
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Asymptotic tail dependence of the normal copula

Kondo, Hiroki
Nisshin Fire & Marine Insurance Company, Limited

Saito, Shingo
Institute of Mathematics for Industry, Kyushu University

Taniguchi, Setsuo
Faculty of Mathematics, Kyushu University

https://hdl.handle.net/2324/21937

出版情報：Journal of Math-for-Industry (JMI). 4 (A), pp.73-78, 2012-04-08. Faculty of
Mathematics, Kyushu University
バージョン：
権利関係：



Journal of Math-for-Industry, Vol. 4 (2012A-9), pp. 73–78

A案 B案

D案 E案 F案

C案

Asymptotic tail dependence of the normal copula

Hiroki Kondo, Shingo Saito and Setsuo Taniguchi

Received on January 2, 2012 / Revised on February 12, 2012

Abstract. Copulas have lately attracted much attention as a tool in finance and insurance for
dealing with multiple risks that cannot be considered independent. The normal copula, widely used
in practice, is known to have the same tail dependence parameter as the product copula. The present
paper brings into question the common interpretation of this fact as evidence that the normal copula
lacks tail dependence, both by providing numerical examples and by mathematically determining
the asymptotic behaviour of the tail dependence.
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1. Introduction

1.1. Copulas

Copulas have gained increasing popularity in risk manage-
ment as a tool for investigating dependent risks. We begin
by reviewing rudimentary definitions and facts on copulas.
See Nelsen [2] for further reference.

Definition 1. A copula is C : [0, 1]2 → [0, 1] with the fol-
lowing properties:

(1) C(u, 0) = C(0, v) = 0, C(u, 1) = u, and C(1, v) = v
for all u, v ∈ [0, 1];

(2) if 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1, then
C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0.

Example 1. The function C(u, v) = uv is a copula and
called the product copula.

For a bivariate random variable (X,Y ), let FX and FY

denote the marginal distribution functions and let FX,Y

denote the joint distribution function: FX(x) = P (X ≤ x),
FY (y) = P (Y ≤ y), and FX,Y (x, y) = P (X ≤ x, Y ≤ y)
for x, y ∈ R. We say that (X,Y ) is continuous if FX and
FY are both continuous.

Theorem 1 (Sklar). If (X,Y ) is a continuous bivariate
random variable, then there exists a unique copula CX,Y

such that

FX,Y (x, y) = CX,Y

(
FX(x), FY (y)

)
for all x, y ∈ R.
Example 2. The independence of X and Y is equivalent
to CX,Y being the product copula.

Remark 1. If we write

F−1(u) = inf{x ∈ R | F (x) ≥ u}

for univariate distribution functions F , we have

CX,Y (u, v) = FX,Y

(
F−1
X (u), F−1

Y (v)
)
.

In this paper, the focus will be on the normal copula:

Definition 2. Let −1 < ρ < 1. If (X,Y ) is a normally
distributed bivariate random variable such that E[X] =
E[Y ] = 0, V (X) = V (Y ) = 1, and Cov(X,Y ) = ρ, then
CX,Y is called the normal copula (or Gaussian copula) with
correlation ρ and denoted by Cρ.

1.2. Tail dependence of copulas

Definition 3. Let C be a copula. We define λC : (0, 1) →
[0, 1] by

λC(t) =
1− 2t+ C(t, t)

1− t
.

We call limt↗1 λC(t) the upper tail dependence parameter
of C, if it exists.

Remark 2. If (X,Y ) is a continuous bivariate random
variable, then

λCX,Y
(t) =

(
1−P

(
X ≤ F−1

X (t)
)
−P

(
Y ≤ F−1

Y (t)
)

+P
(
X ≤ F−1

X (t), Y ≤ F−1
Y (t)

) )
1− P

(
X ≤ F−1

X (t)
)

=
P
(
X > F−1

X (t), Y > F−1
Y (t)

)
P
(
X > F−1

X (t)
)

= P
(
Y > F−1

Y (t)
∣∣ X > F−1

X (t)
)
.

Example 3. If C is the product copula, then λC(t) =
1− t → 0 as t ↗ 1.

The normal copula is known to have upper tail depen-
dence parameter 0:

Proposition 1. The normal copula with arbitrary corre-
lation ρ ∈ (−1, 1) has upper tail dependence parameter 0.
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Product copula
Normal copula Cρ

with ρ = 0.5

t = 0.8 0.2000 0.4358
t = 0.9 0.1000 0.3240
t = 0.95 0.0500 0.2438
t = 0.99 0.0100 0.1294
t = 0.995 0.0050 0.0993
t = 0.999 0.0010 0.0543

Table 1: Upper tail dependence λC(t) of the product and
normal copulas

This proposition, with Example 3 in mind, is often in-
terpreted to mean that the normal copula exhibits no tail
dependence. However, Table 1 suggests that the product
and normal copulas have different rates at which λC(t) con-
verges to 0. The purpose of this paper is to completely
describe how λCρ(t) converges to 0.
Now we state a particular case of our main theorem, of

which the complete statement will be given in Section 2
(Theorem 3).

Theorem 2. We have

λCρ(t) =

√
(1 + ρ)3

2π(1− ρ)
e−

1−ρ
2(1+ρ)

s2

×
(
s−1 − 1 + 2ρ− ρ2

1− ρ
s−3 +O(s−5)

)
as t ↗ 1, where s = Φ−1(t) ↗ ∞, with Φ denoting the
distribution function of the standard normal distribution:
t = Φ(s) = (2π)−1/2

∫ s

−∞ exp(−x2/2) dx.

Theorem 2 gives the leading behaviour of λCρ(t):

Corollary 1. We have

λCρ(t) ∼ (4π)−
ρ

1+ρ

√
(1 + ρ)3

1− ρ
(1− t)

1−ρ
1+ρ
(
− log(1− t)

)− ρ
1+ρ

as t ↗ 1.

Since the proof of Corollary 1 requires Proposition 3, we
defer it to the end of Subsection 3.1.

Remark 3. Heffernan [1] mentions the asymptotic order
in a different language. Let (X,Y ) be a continuous bi-
variate random variable such that CX,Y = Cρ and the
marginals are both unit Fréchet, i.e. FX(x) = FY (x) =
exp(−1/x) for x > 0. Then [1] states that

P (X,Y > x) ∼ cρ(log x)
− ρ

1+ρP (X > x)
2

1+ρ

as x ↗ ∞, where cρ is a positive constant depending on ρ.
By Remark 2, this implies that

λCρ
(t) =

P (X,Y > −1/log t)

1− t

∼ cρ(1− t)
2

1+ρ−1
(
log(−1/log t)

)− ρ
1+ρ

∼ cρ(1− t)
1−ρ
1+ρ
(
− log(1− t)

)− ρ
1+ρ

as t ↗ 1.

2. Precise statement of the main
theorem

This section is devoted to giving the precise statement of
our main theorem. Henceforth we fix a real number ρ with
−1 < ρ < 1 and denote λCρ(t) simply by λ(t).
We define sequences (an)n≥0 and (bn)n≥0 of real numbers

by

an = (−1)nn!(1 + ρ)n
n∑

l=0

(2l − 1)!!

l!
(1− ρ)−l,

bn = (−1)n(2n− 1)!!

where (−1)!! = 1 by definition. We further define a se-
quence (cn)n≥0 of real numbers by the following equation
between formal power series in X:

∞∑
n=0

cnX
n =

∑∞
n=0 anX

n∑∞
n=0 bnX

n
∈ R[[X]].

In other words, we define (cn)n≥0 recursively by setting
c0 = a0/b0 and

cn =
1

b0

(
an −

n−1∑
k=0

bn−kck

)

for n ≥ 1.
The first three terms of the sequences are as follows:

a0 = 1, a1 = −(1 + ρ)

(
1 +

1

1− ρ

)
,

a2 = (1 + ρ)2
(
2 +

2

1− ρ
+

3

(1− ρ)2

)
,

b0 = 1, b1 = −1, b2 = 3,

c0 = 1, c1 = −1 + 2ρ− ρ2

1− ρ
,

c2 =
3 + 13ρ− 3ρ2 − 3ρ3 + 2ρ4

(1− ρ)2
.

Now our main theorem goes as follows:

Theorem 3 (Main Theorem). For every positive integer
N , we have

λ(t) =

√
(1 + ρ)3

2π(1− ρ)
e−

1−ρ
2(1+ρ)

s2

(
N−1∑
n=0

cns
−2n−1+O(s−2N−1)

)

as t ↗ 1, where s = Φ−1(t) ↗ ∞.

3. Proof of the main theorem

Let 1/2 < t < 1 and put s = Φ−1(t) > 0. If we set

A =

∫ ∞

s

∫ ∞

s

1

2π
√
1− ρ2

exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
dx dy,

B =

∫ ∞

s

1√
2π

exp

(
−x2

2

)
dx,



Hiroki Kondo, Shingo Saito and Setsuo Taniguchi 75

then λ(t) = A/B by Remark 2. We shall estimate A and
B separately.
Let R+, N0, and N denote the sets of positive real num-

bers, nonnegative integers, and positive integers, respec-
tively.

3.1. Estimate of B

Proposition 2. If θ ∈ R+ and N ∈ N, then

(−1)N
∫ ∞

θ

e−x2/2 dx > (−1)Ne−θ2/2
N−1∑
n=0

bnθ
−2n−1.

Proof. For n ∈ N0, set

In =

∫ ∞

θ

x−ne−x2/2 dx.

Then the left-hand side of the required inequality is
(−1)NI0.
Since integration by parts gives

In = −
∫ ∞

θ

x−n−1(e−x2/2)′ dx

= −[x−n−1e−x2/2]∞θ +

∫ ∞

θ

(−n− 1)x−n−2e−x2/2 dx

= θ−n−1e−θ2/2 − (n+ 1)In+2,

we have

(−1)Ne−θ2/2
N−1∑
n=0

bnθ
−2n−1

=

N−1∑
n=0

(−1)N+n(2n− 1)!!θ−2n−1e−θ2/2

=

N−1∑
n=0

(−1)N+n(2n− 1)!!
(
I2n + (2n+ 1)I2n+2

)
=

N−1∑
n=0

(
(−1)N+n(2n− 1)!!I2n

− (−1)N+n+1(2n+ 1)!!I2n+2

)
= (−1)NI0 − (2N − 1)!!I2N

< (−1)NI0.

Proposition 3. For every N ∈ N, we have

B =
1√
2π

e−s2/2

(
N−1∑
n=0

bns
−2n−1 +O(s−2N−1)

)
as s ↗ ∞.

Proof. If N ′ is an even integer with N ′ ≥ N , then Propo-
sition 2 shows that

B >
1√
2π

e−s2/2
N ′−1∑
n=0

bns
−2n−1

=
1√
2π

e−s2/2

(
N−1∑
n=0

bns
−2n−1 +O(s−2N−1)

)
.

By taking N ′ to be an odd integer with N ′ ≥ N , we may
similarly obtain

B <
1√
2π

e−s2/2

(
N−1∑
n=0

bns
−2n−1 +O(s−2N−1)

)
.

The proposition follows from these estimates.

Proof of Corollary 1, assuming Theorem 2. Proposition 3
shows that

1− t = B ∼ e−s2/2s−1

√
2π

,

which in turn implies that

− log(1− t) ∼ s2

2
.

It follows from Theorem 2 that

λ(t) ∼

√
(1 + ρ)3

2π(1− ρ)
e−

1−ρ
2(1+ρ)

s2s−1

= (4π)−
ρ

1+ρ

√
(1 + ρ)3

1− ρ

(
e−s2/2s−1

√
2π

) 1−ρ
1+ρ
(
s2

2

)− ρ
1+ρ

∼ (4π)−
ρ

1+ρ

√
(1 + ρ)3

1− ρ
(1− t)

1−ρ
1+ρ
(
− log(1− t)

)− ρ
1+ρ .

3.2. Estimate of A

We set α =
√

(1− ρ)/2 and β =
√

(1 + ρ)/2, so that α
and β are positive real numbers with α2 + β2 = 1.

Lemma 1. We have

A =
β

π
e−s2/2

∫ ∞

αs/β

(∫ ∞

αw+βs

e−z2/2 dz

)
× e(αw+βs)2/2e−w2/2 dw.

Proof. Symmetry gives

A = 2

∫∫
x≥y≥s

1

2π
√
1− ρ2

exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
dx dy

=
1

2παβ

∫∫
x≥y≥s

exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
dx dy.

We use the change of variables(
x
y

)
=

(
βz + αβw − α2s
βz − αβw + α2s

)
⇐⇒

(
z
w

)
=

(
(x+ y)/2β

(x− y)/2αβ + αs/β

)
.

Since

x ≥ y ≥ s ⇐⇒ βz + αβw − α2s ≥ βz − αβw + α2s ≥ s

⇐⇒ w ≥ αs/β, z ≥ αw + βs
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and

x2 − 2ρxy + y2

2(1− ρ2)
=

(x+ y)2

4(1 + ρ)
+

(x− y)2

4(1− ρ)

=
(2βz)2

8β2
+

(2αβw − 2α2s)2

8α2

=
z2

2
+

(βw − αs)2

2

=
z2

2
− (αw + βs)2

2
+

w2 + s2

2
,

we have

A =
1

2παβ

∫ ∞

αs/β

∫ ∞

αw+βs

exp

(
−z2

2
+

(αw + βs)2

2
− w2 + s2

2

)
×
∣∣∣∣det(β αβ

β −αβ

)∣∣∣∣ dz dw
=

β

π
e−s2/2

∫ ∞

αs/β

(∫ ∞

αw+βs

e−z2/2 dz

)
× e(αw+βs)2/2e−w2/2 dw.

Lemma 2. For every K ∈ N, we have

(−1)KA

> (−1)K
β

π
e−s2/2

K−1∑
n=0

bn

∫ ∞

αs/β

(αw + βs)−2n−1e−w2/2 dw.

Proof. Lemma 1 and Proposition 2 show that

(−1)KA

=
β

π
e−s2/2

∫ ∞

αs/β

(
(−1)K

∫ ∞

αw+βs

e−z2/2 dz

)
× e(αw+βs)2/2e−w2/2 dw

>
β

π
e−s2/2

∫ ∞

αs/β

(−1)K

(
K−1∑
n=0

bn(αw + βs)−2n−1

)
× e−w2/2 dw

= (−1)K
β

π
e−s2/2

×
K−1∑
n=0

bn

∫ ∞

αs/β

(αw + βs)−2n−1e−w2/2 dw.

For n ∈ N and j, k ∈ N0 with j ≤ k, we define

rj,k,n =
(2k − j)!(n+ j − 1)!

(2k − 2j)!!j!(n− 1)!
.

Lemma 3. If n ∈ N and k ∈ N0, then we have the follow-
ing:

(1) r0,k+1,n = r0,k,n(2k + 1).

(2) rk+1,k+1,n = rk,k,n(n+ k).

(3) rj,k+1,n = rj,k,n(2k − j + 1) + rj−1,k,n(n + j − 1) for
j = 1, . . . , k.

Proof. Straightforward.

Lemma 4. If n,K ∈ N, then

(−1)K
∫ ∞

αs/β

(αw + βs)−ne−w2/2 dw

> (−1)K
∑

0≤j≤k≤K−1

(
(−1)krj,k,nα

−2k+2j−1βn+2k+1

× s−n−2k−1e−α2s2/2β2)
.

Proof. Put u = s/β for simplicity. For m ∈ N0 and n ∈ N,
set

Im,n =

∫ ∞

αs/β

w−m(αw + βs)−ne−w2/2 dw

=

∫ ∞

αu

w−m(αw + β2u)−ne−w2/2 dw.

Then what we need to show is that

(−1)KI0,n

> (−1)K
K−1∑
k=0

(−1)k
k∑

j=0

rj,k,nα
−2k+2j−1u−n−2k−1e−α2u2/2.

Since integration by parts gives

Im,n = −
∫ ∞

αu

w−m−1(αw + β2u)−n(e−w2/2)′ dw

= −
[
w−m−1(αw + β2u)−ne−w2/2

]∞
αu

+

∫ ∞

αu

(
(−m− 1)w−m−2(αw + β2u)−n

+ w−m−1(−αn)(αw + β2u)−n−1
)
e−w2/2 dw

= α−m−1u−m−n−1e−α2u2/2

− (m+ 1)Im+2,n − αnIm+1,n+1,

we have

k∑
j=0

rj,k,nα
j(α−2k+j−1u−n−2k−1e−α2u2/2 − I2k−j,n+j)

=
k∑

j=0

rj,k,nα
j
(
(2k − j + 1)I2k−j+2,n+j

+ α(n+ j)I2k−j+1,n+j+1

)
=

k∑
j=0

rj,k,nα
j(2k − j + 1)I2k−j+2,n+j

+

k+1∑
j=1

rj−1,k,nα
j(n+ j − 1)I2k−j+2,n+j

=
k+1∑
j=0

rj,k+1,nα
jI2k−j+2,n+j
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by Lemma 3. It follows that

(−1)K
K−1∑
k=0

(−1)k
k∑

j=0

rj,k,nα
−2k+2j−1u−n−2k−1e−α2u2/2

= (−1)K
K−1∑
k=0

(−1)k

(
k∑

j=0

rj,k,nα
jI2k−j,n+j

+
k+1∑
j=0

rj,k+1,nα
jI2k−j+2,n+j

)

= (−1)K
K−1∑
k=0

(
(−1)k

k∑
j=0

rj,k,nα
jI2k−j,n+j

− (−1)k+1
k+1∑
j=0

rj,k+1,nα
jI2k−j+2,n+j

)

= (−1)K

(
r0,0,nI0,n − (−1)K

K∑
j=0

rj,K,nα
jI2K−j,n+j

)

= (−1)KI0,n −
K∑
j=0

rj,K,nα
jI2K−j,n+j

< (−1)KI0,n.

Lemma 5. If l and m are integers with 0 ≤ l ≤ m, then

m−l∑
n=0

(m+ l − n)!(m− l + n)!

(m− l − n)!(2n)!!
= (2l − 1)!!(2m)!!.

Proof. For each l ∈ N0, let Pl be the statement that the
lemma is true for all m ≥ l. We shall prove Pl by induction
on l.
To establish P0, we need to prove that

m∑
n=0

(m+ n)!

(2n)!!
= (2m)!!

for all m ≥ 0. If m = 0, then both sides are 1. Suppose
that equality holds for m. Then

m+1∑
n=0

(m+ n+ 1)!

(2n)!!

=

m+1∑
n=0

(m+ n)!

(2n)!!
(m+ n+ 1)

= (m+ 1)

m+1∑
n=0

(m+ n)!

(2n)!!
+

1

2

m+1∑
n=1

(m+ n)!

(2n− 2)!!

= (m+ 1)

(
(2m)!! +

(2m+ 1)!

(2m+ 2)!!

)
+

1

2

m∑
n=0

(m+ n+ 1)!

(2n)!!

=
(2m+ 2)!!

2
+

1

2

m+1∑
n=0

(m+ n+ 1)!

(2n)!!
,

from which it follows that

m+1∑
n=0

(m+ n+ 1)!

(2n)!!
= (2m+ 2)!!.

Therefore equality holds for m + 1 as well. Hence P0 has
been verified.
Now suppose that Pl is true. Let m ≥ l + 1. Since

(m− l + n+ 1)!

(m− l − n+ 1)!
− (m− l + n− 1)!

(m− l − n− 1)!

=
(m− l + n− 1)!

(m− l − n+ 1)!

(
(m− l + n)(m− l + n+ 1)

− (m− l − n)(m− l − n+ 1)
)

=
(m− l + n− 1)!

(m− l − n+ 1)!
· 2n(2m− 2l + 1)

for 0 ≤ n ≤ m− l − 1, we have

m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n− 1)!

(m− l − n− 1)!(2n)!!

=
m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n+ 1)!

(m− l − n+ 1)!(2n)!!

−
m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n− 1)!

(m− l − n+ 1)!(2n)!!
2n(2m− 2l + 1).

The inductive hypothesis shows that

m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n+ 1)!

(m− l − n+ 1)!(2n)!!

=
m−l+1∑
n=0

(m+ l − n+ 1)!(m− l + n+ 1)!

(m− l − n+ 1)!(2n)!!

− (2l + 1)!(2m− 2l + 1)!

1!(2m− 2l)!!
− (2l)!(2m− 2l + 2)!

0!(2m− 2l + 2)!!

= (2l − 1)!!(2m+ 2)!!− (2l + 1)!(2m− 2l + 1)!

(2m− 2l)!!

− (2l)!(2m− 2l + 1)!

(2m− 2l)!!

and that

m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n− 1)!

(m− l − n+ 1)!(2n)!!
2n(2m− 2l + 1)

= (2m− 2l + 1)

m−l−1∑
n=1

(m+ l − n+ 1)!(m− l + n− 1)!

(m− l − n+ 1)!(2n− 2)!!

= (2m− 2l + 1)

m−l−2∑
n=0

(m+ l − n)!(m− l + n)!

(m− l − n)!(2n)!!

= (2m− 2l + 1)

(
(2l − 1)!!(2m)!!− (2l + 1)!(2m− 2l − 1)!

1!(2m− 2l − 2)!!

− (2l)!(2m− 2l)!

0!(2m− 2l)!!

)
= (2l − 1)!!(2m+ 2)!!− (2l + 1)!!(2m)!!

− (2l + 1)!(2m− 2l + 1)!

(2m− 2l)!!
− (2l)!(2m− 2l + 1)!

(2m− 2l)!!
.

Therefore we have

m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n− 1)!

(m− l − n− 1)!(2n)!!
= (2l + 1)!!(2m)!!,
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as required.

Proposition 4. For every N ∈ N, we have

A =
1

2π

√
(1 + ρ)3

1− ρ
e−s2/2e−

1−ρ
2(1+ρ)

s2

×

(
N−1∑
n=0

ans
−2n−2 +O(s−2N−2)

)
.

Proof. Lemmas 2 and 4 show that

(−1)KA

> (−1)K
β

π
e−s2/2

K−1∑
n=0

bn

∫ ∞

αs/β

(αw + βs)−2n−1e−w2/2 dw

> (−1)K
β

π
e−s2/2e−α2s2/2β2

×
∑

0≤n≤K−1
0≤j≤k≤K−1

(
(−1)n+k(2n− 1)!!rj,k,2n+1

× α−2k+2j−1β2n+2k+2s−2n−2k−2
)

for every K ∈ N.
Now let N ∈ N. If K ≥ N , then∑
0≤n≤K−1

0≤j≤k≤K−1

(
(−1)n+k(2n− 1)!!rj,k,2n+1

× α−2k+2j−1β2n+2k+2s−2n−2k−2
)

=

N−1∑
m=0

(
(−1)mβ2m+2s−2m−2

×
∑

n≥0, 0≤j≤k
n+k=m

(2n− 1)!!rj,k,2n+1α
−2k+2j−1

)

+O(s−2N−2)

=
N−1∑
m=0

(
(−1)mβ2m+2s−2m−2

×
m∑
l=0

α−2l−1
m−l∑
n=0

(2n− 1)!!rm−l−n,m−n,2n+1

)
+O(s−2N−2)

=
N−1∑
m=0

(
(−1)mβ2m+2s−2m−2

×
m∑
l=0

1

(2l)!!
α−2l−1

m−l∑
n=0

(m+ l − n)!(m− l + n)!

(m− l − n)!(2n)!!

)
+O(s−2N−2)

=
N−1∑
m=0

(−1)m(2m)!!

(
m∑
l=0

(2l − 1)!!

(2l)!!
α−2l−1

)
β2m+2s−2m−2

+O(s−2N−2)

by Lemma 5, and so

(−1)KA

> (−1)K
β

π
e−s2/2e−α2s2/2β2

×

(
N−1∑
m=0

(−1)m(2m)!!

(
m∑
l=0

(2l − 1)!!

(2l)!!
α−2l−1

)
β2m+2s−2m−2

+O(s−2N−2)

)

= (−1)K
1

2π

√
(1 + ρ)3

1− ρ
e−s2/2e−

1−ρ
2(1+ρ)

s2

×

(
N−1∑
m=0

(
(−1)m

(2m)!!

2m
(1 + ρ)m

×

(
m∑
l=0

(2l − 1)!!

(2l)!!/2l
(1− ρ)−l

)
s−2m−2

)

+O(s−2N−2)

)

= (−1)K
1

2π

√
(1 + ρ)3

1− ρ
e−s2/2e−

1−ρ
2(1+ρ)

s2

×

(
N−1∑
m=0

ams−2m−2 +O(s−2N−2)

)
.

By taking an odd K and an even K, we may obtain the
proposition.

Propositions 3 and 4 complete the proof of Theorem 3.
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