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TWO DUALS OF ONE PRIMAL

By

Yutaka ∗, Takayuki † and Seiichi ‡

Abstract

As a primal problem we take a quadratic minimization without constraint. The
problem has a Golden terminal function. We associate the primal problem with two
dual problems — (1) complementary and (2) identical —. Each dual problem is
derived through two dualizations — (i) plus-minus and (ii) dynamic —. Plus-minus
dualization is based upon Fenchel duality, while dynamic dualization Lagrange
duality. In any derivation, completing the square is performed simultaneously.
The primal and both duals are completely solved. The solution is characterized by
the Golden number. The optimum points constitute two types of Golden path. It
is shown that the primal and the complementary dual have Golden complementary
duality and that the primal and the identical dual have Golden identical duality.

Key Words and Phrases: primal, dual, plus-minus dualization, dynamic dualization, completing

the square, Golden complementary duality, Golden identical duality

1. Introduction

Recently a dual theory of quadratic optimization without constraint has been de-
veloped by Iwamoto (2007), Kira and Iwamoto (2008), Iwamoto (2013), Iwamoto et
al. (2013, 2014). The theory is closely related to conjugate function (Fenchel (1953),
Rockafeller (1974), Kawasaki (2003)), minimum transform and quasilinearization (Bell-
man (1981, 1984, 1986), Iwamoto (1987, 2013)). The objective function originates from
a linear-quadratic (LQ) model in dynamic optimization (Bellman (1967, 1969, 1971,
1972)). However, until recently any dual approach has never been applied to such LQ
model.

In this paper we expand the dual method into a wider class of dualizations and
apply it to a new objective function with an additional Golden terminal function. We
associate one primal problem with two dual problems — (1) complementary dual and
(2) identical dual —. Each dual problem is derived by two dualizations — (i) plus-
minus dualization and (ii) dynamic dualization —. While (i) is based upon Fenchel
duality, (ii) Lagrange duality. Further each dualization is accompanied by two ones —
(a) dualization 1 and (b) dualization 2 —. This paper consists of two parts. Part I
discusses a complementary duality. The Golden complementary duality is established.
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Part II discusses an identical duality. The Golden identical duality is established. Due
to the Golden premium, the solution and method become very fruitful.

Part I

Complementary Duality
2. Primal problem and dual problem

As an n-variable quadratic optimization, we consider a minimization problem of
x = (x1, x2, . . . , xn):

minimize
n∑

k=1

[
(xk−1 − xk)

2 + x2
k

]
+ φ−1x2

n

(P) subject to (i) x ∈ Rn

(ii) x0 = c

where c ∈ R. Hereafter φ denotes the Golden number

φ =
1 +

√
5

2
≈ 1.61803.

It satisfies
1 : φ = φ−2 : φ−1, φ−2 + φ−1 = 1.

The Golden number φ is also defined as a positive solution to a quadratic equation

x2 − x− 1 = 0.

Lemma 2.1. (Iwamoto et al.(2014)) The Golden number φ satisfies

1.
n∑

k=1

φ2k−1 = φ2n − 1

2.
n∑

k=1

φ−2k = φ−1 − φ−2n−1

3. φn + φn+1 = φn+2 n = . . . ,−2, −1, 0, 1, 2, . . .

4. 2
n∑

k=1

φ−3k−1 + φ−3n−2 = φ−2.

Definition 2.2. (Iwamoto(2013)) Let c be any real constant. A finite sequence
{xn}n≥1 with

xn = cφ−2n or xn = cφ−n

is called Golden path (GP). The former is called 1 : φ, while the latter φ : 1.

Theorem 2.3. The primal problem (P) has a minimum value m = φ−1c2 at a
point

x̂ = (x̂1, x̂2, . . . , x̂n−1, x̂n) = c
(
φ−2, φ−4, . . . , φ−(2n−2), φ−2n

)
.
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The minimum point x̂ is a GP of 1 : φ.

Proof. Theorem 2.3 together with Theorem 2.4 is proved in the following deriva-
tion process of dual problem (D) from (P) (see Plus-minus dualization 1 and Lemma
4.1).

The problem (P) has a dual problem of n-variable µ = (µ1, µ2, . . . , µn):

Maximize 2cµ1 −
n−1∑

k=1

[
µ2
k + (µk − µk+1)

2
]
− φµ2

n

(D)
subject to (i) µ ∈ Rn.

Theorem 2.4. The dual problem (D) has a maximum value M = φ−1c2 at a point

µ∗ = (µ∗
1, µ

∗
2, . . . , µ

∗
n−1, µ

∗
n) = c

(
φ−1, φ−3, . . . , φ−(2n−3), φ−(2n−1)

)
.

The maximum point µ∗ is also a GP of 1 : φ.
A triplet between the minimum solution of (P) and the maximum solution of (D)

holds as follows.

1. ʢDualityʣ The minimum value is equal to the maximum valueɿm = M. The
common value is a quadratic function of initial value c, whose coefficient is the
inverse φ−1 to Golden number.

2. ʢGoldenʣ Both the minimum point (x̂1, x̂2, . . . , x̂n) and the maximum point
(µ∗

1, µ∗
2, . . . , µ∗

n) are Golden paths of 1 : φ.

3. ʢComplementarityʣ An alternate sequence of the minimum point and the
maximum point constitutes a Golden path of φ : 1 :

(x0, µ∗
1, x̂1, µ∗

2, x̂2, . . . , µ∗
n, x̂n )

= c( 1, φ−1, φ−2, φ−3, . . . , φ−(2n−1), φ−2n ).

The triplet is called Golden complementary duality (GCD).

3. Duality theorem

ɹWe consider a function f : Rn → (−∞,∞]. An effective domain is defined by

dom(f) = {x ∈ Rn : f(x) < ∞}.

A convex function f : Rn → (−∞,∞] and a concave function g : Rn → (−∞,∞] define
its conjugate functions f∗, g∗ as follows, respectively:

f∗(λ) = Sup
x∈Rn

[ (λ, x)− f(x) ] , λ ∈ Rn

g∗(λ) = inf
x∈Rn

[ (λ, x)− g(x) ] , λ ∈ Rn.
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Theorem 3.1. Fenchel duality theorem (e.g. see Fenchel (1953), Rockafeller (1974),
Borwein and Lewis (2000), Kawasaki (2003)) Let a function f be convex, and g be con-
cave. If two effective domains dom(f), dom(−g) are not separated, then it holds that

inf
x∈Rn

[ f(x)− g(x) ] = Sup
λ∈Rn

[ g∗(λ)− f∗(λ) ] .

In the following we consider a function h : Rn → (−∞,∞). A convex function
h : Rn → (−∞,∞) defines its minimum transform (e.g. see Bellman (1957, 1981, 1984,
1986), Iwamoto (1987, 2013) ) h⋆ : Rn → (−∞,∞) as follows:

h⋆(λ) = min
x∈Rn

[h(x)− (λ, x) ] .

Hereafter we assume that both the minimum and maximum exist.

Corollary 3.2. Let two functions f, g : Rn → (−∞,∞) be differentiable and
convex. Then it holds that

min
x∈Rn

[ f(x) + g(x) ] = Max
λ∈Rn

[ f⋆(λ) + g⋆(−λ) ] . (1)

Corollary 3.2 holds true for a more general setting, as Theorem 3.1 does. Here we
choose to not give the setting. Instead, we give a simple proof under the existence of
minimum in (1). This proof suggests plus-minus dualization. The proof is outlined as
follows. First it holds that

f(x) + g(x) = f(x)− (λ, x) + g(x) + (λ, x)

≥ min
x∈Rn

[ f(x)− (λ, x) + g(x) + (λ, x) ]

≥ min
x∈Rn

[ f(x)− (λ, x) ] + min
x∈Rn

[ g(x)− (−λ, x) ]

= f⋆(λ) + g⋆(−λ) (x,λ) ∈ Rn×Rn.

This implies that

min
x∈Rn

[ f(x) + g(x) ] ≥ Max
λ∈Rn

[ f⋆(λ) + g⋆(−λ) ] .

On the other hand, let x be a minimizer. Then we get f ′(x) + g′(x) = 0. Setting
λ := f ′(x) = −g′(x), we have

f⋆(λ) = f(x)− (λ, x)

g⋆(−λ) = g(x)− (−λ, x).

Thus we have

min
x∈Rn

[ f(x) + g(x) ] = f(x) + g(x)

= f(x)− (λ, x) + g(x) + (λ, x)

= f⋆(λ) + g⋆(−λ)

≤ Max
λ∈Rn

[ f⋆(λ) + g⋆(−λ) ] .
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Hence

min
x∈Rn

[ f(x) + g(x) ] = Max
λ∈Rn

[ f⋆(λ) + g⋆(−λ) ] .

Our plus-minus dualization is based upon (1). In particular, two equalities

f(x) + g(x) = f(x)− (λ, x) + g(x) + (λ, x)

f ′(x) + g′(x) = 0

are crucial under differentiable convexity. This hints plus-minus dualization, which is
applied in the following.

4. Plus-minus dualization

Now we show that

Maximize 2cµ1 −
n−1∑

k=1

[
µ2
k + (µk − µk+1)

2
]
− φµ2

n

(D)
subject to (i) µ ∈ Rn

is derived from (P) through two plus-minus dualizations.
We consider the primal problem (P). Let I(x) be the objective value for x =

(x1, x2, . . . , xn) satisfying (i), (ii):

I(x) =
n∑

k=1

[
(xk−1 − xk)

2 + x2
k

]
+ φ−1x2

n, x0 = c.

4.1. Plus-minus dualization 1

Then take any µ = (µ1, . . . , µn) ∈ Rn. Subtracting 2µk(xk−1 − xk) from (xk−1 −
xk)2 and adding it to x2

k, we have 1

I(x) =
n∑

k=1

[
(xk−1 − xk)

2 − 2µk(xk−1 − xk) + x2
k + 2µk(xn−1 − xn)

]
+ φ−1x2

n.

Plus-minus dualization 1 completes the square of (xk−1 − xk) first, and completes the
square of xk second. Separating the summation into two, we get

I(x) =
n∑

k=1

[
(xk−1 − xk)

2 − 2µk(xk−1 − xk)
]

+
n−1∑

k=1

[
x2
k + 2µk(xk−1 − xk)

]
+ φx2

n + 2µn(xn−1 − xn).

The first completion yields

n∑

k=1

[
(xk−1 − xk)

2 − 2µk(xk−1 − xk)
]

=
n∑

k=1

[
(xk−1 − xk − µk)

2 − µ2
k

]
.

1 The subtraction/addition leads to Fenchel duality theorem. Thus the dualization is called plus-minus.
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The second yields

n−1∑

k=1

[
x2
k + 2µk(xk−1 − xk)

]
+ φx2

n + 2µn(xn−1 − xn)

= 2cµ1 +
n−1∑

k=1

[
x2
k − 2(µk − µk+1)xk

]
+ φx2

n − 2xnµn

= 2cµ1 +
n−1∑

k=1

[{
xk − (µk − µk+1)

}2 − (µk − µk+1)
2
]
+ φ(xn − φ−1µn)

2 − φ−1µ2
n.

Summing up the two completions, we obtain

I(x) =
n∑

k=1

[
(xk−1 − xk − µk)

2 − µ2
k

]
+ 2cµ1

(2)

+
n−1∑

k=1

[{
xk − (µk − µk+1)

}2 − (µk − µk+1)
2
]
+ φ(xn − φ−1µn)

2 − φ−1µ2
n.

Let us define

J(µ) := 2cµ1 −
n−1∑

k=1

[
µ2
k + (µk − µk+1)

2
]
− φµ2

n.

Then it holds that

J(µ) ≤ I(x) on Rn×Rn. (3)

The sign of equality holds iff

xk−1 − xk = µk , xk = µk − µk+1 1 ≤ k ≤ n− 1
(4)

xn−1 − xn = µn , xn = φ−1µn

holds. The equality condition (4) constitutes a system of 2n linear equations in 2n
variables (x, µ).

Lemma 4.1. The system (4) has a unique solution (x̂;µ∗)ɿ

(x̂1, x̂2, . . . , x̂n−1, x̂n) = c
(
φ−2, φ−4, . . . , φ−(2n−2), φ−2n

)
,

(µ∗
1, µ

∗
2, . . . , µ

∗
n−1, µ

∗
n) = c

(
φ−1, φ−3, . . . , φ−(2n−3), φ−(2n−1)

)
.

Then both sides in (3) are equal to φ−1c2.

The solution (x̂;µ∗) is called Golden complementary.
Therefore, as a dual to minimization of I(x), we get maximization of J(µ). Con-

versely, minimization of I(x) leads maximization of J(µ).

Hence we have

Theorem 4.2. Both (P) and (D) are dual to each other.

This duality is called complementary, which comes from the equality condition (4).
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4.2. Plus-minus dualization 2

The objective value I(x) is written as

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + x2
k

]
+ (xn−1 − xn)

2 + φx2
n, x0 = c.

Then take any µ = (µ1, . . . , µn) ∈ Rn. Subtracting 2(µk −µk+1)xk from x2
k and adding

it to (xk−1 − xk)2, we have

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + 2(µk − µk+1)xk + x2
k − 2(µk − µk+1)xk

]

+ (xn−1 − xn)
2 + 2µnxn + φx2

n − 2µnxn.

Plus-minus dualization 2 completes the square of xk first, and then does the square of
(xk−1 − xk). Separating the summation into two, we get

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + 2(µk − µk+1)xk

]
+ (xn−1 − xn)

2 + 2µnxn

+
n−1∑

k=1

[
x2
k − 2(µk − µk+1)xk

]
+ φx2

n − 2µnxn.

The former is completed as

n−1∑

k=1

[
(xk−1 − xk)

2 + 2(µk − µk+1)xk

]
+ (xn−1 − xn)

2 + 2µnxn

= 2cµ1 +
n−1∑

k=1

[
(xk−1 − xk)

2 − 2µk(xk−1 − xk)
]
− 2µnxn−1

+ (xn−1 − xn)
2 + 2µnxn

= 2cµ1 +
n∑

k=1

[
(xk−1 − xk)

2 − 2µk(xk−1 − xk)
]

= 2cµ1 +
n∑

k=1

[
(xk−1 − xk − µk)

2 − µ2
k

]
.

The latter is as follows:
n−1∑

k=1

[
x2
k − 2(µk − µk+1)xk

]
+ φx2

n − 2µnxn

=
n−1∑

k=1

[{
xk − (µk − µk+1)

}2 − (µk − µk+1)
2
]
+ φ(xn − φ−1µn)

2 − φ−1µ2
n.

The two completions are summed up to

I(x) = 2cµ1 +
n∑

k=1

[
(xk−1 − xk − µk)

2 − µ2
k

]

+
n−1∑

k=1

[{
xk − (µk − µk+1)

}2 − (µk − µk+1)
2
]
+ φ(xn − φ−1µn)

2 − φ−1µ2
n.
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This identity is the same as (2). Thus the same procedure as in Plus-minus duality 1
shows that both the problems are dual to each other.

5. Dynamic dualization

This section shows that (D) is derived from (P) through two dynamic dualizations.

5.1. Dynamic dualization 1

The problem (P) has the objective function

I(x) =
n∑

k=1

[
(xk−1 − xk)

2 + x2
k

]
+ φ−1x2

n, x0 = c.

In dynamic dualization 1, let us define u = (u1, u2, . . . , un) by

uk = xk−1 − xk 1 ≤ k ≤ n. (5)

Then I(x) is written as 2

I(x) =
n∑

k=1

(u2
k + x2

k) + φ−1x2
n.

The equality (5) implies that
n∑

k=1

ck(xk−1 − xk − uk) = 0 for any constants {ck}. Hence

I(x) =
n∑

k=1

[
u2
k + ck(xk−1 − xk − uk) + x2

k

]
+ φ−1x2

n.

Now let us take any µ = (µ1, . . . , µn) ∈ Rn and set ck as

ck = 2µk 1 ≤ k ≤ n.

Then it holds that

I(x) =
n∑

k=1

[
u2
k + 2µk(xk−1 − xk − uk) + x2

k

]
+ φ−1x2

n.

Separating the summation into two, we get

I(x) =
n∑

k=1

(
u2
k − 2µkuk

)
+

n∑

k=1

[
x2
k + 2µk(xk−1 − xk)

]
+ φ−1x2

n.

2 The given unconditional minimization (primal) problem is extended to an equivalent conditional
problem by introduction of new variables defined as a linear form. Then the Lagrange dual approach
together with the completion of the square yields an identity with respect to the expanded variables.
Finally reverting to an equality between the original (primal) variables and the Lagrange multipliers
(dual variables), we obtain an inequality together with equality condition. Thus dynamic dualiza-
tion consists of three steps (i) expansion to conditional problem, (ii) Lagrange dualization, and (iii)
reversion to only original variables.
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From

n∑

k=1

µk(xk−1 − xk) = cµ1 −
n−1∑

k=1

(µk − µk+1)xk − µnxn

and 1 + φ−1 = φ, we have

n∑

k=1

[
x2
k + 2µk(xk−1 − xk)

]
+ φ−1x2

n

= 2cµ1 +
n−1∑

k=1

[
x2
k − 2(µk − µk+1)xk

]
+ φx2

n − µnxn.

Completing the two squares, we get

I(x) =
n∑

k=1

(
u2
k − 2µkuk

)
+ 2cµ1 +

n−1∑

k=1

[
x2
k − 2(µk − µk+1)xk

]
+ φx2

n − µnxn

=
n∑

k=1

{
(uk − µk)

2 − µ2
k

}
+ 2cµ1 +

n−1∑

k=1

[
{xk − (µk − µk+1)}2 − (µk − µk+1)

2
]

+ φ(xn − φ−1µn)
2 − φ−1µ2

n.

Reverting to (5), we obtain an identity:

I(x) =
n∑

k=1

{
(xk−1 − xk − µk)

2 − µ2
k

}
+ 2cµ1 +

n−1∑

k=1

[
{xk − (µk − µk+1)}2 − (µk − µk+1)

2
]

+ φ(xn − φ−1µn)
2 − φ−1µ2

n.

We note that the objective function of (D) is

J(µ) = 2cµ1 −
n−1∑

k=1

[
µ2
k + (µk − µk+1)

2
]
− φµ2

n.

Therefore like as in Plus-minus dualization 1 we see that both problems are dual to each
other.

5.2. Dynamic dualization 2

The problem (P) has the objective function

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + x2
k

]
+ (xn−1 − xn)

2 + φx2
n.

In dynamic dualization 2, we define u = (u1, u2, . . . , un) by

uk = xk 1 ≤ k ≤ n. (6)
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Then we have

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + u2
k

]
+ (xn−1 − xn)

2 + φu2
n.

It holds that for any constants {ck}

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + u2
k + ck(xk − uk)

]
+ (xn−1 − xn)

2 + φu2
n + cn(xn − un).

Let us take any µ = (µ1, . . . , µn) and set ck as

ck = 2(µk − µk+1) 1 ≤ k ≤ n− 1, cn = 2µn.

Then we have

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + u2
k + 2(µk − µk+1)(xk − uk)

]

+ (xn−1 − xn)
2 + φu2

n + 2µn(xn − un). (7)

One completion in (7) yields

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + u2
k + 2(µk − µk+1)(xk − uk)

]
+ (xn−1 − xn)

2 + 2µnxn

+ φ(un − φ−1µn)
2 − φ−1µ2

n.

The remaining term is

n−1∑

k=1

[
(xk−1 − xk)

2 + u2
k + 2(µk − µk+1)(xk − uk)

]
+ (xn−1 − xn)

2 + 2µnxn

=
n−1∑

k=1

[
(xk−1 − xk)

2 + 2(µk − µk+1)xk + u2
k − 2(µk − µk+1)uk

]
+ (xn−1 − xn)

2 + 2µnxn.

From
n−1∑

k=1

(µk − µk+1)xk = cµ1 −
n−1∑

k=1

µk(xk−1 − xk) + µnxn−1

we complete the term as follows:

n−1∑

k=1

[
(xk−1 − xk)

2 + 2(µk − µk+1)xk + u2
k − 2(µk − µk+1)uk

]
+ (xn−1 − xn)

2 + 2µnxn

= 2cµ1 +
n−1∑

k=1

[
(xk−1 − xk)

2 − 2µk(xk−1 − xk) + u2
k − 2(µk − µk+1)uk

]

+ (xn−1 − xn)
2 − 2µn(xn−1 − xn)

= 2cµ1 +
n−1∑

k=1

[
(xk−1 − xk − µk)

2 − µ2
k + {uk − (µk − µk+1)}2 − (µk − µk+1)

2
]

+ (xn−1 − xn − µn)
2 − µ2

n.
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Hence we have an equality

I(x) = 2cµ1 +
n−1∑

k=1

[
(xk−1 − xk − µk)

2 − µ2
k + {uk − (µk − µk+1)}2 − (µk − µk+1)

2
]

+ (xn−1 − xn − µn)
2 − µ2

n + φ(un − φ−1µn)
2 − φ−1µ2

n.

Reverting to (6), we have an identity:

I(x) = 2cµ1 +
n−1∑

k=1

[
(xk−1 − xk − µk)

2 − µ2
k + {xk − (µk − µk+1)}2 − (µk − µk+1)

2
]

+ (xn−1 − xn − µn)
2 − µ2

n + φ(xn − φ−1µn)
2 − φ−1µ2

n.

Hence the same discussion as in the preceding three dualizations claims that both prob-
lems are dual to each other.

Part II

Identical Duality
6. Another dual problem

We have shown that the problem (P) has a dual problem (D). It is shown that
both problems have the Golden complementary duality (GCD). Now we show that (P)
has another dual problem (Di) with a different kind of duality. The problem (Di) has
an n-variable λ = (λ1,λ2, . . . ,λn), which is defined as follows.

Maximize 2c
(n−1∑

k=1

λk + φλn

)
−
[ n∑

k=1

(n−1∑

l=k

λl + φλn

)2
+

n−1∑

k=1

λ2
k + φλ2

n

]

(Di)
subject to (i) λ ∈ Rn

where
n−1∑

l=n

λl = 0. From 1 + φ−1 = φ, (Di) is also expressed as

Maximize 2c
( n∑

k=1

λk + φ−1λn

)
−
[ n∑

k=1

( n∑

l=k

λl + φ−1λn

)2
+

n∑

k=1

λ2
k + φ−1λ2

n

]

subject to (i) λ ∈ Rn.

Theorem 6.1. The problem (Di) has a maximum value M = φ−1c2 at a point

λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
n−1, λ

∗
n) = c

(
φ−2, φ−4, . . . , φ−(2n−2), φ−2n)

)
.

Proof. This is shown in the following derivation process of dual problem (Di)
from (P) (see Plus-minus dualization 1 and Lemma 7.1).
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Thus we have the following triplet between the minimum solution of (P) and the
maximum solution of (Di):

1. ʢDualityʣ The minimum value is equal to the maximum valueɿm = M. The
common value is a quadratic function of initial value c, whose coefficient is the
inverse φ−1 to Golden number.

2. ʢGoldenʣ Both the minimum point (x̂1, x̂2, . . . , x̂n) and the maximum point
(λ∗

1, λ∗
2, . . . , λ∗

n) are Golden paths of 1 : φ.

3. ʢIdenticalʣ Further both the optimum points are identicalɿ

(x̂1, x̂2, . . . , x̂n) = (λ∗
1, λ∗

2, . . . , λ∗
n).

This triplet is called Golden identical duality (GID).

7. Plus-minus dualization

This section shows that (Di) is derived from (P) through two plus-minus dualiza-
tions. We note that the primal problem (P) has the objective value

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + x2
k

]
+ (xn−1 − xn)

2 + φx2
n, x0 = c.

7.1. Plus-minus dualization 1

Take any λ = (λ1,λ2, . . . ,λn) ∈ Rn. First subtract 2λkxk from x2
k and add it to

(xk−1 − xk)2. Second subtract 2φλnxn from φx2
n and add it to (xn−1 − xn)2. Then we

have

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + 2λkxk + x2
k − 2λkxk

]

+ (xn−1 − xn)
2 + 2φλnxn + φx2

n − 2φλnxn.

Plus-minus dualization 1 completes the square of xk first, and completes the square of
(xk−1 − xk) second. The first completion is

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + 2λkxk + (xk − λk)
2 − λ2

k

]

+ (xn−1 − xn)
2 + 2φλnxn + φ(xn − λn)

2 − φλ2
n

=
n−1∑

k=1

[
(xk−1 − xk)

2 + 2λkxk

]
+ (xn−1 − xn)

2 + 2φλnxn

+
n−1∑

k=1

[
(xk − λk)

2 − λ2
k

]
+ φ(xn − λn)

2 − φλ2
n.

As for the second, let us transform x to y by

yk := xk−1 − xk 1 ≤ k ≤ n
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namely

xk = c− y1 − y2 − · · ·− yk 1 ≤ k ≤ n.

Then we have

n−1∑

k=1

[
(xk−1 − xk)

2 + 2λkxk

]
+ (xn−1 − xn)

2 + 2φλnxn

=
n−1∑

k=1

[
y2k + 2λk

(
c−

k∑

l=1

yl
) ]

+ y2n + 2φλn

(
c−

n∑

l=1

yl
)

= 2c
(n−1∑

k=1

λk + φλn

)
+

n−1∑

k=1

[
y2k − 2

(n−1∑

l=k

λl + φλn

)
yk
]
+ y2n − 2φλnyn

= 2c
(n−1∑

k=1

λk + φλn

)
+

n−1∑

k=1

[ {
yk −

(n−1∑

l=k

λl + φλn

)}2
−
(n−1∑

l=k

λl + φλn

)2 ]

+ (yn − φλn)
2 − (φλn)

2.

Summing up the two completions, we have

I(x) = 2c
(n−1∑

k=1

λk + φλn

)
+

n−1∑

k=1

[{
yk −

(n−1∑

l=k

λl + φλn

)}2
−
(n−1∑

l=k

λl + φλn

)2 ]

+ (yn − φλn)
2 − (φλn)

2 +
n−1∑

k=1

[
(xk − λk)

2 − λ2
k

]
+ φ(xn − λn)

2 − φλ2
n.

From yk = xk−1 − xk, we have an identity:

n∑

k=1

[
(xk−1 − xk)

2 + x2
k

]
+ φ−1x2

n

= 2c
(n−1∑

k=1

λk + φλn

)
+

n−1∑

k=1

[{
xk−1 − xk −

(n−1∑

l=k

λl + φλn

)}2
−
(n−1∑

l=k

λl + φλn

)2 ]

+ (xn−1 − xn − φλn)
2 − (φλn)

2 +
n−1∑

k=1

[
(xk − λk)

2 − λ2
k

]
+ φ(xn − λn)

2 − φλ2
n. (8)

Now let us define

J(λ) := 2c
(n−1∑

k=1

λk + φλn

)
−
[ n∑

k=1

(n−1∑

l=k

λl + φλn

)2
+

n−1∑

k=1

λ2
k + φλ2

n

]
.

Then we have an inequality

J(λ) ≤ I(x) on Rn×Rn. (9)
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The sign of equality holds iff

xk−1 − xk =
n−1∑

l=k

λl + φλn , xk = λk 1 ≤ k ≤ n− 1

(10)
xn−1 − xn = φλn , xn = λn

holds.
The equality condition (10) constitutes a system of 2n linear equations in 2n-

variables (x,λ).

Lemma 7.1. The system (10) has a unique solution (x̂;λ∗)ɿ

(x̂1, x̂2, . . . , x̂n−1, x̂n) = c
(
φ−2, φ−4, . . . , φ−(2n−2), φ−2n

)
,

(λ∗
1, λ

∗
2, . . . , λ

∗
n−1, λ

∗
n) = c

(
φ−2, φ−4, . . . , φ−(2n−2), φ−2n

)
.

Then both the sides in (9) are equal to φ−1c2.

The solution (x̂;λ∗) is called Golden identical.
Therefore, as a dual to minimization of I(x), we have maximization of J(λ). Con-

versely, a dual of maximization of J(λ) is minimization of I(x).

Thus we have

Theorem 7.2. Both problems (P) and (Di) are dual to each other.

This duality is called identical, which comes from the equality condition (10).

7.2. Plus-minus dualization 2

For brevity let us take

xk−1 − xk = uk 1 ≤ k ≤ n.

The objective value of (P) becomes

I(x) =
n−1∑

k=1

(u2
k + x2

k) + u2
n + φx2

n.

Then we take any λ = (λ1, . . . ,λn) ∈ Rn and set

ck =
n−1∑

l=k

λl + φλn 1 ≤ k ≤ n− 1, cn = φλn.

Subtracting 2ckuk from u2
k and adding it to x2

k, we have

I(x) =
n−1∑

k=1

(u2
k − 2ckuk + x2

k + 2ckuk) + u2
n − 2cnun + φx2

n + 2cnun.
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Plus-minus dualization 2 completes the square of uk first, and then does the square of
xk. Completing the first square and separating the summation into two, we get

I(x) =
n−1∑

k=1

[
(uk − ck)

2 − c2k + x2
k + 2ck(xk−1 − xk)

]

+ (un − cn)
2 − c2n + φx2

n + 2cn(xn−1 − xn)

=
n∑

k=1

[
(uk − ck)

2 − c2k
]

+
n−1∑

k=1

[
x2
k + 2ck(xk−1 − xk)

]
+ φx2

n + 2cn(xn−1 − xn).

From
n−1∑

k=1

ck(xk−1 − xk) = x0c1 −
n−1∑

k=1

(ck − ck+1)xk − cnxn−1

we have the second completion as follows:

n−1∑

k=1

[
x2
k + 2ck(xk−1 − xk)

]
+ φx2

n + 2cn(xn−1 − xn)

= 2x0c1 +
n−1∑

k=1

[
x2
k − 2(ck − ck+1)xk

]
+ φx2

n − 2cnxn

= 2x0c1 +
n−1∑

k=1

(
x2
k − 2λkxk

)
+ φ(x2

n − 2λnxn)

= 2x0c1 +
n−1∑

k=1

[
(xk − λk)

2 − λ2
k

]
+ φ(xn − λn)

2 − φλ2
n.

Summing up both completions, we obtain

I(x) =
n∑

k=1

[
(uk − ck)

2 − c2k
]

+ 2x0c1 +
n−1∑

k=1

[
(xk − λk)

2 − λ2
k

]
+ φ(xn − λn)

2 − φλ2
n.

This is nothing but (8). Thus the remaining discussion is same as in Plus-minus dual-
ization 1. Hence we see that both problems (P) and (Di) are dual to each other.

Remark 1

The primal problem

minimize
n∑

k=1

[
(xk−1 − xk)

2 + x2
k

]
+ φ−1x2

n

(P) subject to (i) x ∈ Rn

(ii) x0 = c
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has the identical dual problem

Maximize 2c
(n−1∑

k=1

λk + φλn

)
−
[ n∑

k=1

(n−1∑

l=k

λl + φλn

)2
+

n−1∑

k=1

λ2
k + φλ2

n

]

(Di)
subject to (i) λ ∈ Rn.

The (Di) is transformed into the complementary dual problem

Maximize 2cµ1 −
{n−1∑

k=1

[
µ2
k + (µk − µk+1)

2
]
+ φµ2

n

}

(Dc)
subject to (i) µ ∈ Rn

through a transformation λ → µ :

µk =
n−1∑

l=k

λl + φλn 1 ≤ k ≤ n− 1, µn = φλn. (11)

The (Dc) is nothing but (D), which is discussed in Part 1: Complementary Duality. The
inverse transformation is µ → λ :

λk = µk − µk+1 1 ≤ k ≤ n− 1, λn = φ−1µn. (12)

That is, both duals (Dc), (Di) are transformed into each other through transformations
(11), (12).

8. Dynamic dualization

This section shows that (Di) is derived through two dynamic dualizations. We
remark that (P) has the objective function

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + x2
k

]
+ (xn−1 − xn)

2 + φx2
n, x0 = c.

8.1. Dynamic dualization 1

In dynamic dualization 1, let us define u = (u1, u2, . . . , un) by

uk = xk 1 ≤ k ≤ n. (13)

Then the objective value of (P) becomes

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + u2
k

]
+ (xn−1 − xn)

2 + φu2
n.

The equality (13) implies that
n∑

k=1

ck(xk − uk) = 0 for any constants {ck}. Hence

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + u2
k + ck(xk − uk)

]
+ (xn−1 − xn)

2 + φu2
n + cn(xn − un).
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Now take any λ = (λ1, . . . ,λn) ∈ Rn and set

ck = 2λk 1 ≤ k ≤ n− 1, cn = 2φλn.

Then we have

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + u2
k + 2λk(xk − uk)

]

+ (xn−1 − xn)
2 + φu2

n + 2φλn(xn − un).

First completing the square of uk and then separating the summation into two, we get

I(x) =
n−1∑

k=1

[
(xk−1 − xk)

2 + 2λkxk + (uk − λk)
2 − λ2

k

]

+ (xn−1 − xn)
2 + 2φλnxn + φ(un − λn)

2 − φλ2
n

=
n−1∑

k=1

[
(xk−1 − xk)

2 + 2λkxk

]
+ (xn−1 − xn)

2 + 2φλnxn

+
n−1∑

k=1

[
(uk − λk)

2 − λ2
k

]
+ φ(un − λn)

2 − φλ2
n.

In order to complete the square of (xk−1 − xk), we introduce a transformation x → y :

yk := xk−1 − xk 1 ≤ k ≤ n.

This yields

xk = c− y1 − y2 − · · ·− yk 1 ≤ k ≤ n.

Then the completion is

n−1∑

k=1

[
(xk−1 − xk)

2 + 2λkxk

]
+ (xn−1 − xn)

2 + 2φλnxn

=
n−1∑

k=1

[
y2k + 2λk

(
c−

k∑

l=1

yl
) ]

+ y2n + 2φλn

(
c−

n∑

l=1

yl
)

= 2c
(n−1∑

k=1

λk + φλn

)
+

n−1∑

k=1

[
y2k − 2

(n−1∑

l=k

λl + φλn

)
yk
]
+ y2n − 2φλnyn

= 2c
(n−1∑

k=1

λk + φλn

)
+

n−1∑

k=1

[ {
yk −

(n−1∑

l=k

λl + φλn

)}2
−
(n−1∑

l=k

λl + φλn

)2 ]

+ (yn − φλn)
2 − (φλn)

2.

Summing up the two completions, we have

I(x) = 2c
(n−1∑

k=1

λk + φλn

)
+

n−1∑

k=1

[{
yk −

(n−1∑

l=k

λl + φλn

)}2
−
(n−1∑

l=k

λl + φλn

)2 ]

+ (yn − φλn)
2 − (φλn)

2 +
n−1∑

k=1

[
(uk − λk)

2 − λ2
k

]
+ φ(un − λn)

2 − φλ2
n.
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From yk = xk−1 − xk, uk = xk, we obtain an identity:

n∑

k=1

[
(xk−1 − xk)

2 + x2
k

]
+ φ−1x2

n

= 2c
(n−1∑

k=1

λk + φλn

)
+

n−1∑

k=1

[{
xk−1 − xk −

(n−1∑

l=k

λl + φλn

)}2
−
(n−1∑

l=k

λl + φλn

)2 ]

+ (xn−1 − xn − φλn)
2 − (φλn)

2 +
n−1∑

k=1

[
(xk − λk)

2 − λ2
k

]
+ φ(xn − λn)

2 − φλ2
n.

This is the same as (8). Thus both problems (P) and (Di) are dual to each other.

8.2. Dynamic dualization 2

In dynamic dualization 2, we define u = (u1, u2, . . . , un) by

uk = xk−1 − xk 1 ≤ k ≤ n. (14)

The objective value of (P) is

I(x) =
n−1∑

k=1

(u2
k + x2

k) + u2
n + φx2

n.

It holds that for any constants {ck}

I(x) =
n−1∑

k=1

[
u2
k + 2ck(xk−1 − xk − uk) + x2

k

]
+ u2

n + φx2
n + 2cn(xn−1 − xn − un).

Now take any λ = (λ1, . . . ,λn) ∈ Rn and set

ck =
n−1∑

l=k

λl + φλn 1 ≤ k ≤ n− 1, cn = φλn. (15)

First completing the square of uk and separating the summation into two, we have

I(x) =
n−1∑

k=1

[
(uk − ck)

2 − c2k + x2
k + 2ck(xk−1 − xk)

]

+ (un − cn)
2 − c2n + φx2

n + 2cn(xn−1 − xn)

=
n∑

k=1

[
(uk − ck)

2 − c2k
]

+
n−1∑

k=1

[
x2
k + 2ck(xk−1 − xk)

]
+ φx2

n + 2cn(xn−1 − xn).

From

n−1∑

k=1

ck(xk−1 − xk) = x0c1 −
n−1∑

k=1

(ck − ck+1)xk − cnxn−1
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we have the second completion

n−1∑

k=1

[
x2
k + 2ck(xk−1 − xk)

]
+ φx2

n + 2cn(xn−1 − xn)

= 2x0c1 +
n−1∑

k=1

[
x2
k − 2(ck − ck+1)xk

]
+ φx2

n − 2cnxn

= 2x0c1 +
n−1∑

k=1

(
x2
k − 2λkxk

)
+ φ(x2

n − 2λnxn)

= 2x0c1 +
n−1∑

k=1

[
(xk − λk)

2 − λ2
k

]
+ φ(xn − λn)

2 − φλ2
n.

Summing up the two completions, we obtain an identity:

I(x) =
n∑

k=1

[
(uk − ck)

2 − c2k
]

+ 2x0c1 +
n−1∑

k=1

[
(xk − λk)

2 − λ2
k

]
+ φ(xn − λn)

2 − φλ2
n.

From (14) and (15), it turns out that the identity is the same as (8). Thus both the
problems are dual to each other.
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