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Abstract

We deal with an estimation problem of a volatility parameter for stochastic
regression models based on high frequency data. Hybrid multi-step estimators are
proposed and their asymptotic properties, including convergence of moments, are
obtained.
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We treat parametric estimation of the volatility for a stochastic regression model speci-
fied by the stochastic integral equation

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σ(Xs, θ)dws, t ∈ [0, T ], (1)

where w is an r-dimensional standard Wiener process on (Ω,F , (Ft)t∈[0,T ], P ), b and X
are progressively measurable processes with values in Rm and Rd, respectively, Y0 is an
Rm-valued initial condition, σ is an Rm ⊗Rr-valued function defined on Rd ×Θ, and Θ
is a bounded domain in Rp. The data are discrete observations Zn = (Xtk , Ytk)0≤k≤n

with tk = kh for h = hn = T/n. Note that the process b is completely unknown. The
asymptotics will be considered in the situation where n → ∞, which means that Zn are
high frequency data.

Statistical inference for the stochastic differential equation from discrete observa-
tions has been developed by many researchers, see for example, Prakasa Rao (1983,1988),
Yoshida (1992, 2011), Kessler (1995, 1997), Gobet (2002), Uchida and Yoshida (2011,
2012, 2014) for ergodic diffusions, Shimizu and Yoshida (2006), Shimizu (2006), Ogi-
hara and Yoshida (2011), Masuda (2013a, 2013b) for jump diffusion processes and Lévy
type processes, Dohnal (1987), Genon-Catalot and Jacod (1993, 1994), Gobet (2001)
for non-ergodic diffusions. Uchida and Yoshida (2013) showed that both the maximum
likelihood (ML) and Bayes type estimators have asymptotic normality with convergence
of moments for the stochastic regression models. However, from a computational point
of view, numerical optimization is necessary to get the ML-type estimators and it is im-
portant to choose appropriate initial values for optimization. Furthermore, it takes much
time to compute the Bayes type estimators. Although the one-step estimator is very
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efficient, it is difficult to implement the one-step estimation for diffusion type processes
since it is not easy to find the initial estimator with

√
n-consistency. For the details

of one-step estimator, see Lehmann (1999). Recently, Kamatani and Uchida (2015)
considered the multi-step estimation of both drift and volatility parameters for ergodic
diffusion processes based on sampled data. The method can be applied to parametric
inference of non-ergodic diffusion type processes from the high frequency data observed
on the fixed interval.

In order to illustrate the multi-step estimator, we consider the case of I.I.D. model,
see also Kamatani and Uchida (2015). Let ln(θ) be a smooth log-likelihood function for
I.I.D. model. Let q ∈ (0, 1/2] and J = [− log2 q], which yields that 2J−1q ≤ 1/2 < 2Jq.
We assume that for M > 0, the initial estimator θ̂(0) satisfies a moment condition

supn Eθ∗

[∣∣∣nq(θ̂(0) − θ∗)
∣∣∣
M
]
< ∞. For k = 1, . . . , J , we define the k-step estimator θ̂(k)

as

θ̂(k) = θ̂(k−1) −
[
∂2
θ ln(θ̂

(k−1))
]−1 [

∂θln(θ̂
(k−1))

]
.

Since

∂θln(θ
∗) = ∂θln(θ̂

(k−1)) + ∂2
θ ln(θ̂

(k−1))[θ∗ − θ̂(k−1)] +Rn[(θ
∗ − θ̂(k−1))⊗2],

Rn =

∫ 1

0
(1− t)∂3

θ ln(θ̂
(k−1) + t(θ∗ − θ̂(k−1)))dt,

one has that

θ̂(k)

= θ̂(k−1) −
[
∂2
θ ln(θ̂

(k−1))
]−1 [

∂θln(θ
∗)− ∂2

θ ln(θ̂
(k−1))[θ∗ − θ̂(k−1)]−Rn[(θ

∗ − θ̂(k−1))⊗2]
]

= θ̂(k−1) −
[
∂2
θ ln(θ̂

(k−1))
]−1

[∂θln(θ
∗)] + (θ∗ − θ̂(k−1))

+
[
∂2
θ ln(θ̂

(k−1))
]−1

Rn[(θ
∗ − θ̂(k−1))⊗2].

Therefore,

θ̂(k) − θ∗ = −
[
∂2
θ ln(θ̂

(k−1))
]−1

[∂θln(θ
∗)] +

[
∂2
θ ln(θ̂

(k−1))
]−1

Rn[(θ̂
(k−1) − θ∗)⊗2].

In particular, when 2q ≤ 1/2,

n2q(θ̂(1) − θ∗)

= −
[
1

n
∂2
θ ln(θ̂

(0))

]−1 [n2q

n
∂θln(θ

∗)

]
+

[
1

n
∂2
θ ln(θ̂

(0))

]−1 1

n
Rn[(n

q(θ̂(0) − θ∗))⊗2].

Hence, under some regularity conditions,

sup
n

Eθ∗

[∣∣∣nq(θ̂(0) − θ∗)
∣∣∣
M
]
< ∞ =⇒ sup

n
Eθ∗

[∣∣∣n2q(θ̂(1) − θ∗)
∣∣∣
M
]
< ∞.

By obtaining the multi-step estimator recursively, one has that under some regularity
conditions,

sup
n

Eθ∗

[∣∣∣n2q(θ̂(1) − θ∗)
∣∣∣
M
]
< ∞ =⇒ sup

n
Eθ∗

[∣∣∣n22q(θ̂(2) − θ∗)
∣∣∣
M
]
< ∞,
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...

sup
n

Eθ∗

[∣∣∣n2J−2q(θ̂(J−2) − θ∗)
∣∣∣
M
]
< ∞ =⇒ sup

n
Eθ∗

[∣∣∣n2J−1q(θ̂(J−1) − θ∗)
∣∣∣
M
]
< ∞,

sup
n

Eθ∗

[∣∣∣n2J−1q(θ̂(J−1) − θ∗)
∣∣∣
M
]
< ∞ =⇒ sup

n
Eθ∗

[∣∣∣
√
n(θ̂(J) − θ∗)

∣∣∣
M
]
< ∞

and the J-step estimator θ̂(J) is asymptotically efficient. Here we note that the initial es-
timator does not have the optimal rate

√
n, but the multi-step estimator has the optimal

rate of convergence. By using the similar property to multi-step estimator, Kutoyants
(2015) studied one-step and two-step maximum likelihood estimator (MLE)-processes of
a drift parameter of an ergodic diffusion process based on the initial estimator obtained
from a learning time interval.

Based on the above procedure of Kamatani and Uchida (2015), in this paper,
we propose the hybrid multi-step estimator with the initial Bayes type estimator for
a stochastic regression model and show that the multi-step estimator has asymptotic
mixed normality and convergence of moments. Needless to say, limiting distribution
of the estimator is essential for asymptotic statistical decision theory and it is worth
mentioning that it is indispensable to show the convergence of moments for estimators
in order to validate the information criteria in model selection problems. Among many
researches on statistically asymptotic decision theory, we refer the readers to Ibragimov
and Has’minskii (1981), Kutoyants (1984, 2004) and Yoshida (2011). Moreover, for
model selection for diffusion type processes, see Uchida and Yoshida (2001, 2004, 2006,
2016) and Uchida (2010).

This paper is organized as follows. In Section 2, we state the main results. After
the notation and assumptions are stated, the multi-step estimator is proposed and the
asymptotic properties, including convergence of moments, are shown. Section 3 gives
an example and simulation studies. Section 4 is devoted to the proofs of the results
presented in Section 2.

1. Multi-step estimator

Let θ∗ denote the true value of θ. We assume that Θ is a bounded domain in Rp with
a locally Lipschitz boundary, which means thatΘ has the strong local Lipschitz condition
and satisfies Sobolev’s inequality, see Adams and Fournier (2003). The convergence in
probability and the F-stable convergence in distribution are denoted by →p and →ds(F),
respectively. Set A⊗2 = AA⋆ and A[B] = Tr(AB⋆) for matrices A and B of the same
size. Here ⋆ means the transpose. Set S(x, θ) = σ(x, θ)⊗2 and ∆kY = Ytk − Ytk−1 . Let

Ck,l
↑ (Rd × Θ;Rm) be the space of all functions f such that (i) f(x, θ) is an Rm-valued

function on Rd × Θ, (ii) f(x, θ) is continuously differentiable with respect to x up to
order k for all θ. (iii) for |n| = 0, 1, . . . , k, ∂n

x f(x, θ) is continuously differentiable with
respect to θ up to order l for all x. Moreover, for |ν| = 0, 1, . . . , l and |n| = 0, 1, . . . , k,
∂ν
θ ∂

n
x f(x, θ) is of polynomial growth in x uniformly in θ. Here n = (n1, . . . , nd) and

ν = (ν1, . . . , νp) are multi-indices, p = dim(Θ), |n| = n1 + . . . + nd, |ν| = ν1 + . . . + νp,
∂n
x = ∂n1

x1
· · · ∂nd

xd
, ∂xi = ∂/∂xi, and ∂ν

θ = ∂ν1
θ1

· · · ∂νp

θp
, ∂θi = ∂/∂θi. Suppose that σ

admits a continuous extension over Rd × Θ̄, and also denotes it by σ. For f ∈ Lp(P ),
set ||f ||p = (E [|f |p])1/p for p > 1.

We make the assumptions as follows.
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[A1 ] (i) For every p > 1, sup0≤t≤T ∥bt∥p < ∞.

(ii) infx,θ detS(x, θ) > 0 and σ ∈ C2,4
↑ (Rd ×Θ;Rm ⊗ Rr).

[A2 ] The process X has the following form

Xt = X0 +

∫ t

0
b̃sds+

∫ t

0
asdws +

∫ t

0
ãsdw̃s,

where b̃, a and ã are progressively measurable processes and take values in Rd,
Rd ⊗ Rr and Rd ⊗ Rr1 , respectively, satisfying

∥X0∥p+ sup
t∈[0,T ]

(∥b̃t∥p + ∥at∥p + ∥ãt∥p) < ∞

for all p > 1, and w̃ is an r1-dimensional Wiener process independent of w.

The quasi-log likelihood function Hn(θ) is given by

Hn(θ) = −1

2

n∑

k=1

{
log detS(Xtk−1 , θ) + h−1S−1(Xtk−1 , θ)[(∆kY )⊗2]

}
.

Let Yn(θ) =
1
n {Hn(θ)−Hn(θ∗)}, which converges in probability to

Y(θ) = − 1

2T

∫ T

0

{
log

(
detS(Xt, θ)

detS(Xt, θ∗)

)
+Tr

(
S−1(Xt, θ)S(Xt, θ

∗)− Id
)}

dt

uniformly in θ ∈ Θ under [A1] and [A2]. Set

χ0 = inf
θ ̸=θ∗

−Y(θ)
|θ − θ∗|2 .

The following condition is about nondegeneracy of the index χ0.

[A3 ] For every L > 0, there exists cL > 0 such that P
[
χ0 ≤ r−1

]
≤ cL

rL for all r > 0.

Note that [A3] is the same condition as 1/χ0 has finite moments of all order. For
sufficient conditions for [A3], see Uchida and Yoshida (2013).

The assumption on the initial estimators is made as follows.

[B] Let q ∈ (0, 1/2]. θ̂(0)n is an initial estimator of θ satisfying that as n → ∞,

sup
n

Eθ∗

[∣∣∣nq(θ̂(0)n − θ∗)
∣∣∣
M1
]
< ∞

for all M1 > 0.
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We can obtain the initial estimators satisfying [B] as follows. Let q ∈ (0, 1/2]. The

initial Bayes type estimator θ̃(0)q,n for a prior density π : Θ → R+ with respect to the
quadratic loss is defined by

θ̃(0)q,n =

∫
Θ θ exp

{
1

n1−2q Hn(θ)
}
π(θ)dθ∫

Θ exp
{

1
n1−2q Hn(θ)

}
π(θ)dθ

.

We assume that π is continuous and 0 < infθ∈Θ π(θ) ≤ supθ∈Θ π(θ) < ∞.
Let Uq,n =

{
u ∈ Rp ; θ∗ + 1

nq u ∈ Θ
}

and Vq,n(r) = {u ∈ Uq,n ; r ≤ |u|}. We
define the random field Zq,n on Uq,n by

Zq,n(u) = exp

{
1

n1−2q
Hn

(
θ∗ +

1

nq
u

)
− 1

n1−2q
Hn(θ

∗)

}
(2)

for u ∈ Uq,n.

Proposition 1.1. Let q ∈ (0, 1/2]. Assume [A1], [A2] and [A3]. Then, for every
L > 0, there exists a positive constant CL such that

P

[
sup

u∈Vq,n(r)
Zq,n(u) ≥ e−r

]
≤ CL

rL

for all r > 0 and n ∈ N.

Proposition 1.2. Let q ∈ (0, 1/2]. Assume [A1], [A2] and [A3]. Then, as n → ∞,

sup
n

Eθ∗

[∣∣∣nq(θ̃(0)q,n − θ∗)
∣∣∣
M
]
< ∞

for all M > 0.

We consider the multi-step estimators. Set

Γn(θ) :=
1

n
∂2
θHn(θ),

Kn(θ) := {Γn(θ) is invertible } ,
Γ̄n(θ) := Γn(θ)1Kn(θ) + Ep1Kc

n(θ)
,

where Ep is the p×p identity matrix, and 1K(ω) = 1 if ω ∈ K and 1K(ω) = 0 if ω ∈ Kc.

Let J = [− log2 q] for q ∈ (0, 1/2]. The multi-step estimator θ̂(J)n is defined as for
k = 1, . . . , J ,

θ̂(k)n = θ̂(k−1)
n − Γ̄−1

n (θ̂(k−1)
n )

1

n
∂θHn(θ̂

(k−1)
n ).

Let Γ(θ∗) = (Γij(θ∗))i,j=1,...,p with

Γij(θ∗) =
1

2T

∫ T

0
Tr
(
(∂θiS)S

−1(∂θjS)S
−1(Xt, θ

∗)
)
dt

and let ζ be a p-dimensional standard normal random variable independent of Γ(θ∗).
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Lemma 1.3. Let q ∈ (0, 1/2] and J = [− log2 q]. Assume [A1], [A2], [A3] and [B].
Then, for k = 0, 1, . . . , J − 1, as n → ∞,

sup
n

Eθ∗

[∣∣∣n2kq(θ̂(k)n − θ∗)
∣∣∣
M
]
< ∞

for all M > 0.

Theorem 1.4. Let q ∈ (0, 1/2] and J = [− log2 q]. Assume [A1], [A2], [A3] and
[B]. Then, as n → ∞,

√
n(θ̂(J)n − θ∗) →ds(F) Γ(θ∗)−1/2ζ

and
E
[
f(
√
n(θ̂(J)n − θ∗))

]
→ E

[
f(Γ(θ∗)−1/2ζ)

]

for all continuous functions f of at most polynomial growth.

2. Examples and simulations

Consider the one-dimensional diffusion process defined by
{

dXt = −(Xt − 1)dt+ [θ1 + θ2{1 + sin(θ3Xt)}]dWt, t ∈ [0, 1],
X0 = 1,

where the true value is θ∗ = (1, 4, 8), the parameter space is Θ = [0.01, 20]× [0, 20]×
[0, 20]. The data are (Xti)i=0,1,...,n with ti = ih, h = 1/10000, tn = nh = T = 1, and
the sample size n is 10000.

We do simulations for the maximum likelihood type estimator θ̂M,n (Genon-Catalot

and Jacod (1993)), the Bayes type estimator θ̂B,n (Uchida and Yoshida (2013)) and the

HMS estimator proposed in this paper. The ML type estimator θ̂M,n is defined by

Hn(θ̂M,n) = sup
θ∈Θ

Hn(θ).

The Bayes type estimator θ̂B,n with uniform prior is defined as

θ̂B,n :=

∫
Θ θ exp(Hn(θ))dθ∫
Θ exp(Hn(θ))dθ

.

Let q ∈ (0, 1/2]. The initial Bayes type estimator θ̃(0)q,n for uniform prior is defined as

θ̃(0)q,n =

∫
Θ θ exp

{
1

n1−2q Hn(θ)
}
dθ∫

Θ exp
{

1
n1−2q Hn(θ)

}
dθ

.

In order to maximize Hn(θ), we use the optim() with the method being ”L-BFGS-
B” in R Language. The Bayes type estimator is calculated with the Markov chain Monte
Carlo (MCMC) method defined below.

For the target distribution p(θ)dθ in Rd, we run the following Markov chain Monte
Carlo method, which is a version of the mixed preconditioned Crank-Nicolson (MpCN)
method studied in Kamatani (2014) and Kamatani (2017). Fix h ∈ (0, 1) and ν ≥ 0,
and set g(θ) = (1 + |θ|2/ν)−(ν+d)/2 for ν > 0 and set g(θ) = |θ|−d for ν = 0.
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• For m = 0. Initialize θ.

• For m ≥ 1, iterate

– Generate r from the inverse gamma distribution with the shape parameter
ν/2 + d/2 and the rate parameter ν/2 + |θ|2/2.

– Set θ∗ = h1/2θ+(1−h)1/2r1/2w where w follows the standard normal distri-
bution.

– Accept θ∗ as θ with probability min
{
1, p(θ∗)g(θ)

p(θ)g(θ∗)

}
. Otherwise, discard θ∗.

In this paper, we set h = 0.8 and ν = 2. This is one of Metropolis-Hastings
algorithms. The Markov kernel associated with the transition from θ to θ∗ admits an
invariant distribution g(θ)dθ. Thanks to accept/reject process, the resulting Markov
kernel is p(θ)dθ-invariant. The choice of h has little effect and the choice of ν has
moderate effect in practice. This MCMC method is efficient for complicated target
distribution. For details of this MCMC method, see Kamatani (2014). To apply this

method, set p(θ) ∝ exp {Hn(θ)} for θ̂B,n, and set p(θ) ∝ exp
{

1
n1−2q Hn(θ)

}
for θ̃(0)q,n.

For the true model, 1000 independent sample paths are generated, and the mean
and the standard deviation for the estimators are computed and shown in Tables 1-
3. Table 1 is the simulation result of the ML type estimator θ̂M,n with two different
initial values. The maximum likelihood estimator derived by using optim() with the
initial value being the true value has a good performance. On the other hand, the
optimization fails since the initial value derived from the uniform distribution on Θ can
be far from the true value.

Table 2 is the simulation result on the Bayes type estimator θ̂B,n with uniform
prior. The simulation was done by using the MCMC method for M = 5× 104, 5× 105

and 107 with Bi = 5 × 103, 5 × 104 and 106, respectively. Here M is the number of
Markov chains and Bi is the number of burn-in iteration. The Bayes type estimator
with M = 107 and Bi = 106 has a good behavior, but under the situations where
(M,Bi) = (5× 104, 5× 103) and (5× 105, 5× 104), the computation of the Bayes type
estimator fails because the Markov chains generated by the MCMC method does not
converge to the theoretical ones.

Table 3 is the simulation results of the initial Bayes type estimator θ̃(0)q,n with the

uniform prior, M = 5 × 104 and Bi = 5 × 103, and the HMS estimators θ̂(J)q,n for q =

0.5, 0.45, 0.4, . . . , 0.05, where J = [− log2 q]. Note that supn Eθ∗

[∣∣∣nq(θ̃(0)q,n − θ∗)
∣∣∣
M
]
< ∞

for all M > 0. We can see that in this example, the HMS estimator with q = 0.2 is
the best among the HMS estimators with q = 0.5, 0.45, 0.4, . . . , 0.1, 0.05. It is a difficult
problem to choose the optimal q from the theoretical point of view. In practice, however,
we can obtain the best estimator among the competing HMS estimators with various

values of q, where the best estimator θ̂∗n satisfies that Hn(θ̂∗n) = maxq∈K Hn(θ̂
(J)
q,n) and

K is a set of values of q, e.g., K = {0.05, 0.1, 0.15, . . . , 0.5}.
Next, we focus on the computation time for obtaining the estimators. The personal

computer with Intel i7 4930K (3.4GHz base clock/3.9GHz Turbo, 12MB cache) was

used for simulations. The average times of computation for θ̂M,n, θ̂B,n and θ̂(J)0.2,n are

0.9, 1733 and 1667 seconds, respectively, where θ̂M,n is the ML type estimator with the

initial value derived from the uniform distribution on Θ, θ̂B,n is the Bayes type estimator
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with uniform prior and M = 5 × 104, and θ̂(J)0.2,n is the HMS estimator obtained from

the initial Bayes type estimator θ̃(0)q,n with q = 0.2, uniform prior and M = 5 × 104.
The average time of computation for the Bayes type estimator θ̂B,n with uniform prior
and M = 5 × 105 is 281 minutes. There is almost no difference of computation time
for the HMS estimators based on the initial Bayes type estimator with uniform prior,
M = 5 × 104 and all q in Table 3. From the computational point of view, obtaining
the estimator in a short time is extremely important but the most important thing is to
obtain the estimator precisely. In that sense, although we need much time to obtain the
HMS estimator with the initial Bayes estimator compared with the ML type estimator
by using optim(), the HMS estimator is much better than the ML type estimator in this
model.

3. Proofs

Proof of Proposition 1. Set

Lq,n(θ) =
1

n1−2q
Hn(θ),

Yn(θ) =
1

n2q
{Lq,n(θ)− Lq,n(θ

∗)} =
1

n
{Hn(θ)−Hn(θ

∗)} ,

∆n(θ
∗)[u] =

1

nq
∂θLq,n(θ

∗)[u] =
1

n1−q
∂θHn(θ

∗)[u],

Γn(θ
∗)[u, u] =

1

n2q
∂2
θLq,n(θ

∗)[u, u] =
1

n
∂2
θHn(θ

∗)[u, u]

for u ∈ Rp. Note that Zq,n(u; θ∗) = exp
{
Lq,n

(
θ∗ + u

nq

)
− Lq,n(θ∗)

}
for u ∈ Uq,n.

Let ϵ1 ∈ (0, 1/2). By Lemma 6 in Uchida and Yoshida (2013), one has that for all
M > 0,

sup
n∈N

Eθ∗ [|∆n(θ
∗)|M ] < ∞, (3)

sup
n∈N

Eθ∗

[(
sup
θ∈Θ

nϵ1 |Yn(θ)− Y(θ)|
)M

]
< ∞. (4)

It follows from Lemma 7 in Uchida and Yoshida (2013) that for all M > 0,

sup
n∈N

Eθ∗ [(nϵ1 |Γn(θ
∗)− Γ1(θ

∗)|)M ] < ∞, (5)

sup
n∈N

Eθ∗

[(
n−1 sup

θ∈Θ
|∂θi∂θj∂θkHn(θ)|

)M
]
< ∞ (6)

for i, j, k = 1, . . . , p. We can check the regularity conditions [A1′′], [A2], [A3], [A4′], [A5]
and [A6] in Theorem 2 of Yoshida (2011). Indeed, by (5) and (6), we show [A1′′]. The
assumption [A3] in this paper implies [A2], [A3] with ρ = 2 and [A5] in Theorem 2 of
Yoshida (2011). One can take appropriate parameters satisfying [A4′]. It follows from
(3) and (4) that [A6] holds for every L > 0. This completes the proof.
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Proof of Proposition 2. Since

nq(θ̃(0)n − θ∗) =

∫
Θ nq(θ − θ∗) exp

{ 1

n1−2q
Hn(θ)

}
π(θ)dθ

∫
Θ exp

{ 1

n1−2q
Hn(θ)

}
π(θ)dθ

Table 1: ML type estimator with n = 1× 104

initial value mean (1, 4, 8) s.d.

true value 1.008, 4.078, 7.998 0.010, 0.102, 0.007
random number 1.622, 1.487, 9.659 0.638, 1.622, 6.412

Table 2: Bayes type estimator with n = 1× 104.

M (Numbers of MCMC) Bi (Burn-in) mean (1, 4, 8) s.d.

5× 104 5× 103 1.075, 3.445, 6.644 0.290, 1.242, 2.698
5× 105 5× 104 1.020, 3.812, 7.383 0.165, 0.812, 1.868
1× 107 1× 106 1.006, 4.066, 7.962 0.027, 0.152, 0.275

Table 3: HMS estimator with n = 1× 104, M = 5× 104, Bi = 5× 103.

q J initial Bayes estimator: mean (1, 4, 8), (s.d.)
HMS estimator: mean (1, 4, 8), (s.d.)

0.5 1 1.075, 3.445, 6.644 (0.290, 1.242, 2.698)
1.077, 3.673, 6.637 (0.305, 2.034, 2.710)

0.45 1 1.074, 3.552, 6.876 (0.278, 1.163, 2.429)
1.069, 3.774, 6.877 (0.286, 1.841, 2.438)

0.4 1 1.073, 3.599, 7.005 (0.248, 1.113, 2.298)
1.060, 3.902, 7.001 (0.275, 2.042, 2.324)

0.35 1 1.050, 3.747, 7.270 (0.187, 0.954, 1.977)
1.041, 3.933, 7.260 (0.200, 1.710, 2.005)

0.3 1 1.029, 3.993, 7.712 (0.095, 0.562, 1.149)
1.012, 4.194, 7.713 (0.122, 1.575, 1.163)

0.25 2 1.033, 4.208, 7.951 (0.033, 0.268, 0.309)
1.009, 4.135, 7.956 (0.058, 0.774, 0.321)

0.2 2 1.064, 4.488, 7.998 (0.021, 0.250, 0.026)
1.008, 4.058, 7.999 (0.012, 0.157, 0.024)

0.15 2 1.196, 5.072, 8.085 (0.039, 0.497, 0.186)
1.014, 4.166, 8.060 (0.159, 1.845, 0.237)

0.1 3 1.933, 4.587, 8.978 (0.146, 0.729, 0.476)
2.109, 7.799, 9.111 (0.920, 4.439, 0.721)

0.05 4 4.748, 5.968, 9.830 (0.253, 0.323, 0.390)
11.680, 8.632, 9.746 (4.544, 3.355, 0.599)
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=

∫
Uq,n

u exp
{ 1

n1−2q
Hn(θ

∗ +
u

nq
)
}
π
(
θ∗ +

u

nq

)
du

∫
Uq,n

exp
{ 1

n1−2q
Hn(θ

∗ +
u

nq
)
}
π
(
θ∗ +

u

nq

)
du

=

∫
Uq,n

uZq,n(u : θ∗)π
(
θ∗ +

u

nq

)
du

∫
Uq,n

Zq,n(u : θ∗)π
(
θ∗ +

u

nq

)
du

,

we obtain that

Eθ∗ [|nq(θ̃(0)n − θ∗)|M ]

≤Eθ∗

[{∫

Uq,n

Zq,n(u : θ∗)π
(
θ∗ +

u

nq

)
du
}−1

∫

Uq,n

|u|MZq,n(u : θ∗)π
(
θ∗ +

u

nq

)
du
]

≤C
∞∑

r=0

(r + 1)MEθ∗

[{∫

Uq,n

Zq,n(u : θ∗)du
}−1

∫

{u|r<|u|≤r+1}∩Uq,n

Zq,n(u : θ∗)du
]

≤C
∞∑

r=0

(r + 1)M
{
Pθ∗

[
sup

u∈Vq,n(r)
Zq,n(u; θ

∗) ≥ e−r
]

+ e−r
(∫

{u|r<|u|≤r+1}
du
)
Eθ∗

[(∫

Uq,n

Zq,n(u : θ∗)du
)−1]}

.

Next one has that

sup
n∈N

Eθ∗

[(∫

Uq,n

Zq,n(u : θ∗)du
)−1]

< ∞. (7)

Proof of (7). Note that

logZq,n(u; θ
∗) =

1

n1−2q

{
∂θHn(θ

∗)[u]
1

nq
+

1

2
∂2
θHn(θ

∗)[u⊗2]
1

n2q

+
1

2

∫ 1

0
(1− t)2∂3

θHn(θ
∗ +

tu

nq
)dt[u⊗3]

1

n3q

}
.

By Lemmas 6 and 7 of Uchida and Yoshida (2013), for every M > p, δ > 0, there exists
C0 > 0 such that

sup
n∈N

Eθ∗

[
| logZq,n(u; θ

∗)|M
]
≤ C0|u|M

for all u ∈ {u ∈ Uq,n; |u| ≤ δ}. It follows from Lemma 2 of Yoshida (2011) that

sup
n∈N

Eθ∗

[(∫

{u∈Uq,n;|u|≤δ}
elog Zq,n(u:θ

∗)du
)−1]

< ∞.

This completes the proof.

Proof of Lemma 1. We will show the result by mathematical induction.
When k = 0, it follows from assumption [B] that the statement holds.
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Assume that the statement holds for some k = l. On Kl,n := Kn(θ̂
(l)
n ), one has

that

θ̂(l+1)
n = θ̂(l)n −

[ 1
n
∂2
θHn(θ̂

(l)
n )
]−1 1

n
∂θHn(θ̂

(l)
n ),

and
∂θHn(θ

∗) = ∂θHn(θ̂
(l)
n ) + ∂2

θHn(θ̂
(l)
n )(θ∗ − θ̂(l)n ) +R(l)

n [(θ∗ − θ̂(l)n )⊗2],

where R(l)
n =

∫ 1
0 (1− t)∂3

θHn(θ̂
(l)
n + t(θ∗ − θ̂(l)n ))dt. Therefore,

n2l+1q(θ̂(l+1)
n − θ∗) =−

[ 1
n
∂2
θHn(θ̂

(l)
n )
]−1[n2l+1q

n
∂θHn(θ

∗)
]

+
[ 1
n
∂2
θHn(θ̂

(l)
n )
]−1 1

n
R(l)

n [(n2lq(θ∗ − θ̂(l)n ))⊗2].

By using the standard estimates and Lemmas 6 and 7 of Uchida and Yoshida (2013),
one has that

sup
n

Eθ∗

[∣∣∣
[ 1
n
∂2
θHn(θ̂

(l)
n )
]−1∣∣∣

M
1Kl,n

]
< ∞,

sup
n

Eθ∗

[∣∣∣
1√
n
∂θHn(θ

∗)
∣∣∣
M]

< ∞,

sup
n

Eθ∗

[∣∣∣
1

n
R(l)

n

∣∣∣
M]

< ∞.

Hence,

sup
n

Eθ∗ [|n2l+1q(θ̂(l+1)
n − θ∗)|M1Kl,n ] < ∞. (8)

Next, we note that for all θ ̸= θ∗,

χ0 = inf
θ ̸=θ∗

−Y(θ)
|θ − θ∗|2

≤ −Y(θ)
|θ − θ∗|2

=
−Y(θ∗)
|θ − θ∗|2 +

−∂θY(θ∗)[θ − θ∗]

|θ − θ∗|2 +
1

2
Γ(θ∗)

[(
θ − θ∗

|θ − θ∗|

)⊗2
]

+
1

2

p∑

i,j,k=1

∫ 1

0
(1− u)2∂θi∂θj∂θkY(θ∗ + u(θ − θ∗))du

× (θ − θ∗)i
|θ − θ∗|

(θ − θ∗)j
|θ − θ∗|

(θ − θ∗)k
|θ − θ∗| |θ − θ∗|

≤ 1

2
Γ(θ∗)

[(
θ − θ∗

|θ − θ∗|

)⊗2
]
+

p∑

i,j,k=1

1

6

(
sup
θ

|∂θi∂θj∂θkY(θ)|
)
|θ − θ∗|.

Let λmin = infθ ̸=θ∗ Γ(θ∗)

[(
θ−θ∗

|θ−θ∗|

)⊗2
]
and Ξ =

{
θ ̸= θ∗ | Γ(θ∗)

(
θ−θ∗

|θ−θ∗|

)
= λmin

(
θ−θ∗

|θ−θ∗|

)}
.

For every θ ∈ Ξ, one has that

χ0 ≤ 1

2
λmin +

p∑

i,j,k=1

1

6

(
sup
θ

|∂θi∂θj∂θkY(θ)|
)
|θ − θ∗|.
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Therefore,

χ0 ≤ inf
θ∈Ξ

⎧
⎨

⎩
1

2
λmin +

p∑

i,j,k=1

1

6

(
sup
θ

|∂θi∂θj∂θkY(θ)|
)
|θ − θ∗|

⎫
⎬

⎭

=
1

2
λmin =

1

2
inf

|x|=1
|Γ(θ∗)x|. (9)

It follows from [A3] and (9) that for all r > 0 and L > 0,

1− CL

rL
≤ P

[
χ0 >

1

r

]
≤ P

[
inf

|x|=1
|Γ(θ∗)x| > 2

r

]
. (10)

Set

An :=
{∣∣∣Γn(θ

(l)
n )− Γn(θ

∗)
∣∣∣ <

1

2r
,
∣∣∣Γn(θ

∗) + Γ(θ∗)
∣∣∣ <

1

2r
, inf

|x|=1
|Γ(θ∗)x| > 2

r

}
.

Since
inf

|x|=1
|Γn(θ̂

(l)
n )x| ≥ inf

|x|=1
|Γ(θ∗)x|− sup

|x|=1
|(Γn(θ̂

(l)
n ) + Γ(θ∗))x|,

we have that

P [An] ≤ P

[∣∣∣Γn(θ̂
(l)
n ) + Γ(θ∗)

∣∣∣ <
1

r
, inf

|x|=1
|Γ(θ∗)x| > 2

r

]

≤ P

[
inf

|x|=1
|Γn(θ̂

(l)
n )x| > 1

r

]
.

Noting that for all r > 0,

P [Ac
n] ≤ P

[∣∣∣Γn(θ̂
(l)
n )− Γn(θ

∗)
∣∣∣ ≥

1

2r

]
+ P

[∣∣∣Γn(θ
∗) + Γ(θ∗)

∣∣∣ ≥
1

2r

]

+P

[
inf

|x|=1
|Γ(θ∗)x| ≤ 2

r

]

≤ (2r)L
E

[(
1
n supθ

∣∣∂3
θHn(θ)

∣∣
∣∣∣n2lq(θ̂(l) − θ∗)

∣∣∣
)L]

n2lqL

+(2r)L
E
[∣∣n1/2(Γn(θ∗) + Γ(θ∗))

∣∣L
]

nL/2
+

CL

rL
,

and

P
[
Kc

l,n

]
≤ P

[
inf

|x|=1
|Γn(θ̂

(l)
n )x| = 0

]
≤ P

[
inf

|x|=1
|Γn(θ̂

(l)
n )x| ≤ 1

r

]
≤ P [Ac

n],

and setting r = n2l−1q and L0 = 2l−1qL, we obtain that

P
[
Kc

l,n

]
≤ CL0

nL0
. (11)
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Here we notice that 2l−1q ∈ (0, 1/4] since 0 < 2lq ≤ 1/2.
It follows from (11) that for every M > 0,

sup
n

Eθ∗ [|n2l+1q(θ̂(l+1)
n − θ∗)|M1Kc

l,n
]

≤ sup
n

Eθ∗ [|n2l+1q(θ̂(l+1)
n − θ̂(l)n )|M1Kc

l,n
] + sup

n
Eθ∗ [|n2l+1q(θ̂(l)n − θ∗)|M1Kc

l,n
]

≤ sup
n

Eθ∗

[∣∣∣
1

n
∂θH(θ̂(l)n )

∣∣∣
M
n2l+1qM1Kc

l,n

]
+ sup

n
Eθ∗

[∣∣∣n2lq(θ̂(l)n − θ∗)
∣∣∣
M
n2lqM1Kc

l,n

]

<∞,

which together with (8) completes the proof.

Proof of Theorem 1. On KJ−1,n,

√
n(θ̂(J)n − θ∗) =−

[ 1
n
∂2
θHn(θ̂

(J−1)
n )

]−1[ 1√
n
∂θHn(θ

∗)
]

+ n−2Jq+ 1
2

[ 1
n
∂2
θHn(θ̂

(J−1)
n )

]−1 1

n
R(j−1)

n [(n2J−1q(θ∗ − θ̂(J−1)
n ))⊗2].

Since Lemma 1 yields that for all M > 0,

sup
n

Eθ∗ [|n2J−1q(θ̂(J−1)
n − θ∗)|M ] < ∞,

one has that
sup
n

Eθ∗ [|n1/2(θ̂(J)n − θ∗)|M1KJ−1,n ] < ∞.

It follows from (11) with l = J − 1 that for every M > 0,

sup
n

Eθ∗ [|n1/2(θ̂(J)n − θ∗)|M1Kc
J−1,n

]

≤ sup
n

Eθ∗ [|n1/2(θ̂(J)n − θ̂(J−1)
n )|M1Kc

J−1,n
] + sup

n
Eθ∗ [|n1/2(θ̂(J−1)

n − θ∗)|M1Kc
J−1,n

]

≤ sup
n

Eθ∗

[∣∣∣
1

n
∂θH(θ̂(J−1)

n )
∣∣∣
M
n1/21Kc

J−1,n

]

+ sup
n

Eθ∗

[∣∣∣n2J−1q(θ̂(J−1)
n − θ∗)

∣∣∣
M
n(1/2−2J−1q)M1Kc

J−1,n

]

<∞.

Thus, for all M > 0,

sup
n

Eθ∗ [|
√
n(θ̂(J)n − θ∗)|M ] < ∞. (12)

Set

Sn :=
√
n(θ̂(J)n − θ∗), ∆n :=

1√
n
∂θHn(θ

∗),

Γ̄J−1,n := ΓJ−1,n1KJ−1,n + Ep1Kc
J−1,n

,
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Ān := n−2Jq+ 1
2 Γ̄−1

J−1,n

1

n
R(l)

n [(n2J−1q(θ∗ − θ̂(J−1)
n ))⊗2]

and

An := n−2Jq+ 1
2Γ−1

J−1,n

1

n
R(l)

n [(n2J−1q(θ∗ − θ̂(J−1)
n ))⊗2]

on KJ−1,n. Here we note that 1
2 < 2Jq ≤ 1 since J = [− log2 q].

For any closed set C ⊂ Rp+1 and any F-measurable random variable Y ,

P [(Y, Sn) ∈ C] = P [{(Y, Sn) ∈ C} ∩KJ−1,n] + P [{(Y, Sn) ∈ C} ∩Kc
J−1,n]

≤ P [{(Y,−Γ−1
J−1,n∆n +An) ∈ C} ∩KJ−1,n] + P [Kc

J−1,n]

= P [{(Y,−Γ̄−1
J−1,n∆n + Ān) ∈ C} ∩KJ−1,n] + P [Kc

J−1,n]

≤ P [(Y,−Γ̄−1
J−1,n∆n + Ān) ∈ C] + o(1).

Note that

−Γ̄−1
J−1,n

p→ Γ(θ∗)−1, ∆n
ds(F)→ Γ(θ∗)1/2ζ, Ān

p→ 0,

where in a similar way to the proof of Lemma 9 in Uchida and Yoshida (2013), we can
show the stable convergence of ∆n. Furthermore, it follows from Proposition 5.33 in
Chapter VIII of Jacod and Shiryaev (2002), (2.2.5) in Jacod and Protter (2012) and the
continuous mapping theorem that

lim sup
n→∞

P [(Y, Sn) ∈ C] ≤ lim sup
n→∞

P [(Y, Γ̄−1
J−1,n∆n +An) ∈ C]

≤ P [(Y,Γ(θ∗)−1/2ζ) ∈ C].

Hence,
√
n(θ̂(J)n − θ∗)

ds(F)→ Γ(θ∗)−1/2ζ, which together with (12) implies that

E[f(
√
n(θ̂(J)n − θ∗))] → E[f(Γ(θ∗)−1/2ζ)]

for all continuous functions f of at most polynomial growth. This completes the proof.
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nales de l ʟInstitut Henri Poincaré Probabilités et Statistiques, 38, 711–737.

Ibragimov, I. A. and Has’minskii, R. Z. (1981). Statistical estimation. Springer Verlag,
New York.

Jacod, J. and Protter, P. E. (2012). Discretization of Processes. Springer.

Jacod, J. and Shiryaev, A. (2002). Limit Theorems for Stochastic Processes, 2nd. Edi-
tion. Springer.

Kamatani, K. (2014). Efficient strategy for the Markov chain Monte Carlo in high-
dimension with heavy-tailed target probability distribution. arXiv:1412.6231.

Kamatani, K. and Uchida, M. (2015). Hybrid multi-step estimators for ergodic diffusion
processes from discrete observations. Statistical Inference for Stochastic Processes,
18, 177-204.

Kamatani, K. (2017). Ergodicity of Markov chain Monte Carlo with reversible proposal.
Journal of Applied Probability 54(2), to appear.
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