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Abstract: Global localization is a fundamental requirement for a mobile robot. Map-based global local-

ization is a popular technique and gives a precise position by comparing a provided geometric map and

current sensory data. However, it is quite time-consuming if 3D range data is processed for 6D global lo-

calization. On the other hand, appearance-based global localization using a captured image and recorded

images is simple and suitable for real-time processing. However, this technique does not work in the dark

or in an environment in which the lighting conditions change remarkably. To cope with these problems, we

have proposed a two-step strategy which combines map-based global localization and appearance-based

global localization. Firstly, several candidate positions are selected according to an appearance-based

technique, and then the optimum position is determined by a map-based technique. Instead of camera

images, we use reflectance images, which are captured by a laser range finder as a by-product of range

sensing. In this paper, a new technique based on this global localization technique is proposed by combin-

ing the two step algorithm and a sampling-based approach. To cope with the odometry data, a particle

filter is adopted for tracking robot positions. The effectiveness of the proposed technique is demonstrated

through experiments in real environments.

Keywords: Global localization, Mobile robot, Laser range finder, Reflectivity, Bag of features, Particle

filter

1. Introduction

In numerous practical applications, the external envi-

ronment around a robot is unpredictable, unstructured,

and uncontrolled. For example, in an area that has been

struck by a strong earthquake or by a mine disaster,

previously navigable areas may be blocked by heaps of

rubble or collapsed walls, and the geometric structure

will differ from the original structure. In order for a

robot to efficiently accomplish search and rescue tasks

in this type of unknown and unpredictable environment,

accurate map creation and global localization are fun-

damental requirements.

A number of global localization techniques have been

proposed11). Appearance-based global localization is

simple and suitable for real-time processing. Many cam-

era images are recorded under natural light or indoor

illumination in the environment, and global localiza-

tion is performed by finding the best match using a

newly-captured image and stored images13),14). How-

ever, appearance-based global positioning encounters a

critical problem in dark environments or in environ-

ments in which the lighting condition changes dramati-

cally.

On the contrary, map-based global localization, which
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determines the best position at which the observed ge-

ometric features from sensory data match those in the

provided geometric map, is a standard and reliable tech-

nique since this method is applicable for various sensors

and environments1),8). From the point of view of accu-

racy, comparison of 3D range data captured by a range

sensor and a pre-constructed 3D map is preferable be-

cause this will enable precise 6D (position and attitude)

global localization. However, the comparison with large

3D data is quite time-consuming.

To cope with this problem, we have proposed a two-

step strategy that combines map-based global localiza-

tion and appearance-based global localization and veri-

fied its efficiency in outdoor environment in 21). Instead

of camera images, which are used for the appearance-

based global localization, we used reflectance images,

which are captured by a laser range finder as a byprod-

uct of range sensing. As a result of the characteristics

of the reflectance image, which is not subject to signif-

icant variation of the external illumination conditions,

the proposed technique is useful even in the dark or in

an environment under severe lighting conditions. Fur-

thermore, fast and precise localization can be performed

by comparing a few 3D range images, which are selected

based on the similarity of the reflectance images. How-

ever, since this method relies on the similarity between

newly-captured and stored reflectance images, the per-

formance is deteriorated under perceptual aliasing con-

ditions such as in a corridor or in a mine.
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Particle filter localization is an effective method for

robotic application by Bayesian inference. The robust-

ness for robot localization and mapping in a scene with

few or similar features such as a corridor16),19), a mine7)

and so on has been demonstrated. Therefore, we pro-

pose a new global localization technique which combines

the proposed two-step strategy and the particle filter.

We will demonstrate that our method can achieve ro-

bust and precise robot localization in environments with

strong perceptual aliasing even under severe variation of

external illumination conditions.

The remainder of this paper is organized as follows.

After a brief introduction of related research in Section

2, Section 3 introduces the cooperative positioning sys-

tem on which the proposed method is based. The pro-

posed two-step strategy combined with particle filter is

described in detail in Sections 4, and experimental re-

sults are presented in Section 6.

2. Related research

In the robotics community, appearance-based local-

ization using camera images which is very close to the

sensing way of human being has achieved great suc-

cess. The BoF technique is successfully applied to the

appearance-based SLAM problem. It first extracts local

features of an image and then constructs a histogram us-

ing the extracted local features as a representation of the

global features. In 2), the loop closure detection, which

is a problem to find a location where the robot previ-

ously visited, was solved by the BoF technique in a prob-

abilistic manner. However, these methods assume that

the illumination condition does not change so severely.

Therefore, the travel distance of the robot must be short

enough so that the lighting condition will not change

drastically. In another study, the experimental results

were not evaluated explicitly under significant changes

in illumination3). These methods will fail in the dark

or in environments in which the lighting is dramatically

changed.

When range is measured by a laser range finder, the

reflectivity, which indicates the strength of the reflected

laser, can be obtained as a byproduct of range data.

Note that all of the pixels in the range image have cor-

responding reflectance values. In other words, the range

image and the reflectance image are precisely and fun-

damentally aligned. In addition, since the reflectance

image is not subject to any extreme variations in the

external illumination conditions, stable reflectance im-

ages can be obtained even at night.

Kara et al.4) utilizes reflection intensity from a 1D

laser range finder for localization in 2D space. On the

other hand, our technique utilizes 2D reflectance images

obtained by a 3D laser range finder for 3D localization.

The proposed technique uses a panoramic reflectance

image instead of a regular camera image. By applying

the BoF technique for a reflectance image that corre-

sponds to 3D range data, the global localization using

3D range data and 2D images is achieved efficiently.

Levinson et al.8) utilize 2D infrared reflectivity map

to achieve a real-time autonomous vehicle navigation.

Firstly they created a spatial grid map with infrared re-

mittance values in a probabilistic manner using SLAM

technology and determined the vehicle position on-line

with the 2D infrared reflectivity map and a GPS/IMU

system.

Particle filter (Monte carlo localization) is a useful

probabilistic inference algorithm12). In particle filter al-

gorithm, the probabilities of Bayesian inference are rep-

resented as many particles. Particle filter has been ap-

plied in many successful robot systems. Wolf et al.16)

integrates Monte carlo localization (MCL) with an im-

age retrieval system. Andreasson et al.17) integrates

Monte carlo localization with a panoramic imaging sys-

tem. Zingaretti et al.19) compares two different MCL

systems, one using SIFT-based vision system and the

other using sonar sensing system, then it combines these

two system to get better localization under perceptual

aliasing conditions.

The algorithm framework of the proposed technique is

similar to that described in 16) and 17) which weight the

particles according to the results of the image retrieval

process. However, since these techniques16)17) depend

on conventional camera images, it apparently would fail

under severe variation of illumination.

3. 3D global map with reflectivity

3.1 Three-dimensional global map

The process of mapping the entire field is displayed

in Fig. 1. This process is based on a precise localization

technique using parent-child robots named Cooperative

Positioning System (CPS). The detail of CPS is shown

in appendix.

In each location, the parent robot collects a local 3D

map and its measurement position based on the rela-

tive observation between the parent and child robots.

Eventually, all of the local 3D maps are aligned into a

global 3D map using the measurement position informa-

tion. Additional details about CPS-based simultaneous

localization and mapping (CPS-SLAM) can be found in

5).

3.2 Reflectance images

As mentioned above, reflectance images are captured
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Fig. 1 Construction of a large-scale 3D map by the CPS.

as a byproduct of range sensing. Examples of a re-

flectance image and its corresponding camera image

taken in the night are shown in Fig. 2. Some exam-

ples of the 3D data and reflectance images acquired by

CPS-VI are shown in Fig. 3 and Fig. 4. Note that each

reflectance image contains the position information for

the location at which the image was captured. These

images are used for appearance-based global localiza-

tion in the proposed two-step strategy.

Fig. 2 Reflectance image and camera image in corridor.

Fig. 3 Two sideviews of local 3D map.

3.3 Image retrieval using the BoF technique

When the global 3D map of the target field is con-

structed, a Kd-tree structure storing BoF representa-

tions of reflectance images is also constructed at the

same time. Reflectance images are represented as his-

tograms of occurrence of the visual words in an image.

SIFT and SURF20)18) are well used in appearance-based

robot localization for extracting features. First, regions

in feature space are mapped to visual words by cluster-

ing all SURF or SIFT features extracted from recorded

Fig. 4 Reflectance and range images in outdoor.

images into representative words using k-means cluster-

ing, and the words are stored using a Kd-tree structure.

Using these words as the x-axis, we quantize each fea-

ture in a reflectance image to its approximate nearest

word by searching the Kd-tree, and all of the recorded

reflectance images are represented as statistics of words

(histograms). Finally, the histograms of all recorded

images are stored using a Kd-tree structure. A newly-

captured image is also represented as a histogram, and

M images that best match the newly-captured image

are retrieved by quantizing the histogram to its near-

est M histograms. These M candidates are used as the

observation model of particle filter.

4. Two-step strategy

This section presents the two-step strategy for precise

localization using a 3D map. First, we need to create a

global map as a training dataset. As explained in Sec-

tion 3, the CPS robots move in the environment and

construct a 3D global map. At the same time, the par-

ent robot collects reflectance images at each measure-

ment position. Then, all of reflectance images are rep-

resented using the BoF technique, and a training dataset

is created. Finally, the dataset of all of the BoF repre-

sentations is stored in a Kd-tree, which is efficient for

information retrieval.

For global localization, a new robot that is equipped

with a 3D range sensor, such as CPS-VI, collects local

3D data and 2D reflectance images (test data). In the

first step, we retrieve M initial location candidates by

comparing stored reflectance images (training dataset)
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Fig. 5 Combination of appearance-based localization

and map-based localization.

and captured reflectance images (test data) using the

BoF technique and a Kd-tree. Next, we apply particle

filter for extracting a correct initial location candidate

from these M candidates. By using the particle filter,

particles converge to few locations, and false initial loca-

tions are excluded. So only a few initial candidates are

left for the next precise localization. We then apply a

3D geometric constraint in order to extract true feature

pairs and run automatic ICP in the second step. As a

result of the first step, fast and precise localization can

be performed in the second step by comparing only one

3D range images, which is selected based on the similar-

ity of the reflectance images and probabilistic inference

in the first step.

The entire process is shown in Fig. 5. Generally

speaking, although ICP gives precise alignment results,

it is quite time-consuming. However, since only a small

number (M) of reference dataset are selected by the first

step based on the similarity of the reflectance images,

fast and precise localization can be performed using au-

tomatic ICP in the second step.

We hereinafter denote Train i.ref and Train i.pts

as the ith reflectance image and the local 3D map, re-

spectively, in the training dataset, and Test j.ref and

Test j.pts as the jth reflectance image and the local 3D

map, respectively, in the test dataset. In the following,

the proposed two-step strategy is described in detail.

4.1 First step: image retrieval and particle

filter

4.1.1 Image retrieval by BoF using 2D re-

flectance images

All Test j.ref are converted into BoF representa-

tions, and the M best matches are searched in the Kd-

tree that was constructed from the training dataset.

The M Train i.ref and Train i.pts are then selected

as M candidates for the position of the robot in the 3D

global map.

4.1.2 Particle filter

When the reflectance images are collected, the posi-

tions are also recorded by CPS, so a topological graph

in which each node is represented by a reflectance image

is created. By the results of image retrieval, M candi-

dates location in the topological graph are used for the

observed data of particle filter. The particles will con-

verge to one of M candidates. The details are described

at Section 5.

4.2 Second step: precise measurement by au-

tomatic ICP using 3D data

With the position of particle after convergence, auto-

matic ICP9)10) which consists of two processes is applied.

However, before applying automatic ICP, 3D geometric

constraints are used to remove outliers. In some cases,

the number of false outliers is large than true inliers,

therefore we have proposed a two-step voting algorithm

based on 3D geometric constraints to remove outliers

efficiently in 21). The process of automatic ICP is as

follows:

(1) Rough alignment with RANSAC

(a) Find the corresponding features between

Test j.ref and Train i.ref .

(b) Get the 3D coordinates of corresponding fea-

tures using Test j.pts and Train i.pts, which

correspond to Test j.ref and Train i.ref , re-

spectively.

(c) Remove outliers by two-step voting algorithm.

(d) 3D transformation between Test j.pts and

Train i.pts is estimated by RANSAC.

(e) Align Test j.pts to Train i.pts.

(2) Precise alignment with ICP

(a) Run ICP9) using Test j.pts and Train i.pts,

which are already roughly aligned.

5. SIR particle filter

Sequential Importance Resampling (SIR) particle fil-

ter is a kind of Bayesian filtering techniques which es-

timate the belief recursively. The key idea of particle

filter is representing the probabilistic belief p(Xt|o, a)
of robot’s location by a set of weighted particles. The

probability of current state Xt given a history of action

and observation (abbreviated as a and o, respectively)

is approximated as:

St = {x(i)
t , π

(i)
t }, i = 1...N (1)

Each particle x
(i)
t represents a hypothesized state with

a non-negative numerical weight π
(i)
t . The alternating

three main steps of SIR particle filter are as follows:

(1) Generate a new set of particles St+1 by resampling

from old particle set St according to particle weights
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π
(i)
t , i = 1...N

(2) Predict the next state of new particle set based on

the motion model with additional Gaussian noise.

(3) Calculate the new weights of new particles, this is

done by integrating the observation model into the

weight of each particle.

The details how particle filter is applied in our robot

system is described as follows:

5.1 Motion model

When a robot is visiting the target environments, all

particle variables x
(i)
t = (x, y, φ)

(i)
t where (x, y) is the

robot position in 2D grid map and φ is the orienta-

tion, are updated according to the movement between

adjacent measurement positions which are obtained by

odometry or other local localization techniques such as

CPS. Meanwhile the particle variables are updated with

small random values drawn from a normal distribution,

using a standard deviation of var yaw for the rotation

and a standard deviation of var x and var y for the

translation.

5.2 Observation model

In each location, with the current scanned reflectance

image, M candidate positions o
(j)
t from training dataset

of reflectance images are searched out by Kd-tree. In

M candidates only the one whose collecting location is

closest to the current particle is used for calculating its

weight. From the automatic ICP, the rotation angle φ

can be calculated correctly, it doesn’t need to be used for

calculating weights. The weighting function is defined

as:

fw(d) = exp(−d2

δ2
) (2)

d is the minimum Euclidean distance between x
(i)
t and

o
(j)
t , j = 1...M ,

d =
M

min
j=1

||x(i)
t − o

(j)
t || (3)

5.3 Location estimation

The particles will converge to a location at each loop

in the process of SIR. The convergent particles’ loca-

tion is the roughly estimated robot’s position. With

the current convergent location, the reflectance image

whose location is closest to it is selected. This means

that two corresponding reflectance images are found:

one is the current reflectance image, and another is the

searched reflectance image from training dataset. With

this two reflectance images and their corresponding 3D

point data, the robot’s location can be precisely esti-

mated by automatic ICP.

6. Experiment and Results

The experiment is conducted in an environment with

strong perceptual aliasing in order to verify the perfor-

mance of the proposed two-step strategy. The 2D map

for the experiment is shown in Fig. 6 which is created

in a corridor. There are many similar scenes in this

path. Two pairs of similar scenes are also shown in

Fig. 6, examples of reflectance image and correspond-

ing 3D points data have been shown in Fig. 2 and

Fig. 3. In this experiment, the size of reflectance im-

ages is 590× 2264 pixels. The CPS-VI robots move and

stop at 72 different locations in the experimental area

in Fig. 6, i.e. 72 data (Train i.ref and Train i.pts)

are stored as the training dataset. On the other hand,

test data (Test j.ref and Test j.pts) are collected at 36

locations in the same map. Both the training path and

test path are shown in Fig. 7.

Fig. 6 Experimental areas.

Fig. 7 Experimental paths, red line is the training path.

blue line is the test path.

In Eq.(2), δ was set to be 2T where T is the average

moving distance between the adjacent collecting posi-

tions of training dataset. Here T is set to be 3.6[m].

With this value of δ, the number of candidates M (see

Eq.(3)) is set to be 6. The particles converge to the cor-

rect location after the 5th scanning position (shown as

”04” in Fig. 7) in test path.



– 14 – D. ZHANG and R. KURAZUME

Table 1 shows the correctness of the initial local-

ization within the 6 candidates estimated by BoF, i.e.

in which rank the correct location is chosen within six

candidates retrieved from the training dataset by the

Kd-tree for each Test j.ref . The experimental results

show that 31 locations in total are correctly estimated

within 6 candidates for every Test j.ref . Especially in

19 positions, the positions of the robot are correctly es-

timated as the first candidate. In two positions, the sec-

ond candidate and the fourth candidate are the actual

locations, respectively. There are 36− 31 = 5 positions

where the BoF can’t initially estimate robot’s location

correctly. So the final accuracy is 31/36 ≈ 86.1%. Note

that although proper initial locations are not obtained

at 5 positions from the BoF, the correct position is es-

timated by the automatic ICP after 5th location thanks

to the particle filter.

Particle filter excludes false estimation and finds true

robot’s location. The efficiency of particle filter is veri-

fied by automatic ICP. As mentioned in 21), four non-

coplanar true pairs of matching 3D points are enough for

calculation of a rigid transformation. By setting the pa-

rameters of voting algorithm (see 21) for more details),

all of right candidate correspondences can be correctly

aligned by automatic ICP. Since after the location ”04”

(i.e. the 5th location in test path), all false candidates

are excluded by particle filter. Therefore, correct cor-

responding Train i.pts and Test j.pts are found, and

robot’s location are all correctly estimated in remaining

positions. Figure 8 shows the comparison between the

localization of particle filter and final precise localization

by Automatic ICP. Among the red points, before loca-

tion ”04”, particles don’t converge to correct locations.

These locations are excluded by Auto-ICP and corre-

sponding red points are not shown in Fig. 8. Figure

9 shows an example of alignment between train 10.pts

test 10.pts and 2D features of reflectance images. Their

locations are shown in Fig. 7.

Table 1 Results from searching in BoF.

No. 1st 2nd 3rd 4th 5th 6th total

Correct

localization 19 1 5 1 2 3 31

7. Conclusion

We proposed and demonstrated a two-step strategy

combined with particle filter for global localization of

a mobile robot in environments with strong percep-

tual aliasing. Besides the combination of appearance-

based global localization and map-based global local-

Fig. 8 Comparison between the particle filter location

and alignment of automatic ICP.

Fig. 9 From right to left, then top to bottom: Original

3D points; Roughly aligned 3D points by voting

algorithm and RANSAC; Precisely aligned 3D

points by ICP; Matched features in reflectance

images.

ization which improve the performance of correct po-

sition estimation, particle filter is used for further ex-

cluding false initial localization in appearance-based lo-

calization. The reflectance image, which is obtained

as a byproduct of range sensing and is independent of

the variation of the illumination condition, is used for

appearance-based global localization in the first step.

Precise map-based global localization by ICP is applied

using 3D local maps, which are selected by the first

step. The effectiveness of the proposed technique is

demonstrated through experiments in an indoor image

sequence with strong perceptual aliasing.
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A.1. Laser-based environmental mod-
eling by multiple mobile robots

For map-based global localization, an environmental

map must be created and provided beforehand. For pre-

cise 3D mapping of the environment around a robot,

we have proposed an efficient and precise system called

CPS-SLAM5), which can construct a rather accurate

large-scale 3D map by means of a laser range finder and

multiple robots based on technology used for geographi-

cal surveying. This technique is used as the basis of the

urban search and rescue (USAR) robot6).

Fig.A.1 Three-dimensional modeling robots, CPS-VI.

Table A.1 Laser range finder (SICK LMS151).

Measuring range 50[m]

Field of view 270[◦]
Precision ±30[mm]

Angular resolution 0.25[◦]

Figure A.1 shows the sixth CPS-SLAM model,

called CPS-VI. This system consists of one parent robot

and two child robots. The parent robot is equipped with

a highly precise laser range finder (GPT-9000A, TOP-

CON LTD), a 2D laser range finder (SICK LMS151),

and a three-axis attitude sensor. The two child robots

are equipped with corner cubes. The GPT-9000A and

corner cubes are used cooperatively for self-positioning,

as shown in Fig. A.2. The LMS151 (Table A.1)

placed on a rotating table acquires two-dimensional slit-

like range data, which are vertical to the ground. This

sensor can capture reflectance data at the same time.

Therefore, by rotating the table around the vertical axis

for 360 ◦ while scanning with a 2D laser range finder, 3D

range data and a 2D reflectance image are acquired. The

number of pixels on a reflectance image is exactly the

same as the number of 3D points in the range data, i.e.,

there exists a one-to-one mapping relationship between

2D pixels of the reflectance image and 3D points of the

local 3D map.

Fig.A.2 Cooperative positioning system (CPS).
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