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Abstract. Optimal designs are required to make efficient statistical experiments. Calculation of
D-optimal designs is considerably simplified by using canonical moments or trigonometric canonical
moments. On the other hand, integrable systems are dynamical systems whose solutions can be
written down concretely. In the previous paper, Sekido 2011, a method for calculating D-optimal
designs for polynomial regression through a fix point is presented. In this paper, trigonometric
regression models through given points are discussed. In order to calculate the D-optimal designs
for these models, a useful relationship between trigonometric canonical moments and a class of
discrete integrable systems is found. By using trigonometric canonical moments and a discrete
integrable system, a new algorithm for calculating D-optimal designs for these models is proposed.

Keywords. D-optimal design, trigonometric canonical moment, trigonometric regression model,
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1. Introduction

In this paper, we consider the D-optimal designs for
trigonometric regression models. Optimal designs mini-
mize a variance of estimator in some sense, when a statis-
tical model is estimated. D-optimal designs correspond to
an objective function of determinant form.
D-optimal designs for various models have been calcu-

lated [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 24]. One
of the methods for calculating or analyzing D-optimal de-
signs is to use canonical moments or trigonometric canon-
ical moments. However, in most cases, an explicit form of
the D-optimal design is unknown. For example, D-optimal
designs for this kind of models have been studied. The D-
optimal designs for polynomial regression models with only
odd (or even) degree terms is calculated in [3]. Polynomial
regression models without intercept are considered in [11].
Polynomial regression models through origin are considered
in [8].
On the other hand, the term integrable system is used

for nonlinear dynamical systems whose solutions can be
written down concretely. For Hamiltonian systems with fi-
nite degree of freedom, their integrability is defined in the
Liouville-Arnold theorem [1]. However, even now, there
is no mathematical definition of integrability for nonlinear
systems with infinite degree of freedom. Integrable systems
have been applied to numerical analysis. Typical examples
are matrix eigenvalue algorithms [17, 22] in terms of the
finite nonperiodic Toda equation, and algorithms for com-
puting matrix singular values [23] in terms of the discrete
Lotka-Volterra equation.

An intimate relationship between canonical moments
and integrable systems is considered, and then an algo-
rithm for calculating D-optimal designs for polynomial re-
gression through a given point is proposed in [18]. In this
paper, we consider trigonometric regression models with
some prior information. An algorithm for calculating D-
optimal designs for trigonometric regression through given
points is proposed. Here, we begin with a new relationship
between trigonometric canonical moments and determinant
solutions of a certain discrete integrable system.

In Section 2, we give a brief review of trigonometric
regression and its D-optimal designs. Section 2 enlight-
ens that the D-optimal designs are characterized by their
trigonometric canonical moments. In Section 3, an unex-
pected relationship between trigonometric canonical mo-
ments and a discrete integrable system is revealed, at first.
Then, we formulate trigonometric regression through given
points, and we propose an algorithm for calculating D-
optimal designs for such trigonometric regression. A re-
lationship between trigonometric canonical moments and
discrete integrable systems plays an important role in the
algorithm. Section 5 is devoted to conclusions.

2. Trigonometric regression and its
D-optimal designs: A preliminary

This section explains the definition of trigonometric regres-
sion and its D-optimal designs. After that we give an in-
troduction to trigonometric canonical moments.

Consider the common mth degree trigonometric regres-
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sion models

Y =

m∑
k=0

ck cos(kx) +

m∑
k=1

sk sin(kx) + ε,

where ck and sk are unknown parameters, and ε is a ran-
dom error term.
Let P[−π,π) denote the set of all probability measures on

the Borel sets of the interval [−π, π). For given µ ∈ P[−π,π),
let γk be the kth trigonometric moment given by

γk =

∫ π

−π

e−ikxdµ(x), k = 0,±1,±2, . . . .

The D-optimal designs are defined as probability measures
in P[−π,π) which maximize the determinant of the Fisher
information matrix. It can be shown that the D-optimal
designs µ ∈ P[−π,π) for trigonometric regression models are
defined as the optimal solution of the optimization problem

maximize T2m+1(µ)

subject to µ ∈ P[−π,π),
(1)

where Tk(µ) is the Toeplitz determinants of trigonometric
moments such as

Tk(µ) = |γj−i|k−1
i,j=0. (2)

A derivation of the optimization problem (1) is written in
the book [7, Section 9] by Dette and Studden.
Now, we introduce trigonometric canonical moments.

Trigonometric canonical moments {ak}Nk=1 is a finite or in-
finite sequence of complex numbers defined as normalized
trigonometric moments. The kth trigonometric canonical
moment is defined as the normalized kth trigonometric mo-
ment γk. In the finite case where N < ∞, trigonometric
canonical moments satisfy{

|ak| < 1, k = 1, 2, . . . , N − 1,

|aN | = 1.
(3)

Conversely, for a given arbitrary sequence {ak}Nk=1 which
satisfies (3), there is a unique measure µ ∈ P[−π,π) which
has the trigonometric canonical moments {ak}Nk=1.
It is to be noted that trigonometric canonical moments

have a Toeplitz determinant expression

ak = (−1)k−1 T̃k

Tk
, (4)

where

T̃k = |γj−i+1|k−1
i,j=0.

Conversely, the Toeplitz determinant Tk can be expressed
by using trigonometric canonical moments as

Tk =
k−1∏
j=1

(1− |aj |2)k−j (5)

where k = 1, 2, . . . , N − 1.
TheD-optimal designs for trigonometric regression mod-

els are characterized by the trigonometric canonical mo-
ments such that

ak = 0, k = 1, 2, . . . , 2m.

It can be proved easily by using (5). Hence the trigonomet-
ric canonical moments help us to calculate the D-optimal
designs.
See [7, Section 9], for more details about the definition

and properties of trigonometric canonical moments.

3. D-optimal designs for the
trigonometric regression through

given points

In this section, we consider trigonometric regression mod-
els through given points. At first, we reveal a relationship
between trigonometric canonical moments and a discrete
integrable system in Subsection 3.1. Then we give the defi-
nition of the models and formulate their D-optimal designs
in Subsection 3.2. Finally, we propose an algorithm for
calculating the D-optimal designs by using trigonometric
canonical moments and the discrete integrable system in
Subsection 3.3.

3.1. Trigonometric canonical moments and dis-
crete integrable system

We indicate a relationship between trigonometric canonical
moments and a discrete integrable system, before consider-
ing trigonometric regression models through given points.
Toeplitz determinants are related to both the integrable
system and D-optimal designs. Furthermore, in some
sense, generalized trigonometric canonical moments satisfy
a class of discrete integrable system.
At first, we define a sequence of a linear combination

of trigonometric moments. For given trigonometric mo-
ments γk, k = 0,±1,±2, . . . and an arbitrary real sequence

λ(t), t = 0, 1, 2, . . ., we define γ
(t)
k by the recurrence for-

mula

γ
(0)
k = γk,

γ
(t+1)
k = γ

(t)
k+1 − 2λ(t) + γ

(t)
k−1,

(6)

where k = 0,±1,±2, . . . , t = 0, 1, 2, . . .. Let T
(t)
k and T̃

(t)
k

be the Toeplitz determinant of γ
(t)
k , that is,

T
(t)
k = |γ(t)

j−i|
k−1
i,j=0, T̃

(t)
k = |γ(t)

j−i+1|
k−1
i,j=0. (7)

Then, we can prove the following proposition.

Proposition 1. Let a
(t)
k be defined as

a
(t)
k = (−1)k−1 T̃

(t)
k

T
(t)
k

. (8)
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Then a
(t)
k satisfy the discrete modified Korteweg-de Vries

(dmKdV, for short) equation

a
(t+1)
k = a

(t)
k −

a
(t+1)
k−1 − a

(t)
k+1

a
(t)
1 + 2λ(t) + a

(t)
1

∏k
j=1(1− |a(t)j |)2∏k−1

j=1 (1− |a(t+1)
j |)2

(9)

where k = 0,±1,±2, . . . , t = 0, 1, 2, . . ..

Here, the dmKdV equation is one of discrete time inte-
grable systems derived by [15] which is derived from the
modified KdV equation through an integrable discritiza-
tion. It it to be noted that Ref. [15] considers only the case

where λ(t) = 0. The value γ
(t)
k defined by (6) is considered

by [16] in terms of the discrete Schur flow. This proposition
can be proved by a similar way to the case where λ(t) = 0.
We omit the details of the proof.

We call a
(t)
k the generalized trigonometric canonical mo-

ments in this paper, since a
(0)
k = ak. Here, Proposition

1 indicates that the trigonometric canonical moments ak
can be given from the determinant solution of the dmKdV

equation (7) through ak = a
(0)
k .

3.2. Formulation of trigonometric regression
through given points

Here, let us consider trigonometric regression models
through given points. Throughout this paper, given points
means that we know values of E(Y |x = βk) as prior infor-
mation, for some points x = βk. Moreover, we consider the
case where we know values of differential of E(Y |x) addi-
tionally at the given points. The definition of the model
is

Y =
m+S∑
k=0

ck cos kx+
m+S∑
k=1

sk sin kx+ ε (10)

with known values as prior information

h(β0),
dh

dx
(β0), · · · ,

db0−1h

dxb0−1
(β0),

h(−β0),
dh

dx
(−β0), · · · ,

db0−1h

dxb0−1
(−β0),

h(β1),
dh

dx
(β1), · · · ,

db1−1h

dxb1−1
(β1),

h(−β1),
dh

dx
(−β1), · · · ,

db1−1h

dxb1−1
(−β1),

...,

h(βl−1),
dh

dx
(βl−1), · · · ,

dbl−1−1h

dxbl−1−1
(βl−1),

h(−βl−1),
dh

dx
(−βl−1), · · · ,

dbl−1−1h

dxbl−1−1
(−βl−1),

where

β0, β1, . . . , βl−1 are distinct positive numbers less than π,

S = b0 + b1 + · · ·+ bl−1 is a number of known values,

h(x) = E(Y |x) =
m+S∑
k=0

ck cos kx+
m+S∑
k=1

sk sin kx.

We denote the above trigonometric regression model as
TRMm(β, b), for short, where β = (β0, β1, . . . , βl−1), b =
(b0, b1, . . . , bl−1). Note that we only consider the case where
the given prior information is symmetric with respect to
x = 0. We also note that some cases where the given
prior information is not symmetric can be reduced to the
above symmetric case by the transformation y = x + α.
For example, the case with given prior information h(x) at
x = β0, β1 can be reduced to TRMm((|β1 − β2|/2), (1)) by
the transformation y = x− (β0 + β1)/2.
Let us formulate TRMm(β, b) as a linear regression

model. A linear regression model can be written as

Y = θTf(x) + ε

=
(
θ0 θ1 · · · θm−1

)


f0(x)
f1(x)

...
fm−1(x)

+ ε,

where f(x) = (f0(x), f1(x), . . . , fm−1(x))
T is a known vec-

tor of basis functions, and θk are unknown parameters. A
trigonometric regression model through given points does
not correspond to a linear regression model uniquely. How-
ever, we can define D-optimal designs for TRMm(β, b)
uniquely, since D-optimal designs depend only on the lin-
ear space spanned by the basis functions. (See [7, Theorem
5.5.1].) Therefore, we can consider that the linear regres-
sion model with a vector Af(x) of basis functions is essen-
tially the same as that with f(x), if A is a real nonsingular
matrix.
As the result of a formulation, we obtain the following

theorem. A proof of this theorem is given in Appendix.

Theorem 1. The D-optimal design µ ∈ P[−π,π) for
TRMm(β, b), where β = (β0, β1, . . . , βl−1) denotes the
given points, is described as the optimal solution of the
optimization problem

maximize T
(2S)
2m+1(µ)

subject to µ ∈ P[−π,π),
(11)

where the parameters λ(t) of (6) are chosen satisfying

λ(0) = λ(1) = · · · = λ(2b0−1) = cosβ0,

λ(2b0) = λ(2b0+1) = · · · = λ(2b0+2b1−1) = cosβ1,

...

λ(2b1+2b2+···+2bl−2) = λ(2b1+2b2+···+2bl−2+1) =

· · · = λ(2b1+2b2+···+2bl−1−1) = cosβl−1.

3.3. Construction of the D-optimal designs for
trigonometric regression through given
points

As indicated in [13], D-optimal designs can be character-
ized by their trigonometric canonical moments. Moreover,
considering trigonometric canonical moments, instead of
trigonometric moments, simplify the set P[−π,π) of feasible
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solutions of (11). Therefore, we propose a method for cal-

culating an expression of the objective function T
(2S)
2m+1(µ)

in terms of trigonometric canonical moments ak. The fol-
lowing three formulas among the generalized trigonometric

canonical moments a
(t)
k and trigonometric moments γk can

be used for our aims. The first formula is the dmKdV
equation (9). The second formula is

T
(t)
k =

(
γ
(t)
0

)k k−1∏
j=1

(
1− |a(t)j |

)k−j

. (12)

This formula (12) can be derived from the definition (8)
of the generalized trigonometric canonical moments. The
third formula is

γ
(t+1)
0 = γ

(t)
0

(1− |a(t)1 |2)(1 + a
(t)
2 )

a
(t+1)
1 − a

(t)
1

, γ
(0)
0 = 1. (13)

The second formula (12) and the third formula (13) are
proved in Appendix.

The objective function T
(2S)
2m+1(µ) can be rephrased in

terms of the generalized trigonometric canonical moments
by using the second formula (12) and the third formula
(13). Therefore, the generalized trigonometric canonical
moments are rephrased in terms of trigonometric canonical
moments through the dmKdV equation (9).
By putting it all together, it turns out that an expres-

sion of the objective function T
(2S)
2m+1(µ) in terms of trigono-

metric canonical moments can be obtained, for example,
by using a computer algebra system. After obtaining the
expression, we can calculate trigonometric canonical mo-

ments which maximize the objective function T
(2S)
2m+1(µ) nu-

merically.
Note that trigonometric canonical moments can be a se-

quence of arbitrary complex numbers which satisfy |ak| ≤
1. It is a bit complicated, however, there exists at least one
D-optimal designs for TRMm(β, b) whose all trigonomet-
ric canonical moments are real. This fact can be shown by
using a convexity of the optimization problem, and using
symmetricity of the model TRMm(β, b). The D-optimal
designs can be obtained by using Theorem 3.4.1 in the
book [7] after trigonometric canonical moments are given,
if trigonometric canonical moments are real.
By putting it all together, the algorithm for calculating

D-optimal designs for TRMm(β, b) is described as follows.

The algorithm for calculating D-optimal designs
for TRMm(β, b)

Step 1. By using Theorem 1, describe the objective

function T
(2S)
2m+1 in terms of a

(t)
k and γ

(t)
0 .

Step 2. By using the formulas (9), (12) and (13), de-

scribe the objective function T
(2S)
2m+1 in terms of

trigonometric canonical moments ak.
Step 3. Find trigonometric canonical moments which

maximize the objective function T
(2S)
2m+1.

4. Examples

Let us consider the case where m = 1, β = (β0), b = (1),
that is, we consider the model

Y = c0 + c1 cosx+ c2 cos 2x+ s1 sinx+ s2 sin 2x,

with two known values as prior information

c0 + c1 cosβ0 + c2 cos 2β0 + s1 sinβ0 + s2 sinβ0,

c0 + c1 cosβ0 + c2 cos 2β0 − s1 sinβ0 − s2 sinβ0.

The objective function corresponding to D-optimal designs
for this model can be expressed in terms of trigonometric
canonical moments by using the proposed algorithm, then
we can find the trigonometric canonical moments numeri-
cally which maximize the objective function. The results
for some β0 are shown in Table 1.

5. Conclusions

In this paper, we first indicate a relationship between
trigonometric canonical moments and a discrete integrable
system. By using this relationship, we propose a new al-
gorithm for calculating an expression of the Toeplitz de-

terminant T
(2S)
k in terms of trigonometric canonical mo-

ments ak, where T
(2S)
k is the objective function of the opti-

mization problem (11). This algorithm enable us to calcu-
late D-optimal designs for trigonometric regression models
through given points.
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A. Appendix

A.1. The proof of Theorem 1

The optimization problem (1) corresponding to ordinary
trigonometric regression is derived through a linear regres-
sion model with the vector of basis functions

f(x) = (e−imx, e−i(m−1)x, . . . , eimx)T

or

f(x) = (1, cosx, . . . , cosmx, sinx, sin 2x, . . . , sinmx)T.

On the other hand, it can turn out that the optimization
problem (11) corresponding to TRMm(β, b) corresponds to
a vector of basis functions

f(x) =

l−1∏
j=0

(e−ix − 2 cosβj + eix)bj

(e−imx, e−i(m−1)x, . . . , eimx)T
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β0 ak D-optimal design
β0 = 0.451 a1 = 0.520 P (−1.287) = 0.333
cosβ0 = 0.900 a2 = −0.684 P (0.000) = 0.333

a3 = 1.000 P (1.287) = 0.333
β0 = 0.644 a1 = 0.541 P (−1.225) = 0.333
cosβ0 = 0.800 a2 = −0.702 P (0.000) = 0.333

a3 = 1.000 P (1.225) = 0.333
β0 = 0.795 a1 = 0.562 P (−1.219) = 0.333
cosβ0 = 0.700 a2 = −0.720 P (0.000) = 0.333

a3 = 1.000 P (1.219) = 0.333
β0 = 0.927 a1 = 0.421 P (−3.141) = 0.136
cosβ0 = 0.600 a2 = −0.009 P (−1.085) = 0.287

a3 = −0.521 P (0.000) = 0.289
a4 = 1.000 P (1.085) = 0.287

β0 = 1.047 a1 = 0.194 P (−3.141) = 0.333
cosβ0 = 0.500 a2 = 0.480 P (−0.659) = 0.333

a3 = −1.000 P (0.659) = 0.333
β0 = 1.159 a1 = 0.200 P (−3.141) = 0.333
cosβ0 = 0.400 a2 = 0.500 P (−0.644) = 0.333

a3 = −1.000 P (0.644) = 0.333
β0 = 1.266 a1 = 0.267 P (−3.141) = 0.333
cosβ0 = 0.300 a2 = 0.521 P (−0.626) = 0.333

a3 = −1.000 P (0.626) = 0.333
β0 = 1.369 a1 = 0.214 P (−3.141) = 0.333
cosβ0 = 0.200 a2 = 0.543 P (−0.609) = 0.333

a3 = −1.000 P (0.609) = 0.333
β0 = 1.471 a1 = 0.221 P (−3.141) = 0.333
cosβ0 = 0.100 a2 = 0.567 P (−0.589) = 0.333

a3 = −1.000 P (0.589) = 0.333
β0 = 1.521 a1 = 0.143 P (−2.834) = 0.197
cosβ0 = 0.050 a2 = 0.589 P (−0.549) = 0.303

a3 = −0.629 P (0.549) = 0.303
a4 = −1.000 P (2.834) = 0.197

β0 = 1.571 a1 = 0.000 P (−2.678) = 0.250
cosβ0 = 0.000 a2 = 0.600 P (−0.464) = 0.250

a3 = 0.000 P (0.464) = 0.250
a4 = −1.000 P (2.678) = 0.250

β0 = 1.621 a1 = −0.143 P (−2.592) = 0.303
cosβ0 = −0.050 a2 = 0.589 P (−0.308) = 0.197

a3 = 0.629 P (0.308) = 0.197
a4 = −1.000 P (2.592) = 0.303

Table 1: D-optimal designs for TRM1((β0), (1)). The
second column contains trigonometric canonical moments
maximizing the objective function. The third column con-
tains the support points and its weights of D-optimal de-
signs, where P (s) = w means the D-optimal design has
support s whose weight is w.

or

f(x) =
l−1∏
j=0

(e−ix − 2 cosβj + eix)bj

(1, cosx, . . . , cosmx, sinx, sin 2x, . . . , sinmx)T

(14)

by simple calculation. See [7, Section 9] for detail.

Let gk(x) be the vector of functions

gk(x) = (1, cosx, . . . , cos kx, sinx, sin 2x, . . . , sin kx)T.

To prove Theorem 1, it suffices to show that TRMm(β, b)
corresponds to the vector of the basis functions (14).
Moreover, according to the symmetricity of β and b,
we should prove by the principle of induction only that
TRMm((β0, β1, . . . , βl−1), (b0, b1, . . . , bl−1)) corresponds to
the vector of the basis functions (14), under the assump-
tion that TRMm+1((β0, β1, . . . , βl−1), (b0− 1, b1, . . . , bl−1))
corresponds to the vector of the basis functions

f(x) =(e−ix − 2 cosβ0 + eix)b0−1l−1∏
j=1

(e−ix + 2 cosβj + eix)2bj

 gm+1(x).
(15)

Let M(x) =
∏l−1

j=1(e
−ix + 2 cosβj + eix)bj , and

let the linear regression model corresponding to
TRMm+1((β0, β1, . . . , βl−1), (b0 − 1, b1, . . . , bl−1)) be

Y =(e−ix − 2 cosβ0 + eix)b0−1M(x)(
m+1∑
k=0

ck cos kx+

m+1∑
k=1

sk sin kx

)
+ ε.

(16)

When TRMm((β0, β1, . . . , βl−1), (b0, b1, . . . , bl−1)) is con-
sidered, we know the two more values

db0−1

dxb0−1

(
(e−ix − 2 cosβ0 + eix)b0−1M(x)(

m+1∑
k=0

ck cos kx+
m+1∑
k=1

sk sin kx

))∣∣∣∣∣
x=β0

,

db0−1

dxb0−1

(
(e−ix − 2 cosβ0 + eix)b0−1M(x)(

m+1∑
k=0

ck cos kx+

m+1∑
k=1

sk sin kx

))∣∣∣∣∣
x=−β0

(17)

as prior information. Since

dk

dxk

(
e−ix − 2 cosβ0 + eix

)b0−1
∣∣∣∣
x=β0

= 0,

k = 0, 1, . . . , b0 − 2,
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the prior information (17) becomes

− 2(b0 − 1)!(sinβ0)M(β0)(
m+1∑
k=0

ck cos kβ0 +
m+1∑
k=1

sk sin kβ0

)
,

2(b0 − 1)!(sinβ0)M(β0)(
m+1∑
k=0

ck cos kβ0 −
m+1∑
k=1

sk sin kβ0

)
,

(18)

respectively, by using the general Leibniz rule. Note that
(sinβ0)M(β0) ̸= 0, since β0, β1, . . . , βl−1 are distinct pos-
itive numbers less than π. We can here obtain the two
values

α1 =

m+1∑
k=0

ck cos kβ0, α2 =

m+1∑
k=1

sk sin kβ0 (19)

from the prior information (18).

Substitute c0 = α1 −
∑m+1

k=1 ck cos kβ0 and s1 = (α2 −∑m+1
k=2 sk sin kβ0)/ sinβ0 into (16), we obtain

Y =(e−ix − 2 cosβ0 + eix)b0−1M(x)(
m+1∑
k=1

ck(cos kx− cos kβ0)

+
m+1∑
k=2

sk

(
sin kx− sinx

sin kβ0

sinβ0

)

+ α1 +
α2

sinβ0

)
+ ε.

(20)

When we obtain a response yk by observation at the
experimental condition xk, we can calculate the value
yk−(e−ixk −2 cosβ0+eixk)b0−1M(xk)(α1+α2/ sinβ0) eas-
ily. Therefore, we ignore the α1 + α2/ sinβ0 in the model
(20). Then, we here obtain the vector of the basis functions

(e−ix − 2 cosβ0 + eix)b0−1M(x)

cosx− cosβ0

cos 2x− cos 2β0

...
cos(m+ 1)x− cos(m+ 1)β0

sin 2x− sinx sin 2β0/ sinβ0

sin 3x− sinx sin 3β0/ sinβ0

...
sin(m+ 1)x− sinx sin(m+ 1)β0/ sinβ0


.

(21)

Let the nonsingular real matrix A be

A =

(
A1 0
0 A2

)
∈ R(2m+1)×(2m+1),

where

A1 =



2 0 0 · · · 0 0
1− 2 cosβ0 1 0 · · · 0 0

1 −2 cosβ0 1 · · · 0 0
...

. . .
. . .

1 0 0 · · · 1 0
1 0 0 · · · −2 cosβ0 1


∈ R(m+1)×(m+1),

A2 =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

. . .
...

0 0 0 · · · 1 0
0 0 0 · · · −1 1


∈ Rm×m.

Then, by multiplying A to the vector (21) of basis functions
from the left, we obtain (14).

A.2. The proof of formula (12)

From the definition (8) of generalized trigonometric canon-
ical moments, we obtain

(T
(t)
k )2|a(t)k |2 = T̃

(t)
k T̃

(t)
k ,

where the bar indicates the complex conjugate. Note that

γ
(t)
k = γ

(t)
−k, and that T

(t)
k is real. By using Sylvester’s

determinant identity

T
(t)
k+1T

(t)
k−1 = (T

(t)
k )2 − T̃

(t)
k T̃

(t)
k ,

we obtain

T
(t)
k+1/T

(t)
k

T
(t)
k /T

(t)
k−1

= 1− |ak|2,

and it indicates

T
(t)
k

T
(t)
k−1

=
T

(t)
k−1

T
(t)
k−2

(1− |ak−1|2)

=
T

(t)
k−2

T
(t)
k−3

(1− |ak−2|2)(1− |ak−1|2)

=
T

(t)
1

T
(t)
0

k−1∏
j=1

(1− |aj |2)

= γ
(t)
0

k−1∏
j=1

(1− |aj |2).

Therefore, the formula (12)

T
(t)
k = T

(t)
k−1γ

(t)
0

k−1∏
j=1

(1− |aj |2)

=
(
γ
(t)
0

)k k−1∏
j=1

(
1− |a(t)j |

)k−j

is shown.
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A.3. The proof of formula (13)

The equation

a
(t+1)
k − a

(t)
k = −

T
(t+1)
k−1 /T

(t+1)
k

T
(t)
k−1/T

(t)
k

(1− |a(t)k |2)(a(t+1)
k−1 − a

(t)
k+1)

(22)

is shown by [16]. By substituting k = 1, we obtain the
equation (13) from (22). Note that (22) holds for arbitrary

λ
(t)
k .
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