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Abstract. Because of their causal structure, (convolution) Volterra integral equations arise as
models in a variety of real-world situations including rheological stress-strain analysis, population
dynamics and insurance risk prediction. In such practical situations, often only an approximation
for the kernel is available. Consequently, a key aspect in the analysis of such equations is estimating
the effect of kernel perturbations on the solutions. In this paper, it is shown how kernel perturbation
results derived for the interconversion equation of rheology can be extended to the analysis of kernel
perturbations for first kind convolutional integral equations with positive kernels, solutions and
forcing terms.
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1. Introduction

Much practical modelling of real-world processes is per-
formed using ordinary and partial differential equations,
because the underlying model corresponds to a properly
posed problem with known parameter values. A different
situation arises in parameter estimation, when it is nec-
essary to estimate, from measurements, the value of the
parameters which define the specific structure of the prop-
erly posed problem to be solved; or in the recovery of in-
formation from indirect measurements such as arise in to-
mography, geophysical exploration and medical diagnosis.
Now the models which must be solved are improperly posed
[9, 14].
An important subclass of improperly posed problems are

first kind Volterra integral equations [6, 7, 13, 17]

t∫
0

K (t, s)u (s) ds = f,

where K, u and f denote respectively the kernel, solution
and forcing term. In many industrial situations, including
material science [15, 12], population dynamics and insur-
ance risk assessement [10, 11, 8, 20], the underlying math-
ematical model is a first kind convolution Volterra integral
equation

(k ∗ u)(t) =
t∫

0

k (t− s)u (s) ds = f, (1)

where k, u and f denote respectively the convolution ker-
nel, solution and forcing term. An important subclass of

such equations are the equations with positive kernels and
solutions. Such a situation arises in the recovery of infor-
mation about the relaxation behaviour of a polymer from
stress-strain measurements [1, 18, 19], where k corresponds
to the linear viscoelastic relaxation modulus G(t), u the
applied strain-rate γ̇ = dγ/dt and f the measured stress
response σ. In this situation, the focus is on the construc-
tion, from measurements of the stress response σ and the
strain-rate γ̇, of an approximation G̃ to G, for which it is
necessary to solve some appropriate form of the Boltzmann
equation of linear viscoelasticity

σ =

∫ t

−∞
G(t− τ)γ̇(τ)dτ.

This approximation is often used to determine the corre-
sponding approximation J̃ to the creep (retardation) mod-
ulus J by solving the “interconversion equations”

(J ∗G)(t) =

t∫
0

J (t− s)G (s) ds

= (G ∗ J)(t) =
t∫

0

G (t− s)J (s) ds = t,

(2)

where, in terms of the first kind convolution Volterra equa-
tion (1), the kernel k corresponds to the linear viscoelastic
creep modulus J(t), u the applied stress-rate σ̇ = dσ/dt
and f the measured strain response γ.
The motivation for solving the interconversion equation

is both practical and theoretical. The cost of instruments
to measure either the stress response σ to a given ap-
plied strain-rate γ̇ or the strain response γ to a given
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applied stress-rate σ̇ is very expensive, and considerable
time is required to perform either one of these experi-
ments [1, 18, 19]. If it is assumed that the stress-strain
response of the material being studies is linear viscoelastic,
then the interconversion equation (2) is an immediate con-
sequence. Consequently, for a given approximation G̃, the
corresponding approximation J̃ must satisfy the intercon-
version equation (2), in order to guarantee consistency with
the linear viscoelasticity assumption. This leads naturally
to the need to examine the effect of the error δG = G− G̃
on the resulting error δJ = J − J̃ . This has already been
examined in some detail in [1, 2, 3]. The historical im-
portance of these practical considerations is reflected in
the fact that the interconversion equation was one of the
first problems to be examined computationally on the early
electronic computers [16].

An alternative rheological use of equation (1) arises
when, for a given relaxation modulus G and stress σ, the
corresponding form for the strain rate γ̇ is required, which
corresponds to solving equation (1) with k = G, u = γ̇ and
f = σ. The need to perform such simulations for a variety
of choices for G and σ arise in the design of rheometers.
Now, in equation (1), the effect on the solution u of per-
turbations k̃ in the kernel k is required. Here, the analysis
for kernel perturbations associated with the interconversion
equation (2) [2, 3, 4] is modified to derive the correspond-
ing bounds for this situation.

Consequently, the corresponding approximation ũ to the
solution of equation (1) will satisfy (for fixed forcing term
f)

(k̃ ∗ ũ)(t) = f. (3)

The behaviour of the error δu = (u− ũ) will depend on the
effect of kernel perturbations δk = (k − k̃).

2. Interconversion

The interconversion equation (2) plays a fundamental role
in determining estimates of the relaxation G(t) and creep
(retardation) J(t) modulii. Once an estimate G̃ or J̃ for
eitherG or J , respectively, has been determined experimen-
tally, the corresponding estimate for J̃ or G̃ is obtained by
solving the interconversion equation (2) without the need
to perform an additional independent experiment. In ad-
dition, it ensures the consistency of the resulting J̃ or G̃
by ensuring that they satisfy, at least approximately, the
interconversion equation (2).

In a series of papers [1, 2, 3, 4], it has been established
and analysed theoretically that the recovery of J̃ from G̃
is stable whereas the recovery of G̃ from J̃ cannot be guar-
anteed, in a given situation, to be stable. Consequently,
from a kernel perturbation analysis of the stability of the
solution of the interconversion equation (2), attention must
be limited to the recovery of J̃ from G̃. Recently, it has

been shown [4] that

|δJ (t)| ≤ J (t) J̃ (t) max
0≤s≤t

|δG (s)| , (4)∣∣∣∣δJ (t)

J (t)

∣∣∣∣ ≤ max
0≤s≤t

∣∣∣∣δG (s)

G̃ (s)

∣∣∣∣ , (5)∣∣∣∣δJ (t)

J̃ (t)

∣∣∣∣ ≤ max
0≤s≤t

∣∣∣∣δG (s)

G (s)

∣∣∣∣ . (6)

The assumed complete monotonicity [5] of G, G̃, dJ/dt and
dJ̃/dt, in order to guarantee consistency with the conserva-
tion of energy, is much stronger than the regularity invoked
in [4] to prove the basic lemmas from which these bounds
are derived.
The goal of this paper is to derive the counterparts of

the above results for the first kind convolution Volterra
integral equation (1), under the minimum regularity needed
to guarantee their validity.

3. The Kernel Perturbation Estimates

Corresponding to the situation for the interconversion
equation (2) and the associated rheological application at-
tention will focus on the practical situation where the ker-
nel k, the solution u and the forcing term f are non-
negative. For simplicity, attention will focus on regularity
conditions defined in terms of the continuity of appropriate
derivatives.

Lemma 1. Let k ∈ C1[0,∞), f ∈ C2[0,∞), k(0) > 0, k̇ <
0, f(0) = 0, ḟ(0) > 0, and f̈ ≥ 0. Then, the convolution
first kind Volterra equation (1) has a unique solution u ∈
C1[0,∞) which satisfies u > 0, u̇ > 0 and ku ≤ ḟ .

Proof. Differentiation of equation (1) with respect to t
yields

k(0)u(t) + (k̇ ∗ u)(t) = ḟ , (7)

which is a second kind Volterra integral equation. Stan-
dard theory for second kind Volterra integral equations [7]
ensures the existence of a unique solution u ∈ C1[0,∞) of
(7) and hence (1). In addition,

u(0) =
ḟ(0)

k(0)
> 0.

On assuming that u(t) > 0 for 0 < t < t# < ∞ with
u(t#) = 0, it follows that, since the conditions of the
Lemma imply that ḟ > 0,

0 = k(0)u(t#) = ḟ(t#)− (k̇ ∗ u)(t#) > 0,

which contradicts the assumption that u(t#) = 0 and
thereby yields u(t) > 0, t ∈ [0,∞). Differentiation of equa-
tion (7) with respect to t then yields

k(0)u̇(t) + (k̇ ∗ u̇)(t) = f̈(t)− u(0)k̇(t). (8)

Standard second kind Volterra integral equation theory
now guarantees the existence of u̇ ∈ C0[0,∞). From the
conditions of the Lemma, it follows that

u̇(0) =
1

k(0)

(
f̈(0)− u(0)k̇(0)

)
> 0.
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On assuming that u̇(t) > 0 for 0 < t < t# < ∞ with
u̇(t#) = 0, it follows that, since f̈ ≥ 0,

0 = k(0)u̇(t#) = f̈(t#)− (k̇ ∗ u̇)(t#)− u(0)k̇(t#) > 0,

which yields the contradition which proves that u̇(t) > 0
for t ∈ [0,∞). Finally, from (7), it follows, on using the
fact that u > 0, u̇ > 0, that

ḟ = k(0)u(t) + (k̇ ∗ u)(t),
≥ k(0)u(t) + (k̇ ∗ 1)(t)u(t),
= k(t)u(t).

We now take advantage of the analysis of the intercon-
version equation given in [2, 3] and generalized in [4].

Lemma 2. For a given k ∈ C1[0,∞) with k(0) > 0, there
exists a unique h ∈ C[0,∞) such that

(k ∗ h)(t) = t. (9)

Proof. As in Lemma 1, differentiation of equation (9) yields
the second kind equation

k(0)h(t) + k̇ ∗ h = 1,

to which standard Volterra integral equation theory [7] can
be applied to yield the stated result.

It is such relationships that played the pivotal role in
allowing the types of estimates given in equations (4), (5)
and (6) to be derived. For the perturbed kernel k̃ of equa-
tion (3), the counterpart of this lemma, under the same
regularity, also holds; namely, there exist a unique h̃ such
that

k̃ ∗ h̃ = t.

The properties of h (and the corresponding properties of
h̃) required in the sequel are:

Corollary 1. For k ∈ C1[0,∞), k(0) > 0 and k̇ < 0,
the solution h of equation (9) satisfies h ∈ C1[0,∞), h >
0, ḣ > 0, and h(0)k(0) = 1.

Proof. This is an immediate consequence of Lemma 1 on
setting f = t.

Lemma 3. Let k ∈ C1[0,∞) with k(0) > 0 and f ∈
C1[0,∞). Then, the solution of equation (1) is given by

u(t) =
d2(h ∗ f)

dt2
. (10)

Proof. From equation (9), it follows that

t ∗ u = h ∗ f.

On the basis of Lemma 2, the differentiation of h ∗ f twice
with respect to t yields the relationship

d2(h ∗ f)
dt2

= h(0)ḟ(t) + f(0)ḣ(t) + ḣ ∗ ḟ ,

which, in conjunction with the assumptions of this Lemma
and Corollary 1, establishes the twice differentiability of
h∗f and hence of t∗u. The stated result follows on actually
performing the twice differentiation of t ∗ u.

For the perturbed kernel k̃ of equation (3), the counter-
part of this lemma, under the same regularity, also holds;
namely,

ũ =
d2(h̃ ∗ f)

dt2
.

Theorem 1. Let k ∈ C1[0,∞), f ∈ C2[0,∞), k(0) > 0,
k̇ < 0, f(0) = 0, ḟ(0) > 0 and f̈ ≥ 0. In addition, let

k̃ ∈ C1[0,∞), k̃(0) > 0, and
˙̃
k < 0. Then∣∣∣∣δu (t)u (t)

∣∣∣∣ ≤ max
0≤s≤t

∣∣∣∣δk (s)k̃ (s)

∣∣∣∣ , (11)∣∣∣∣δu (t)ũ (t)

∣∣∣∣ ≤ max
0≤s≤t

∣∣∣∣δk (s)k (s)

∣∣∣∣ . (12)

Proof. On assuming that, for the kernel and solution of the

perturbed equation (3), k̃ ∈ C1[0,∞), k̃(0) > 0,
˙̃
k < 0, it

follows from Lemma 1 that ũ > 0, ˙̃u > 0, k̃ũ ≤ ḟ . In
addition, since the right hand side term in equations (1)
and (3) is the same, it follows that k̃ ∗ ũ = k ∗ u, and,
hence, that

k̃ ∗ δu = −u ∗ δk, (13)

and

k ∗ δu = −ũ ∗ δk. (14)

The application of Lemma 3 to equation (13) yields

δu = −d2(h̃ ∗ u ∗ δk)
dt2

,

= −h̃(0)u(0)δk − (h̃(0)u̇+ u(0)
˙̃
h+

˙̃
h ∗ u̇) ∗ δk.

On the basis of the assumptions made about k, k̃, f and
f̃ along with the results of Lemma 1 and Corollary 1, it
follows that

a = h̃(0)u(0) > 0 and b(t) = (h(0)u̇+u(0)
˙̃
h+

˙̃
h∗ũ)(t) > 0.

Using these facts, in conjunction with the inequalities

aδk ≤ ak̃ max
0≤s≤t

∣∣∣∣δk(s)k̃(s)

∣∣∣∣ , |a∗δk(t)| ≤ a∗k̃(t) max
0≤s≤t

∣∣∣∣δk(s)k̃(s)

∣∣∣∣ ,
yields

|δu(t)| ≤ (h̃(0)u(0)k̃ + (h̃(0)u̇+ u(0)
˙̃
h+

˙̃
h ∗ u̇) ∗ k̃)(t)

max
0≤s≤t

∣∣∣∣δk(s)k̃(s)

∣∣∣∣ ,
=

d2(h̃ ∗ k̃ ∗ u)
dt2

max
0≤s≤t

∣∣∣∣δk(s)k̃(s)

∣∣∣∣ ,
= u(t) max

0≤s≤t

∣∣∣∣δk(s)k̃(s)

∣∣∣∣ .
The first estimate (11) in Theorem 1 is an immediate con-
sequence of this last result, since, from Lemma 1, u(t) > 0.
The second estimate (12) in Theorem 1 follows on appling
an analogous argument to equation (14).
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4. Conclusions

The current paper builds on the early work of Anderssen,
Davies and de Hoog [1, 2, 3] and establishes that the inter-
conversion relationship (9) has wider applicability than the
original interconversion kernel stability analysis for which
it was initially invoked.
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