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Abstract
In statistical inference, estimation of a density ratio takes important roll. The
density ratio is a measure of difference of two populations, and then its estimator
is vital. The ratio estimator is used for testing equality of two density functions,
detecting change points, discriminant analysis etc. Under some parametric as-
sumptions, there are many papers which study asymptotic properties of the ratio
estimators. In this paper we will discuss a kernel type estimator of the ratio.
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1. Introduction

The density ratio is a measure of difference of two populations, and then its esti-
mator is useful in a statistical inference. The ratio estimator is used for testing equality
of two density functions, detecting change points, discriminant analysis etc. Under some
parametric assumptions, there are many papers which study asymptotic properties of
the ratio estimators. In this paper we will discuss a kernel type estimator of the ratio,
and obtain a higher order asymptotic mean squared error and an Edgeworth expansion.

Let X1, ,X,, be i.i.d. random variables with density and distribution functions
fand F, and Y7, - ,Y, be i.i.d. random variables with g and G. Let us assume that
the two densities f(x) and g(z) are mutually independent and g(z¢) # 0. Here we
will discuss a density ratio at point xg, that is f(xg)/g(xo). A kernel type estimator is

~ ~

given by f(x0)/g(x0), where f(xg) and g(xg) are kernel estimators of the densities. The
asymptotic mean squared error (AMSE) of the estimator f(xo) /g(xg) is obtained by
Chen et al. (2009). This estimator is constructed from two estimators and substituted
for numerator and denominator separately. For the density estimator f(xo), Umeno and
Maesono(2013) have obtained an Edgeworth expansion, and for the distribution function

estimator

Flag) = ﬂllg;vvf (W) (Wf(t):/too Kf,m(u)du)

Huang and Maesono(2014) have obtained the Edgeworth expansion. In this paper, we
will obtain an asymptotic representation and the mean squared error of the estimator.
We also establish an Edgeworth expansion with residual o( N~1/2) where N = m + n.
All proofs are given in Appendix.
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2. Density ratio estimator

The kernel estimator of the ratio f(zg)/g(zo) is given by

=)

(o

where

~ B 1 Ui xo — X;
f(xo) - mhf,m ;Kf ( hf, ) ’

1 — zo — Y;
g(x0) nhg jz:: g ( hgm >

where hf,, and hg, are bandwidths, and K; and K, are kernel functions. When
m=mn,hgn=nhs,and K¢(-) = K4(-), Cwik and Mielniczuk(1989) and Chen et al.(2009)
have discussed the asymptotic mean squared error. In this paper we will obtain a precise
mean squared error and the Edgeworth expansion of this estimator. Here we assume
that the kernels satisfy

/_O; Ke(u)du =1, /_O; Ke(u)udu = 0, (1)
[ 0; Ke(u)uldu 0, [ O; Ke(uw)ubdu =0 @)

where ¢ denotes f or g. If the kernels are symmetric, that is K¢(—u) = K¢(u), then odd
moments of K¢(-) are 0.
Let us assume that m
0<A= lim —<1.
N—oo N

Let us define hy = min{h¢ ,, hyn,} and oL(Nfl/Q) as
P (lon(NV2)| = N7122y ) = o(N—1/2)

where ey — 0. Tt follows from the Markov inequality that if E|Ry|? = o(N~1/27P/2),
we have Ry = or(N~1/2). Using the Taylor expansion and moment evaluations of a

sum of ¢.i.d. random variables, we have a stochastic expansion. Since f(zo) and g(zo)
are sample means of i.i.d. random variables, we can show the following lemma.

LEMMA 2.1. Let us assume that hy = O(N~¢) (1 < ¢ < 1), and both density
Junction f and g have 3rd bounded continuous derivatives. If Ky and K, are symmetric
and [ |K¢(u))Pdu <oo (j=1,---,4; (= f or g), we have

flwo) _ Floo) o) oo po
@) B (B D)~ Elol}
J?(mo) ~ ~ 2
Bl 000~ O
_M a(ze) — Ela(x 3 —1/2, —1/2
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For ( = f or g, let us define

A5, = / K (u)w du,

1
Ber = HAikC(k)(xo)'
Since f(x)/ﬁ(x) is invariant under permutation of each of (X1, -+, X,,) and (Y3,- -,

Y,.), we can get the following approximation called the Hoeffding decomposition. Using
the Hoeffding decomposition and its moments, the following theorem holds.

THEOREM 2.2. Let us assume that hy = O(N=°) (1 < ¢ < 1), and both density
function f and g have 3rd bounded continuous derivatives. If K¢ and K4 are symmetric,
and [ |K¢(u))idu <oo (j=1,---,4; (= f or g), we have

h?,mBm B f(xo)h? , Bga f(xo)Ag
g(wo) g (wo) nhgng3(zo)

1 — 1 <&
+— ; d1 Ui — ; da, NWjn

I v 2
_%ZZdB,NUi,ij,n‘Fﬁ Z

i=1j=1 1<i<j<n

1. f ~ .
T2 ; 93((2))) (Wi, = EIWZ]} + O(N™)Y " ainBinven

+(Nhy) 20, (N~Y/?),

f
g 3((:;00)) WinWin

where
J B 1 h2 .,
b g(z0)  g*(xo) O%
x +h2mB 2
dyn = (o) 2 fm 12 7h3n ?:(IO)B%Q’
g%(o) "™ g3(x0)

p _ 1 2h2

ST 2we) giae) P

1 SC()*XZ‘ Io*Xi
U; = — |K —FE<{K
o= 1 () o e (50 )
1 zo —Y; z0 —Y;
Win = K, | —— || —FEK .
o= ) e ()

> indicates a sum of different indices i, j, ¢, and o; n, Bjn and von are linear com-
binations of U. ,, and W. .

Using this asymptotic representation, an asymptotic bias and a variance are given
by the following theorem.
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THEOREM 2.3. Let us assume that hy = O(N=°) (1 < ¢ < 1), and both density
function f and g have 3rd bounded continuous derivatives. If Ky and K, are symmetric
and [ |ke(u))idu < oo (j=1,---,4; (= f or g), we have

- [ﬂm] _ f(x)

+ b + O(NTY),

g(zo) 9(o)
and N
Var i(xo) =712+ 0(N‘7/6)
g(o) ’
where
. WymBra  flwo)hg . Be2 | flwo)Ad,
o g(o) g (o) nhg ng3(vo)’
1 f(xzo) ¢ [*(wo) f*(x0) [ g(x0) g*(xo)
2 = A - Ag - *
Tm.n 92 (o) {mhf,m 2,0 m + g4 (zo) | nhgn 2,0 n

The asymptotic mean squared error is given by

amse [ LE0)) D+ Ton + 0(N77/6).
9(o) ’ ’

3. Edgeworth expansion

Here we discuss the Edgeworth expansion of the density ratio estimator f(xg)/g(xo).
Using the Edgeworth expansion for two-sample U-statistics (Maesono(1985)), we have
the following expansion. Let us define

1 {f(m VR CORY

3 27,2 30 272 5 3,0
Tm,n m hf7m n hg,ng (:L'O)

VT OB TR

mnh gmhgmg* (o) 20 n2h? 0% (o

Rmmn =

and

Q) = 9(0) = o) { 07 = 1)+ 22}

6 Tm,n
where ®(-) and ¢(-) denote the distribution and the density function of the standard
normal N(0,1). Similarly as and Garcia-Soidan et al.(1997), we can prove the validity
of the expansion.

THEOREM 3.1. Let us assume that hy = O(N=°) (3 < ¢ < 1), and both density
function f and g have 3rd bounded continuous derivatives. If K¢ and K4 are symmetric,

and [ |K¢(u))idu < oo (j=1,---,4; (= f or g), we have
:o(N_1/2).

-1 flzo)  flxo) _
g ( m’n{ﬁ(ﬁﬂo) g<xo>} <y> nnl0)
Remark. £, , depends on unknown values f(zo), f”(zo), g(xo) and g”(zo). It

is possible to make consistent estimators of them, and so we can improve the normal
approximation of a significance probability and a confidence coefficient.

sup
—oo<y<o0
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Appendices
First we prepare moment evaluations for the Hoeffding decomposition (see Maesono
, &) which is invariant under permutations of its

4.
(1997)). For a function v, (z1,
arguments and satisfies
Elo. (X1, -, X)) X1, , X—1] =0 a.s.
Let us define
DT,M = Z (¥ (Xil» : aXir)~ (3)
1<iy < <ip <M
=X )P (4)

Then for M > r we have
E|D, um|? < CoMP2Ev. (X, ,-

where C,, does not depend on M. Hereafter, we use same symbol D, s which is different

in each case.
Note that
1 - X o
E K (xohf 1)] = h};ﬁ/ Kf(u) f(zo — whym)du
,m —00
it (o)Al o+ O(RT,0). (5)

‘
b

]

Proof of Lemma 2.1
Using the Taylor expansion, we get
i - iyl -
+@§$&P@u@Emmm2
_@éggy@u@—Emmmg
+g$hmm>5®@Mf

where |g* — E[g(z0)]| < [g(x0) — E[g(x0)]|- Let us define
_ o~ Elgan)]

N = T B

Then it follows from the definition of §x that

o) !
_ u+ﬂm*k§&§%5@ww—Ew@M}
+1+ 6o L0 EEGO (G0,) — igtan))
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It is easy to see that
UG (Gay) - Bl

" < (Elg(0))

< P(|6N|2;)+P<

Using the Hoeffding decomposition, we have
{3(x0) — Elglao)]}"
= o) {nEWL,) +n? [BWE,)]"}
+O(n74)D17n + 0(”74)D27n + O(’ﬂ74)D3,n -+ O(ﬂ74)D47n

(1+ (51\1)_5

> n_l/Q(logn)_1>

I G(wo) - Elgao))}*

> n_l/z(logn)_1> .

where D; , is defined in the equation (3). It follows from the evaluation (5) that
—4 4 2 2 112
O~ {nE(WL,) +n? [EWE,)]"}
= O {nh73 flwo) AL +n2h72 (@0 AL, )}
= (NhN)fl/QoL(nfl/Q).
Further, it follows from the moment evaluations (4) and (5) that
4 _
E(Di,) = O0(n) [E(WE,)]" = O(n*hgy)
and

E {{MO(n‘*)DLL,,L}z] = O(n3hy®) = O(n~V/>71712),
Similarly, we have
O(n "Dy +O(n ) Doy +O(n~*) D3, = (Nhy) 2oL (N71/2),
It is easy to see that

P (I5N| > ;) <P (‘W’ > ;) = o(N7/?),

Thus we have

o~

f(z ) g g 4 —1 _
m {3(z0) — E[g(x0)]}* = (Why) 20, (N~/?).

Similarly we can show that

~

_s o) — E[f(
(E[g(z0)])

Thus we have the desired result.

(1+6n)

20l (Gan) — Blglao))}* = (V)™ 2on(N172),
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Proof of Theorem 2.2

Since the kernels satisfy the conditions (1) and (2), we have

E[f(x0)] = f(w0) + h} B2 + O(hy), (6)
and
Elg(xo)] = g(x0) + hj ,, By,2 + O(hy). (7)
It is easy to see that
f(zo) _ E[f(0) n F(o) = Ef(wo)]
Elg(zo)]  E[g(xo)] Elg(xo)]
and 12
1 1 g.n
EG] ~ g #lag) r2 T O
Since
1/2 4 A(xO) - EJ?(IO)] i _ -2\ _ —1/2—-1-1/2
using the Taylor expansion, we have
flao) E Ly g ‘
El(eo)] tm 2} ( (zo)Bﬂ) Vim
) Y 2)
_ 1y f(zo)  1FnBro
) m2_3<g (z0)” >U1m+g($o)+ o(w0)
—% (Nhy)~ 1/20L(N_1/2).
Similarly, we can show that
- ]/C\(IEO) xo) — E[g(x
_ E[f@m)] 1 1 1 "
= T = e 2 Vo 2 Wi

Let us consider the approximation of the terms which is multiplied by 1/(E[g(x)])?.
Since U; ,, and W 5, it follows from (7) that

E((Nh )22, QQZUWZWM)

1

= O(N~ 1@):0(1\7 7/4):0(1\7*1/2*1*1/4).
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Thus we have

3

i=1
1. [ flxo) +h%,Bre 5 2f(z0)

= - = —hgn By | Wjn + (Nhy) ™20 (N7Y/2).
nj=1< 9*(zo) 9 g3(z) 02 ) (Nha) z{ )

For the next term, it follows from the moment evaluations (4) that

f@o) o e )
EGo? 9@) — Elglzo)l}
- 2 F@o) oy L S@0) e e
T oon2 1§§§n QS(ZEO)WZ’nWJ’n + 2 ; 7 (o) {Wz’n E[Wz,n]}
f(x0)Ag

- ) —1/2 -1/2
gy T O 2 BN + (Nh) ™ or (N7,

Here we use the fact that

f(x0)

ng*(xo)

f(xo)A3
2 _ 5 —1
EWT,]= ng g (o) +O(N").

Finally, using the Hoeffding decomposition and the moment evaluations (4), we can
show that

(E[J/;\((Z()()))])‘l {9(z0) — E[§($O)]}3 _ O(Ni‘g)z*ai,Nﬁj,N’)’k,N + (NhN)il/zoL(Nfl/z),

Combining the above approximations, we have the desired result.

Proof of Theorem 2.3
Here we obtain an asymptotic variance. From the asymptotic representation of the
estimator, the asymptotic variance is given by

F(x0)
g(zo)
- 1 2 1
= Var[f(ao)] {gz(xo) - thvngi*(xo)Bg’Q}
Varj(zo) {f ) 4 gp, o)

Var

+2h

B Ah2 fQ(xO)B N-3/2p71
g4 (zo) f,ng4($0) f,2 92 T of N )-

g,n g3($0)
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Thus we get the approximation 72, ,,, and the asymptotic mean squared error.

Proof of Theorem 3.1
Maesono(1998) has obtained a Edgeworth expansion of the two sample U-statistics with
residual term o(N~1). The following moments

hEWE,),  hvEWE,Uim),  hYE(0} yBEnTEN)
appear in the Edgeworth expansion of the N~! term. It follows from (2) that

hnE(WE,) = O(hy}),
hnE(WT Ui m) =0,
WP E(03 NBEnYEN) = WYPIE@ 6P = O(h"?) = o(N1/2).

Thus from Maesono(1985), the Edgeworth expansion of the N —1/2 term is given by

~ 1 1 3 3 1 3 3
Rmmn = ﬁ {TnQdLNE(Ul,m) - ﬁleE(Wl,n)

6 2 2 6 f(zo) 2 \12
+%dl,NdQ,NdB,NE(ULm)E(WLn) + ﬁdz’Ng:”(l‘o) [E(Wl,n)] .

It follows from (5) that

B(UZ,) = hyhf(@o)AS,+o(hsL),
E(W},) = hyng(xo)AS, +o(hy ),
EU},) = hyofe)ALy+o(h;?),
E(W},) = hyrg(xo)AS, +o(h,2).

Thus we have
%m,n = Km,n + 0(1)

This completes the proof of Theorem 3.1.
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