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Abstract. Regional frequency analysis is a statistical method for frequency estimation of extreme
environmental events. Data for several sites are combined to improve the estimates of event fre-
quencies at any one site. The computations are typically based on L-moments, which are summary
statistics that have good properties of efficiency and robustness for describing data from heavy-tailed
probability distributions. We summarize this work and apply it to a worldwide data set of historical
records of tsunami magnitudes, obtaining estimates of the frequency distribution of tsunami runup
height for essentially any location in the Pacific basin with exposure to tsunami events. The results
have potential application to risk estimation and design of structures in tsunami-prone locations.
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1. Introduction

Large tsunamis are enormously destructive events, and
knowledge of how often they occur at any given site is
of considerable importance for decisions about where con-
struction should be permitted, the design of structures, and
preparedness issues such as the identification of evacua-
tion routes. This is one example of frequency estimation
for extreme events, a problem that is common in natural
hazard estimation. Often there is a need to estimate the
return period of rare geophysical or meteorological events
for a site or a group of sites. Typically the return periods of
interest far exceed the available record length at any site,
and statistical methods based on analysing historical event
data from a single site are inaccurate and unreliable.
Regional frequency analysis seeks to overcome this

problem by using data from several sites to estimate the
frequency distribution of the observed data at each site.
One method of regional frequency analysis seeks to iden-
tify a scaling relationship between frequency distributions
at different sites, and estimates the rescaled frequency dis-
tribution by averaging summary statistics of the data from
different sites. L-moments are summary statistics that are
particularly suitable for this purpose. A full description of
the approach is in [10]. This approach has been used in
large-scale data analyses for precipitation [19, 2], stream-
flow [16, 11], and earthquake magnitudes [18].
This paper applies the regional frequency analysis

methodology of [10] to historical data on tsunami observa-
tions from the NGDC/WDC Historical Tsunami Database
[13]. The analysis in principle provides estimates of the fre-
quency distribution of tsunami runup height for essentially
any location in the Pacific basin with exposure to tsunami

events. It should be emphasized that the results are not
definitive: there are issues with data coverage and there is
scope for alternative decisions at several stages of the anal-
ysis. Overall, however, the approach appears promising
and worthy of further investigation and improvement.
The structure of the paper is as follows. Section 2 con-

tains a brief introduction to L-moments; Section 3 con-
tains a summary of the regional frequency analysis method
described in [10]. Section 4 contains the data analysis, and
Section 5 contains some concluding remarks.

2. L-moments

L-moments are summary statistics for probability distribu-
tions and data samples. They are based on linear combina-
tions of order statistics. Denote by Xk:n the kth smallest
observation from a sample of size n, so that the ordered
sample is X1:n ≤ X2:n ≤ · · · ≤ Xn:n. The L-moments of a
probability distribution are defined by

λ1 = E(X1:1), (1)

λ2 = 1
2 E(X2:2 −X1:2), (2)

λ3 = 1
3 E(X3:3 − 2X2:3 +X1:3), (3)

λ4 = 1
4 E(X4:4 − 3X3:4 + 3X2:4 −X1:4), (4)

and in general

(5)λr = r−1
r−1∑
j=0

(−1)j
(
r − 1

j

)
E(Xr−j : r) . (6)

L-moment ratios are the dimensionless quantities
τr = λr/λ2, r = 3, 4, .... They measure the shape of
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a distribution independently of its location and scale. The
L-CV τ = λ2/λ1 measures the distribution’s dispersion
relative to its mean, and is the L-moment analog of the
coefficient of variation.
Given an ordered sample of data x1:n, . . . , xn:n, an unbi-

ased estimator of λr is the sample L-moment ℓr defined
by

ℓr = n−1
n∑

j=1

w
(r)
j:n xj:n . (7)

The weight w
(r)
j:n is, in the terminology of [15], the discrete

Legendre polynomial (−1)rPr−1(j− 1, n− 1). The weights

can be computed as w
(1)
j:n = 1, w

(2)
j:n = 2(j − 1)/(n− 1)− 1,

and recursively for r ≥ 3 by

w
(r)
j:n =

(2r−3)(2j−n− 1)w
(r−1)
j:n − (r−2)(n+r−2)w

(r−2)
j:n

(r−1)(n−r+1)
.

(8)
The sample L-CV is defined as t = ℓ2/ℓ1 and the sample
L-moment ratios as tr = ℓr/ℓ2, r = 3, 4, ...; these estimators
are unbiased only asymptotically as n → ∞.
L-moments are analogous to ordinary moments, but have

several advantages that make them suitable for use with
the heavy-tailed distributions that often occur in geophys-
ical and environmental data. Although moment ratios can
be arbitrarily large, sample moment ratios have algebraic
bounds; sample L-moment ratios can take any values that
the corresponding population quantities can. L-moments
are less sensitive than ordinary moments to outlying data
values.
L-moments can be used to estimate parameters of dis-

tributions by equating sample and population L-moments.
Typically, a frequency distribution is specified in terms of
a set of parameters θ1, . . . , θp and its L-moments can be
expressed as functions of these parameters. By inverting
this relation we can express the parameters in terms of
the L-moments; when applied to the sample L-moments
this yields estimators of the parameters. For example, the
normal distribution is typically expressed in terms of its
mean µ and standard deviation σ; its probability density
function is (2πσ2)−1/2 exp{ 1

2 (x − µ)2/σ2}. Its first two

L-moments are λ1 = µ, λ2 = π−1/2σ. Inverting this rela-
tion we have µ = λ1, σ = π1/2λ2; parameter estimates are
then given by µ̂ = ℓ1, σ̂ = π1/2ℓ2. Estimators obtained by
this procedure are generally consistent and in large sam-
ples have an asymptotically normal distribution. For some
heavy-tailed distributions frequently used in extreme value
analysis, estimation using L-moments is more accurate
than maximum likelihood estimation in small and mod-
erate samples.
Citations for proofs of the above properties are in [8].

3. Regional frequency analysis

Suppose that data are available at N sites, with site i
having sample size ni and observed data Qij , j = 1, . . . , ni.
Let Qi(F ), 0 < F < 1, be the quantile function of the fre-
quency distribution at site i. The key assumption is that

the sites form a homogeneous region, i.e. that the frequency
distributions of the N sites are identical apart from a site-
specific scaling factor. We may then write

Qi(F ) = µiq(F ), i = 1, . . . , N. (9)

Here µi is the site-specific scaling factor, known in
hydrology as the “index flood” following the usage in [4].
In this paper it will be termed the “index event”. Typically
it is chosen to be the mean of the site’s frequency distri-
bution, and is estimated by µ̂i = Q̄i, the sample mean of
the data at site i. Other location estimators such as the
median or a quantile with specified exceedance probability
could be used instead.
The remaining factor in (9), q(F ), is the regional growth

curve, a dimensionless quantile function common to every
site. It is the quantile function of the regional frequency
distribution, the common distribution of the Qij/µi. The
dimensionless rescaled data qij = Qij/µ̂i, j = 1, . . . , ni,
i = 1, . . . , N , are the basis for estimating q(F ), 0 < F < 1.
It is usually assumed that the form of q(F ) is known apart
from p undetermined parameters θ1, . . . , θp, so we write
q(F ) as q(F ; θ1, . . . , θp). For example, these parameters
may be the coefficient of variation and the skewness of
the distribution, or the L-moment ratios τr defined above.
The mean of the regional frequency distribution is not an
unknown parameter: taking µi in (9) to be the mean of the
frequency distribution at site i ensures that the regional
frequency distribution has mean 1. The parameters are
estimated separately at each site, the site-i estimate of θk
being denoted by θ̂

(i)
k , and the estimates are combined to

give regional estimates:

θ̂Rk =
N∑
i=1

niθ̂
(i)
k

/ N∑
i=1

ni . (10)

Substituting these estimates into q(F ) gives the estimated

regional growth curve q̂(F ) = q(F ; θ̂R1 , . . . , θ̂
R
p ). Quantile

estimates at site i are obtained by combining the estimates
of µi and q(F ):

Q̂i(F ) = µ̂iq̂(F ) . (11)

When using regional frequency analysis with L-moments
and the mean event magnitude as the index event, the
sample L-moment ratios t and tr, r = 3, . . . , p, are com-
puted for each site; we denote the values for site i by t(i)

and t
(i)
r , r = 3, . . . , p. The regional average L-moment

ratios are then computed, as in (10), by

tR =

N∑
i=1

nit
(i)
/ N∑

i=1

ni (12)

and

tRr =

N∑
i=1

nit
(i)
r

/ N∑
i=1

ni , r = 3, . . . , p. (13)

The regional frequency distribution is chosen to have
mean 1 (since the mean is the index event) and its
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L-moments and L-moment ratios are estimated by λ̂1 = 1,
λ̂2 = tR, and λ̂r = tRr , r = 3, . . . , p. These estimates
of the distribution’s L-moments and L-moment ratios are
used to obtain estimates of its parameters, as described in
Section 2.

In regional frequency analysis with L-moments when the
index event is not the mean event magnitude, it is still
convenient to compute the regional frequency distribution
as in the previous paragraph. The regional frequency dis-
tribution must be scaled appropriately to obtain quantile
estimates at individual sites. For example if the index event
is the median event magnitude and is estimated at site i
by mi, the appropriate scaling is by mi/q̂(1/2), the ratio of
the site-i median to the median of the regional frequency
distribution. Thus in this case expression (14) is modified
to

Q̂i(F ) = miq̂(F )/q̂(1/2) . (14)

This form will be used in the analysis of tsunami data in
Section 4 below.

The practical implementation of regional frequency anal-
ysis involves deciding whether a group of sites constitutes
a homogeneous region and making an appropriate choice
of a regional frequency distribution. These stages typically
involve some subjective judgement, but objective support
for these decisions can be obtained from statistical mea-
sures defined in [10, chaps. 3–5]. These include a hetero-
geneity measure that compares the between-site variation
in the L-moment ratios with what would be expected for
a homogeneous region, and goodness-of-fit statistics that
compare the regional average value of the L-kurtosis t4 with
its distribution when the proposed region is homogeneous
and has some specified regional frequency distribution.

4. Analysis of worldwide tsunami data

Application of regional frequency analysis to tsunami data
is not straightforward, since there are few data sets that
contain consistent records of tsunami observations over a
long period at multiple locations. As a measure of tsunami
magnitudes we use runup height, defined as “the maximum
height of the water observed above a reference sea level”
[14].

We obtained data from the NGDC/WDC Global Histor-
ical Tsunami Database [13]. This appears to be one of the
most complete sources of tsunami data. It contains data
for 857 events, and a total of 12850 runup observations.
The introduction to this database [14] cautions that “the
reporting of large or destructive earthquakes is not homo-
geneous in space or time, particularly for periods prior to
the 1900s” and says that this “introduce[s] uncertainties in
the earthquake and tsunami databases for events prior to
the late 1800s”. We therefore used data from the database
only for events since 1900: there are 637 such events, with
a total of 12008 runup observations.

Observations of runup height are available at many sites.
There are issues with irregular observations, when different
tsunami events are recorded at inconsistent sets of sites.
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Figure 1: 1◦ grid squares with runup height observations
for at least 10 tsunami events since 1900.

To overcome this, we combine adjacent sites into a “loca-
tion” and use a single representative measurement for each
tsunami event that affected the sites constituting a given
location. Specifically, we combine all observations within
each 1◦ square of latitude and longitude. For each event, we
use the largest runup height recorded in each grid square.
We judge that 10 is the smallest sample size that should
be used; in smaller samples there may be serious biases
in estimates of the L-moment ratios that are needed for
regional frequency analysis of tsunami data. We use data
for the 115 grid squares that have observations of at least
10 events. These locations are shown on Figure 1. They
are all on or near the Pacific Ocean. No location on the
Atlantic or Indian Oceans had sufficient observations to
reach the 10-event threshold, which unfortunately limits
the global applicability of the results of this analysis.

Sample L-moment ratios for the grid-square runup data
are shown in Figure 2. The values of L-skewness and
L-kurtosis cover a wider range and many of them are
large compared to other kinds of environmental data such
as streamflow and precipitation. This reflects the heavy-
tailed nature of distributions of runup height. Figure 3
shows a typical example, the runup heights for grid square
34◦N, 119◦W. The data are plotted on a scale on which
an exponential distribution would plot as a straight line:
the marked convexity of the plotted points indicates that
the distribution has a much heavier than exponential upper
tail.

The discordancy measure D of [10, sec. 3.2] is a useful
indicator of locations with L-moment ratios that are
markedly different from those of the other locations in a
regional data set; values D > 3 may indicate that there
are problems with a location’s data. For the tsunami data
the grid square 7◦N, 151◦E was flagged as discordant, with
D = 16.3. The data for this square look odd: the range of
the observations is from 0.03m to 0.37m, but 10 of the 15
measured runup heights are either 0.09m or 0.10m. Though
it is not clear whether the data are incorrect, we thought
it best to exclude this site from further analysis. After this
location was excluded, the discordancy statistic was cal-
culated for the other 114 locations. Five of these had D
values greater than 3, but in each case the data showed no
major irregularities, and none of the sites was excluded.
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Figure 2: L-moment ratio diagram for tsunami data.
“+” indicates sample L-moment ratios of tsunami data
from different locations; the large dot is the average of
these values. Squares show the L-skewness–L-kurtosis
values for two-parameter distributions: exponential (E),
Gumbel (G), logistic (L), normal (N), and uniform (U).
Lines show the L-skewness–L-kurtosis relations for three-
parameter distributions: generalized logistic (GLO), gen-
eralized extreme-value (GEV), generalized Pareto (GPA),
generalized normal (GNO), and Pearson type III (PE3).

The heterogeneity measure H of [10, sec. 4.3] indicates
whether the quantile functions for a set of locations satisfy
the relation (9). It essentially measures the dispersion of
the sample L-moment ratios at the different locations, rel-
ative to the amount of dispersion that would be expected if
the locations constitute a homogeneous region. According
to [10, sec. 4.3.3], a region should be regarded as “accept-
ably homogeneous” if H < 1, “possibly heterogeneous” if
1 ≤ H < 2, and “definitely heterogeneous” if H ≥ 2. For
the 114 grid squares in the tsunami data, the computed
value of H is 2.91, indicating that the locations as a whole
are heterogeneous. It is therefore worthwhile to try to par-
tition the locations into smaller sets that may be homoge-
neous, or at least less heterogeneous.

Identification of homogeneous regions within a regional
data set is discussed in [10, sec. 4.1] and has been the
subject of much research (e.g., [20, 3, 17, 12, 6]). Ide-
ally it should be based on physical understanding. In this
case, where we are looking for groups of sites that have a
similar distribution of tsunami magnitude, we might con-
sider, for example, the exposure of different segments of
coastline to different kinds of tsunami events and the pat-
terns of travel of tsunamis from their source locations to
the coast. For the present work this information was not
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Figure 3: Runup heights for grid square 34◦N, 119◦W.
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Figure 4: Tsunami data L-CV by grid square.

available and potential regions were identified based on
distances between locations and on geographic patterns
in the variation of the sample L-CV of runup heights.
Sample L-CV is a natural quantity to use for this pur-
pose, since in a homogeneous region all sites have the
same L-CV and between-site variation in L-CV is a major
contributor to heterogeneity. We acknowledge that the
use of sample L-CV in both identification of regions and
in the subsequent computation of the heterogeneity mea-
sure H compromises the integrity of H as a test of homo-
geneity [10, sec. 4.1.2]. However, in this case we feel that
it is the best available approach, and we have tried to
ensure that the regions that are identified have geograph-
ical coherence and plausibility rather than being unduly
influenced by local variations in the sample L-CV statis-
tics that may arise merely from the sampling variability of
the statistics.

For the tsunami data the L-CV values for the data in
each grid square are shown in Figure 4, with the area near
Japan shown in greater detail in Figure 5. In the Japan
area, L-CV values seem relatively high on the island of
Honshu east of 135◦E and relatively low on the island of
Hokkaido and west of 135◦E. There is also a group of high-
L-CV sites southwest of 30◦N, 135◦E. We accordingly iden-
tify four potential regions, as shown in Figure 5. In the
main body of the Pacific Ocean we identify three poten-
tial regions: the northwest, with relatively low L-CV; the
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Figure 6: Tsunami region definitions.
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Figure 5: Tsunami region definitions for Japan.

Hawaii area with high L-CV; and the southern Pacific with
mostly high L-CV. On the west coast of the Americas we
identify three potential regions: a central region with rela-
tively low L-CV and areas to the north and south with rel-
atively high L-CV. All the regions are shown, with numer-
ical labels, in Figure 6. The heterogeneity measure H was
computed for each region; the values are given in Table 1.
Regions 7 and 8 are classified as possibly heterogeneous; the
others are acceptably homogeneous. Though it would be
possible to refine the definition of Regions 7 and 8, we con-
sider this set of regions to be adequate as a first attempt,
and we use them in the subsequent analysis.

Table 1: Heterogeneity measures for tsunami regions.

Region
number Region name H

– All data 2.63
1 Japan North 0.24
2 Japan Central –1.49
3 Japan South –1.36
4 E China Sea –0.85
5 NW Pacific 0.42
6 Hawaii –0.99
7 S Pacific 1.39
8 America North 1.19
9 America Central 0.23
10 America South –1.25

The regional average L-skewness and L-kurtosis of the
ten regions are shown on Figure 7. All the regions lie close
to the plotted lines for the generalized Pareto (GPA) and
generalized normal (GNO) distributions. This is largely
confirmed by the goodness-of-fit measure of [10, sec. 5.2],
which deems the generalized Pareto and generalized normal
fits acceptable for 7 and 6 regions respectively. We prefer
to fit a generalized Pareto distribution, and we impose a
lower bound of zero on the fitted distribution: this accords
well with the nature of runup height observations, which
are positive but with many values near zero. Each region
is therefore fitted by the generalized Pareto distribution,
with quantile function

q(F ) = α{1− (1− F )k}/k . (15)
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Figure 7: L-moment ratio diagram showing regional aver-
ages for tsunami data,plotted as symbols 1 to 10. Some
points are hard to distinguish: L-moment ratios are almost
identical for Regions 8 and 10, and are very similar for
Regions 2 and 6.

The fitting procedure is as described in Section 3, and for
this 2-parameter generalized Pareto distribution is very
straightforward: the L-moments of the distribution are
given by λ1 = α/(1 + k), λ2 = α/{(1 + k)(2 + k)}; the
parameters are given in terms of the L-moment ratios by
k = 1/τ − 2, α = 1 + k; we therefore evaluate the regional
average L-CV tR as in (12) and use it as our estimate of τ
to obtain estimates of k and α. Estimated parameters and
quantiles of the fitted regional frequency distributions are
given in Table 2. The regional frequency distributions are
shown in Figure 8.
Estimation of the frequency distribution of runup height

at a particular site requires an estimate of the index event,
the scaling factor that is to be combined with the regional
frequency distribution as in (14). For grid squares with a
sufficiency of runup height observations the observed data
can provide an estimate of the index event. Because the
distribution of runup height is heavy-tailed and many grid
squares have few observations, estimation of the mean may
be unreliable and we prefer to use the median runup height
as the index event.
Consider a grid square with observations of n tsunami

events over a period of T years, and denote by hmed the
median runup height of these events. The return period of
the median event is T/( 12n) years, and in general the return
period of the event with nonexceedance probability F is
R = T/{n(1 − F )}. Inverting this relation, the nonex-
ceedance probability of the event with return period R
years is F = 1 − T/(Rn). The ratio of the magnitude of
the event with return period R years to the magnitude of
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Figure 8: Regional frequency distributions for tsunami
data.

Table 2: Parameters and quantiles of regional frequency
distributions for tsunami data.

Parameters Quantiles
Region α k 0.5 0.9 0.99 0.999

1 0.434 –0.566 0.37 2.06 9.62 37.48
2 0.287 –0.713 0.26 1.68 10.33 55.00
3 0.513 –0.487 0.42 2.18 8.87 29.43
4 0.347 –0.653 0.30 1.86 10.22 47.83
5 0.906 –0.094 0.65 2.33 5.22 8.82
6 0.257 –0.743 0.23 1.57 10.24 58.29
7 0.347 –0.653 0.30 1.86 10.22 47.79
8 0.479 –0.521 0.40 2.13 9.21 32.71
9 0.882 –0.118 0.64 2.33 5.39 9.40

10 0.376 –0.624 0.33 1.93 10.06 44.24

the median event is given by the regional frequency distri-
bution as q(1−T/(Rn))

/
q(1/2), where q( . ) is the quantile

function of the regional frequency distribution. Thus the
estimate of the event magnitude QR of return period R
years for a specific site within the grid square is

QR = hmed q(1− T/(Rn))
/
q(1/2) . (16)

We illustrate these calculations for the grid square 21◦N,
158◦W, which contains Honolulu, Hawaii. The tsunami
record for this grid square is shown in Figure 9. In the
T = 111 years starting in 1900 there have been n = 95
events, with a median runup height of hmed = 0.10m.
Honolulu is in Region 6, and the regional frequency dis-
tribution is a generalized Pareto distribution with quan-
tile function (15) and parameters (from Table 2) α=0.257,
k=−0.743. Event magnitudes (runup heights) for specified
return periods can be obtained from (16); some examples
are given in Table 3. The estimates obtained by this pro-
cedure are at best a rough approximation and do not make
use of local knowledge: in particular we would obtain the
same estimates for all sites within a grid square. For partic-
ular sites within a grid square it may be possible to improve
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Figure 9: Tsunami record for the grid square containing
Honolulu, Hawaii.

Table 3: Estimates of extreme tsunami magnitudes for
Honolulu, Hawaii.

Return period (years) 10 100 1000
Event magnitude (m) 0.57 3.82 21.84

the estimates of the index event using knowledge of local
conditions such as the underwater topography of the sea
bed near the coast. We leave this as an area for future
research.

Event magnitude estimates may also be required for a
site with no or few events in the historical record. This
is possible if the site can be assigned to a region and
an independent estimate of the median event magnitude
can be obtained. For example, on the west coast of the
Americas regions have been identified, and for sites in
grid squares with insufficient historical data the median
event magnitude could be estimated by interpolation of the
median event magnitudes in the nearest grid squares that
have sufficient number of events in their historical records.
Though a physically-based estimate might be preferred if
it was available, this purely statistical interpolation-based
approach may be satisfactory as an initial estimate.

5. Concluding remarks

Section 4 has shown how regional frequency analysis and
L-moments can be used to estimate event magnitudes at
tsunami-prone sites. It should be emphasized, however,
that this is only a preliminary analysis and is subject to
several qualifications.

The data set used has some weaknesses, since it lacks
guarantees of uniformity of data collection procedures
across time and space. For example, the cutoff at year 1900
is somewhat arbitrary. Magnitude-8 earthquakes occurred
off northern Chile in 1868 and 1877, generating tsunamis
with observed runup heights up to 18m and 24m respec-
tively. If a reliable record that included these events could
have been used in the analysis, L-CV values for grid squares
in northern Chile (the southern part of Region 9) might
have been much higher than the relatively low values com-
puted from the post-1900 data. The lack of complete
spatial coverage is also unfortunate. Had the quantity of
data been sufficient, it would have been of interest to test
whether the regional distribution of tsunami magnitudes is

similar in the Atlantic and Indian Oceans to what we have
found in different parts of the Pacific.

The runup height observations themselves are also not
entirely satisfactory. Many of the observed runup heights
are small, 0.10m or less, and it is not clear how consis-
tently these have been observed at different sites and at
different times. The L-moment statistics that are com-
bined by regional averaging may therefore not be directly
comparable: this can lead to bias and excess variability
in the final estimates. It may be preferable to consider
only observed runup heights that exceed some threshold
of importance, since these can more reliably be compared
across different sites.

As a related issue, the choice of index event needs further
consideration. The median runup height is influenced by
how many very small events are recorded at each site. It
may be preferable to use an event of specified return period,
such as the runup height with return period 10 years, which
could be estimated more consistently at different sites.

Amalgamation of data by grid square needs further
examination and justification. Though combination of data
from neighbouring sites is effective in increasing the avail-
able sample sizes, more care is needed to ensure that data
are combined only from sites with essentially the same fre-
quency distribution.

The runup height distributions have very high skewness
and heavy tails. For 7 of the 10 regions the fitted gener-
alized Pareto distribution has k < −0.5, indicating that
the distribution has infinite variance. There is not much
evidence about the reliability of L-moment methods on dis-
tributions as skewed as this. Alternative approaches, such
as the use of trimmed L-moments [5, 9] (which are designed
to accommodate distributions with very heavy tails) or
logarithmic transformation of the data (which reduces the
skewness) may be worthy of consideration.

The region definitions obtained in this analysis seem rea-
sonable, but could benefit from further refinement. Ide-
ally this would make use of physical information about the
tsunami susceptibility of different locations.

To summarize, we have presented a procedure for esti-
mation of tsunami event magnitudes of specified return
periods. In principle event magnitudes can be estimated for
any site that may be affected by tsunamis, though in prac-
tice the available extent of historical data limited the anal-
ysis to sites in the Pacific basin. The procedure is entirely
statistical and makes no use of physical understanding of
the causes and propagation of tsunamis. This is arguably a
weakness of the method that limits its ability, for example,
to distinguish between risks at sites that are geographically
close but have different exposure to tsunamis as a result of
differences in the local topography of the offshore seabed;
on the other hand, the statistical approach introduces no
biases arising from choosing which kinds of earthquakes can
generate tsunamis or from inaccurate modelling of tsunami
propagation and landfall. It is plausible that a combina-
tion of the statistical and physically-based approaches may
yield the most reliable estimates of tsunami risk.

Finally we note that a completely different regional
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approach to tsunami event magnitude could be consid-
ered. An indirect approach would first obtain a frequency
distribution for magnitudes of tsunami-generating earth-
quakes and convert this into a frequency distribution for
tsunami magnitude. Thompson et al. [18] have presented
a regional frequency analysis of global earthquake magni-
tudes; a similar approach could be used for the subset of
tsunami-generating earthquakes. A spatial distribution of
earthquakes could be obtained from the empirical distribu-
tion (possibly smoothed) of historical tsunami-generating
earthquakes. Combining these distributions yields a joint
distribution of tsunami frequency and location, and thence,
for any site of interest, a joint distribution of earthquake
magnitude M and distance R from the site. This can be
converted into a distribution of tsunami runup height H
using Abe’s [1] relation logH = M − logR− 5.80.
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