequality yif(xi) > 0. Thus, the sum given by

∆(f) =
∑

xi∈SV

yif(xi) =
∑

xi∈SV

yi

{
∑

xi∈SV

ajyjK(xi,xj)

}
(10)

increases when the decision boundary divides the sample space appropriately. Therefore,
Eq. 10 is a target function to maximize. The next step is to identify the effective
variables for the target function. Such variables can be regarded as informative because
sensitive variables significantly contribute to the classification. We evaluate the variable
sensitivity by using the following two criteria.
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Variable elimination criterion: The sensitivity of variable xk is evaluated by
eliminating the variable from the model. Specifically, the criterion is

∆(−k)(f) =
∑

xi∈SV

yi

⎧
⎨

⎩
∑

xj∈SV

ajyjK
(
x(−k)
i ,x(−k)

j

)
+ b

⎫
⎬

⎭ for k = 1, ..., d. (11)

If ∆(−k)(f) becomes small compared with ∆(f), we can consider that classification
accuracy deteriorates as a result of removing xk from the model. Thereby, we can
regard xk as important.

Variable differentiation criterion: This criterion is based on the derivative:

Dk∆(f) =
∑

xi∈SV

yi
∂f(x)

∂xk

∣∣∣
x=xi

=
∑

xi∈SV

yi
∑

xj∈SV

ajyj
∂K(x,xj)

∂xk

∣∣∣
x=xi

. (12)

Variables with large absolute values of Dk∆(f) must sensitively affect the target func-
tion. Therefore, we can regard such variables as informative. Differentiability of the
kernel function is hardly a matter because typical kernels are differentiable.

We derive the features of the two criteria defined above. Moreover, unlike genetic
algorithm based methods, they require only one optimization procedure for the SVM
parameters w and b. In addition, our criteria assess the variation for the target function
instead of a margin like Eq. 8. Also, the method using Eq. 9 differentiates the optimized
classification function itself, while our differentiation method takes the derivative of a
reasonable target function.

There is a practical concern as to judging how many ranked variables have the
best classification ability. In the elimination method, it is clear that the variables are
noisy if the values ∆(f) − ∆(−k)(f) are negative. Hence, we can simply remove the
variables with negative sensitivities. The judgment for the differentiation method is
not clear, but we recommend defining a threshold θ and removing the variables whose
sensitivities are under the threshold. For instance, θ is set to 0.1 × |Dk∗∆(f)|, where
k∗ = argmaxk|Dk∆(f)|. We will examine these viewpoints in our numerical experiments.

4. Numerical Experiments

We conducted numerical experiments on the proposed methods as well as other
wrapper methods, i.e., SVM-RFE using Eq. 8 and differential based criterion (D-SVM)
using Eq. 9. F score [Chen et al. (2006)] (a filter method) and L1-regularized SVM [Fan
et al. (2008)] (an embedded method) were also compared. Since the L1 SVM explicitly
uses a linear kernel, its results describe degrees of nonlinearity for every piece of data.
They were applied to benchmark datasets from the MLC++ [Kohavi et al. (1994)],
UCI [Lichman (2013)] and LIBSVM [Chang et al. (2001)] data repositories. We used
the ‘kernlab’ package [Karatzoglou et al. (2004)] in R software. The Gaussian kernel
was used because it has good properties for constructing a flexible boundary and a
simple structure with one parameter γ [Hsu et al. (2003)]. In this case, the proposed
elimination criterion function is given by

∆(−k)(f) =
∑

xi∈SV

yi

⎧
⎨

⎩
∑

xj∈SV

ajyj exp
(
− γ∥x(−k)

i − x(−k)
j ∥2

)
+ b

⎫
⎬

⎭ , (13)
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and the differentiation criterion function is derived as

Dk∆(f) = −2γ
∑

xi∈SV

yi
∑

xj∈SV

ajyj(xik − xjk) exp(−γ∥xi − xj∥2). (14)

To evaluate the classification results, we used the balanced error rate (BER) [Guyon
et al. (2004)] given by

BER =
1

2
(false negative rate + false positive rate). (15)

The false negative rate means the ratio of incorrectly classified positive samples, and the
false positive rate is similarly defined. The average BER is effective if the training data
have a large difference in the numbers of positive and negative samples.

The criterion functions were evaluated as follows.
(1) Let each variable be normalized to have zero mean and unit variance. (2) The

cost parameter C was determined by 10-fold cross validation. The search space was
{2−4, 2−3, . . . , 215}. (3) The scale parameter γ in the Gaussian kernel was determined
by 10-fold cross validation. The search space was {2−15, 2−14, . . . , 24}. (4) After train-
ing the SVM classifier, the elimination criterion ∆(−k)(f) defined by Eq. 13 and the
differentiation criterion Dk∆(f) defined by Eq. 14, as well as the other criteria in Eqs.
8 and 9, were calculated. (5) The variables were sorted in order of their importance.

4.1. Numerical Experiments on Artificial Data

We evaluated the proposed methods on artificial benchmark datasets from the
MLC++ database [Kohavi et al. (1994)]. It is known whether each variable of the
dataset is informative for classification or not. Therefore, our primary interest was how
well the methods select informative variables.

4.1.1. Specifications of Artificial Data for Binary Classification

The proposed classifiers were applied to the following four datasets.

ɾ Monk1 data set: The set consists of 124 samples with six categorical variables.
Class labels were generated in accordance with the rule: (x1 = x2) or (x5 = 1)

ɾ Monk3 data set: The set consists of 122 samples with six categorical variables.
Class labels were generated in accordance with the rule: (x5 = 3 and x4 = 1) or
(x5 ̸= 4 and x2 ̸= 3). Moreover 5% of the labels were reversed randomly.

ɾ Corral data set: The set consists of 64 samples with six binary variables. Class
labels were generated in accordance with the rule: (x1 and x2) or (x3 and x4).
The variable x5 was irrelevant to the class labels, and x6 was highly correlated
with the class labels, but with a 25% error rate.

ɾ Parity 5+5 data set: The set consists of 1024 samples with ten binary variables.
Class labels were binary sums of x2, x3, x4, x6 and x8.

Table 1 outlines the specifications of the datasets. The last column means infor-
mative variables for classification.
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Table 1: Specifications of Artificial Data Sets
Name # of variables Training sample size Valid variables

Corral 6 64 1,2,3,4
Monk1 6 124 1,2,5
Monk3 6 122 2,4,5

Parity 5+5 10 1024 2,3,4,6,8

Table 2: Results for the Artificial Data Sets: Variables Selected with the Proposed and
Other Methods

Methods F score L1 SVM D-SVM SVM-RFE Elimination Differentiation

Corral 6, 1, 2, 3, 4, 5 1, 2, 3, 4, 6 2, 3, 1, 4, 5, 6 1, 3, 2, 4, 5, 6 1, 2, 3, 4, 6, 5 2, 3, 4, 1, 6, 5
Monk1 5, 1, 4, 3, 2, 6 1, 5 5, 3, 4, 6, 2, 1 1, 2, 5, 6, 4, 3 5, 1, 2, 6, 3, 4 5, 2, 1, 3, 4, 6
Monk3 2, 5, 6, 1, 3, 4 1, 2, 3, 4, 5, 6 6, 3, 1, 4, 5, 2 2, 5, 6, 3, 1, 4 2, 5, 4, 1, 3, 6 5, 2, 4, 3, 1, 6

Parity 5+5
ɹɹ

Same F scores
ɹɹ

[]

ɹɹ
8, 4, 2, 3, 6,
7, 10, 9, 5, 1

4, 6, 3, 2, 8,
9, 10, 7, 5, 1

2, 3, 6, 4, 8,
9, 5, 10, 7, 1

2, 3, 8, 6, 10,
9, 5, 1, 7, 4

The bold numbers are informative variables for class labels.

Figure 1: Variable Sensitivity of Corral Data Set: The left figure illustrates the vari-
able sensitivity determined by the elimination criterion. For the sake of simplicity, we
calculated ∆(f) − ∆(−k)(f) for each variable. The right figure illustrates the variable
sensitivity determined by the differentiation criterion. The solid lines mean a boundary
between the valid variables and the others.

4.1.2. Evaluation of Classification Results

Table 2 summarizes the classified results of the four datasets. The variables in each
cell are ordered by the importance determined from each criterion. The bold numbers are
the valid variables. For example, F score gave a preference order of 6 > 1 > 2 > 3 > 4 >
5. Unfortunately, the top-rated 6-th variable is actually invalid. Hence, F score failed
to find the valid variables, whereas the remaining classifiers successfully placed all valid
variables among the top four. The F score classifier gave the same values for all variables
of Parity 5+5. Moreover, L1-SVM failed to find an appropriate subset of Parity 5+5
variables.

Table 2 implies that the proposed elimination method completely succeeded in
choosing the valid variables. The proposed differentiation criterion selected all the valid
variables for the Corral, Monk1 and Monk3 data, and the four valid variables out of five
for the Parity 5+5 data.
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Figure 1 shows the variable sensitivity of the proposed methods for the Corral
dataset. Compared with the differentiation criterion (right), the sensitivity of the elim-
ination criterion (left) showed a clear difference between the valid variables and the
others. Especially in the left figure, the negative sensitivity of variable x5 and x6 indi-
cates that they are obstructions interfering with proper classification. This fact suggests
that the sensitivities in the elimination method are useful because we can simply remove
the variables with negative values of ∆(f)−∆(−k)(f). Actually, the other experiments
also showed this simple judgement works well for variable selection as well.

4.2. Numerical Experiments on Real-World Data

The proposed methods were also applied to real-world benchmark data sets from
UCI [Lichman (2013)] and LIBSVM [Chang et al. (2001)]. We divided each dataset
into three subsets; two subsets were used for training, the other for testing. We devised
Algorithm 1 for careful evaluation of the variable importance.

Algorithm 1 Numerical Evaluation on Real-World Data

1: Sort variables according to the importance determined by the proposed methods.
2: for k = 1 to d do
3: Pick up the top k variables of the data.
4: Tune SVM parameters γ and C for the data constituted by the k variables.
5: Train an SVM classifier.
6: Calculate BER for the test data.
7: end for
8: Find the minimum BER.

In order to reduce computation costs, we utilized the method [Wu et al. (2009)]
for optimizing γ. This method optimizes γ by maximizing the distance between clusters
in feature space.

4.2.1. Specifications of Real-World Data

We used the following seven real-world datasets, whose specifications are outlined
in Table 3.

ɾ Australian dataset [Lichman (2013)]: The set concerns credit card applications.
It consists of 690 samples with 14 variables including six numerical and eight
categorical variables. The missing values have been already replaced with the
medians.

ɾ Diabetes dataset [Lichman (2013)]: The set concerns diabetes diagnoses of the
Pima Indians who have the highest rate of diabetes in the world. The task is to
predict whether patients have diabetes or not from eight variables for 768 patients.

ɾQSAR biodegradation dataset [Lichman (2013)]: The set concerns biodegration,
which is the biological decomposition of materials. The purpose is to classify 1055
chemicals into two classes, readily or not readily biodegradable, with 41 molecular
descriptor variables.
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Table 3: Specifications of Real-World Data Sets
Name # of variables Training sample size Test sample size

Australian 14 460 230
Diabetes 8 512 256
QSAR 41 703 339
Sonar 60 138 70
Splice 60 1000 2175
WDBC 30 379 190
w1a 300 2477 47272

Table 4: Results for Real-World Datasets: BER (%) and Number of Selected Variables
Methods F score L1 SVM D-SVM SVM-RFE Elimination Differentiation

BER # BER # BER # BER # BER # BER #

Australian 11.70 8 22.67 12 11.87 10 11.55 13 10.76 7 11.55 13
Diabetes 27.76 3 30.71 8 28.51 4 27.76 3 27.76 3 34.88 8
QSAR 10.79 21 15.93 35 12.05 40 11.43 34 9.97 37 11.86 28
Sonar 7.25 58 8.11 52 5.73 47 5.73 52 5.73 39 4.22 43
Splice 6.01 14 11.00 40 10.30 60 5.28 8 4.94 8 8.90 34
WDBC 2.41 23 3.73 10 2.41 23 1.97 22 1.97 11 1.97 12
w1a 18.95 295 17.34 265 18.62 295 18.96 295 17.56 224 18.96 300

#: The number of variables with the minimum BER

ɾ Sonar dataset [Lichman (2013)]: The set concerns sonar signals. The task is
to classify whether the signals were bounced off a metal cylinder or a roughly
cylindrical rock. The set consists of 208 samples and 60 variables.

ɾ Splice dataset [Lichman (2013)]: The set concerns splice junctions in a DNA se-
quence. Here, we classified whether the boundary is exon or intron using 1000
samples with 60 variables. We also used 2175 test samples to evaluate the predic-
tion accuracy of the trained classier.

ɾ WDBC dataset [Lichman (2013)]: The set concerns classification of malignant
and benign breast cancers. The data was on 569 patients, and the variables were
obtained from digitized images of fine needle aspirates of breast masses.

ɾ w1a dataset [Chang et al. (2001)]: The set concerns web page classification [Platt
(1999)]. The data set has 300 keyword variables.
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Figure 2: Variable Sensitivity of Australian Data Set: The left figure illustrates the
variable sensitivity determined by the elimination criterion. For the sake of simplicity,
we calculated ∆(f)−∆(−k)(f) for each variable. The right figure illustrates the variable
sensitivity determined by the differentiation criterion. The variables on the left side of
the solid lines of both figures are those used when the classifiers recorded the minimum
BER.

4.2.2. Results of the Experiments

Table 4 illustrates the results of the experiments by tabulating the minimum BER
values (%) and the number of variables. The minimum BER of each data set among the
six classifiers is written in boldface text. If the number of variables is also the smallest,
the numbers are also in boldface.

The BERs of L1 SVM were worse than the other methods, except for w1a data,
which implies that the other data sets have a nonlinear structure. For the Australian,
Diabetes, and Splice data, the variable elimination criterion gave outstanding results.
For each of them, the variables selected by the criterion gave the minimum BER with
the smallest number of variables. Figure 2 shows the variable sensitivity of the proposed
methods for the Australian dataset. In the left figure with the elimination criterion, vari-
able x8 was regarded as quite important. This was the desired result because the signs
of the variable correspond to class labels with a ratio of around 85%. As we mentioned
in Section 4.1, the sensitivity of the elimination method was also good. Unfortunately,
the BER of the test data with the single variable x8 was 12.58 %, which was slightly
worse than that of the best model, 10.76%, with 7 variables. In the future, we will try
to improve the criterion in the sense of the prediction error.

For the Sonar data, the variable differentiation criterion gave the minimum BER
(4.22%) with a relatively small variable subset (#:43). Moreover, the elimination crite-
rion gave the same BER as the other two wrapper methods while using fewer variables.
For the WDBC data, the elimination and differentiation criteria improved the classifica-
tion accuracy with one or two additional variables compared with L1-SVM. Additionally,
compared with the other methods, they gave the minimum BER (1.97%) with fewer vari-
ables (#:11 or 12). For the QSAR data, the elimination criterion gave the minimum
BER. For the w1a data, it gave the second smallest BER with the smallest number of
variables. Overall, our variable elimination criteria found the best subset of variables.
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5. Conclusion

In classification analysis, variable selection helps to prevent models from overfitting
and reduces computational costs. In this paper, we focused on classification analysis with
SVM and proposed variable selection strategies for the wrapper approach. Each method
evaluates the variation that variables exert on the target function, which increases as
the classifier’s accuracy. The variable elimination criterion evaluates the variation by
removing variables, whereas the variable differentiation criterion evaluates it by differ-
entiating the target function. Note that these methods can calculate the importance of
all variables by making only one optimization for the SVM parameter. Therefore, they
are computationally efficient.

To validate the proposed methods, we applied them to several datasets. The results
showed that they are more appropriate than other methods [Chen et al. (2006)] [Fan
et al. (2008)] [Byvatov et al. (2004)] [Guyon et al. (2002)]. The elimination criterion
succeeded in selecting all the valid variables in the artificial datasets from the MLC++
database [Kohavi et al. (1994)]. The differentiation criterion also gave good results.
Moreover, the elimination criterion showed its validity on real-world datasets from the
UCI [Lichman (2013)] and LIBSVM [Chang et al. (2001)] databases. For the Australian,
Diabetes and Splice datasets, it gave the minimum BER value for the test data with the
smallest number of variables.
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