
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Time and Space Efficient Lempel-Ziv
Factorization based on Run Length Encoding

Yamamoto, Jun'ichi
Department of Informatics, Kyushu University

Bannai, Hideo
Department of Informatics, Kyushu University

Inenaga, Shunsuke
Department of Informatics, Kyushu University

Takeda, Masayuki
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/21745

出版情報：2012-04-25
バージョン：
権利関係：

Time and Space Efficient Lempel-Ziv
Factorization based on Run Length Encoding

Jun’ichi Yamamoto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda

Department of Informatics, Kyushu University
{junichi.yamamoto,bannai,inenaga,takeda}@inf.kyushu-u.ac.jp

Abstract. We propose a new approach for calculating the Lempel-Ziv
factorization of a text efficiently, based on run length encoding (RLE).
We present a conceptually simple off-line algorithm based on a variant of
suffix arrays, as well as an on-line algorithm based on a variant of directed
acyclic word graphs (DAWGs). Both algorithms run in O(N + n logn)
time and O(n) extra space, where N is the size of the text, n ≤ N is
the number of RLE factors. The time dependency on N is only in the
conversion of the text to RLE, which can be computed very efficiently
in O(N) time and O(1) extra space. When the text is compressible via
RLE, i.e., n = o(N), our algorithms are, to the best of our knowledge,
the first algorithms which require only o(N) extra space while running
in o(N logN) time.

1 Introduction

The run-length encoding (RLE) of a string S is a natural encoding of S, where
each maximal run of character a of length p in S is encoded as ap, e.g., the
RLE of string aaaabbbaa is a4b3a2. Since RLE can be regarded as a compressed
representation of strings, processing time and working space can be reduced
significantly when RLE strings are not required to be decompressed while being
processed. In fact, quite a number of efficient algorithms that deal with RLE
strings have been proposed (e.g.:[2, 1, 15, 9, 14, 4]). In this paper, we introduce yet
another application of efficient processing via RLE, the Lempel-Ziv factorization
(LZ factorization).

The LZ factorization (and its variants) of a string [22, 21, 5] is a very impor-
tant concept with applications not only in the field of data compression but also
in the field string algorithms [13, 8]. Therefore, there exists a large amount of
work devoted to its efficient computation. A näıve algorithm that computes the
longest common prefix with each of the O(N) previous positions only requires
O(1) space, but can take Θ(N2) time. Most recent algorithms [7, 6, 18] basically
require the suffix array of the string, consequently taking Θ(N) extra space and
at least Θ(N) time to construct.

In this paper, we propose a new approach for calculating the Lempel-Ziv
factorization of a string, based on RLE. An interesting feature of our algorithms
is that the input string is first “compressed” to RLE, and is then further “com-
pressed” to the LZ encoding. We first show that the size of the LZ encoding

with self-references (i.e., allowing overlapping factors) is at most twice as large
as the size of RLE, and can be much smaller. This implies that the working
space of our approach is dependent only on the size of RLE. We present two
efficient algorithms: an off-line algorithm based on suffix arrays for RLE strings,
and an on-line algorithm based on directed acyclic word graphs (DAWGs) for
RLE strings. Both algorithms run in O(N +n logn) time and O(n) extra space,
where N is the size of the text, n ≤ N is the size of RLE. The time dependency
on N is only in the conversion of the text to RLE, which can be computed very
efficiently in O(N) time and O(1) extra space.

For general alphabets, we achieve the same worst case time complexity as
previous algorithms even when n = N , since the construction of the suffix array
can take O(N logN) time. For integer alphabets, our algorithms may be slightly
slower than previous algorithms. However, the significance of our algorithms is
that when the text is compressible via RLE, i.e., when n = o(N), our algorithms
are, to the best of our knowledge, the first algorithms which require only o(N)
extra space while running in o(N logN) time.

Related Work. For computing the LZ78 [23] factorization, a sub-linear time
and space algorithm was presented in [10]. In this paper, we consider a variant
of the more powerful LZ77 [22] factorization. Two on-line algorithms for LZ
factorization based on succinct data structures have been proposed. The first
runs in O(N log3 N) time and N log σ+o(N log σ)+O(N) bits of space [19], the
other runs in O(N log2 N) time with O(N log σ) bits of space [20], where σ is the
size of the alphabet. Succinct data structures basically simulate accesses to their
non-succinct counterparts using less space at the expense of speed. A notable
distinction of our approach is that we reduce the problem size via compression
in order to improve both time and space efficiency.

2 Preliminaries

Let N be the set of non-negative integers. Let Σ be a finite alphabet. An element
of Σ∗ is called a string. The length of a string S is denoted by |S|. The empty
string ε is a string of length 0, namely, |ε| = 0. Let Σ+ = Σ∗ −{ε}. For a string
S = XY Z,X, Y and Z are called a prefix, substring, and suffix of S, respectively.
The set of prefixes of S is denoted by Prefix (S). The longest common prefix of
strings X,Y , denoted lcp(X,Y), is the longest string in Prefix (X) ∩ Prefix (Y).

The i-th character of a string S is denoted by S[i] for 1 ≤ i ≤ |S|, and the
substring of a string S that begins at position i and ends at position j is denoted
by S[i..j] for 1 ≤ i ≤ j ≤ |S|. For convenience, let S[i..j] = ε if j < i.

For any character a ∈ Σ and p ∈ N , let ap denote the concatenation of p a’s,
e.g., a1 = a, a2 = aa, and so on. p is said to be the exponent of ap. Let a0 = ε.

Our model of computation is the word RAM with the computer word size at
least ⌈log2 |S|⌉, and hence, standard instructions on values representing lengths
and positions of string S can be manipulated in constant time. Space complexi-
ties will be determined by the number of computer words (not bits).

2

2.1 LZ Encodings

LZ encodings are dynamic dictionary based encodings with many variants. As
in most recent work, we describe our algorithms with respect to a well known
variant called s-factorization [5] in order to simplify the presentation.

Definition 1 (s-factorization [5]). The s-factorization of a string S is the
factorization S = f1 · · · fn where each s-factor fi ∈ Σ+ (i = 1, . . . , n) is defined
inductively as follows: f1 = S[1]. For i ≥ 2: if S[|f1 · · · fi−1| + 1] = c ∈ Σ does
not occur in f1 · · · fi−1, then fi = c. Otherwise, fi is the longest prefix of fi · · · fn
that occurs at least twice in f1 · · · fi.

Note that each s-factor can be represented in constant size, i.e., either as a
single character or a pair of integers representing the position of a previous
occurrence of the factor and its length. For example the s-factorization of the
string S = abaabababaaaaabbabab is a, b, a, aba, baba, aaaa, b, babab. This
can be represented as a, b, (1, 1), (1, 3), (5, 4), (10, 4), (2, 1), (5, 5).

2.2 Run Length Encoding

Definition 2. The Run-Length (RL) factorization of a string S is the factor-
ization f1, . . . , fn of S such that for every i = 1, . . . , n, factor fi is the longest
prefix of fi · · · fn with fi ∈ {ap | a ∈ Σ, p > 0}.

Note that each factor fi can be written as fi = api

i for some character ai ∈ Σ
and some integer pi > 0 and for any consecutive factors fi = api

i and fi+1 =
a
pi+1

i+1 , we have that ai ̸= ai+1. The run length encoding (RLE) of a string S,
denoted RLES , is a sequence of pairs consisting of a character ai and an integer
pi, representing the RL factorization. The size of RLES is the number of RL
factors in RLES and is denoted by size(RLES), i.e., if RLES = ap1

1 · · · apn
n , then

size(RLES) = n. RLES can be computed in O(N) time and O(1) extra space
(excluding the O(n) space for output), simply by scanning S from beginning to
end, counting the exponent of each RL factor.

Let val be the function that “decompresses” RLES , i.e., val(RLES) = S.
For any 1 ≤ i ≤ j ≤ n, let RLES [i..j] = api

i a
pi+1

i+1 · · · apj

j . For convenience, let
RLES [i..j] = ε if i > j. Let

RLE Substr(S) = {RLES [i..j] | 1 ≤ i, j ≤ n} and

RLE Suffix (S) = {RLES [i..n] | 1 ≤ i ≤ n}.

The following simple but nice observation allows us to represent the com-
plexity of our algorithms in terms of size(RLES).

Lemma 1. For a given string S, let nRL and nLZ respectively be the number of
factors in its RL factorization and s-factorization. Then, nLZ ≤ 2nRL.

Proof. Consider an s-factor that starts at the jth position in some RL-factor api

i

where 1 < j ≤ pi. Since api−j+1
i is both a suffix and a prefix of api

i , we have
that the s-factor extends at least to the end of api

i . This implies that a single
RL-factor is always covered by at most 2 s-factors, thus proving the lemma. ⊓⊔

3

Note that for LZ factorization variants without self-references, the size of the
output LZ encoding may come into play, when it is larger than O(size(RLES)).

2.3 Priority Search Trees

We will use the following data structure in our LZ factorization algorithms.

Theorem 1 (McCreight [17]). For a dynamic set D which contains n ordered
pairs of integers, the priority search tree data structure supports all the following
operations and queries in O(log n) time, using O(n) space:

– Insert(x, y): Insert a pair (x, y) into D;
– Delete(x, y): Delete a pair (x, y) from D;
– MinXInRectangle(L,R,B): Given three integers L ≤ R and B, return the

pair (x, y) ∈ D with minimum x satisfying L ≤ x ≤ R and y ≥ B;
– MaxXInRectangle(L,R,B): Given three integers L ≤ R and B, return the

pair (x, y) ∈ D with maximum x satisfying L ≤ x ≤ R and y ≥ B;
– MinYInRange(L,R): Given two integers L ≤ R, return the pair (x, y) ∈ D

with minimum y.

3 Off-line LZ Factorization based on RLE

In this section we present our off-line algorithm for s-factorization. The term
off-line here implies that the input string S of length N is first converted to a
sequence of RL factors, RLES = ap1

1 ap2

2 · · · apn
n . In the algorithm which follows,

we use several new data structures for RLES .

3.1 RLE Suffix Arrays

Let ΣRLES
= {RLES [i] | i = 1, . . . , n}. For instance, if RLES = a3b5a3b5a1b5a4,

then ΣRLES
= {a1, a3, a4, b5}. For any api

i , a
pj

j ∈ ΣRLES
, let the order ≺ on

ΣRLES
be defined as

api

i ≺ a
pj

j ⇐⇒ ai < aj , or ai = aj and pi < pj .

The lexicographic ordering on RLE Suffix (S) is defined over the order onΣRLES ,
and our RLE version of suffix arrays [16] is defined based on this order:

Definition 3 (RLE suffix arrays). For any string S, its run length encoded
suffix array, denoted RLE SAS, is an array of length n = size(RLES) such that
for any 1 ≤ i ≤ n, RLE SAS [i] = j when RLES [j..n] is the lexicographically i-th
element of RLE Suffix (S).

Let SparseSuffix (S) = {val(s) | s ∈ RLE Suffix (S)}, namely, SparseSuffix (S)
is the set of “uncompressed” RLE suffixes of string S. Note that the lexico-
graphic order of RLE Suffix (S) represented by RLE SAS does not necessarily
correspond to the lexicographic order of SparseSuffix (S).

In the running example, RLE SAS = [5, 3, 1, 7, 4, 2, 6]. However, the lexico-
graphical order for the elements in SparseSuffix (S) is actually (7, 1, 3, 5, 6, 2, 4).

4

Lemma 2. Given RLES for any string S ∈ Σ∗, RLE SAS can be constructed
in O(n logn) time, where n = size(RLES).

Proof. In Appendix.

Let RLE RANKS be an array of length n = size(RLES) such that

RLE RANKS [j] = i ⇐⇒ RLE SAS [i] = j.

Clearly RLE RANKS can be computed in O(n) time provided that RLE SAS

is already computed. To make the notations simpler, in what follows we will
denote rs(h) = RLE SAS [h] and rr(h) = RLE RANKS [h] for any 1 ≤ h ≤ n.

In our algorithm we will also use an RLE version of LCP arrays. For any
RLE strings RLEX and RLEY with val(RLEX) = X and val(RLEY) = Y , let
lcp(RLEX ,RLEY) = lcp(X,Y), i.e., lcp(RLEX ,RLEY) is the longest prefix of
the “uncompressed” strings X and Y .

Definition 4 (RLE LCP array). For any string S, its run length encoded
longest common prefix array, denoted RLE LCPS, is an array of length n =
size(RLES) such that

RLE LCPS [i] =

{
0 if i = 1,

|lcp(RLES [rs(i− 1)..n],RLES [rs(i)..n])| if 2 ≤ i ≤ n,

In the running example where RLE SAS = [5, 3, 1, 7, 4, 2, 6], RLE LCPS =
[0, 1, 9, 3, 0, 6, 8].

Lemma 3. For any string S ∈ Σ∗, given RLES and its RLE suffix array
RLE SAS, RLE LCPS can be computed in O(n) time, where n = size(RLES).

Proof. In Appendix.

The following two lemmas imply an interesting and useful property of our
data structure; although RLE SAS does not necessarily correspond to the lex-
icographical order of the uncompressed RLE suffixes, adjacent RLE suffixes in
RLE SAS still share the longest common prefix among all the RLE suffixes.

Lemma 4. Let i, j be any integers such that 1 ≤ i < j ≤ n. For any j′ > j,
|lcp(RLES [rs(i)..n],RLES [rs(j)..n])| ≥ |lcp(RLES [rs(i)..n],RLES [rs(j

′)..n])|.

Proof. Let

k = min{t | RLES [rs(i)..rs(i) + t− 1] ̸= RLES [rs(j)..rs(j) + t− 1]} and

k′ = min{t′ | RLES [rs(i)..rs(i) + t′ − 1] ̸= RLES [rs(j
′)..rs(j′) + t′ − 1]}.

Namely, the first (k − 1) RL factors of RLES [rs(i)..n] and RLES [rs(j)..n] co-
incide and the kth RL factors differ. The same goes for k′, RLES [rs(i)..n],
and RLES [rs(j

′)..n]. Since j′ > j, k ≥ k′. If k > k′, then clearly the lemma
holds. If k = k′, then RLES [rs(i) + k] ≺ RLES [rs(j) + k] ⪯ RLES [rs(j

′) + k].
This implies that |lcp(RLES [rs(i) + k],RLES [rs(j) + k])| ≥ |lcp(RLES [rs(i) +
k],RLES [rs(j

′) + k])|. The lemma holds since for these pairs of suffixes, the RL
factors after the kth do not contribute to their lcps. ⊓⊔

5

Lemma 5. Let i, j be any integers such that 1 ≤ i < j ≤ n. For any i′ < i,
|lcp(RLES [rs(i)..n],RLES [rs(j)..n])| ≥ |lcp(RLES [rs(i

′)..n],RLES [rs(j)..n])|.

Proof. By a similar argument to Lemma 4. ⊓⊔

3.2 LZ factorization using RLE SA

In what follows we describe our algorithm that computes the s-factorization
using RLE SAS and RLE LCPS . Assume that we have already computed the
first (j − 1) s-factors f1, f2, . . . , fj−1 of string S. Let

∑j−1
h=1 |fh| = ℓ− 1, i.e., the

next s-factor fj begins at position ℓ of S. Let d = min{k |
∑k

i=1(pi) ≥ ℓ} + 1,
i.e., the (d− 1)-th RL factor a

pd−1

d−1 contains the occurrence of the ℓ-th character

S[ℓ] = ad−1 of S. Let q =
∑d−1

i=1 (pi)− ℓ+ 1, i.e., S[ℓ..N] = aqd−1a
pd

d · · · apn
n . Note

that 1 ≤ q ≤ pd−1.
A key idea of our algorithm is that we first search the arrays for the longest

previously occurring prefix of RLES [d..n] = apd

d · · · apn
n , rather than for aqd−1a

pd

d

· · · apn
n This is because, in the RLE SAS , there always exists an entry corre-

sponding to apd

d · · · apn
n , but there does not necessarily exist one corresponding

to aqd−1a
pd

d · · · apn
n (this can happen when q < pd−1). To compute fj , we use the

following lemma:

Lemma 6. If q = pd−1 and ad−1 ̸= ai for all 1 ≤ i ≤ d − 2, then fj = S[ℓ] =
ad−1. Otherwise,

|fj | = q+max{|lcp(RLES [x1..n],RLES [d..n])|, |lcp(RLES [d..n],RLES [x2..n])|}

where

x1 = max{u | 1 ≤ u < d, rr(u) < rr(d), au−1 = ad−1, pu−1 ≥ q} and

x2 = min{v | 1 ≤ v < d, rr(d) < rr(v), av−1 = ad−1, pv−1 ≥ q}.

Proof. The case where q = pd−1 and ad−1 ̸= ai for all 1 ≤ i ≤ d − 2 is trivial.
Otherwise, |fj | is at least q since aqd−1 = S[ℓ..ℓ + q − 1] is a prefix of fj due to
the self-referencing nature of s-factorization. Let fj = aqd−1X. Then X is the
longest common prefix of S[ℓ + q..N] and S[h..N] for all 1 ≤ h ≤ ℓ + q − 1
that are immediately preceded by aqd−1. Consider the sparse RLE suffix array for
RLE SAS which consists only of the entries t that satisfy 1 < t ≤ d, at−1 = ad−1

and pt−1 ≥ q. In this sparse array, x1 and x2 are, respectively, the left and right
neighbor of the entry corresponding to RLES [d..n]. Note that RLES[ℓ+q..N] =
apd

d · · · apn
n = RLES [d..n]. It follows from Lemmas 4 and 5 that, by computing

the (uncompressed) length of the lcp of RLES [d..n] and RLES [x1..n], and that
of RLES [d..n] and RLES [x2..n], we obtain the length of X. ⊓⊔

The main result of this section follows:

Theorem 2. Given a string S of length N , we can compute the s-factorization
of string S in O(N+n log n) time and extra O(n) space, where n = size(RLES).

6

Proof. First, compute RLES from S inO(N) time, and RLE SAS , RLE RANKS ,
and RLE LCPS in O(n log n) time. In the sequel, we show how each s-factor fj
can be computed in O(log n) time. We compute x1 and x2 of Lemma 6 as follows.
Recall that we are processing the d-th RL factor. For each character a ∈ Σ, we
maintain a priority search tree T d−1

a of Theorem 1 for the dynamic set Ud−1
a of

pairs (x, y) such that x = rr(e) with 1 ≤ e < d and ae−1 = a, and y = pe−1. We
can compute x1 and x2 using the priority search tree T d−1

ad−1
in O(log n) time as

x1 = MaxXInRectangle(1, rr(d)− 1, q) and

x2 = MinXInRectangle(rr(d) + 1, n, q).

To compute the length of the lcp’s, we use another priority search tree L for
a static set of pairs (x,RLE LCPS [x]) for all 1 < x ≤ n. These values can be
computed in O(n) time by Lemma 3, and then L can be constructed in O(n log n)
time by Theorem 1. Then we have

|lcp(RLES [x1..n],RLES [d..n])| = MinYInRange(rr(x1) + 1, rr(d)) and

|lcp(RLES [d..n],RLES [x2..n])| = MinYInRange(rr(d) + 1, rr(x2)),

and these values can be retrieved in O(log n) time from L by Theorem 1.
After computing the s-factor fj , we update the dynamic priority search

trees. Namely, if fj overlaps with RL factors apd

d · · · apd+g

d+g , then we insert pair

(rr(d), pd−1) into T d−1
ad−1

, pair (rr(d+1), pd) into T d
ad
, and so on. These insertion

operations take O(g logn) time by Theorem 1, which takes a total of O(n log n)
time for computing all fj . Hence the total time complexity is O(N + n log n).

We analyze the space complexity of our data structure. Notice that a col-
lection of sets Ud−1

a for all characters a ∈ Σ are pairwise disjoint, and hence∑
a∈Σ |Ud−1

a | = d − 1. By Theorem 1, the overall size of the dynamic prior-

ity search trees T d−1
a is O(n) at any stage of d = 1, 2, . . . , n. The size of the

static priority search tree L is clearly O(n). Since RLE SAS , RLE RANKS ,
and RLE LCPS occupy O(n) space each, we conclude that the overall space
requirement of our data structure is O(n). ⊓⊔

4 On-line LZ Factorization based on RLE

In this section we present an on-line algorithm that computes s-factorization
based on RLE. The term on-line here implies that the RL factors of the in-
put string S of length N are computed from left to right, while computing
the s-factors of S simultaneously. Note that transforming the off-line algorithm
described in the previous section to an efficient on-line algorithm is not immedi-
ately apparent, even if we simulate the suffix array using suffix trees which can
be constructed online. This is because the elements inserted into the priority
search tree depended on the lexicographic rank of each suffix, which can change
dynamically in the on-line setting. To overcome this problem, we consider a
different approach based on directed acyclic word graphs (DAWGs) [3].

7

a
3

b
2

a
10

c
4

a
5 a

5
b
2

a
10

c
4

a
5

b
2

a
5

c
4

b
2

Fig. 1. Illustration for the RLE DAWG of a3b2a5b2a5c4a10. The edges in E are repre-
sented by the solid arcs, while the suffix links of some nodes are represented by broken
arcs (but their labels are omitted). For simplicity the suffix links of the other nodes
are omitted in this figure.

The DAWG of a string S is the smallest automaton that accepts all suffixes
of S. Below we introduce an RLE version of DAWGs: We regard RLES as a
string of length n over alphabet ΣRLES = {RLES [i] | i = 1, . . . , n}. For any
u ∈ RLE Substr(S), let EndPosRLES

(u) denote the set of positions where an
occurrence of u ends in RLES , i.e.,

EndPosRLES
(u) = {j | u = RLES [i..j], 1 ≤ i ≤ j ≤ n}.

Define an equivalence relation for any u,w ∈ RLE Substr(S) by

u ≡RLES w ⇐⇒ EndPosRLES (u) = EndPosRLES (w).

The equivalence class of u ∈ RLE Substr(S) w.r.t. ≡RLES
is denoted by [u]RLES

.
When clear from context, we abbreviate the above notations as EndPos, ≡ and
[u], respectively.

Definition 5. The run length encoded DAWG of a string S ∈ Σ∗, denoted by
RLE DAWGS, is the DAWG of RLES over alphabet ΣRLES = {RLES [i] | i =
1, . . . , n}. Namely, RLE DAWGS = (V,E) where

V = {[u] | u ∈ RLE Substr(S)},
E = {([u], ap, [uap]) | u, uap ∈ RLE Substr(S), u ̸≡ uap}.

We also define the set F of labeled reversed edges, called suffix links, by

F = {([apu], ap, [u]) | u is the longest member of [u]}.

See also Fig. 1 that illustrates RLE DAWGS for RLES = a3b2a5b2a5c4a10. Since
EndPos(b2a5) = EndPos(a5) = {3, 5}, b2a5 and a5 are represented by the same
node. On the other hand, EndPos(a3b2a5) = {3} and hence a3b2a5 is represented
by a different node.

8

Lemma 7. For any string S of length N , let size(RLES) = n. RLE DAWGS

has O(n) nodes and edges, and can be constructed in O(N + n logn) time and
O(n) extra space in an on-line manner, together with the suffix link set F .

Proof. In Appendix.

For any u ∈ RLE Substr(S), and each character a ∈ Σ, let maxeu(a) =
max{p | apu ∈ RLE Substr(S)}. If there is no such p, let maxeu(a) = 0. In our
on-line algorithm which will follow, we will need to compute maxeu(a) efficiently.
This can be achieved by the next lemma:

Lemma 8. RLE DAWGS = (V,E) can be dynamically augmented in a total of
O(n logn) time with O(n) space so that maxeu(a) can be computed in O(log |Σ|)
time, given any u ∈ RLE Substr(S), its node [u] ∈ V , and any character a ∈ Σ.

Proof. For any u ∈ RLE Substr(S) and character a ∈ Σ, consider the following
cases: (case 1) u is not the longest member of [u]. For any j ∈ EndPos(u)
let j′ = j − |u|. We have that RLES [j

′] = a
pj′

j′ where a
pj′

j′ u ≡ u, i.e., u is

always immediately preceded by a
pj′

j′ in RLES . Therefore, maxeu(a) = pj′ if
aj′ = a and 0 otherwise. An arbitrary j can be easily determined in O(1) time
for each node when the node is first constructed during the on-line construction
of RLE DAWGS , and does not need to be updated. (case 2) u is the longest
member of [u]. If there exists apu ∈ RLE Substr(S), then there must exist
a suffix link ([apu], ap, [u]) ∈ F . Therefore maxeu(a) is the maximum of the
exponent in the labels of all such incoming suffix links, or 0 if there are none.
By maintaining a balanced binary search tree at every node [u], we can retrieve
this value for any a ∈ Σ in O(log |Σ|) time. It also follows from the on-line
construction algorithm of RLE DAWGS that the set of labels of incoming suffix
links to a node only increases, and we can update this value in O(log |Σ|) time
for each new suffix link. Since |F | = O(n), constructing the balanced binary
search trees take a total of O(n log |Σ|) time, and the total space requirement is
O(n).

It is easy to check whether u is the longest element of [u] in O(1) time by
maintaining the length of the longest path to any given node during the on-line
construction of RLE DAWGS . This completes the proof. ⊓⊔

The next lemma shows how the augmented RLE DAWGS can be used to
efficiently compute the longest prefix of a given pattern string that appears in
string S, which will be a core of our algorithm.

Lemma 9. For any pattern string P ∈ Σ∗, let RLEP = bq11 bq22 · · · bqmm . We can
compute the length of the longest prefix P ′ of P which occurs in a text string
S in O(size(RLEP ′) log n) time, using a data structure of O(n) space, where
n = size(RLES).

Proof. We use RLE DAWGS . If m = 0 (i.e., P = ε), we simply output 0. Let
h be the maximum exponent of the labels of the out-going edges of the source

9

node that are associated with b1. h can be computed in O(log n) time using O(n)
space. If m = 1 or h < q1, then we output min{h, q1}.

Now supposem ≥ 2 and h ≥ q1. RLE DAWGS is traversed with RLEP [2..m],
i.e., starting from the second RL-factor for the same reasons as in Section 3. The
occurrences of the traversed factor are checked if it is preceded by bq11 using
maxeu(b1). A more detailed procedure is shown below, starting from i = 2:

1. Let z = RLEP [2..i− 1] and z′ = RLEP [2..i]. Check if there is an out-going
edge from [z] labeled with bqii to [z′], and if so, check if maxez′(b1) ≥ q1.
– If there is no such edge or maxez′(b1) < q1, then go to Line 3.
– Otherwise, traverse the edge to node [z′], and go to Line 2.

2. Check if we have reached the end of RLEP .
– If i < m, then increment i and go to Line 1.
– If i = m, then P itself occurs in S, and hence output |P |.

3. Let Ev(bi) be the set of out-going edges of node v = [z] labeled by bqi with
some integer q (note that q is not necessarily equal to qi). Let k = max{q |
maxew(b1) ≥ q1, ([z], b

q
i , [w]) ∈ Ev(bi)}, that is, k is the maximum exponent

of bi such that bq11 bq22 · · · bki ∈ RLE Substr(S). Output |val(bq11 bq22 · · · bmin{qi,k}
i)|

as the result.

We analyze the complexities of the above algorithm. We can find in O(log n)
time the out-going edge that is labeled with bqii from a node. We can retrieve
the value of maxez′(b1) in O(log |Σ|) time by Lemma 8. The value of k of
Line 3 can be computed in O(log n) time by maintaining a priority search
tree at node [z] for each character b ∈ Σ, for the set of pairs (x, y) where
the x-coordinate corresponds to the exponent q of the label of edge ([z], bqi , [w])
and the y-coordinate is maxew(b1). Then k = MaxXInRectangle(1, |S|, q1). Thus
the length of the longest prefix P ′ of P that occurs in S can be computed in
O(size(RLEP ′)(log n + log |Σ|)) = O(size(RLEP ′) log n) time. By Theorem 1,
and Lemmas 7 and 8, our data structure requires O(n) space. ⊓⊔

Below we give an example for Lemma 9. See Fig. 1 that illustrates RLE DAWGS

for RLES = a3b2a5b2a5c4a10, and consider searching text S for pattern P with
RLEP = a5b2a7. We start traversing RLE DAWGS with the second RL factor b2

of P . Since there is an out-going edge of the source node labeled with b2, we reach
node v = [b2]. There are two suffix links that point to node v, ([a3b2], a3, [b2])
and ([a5b2], a5, [b2]). Hence maxeb2(a) = max{3, 5} = 5, and thus the prefix
a5b2 of P occurs in S. We examine whether a longer prefix of P occurs in S
by considering the third RL factor a7. There is no out-going edge from v that
is labeled with a7, hence the longest prefix of P that occurs in S is of the form
a5b2aℓ with some ℓ ≥ 0. We consider the set Ev(a) of out-going edges of v that
are labeled by aq with some q, and obtain Ev(a) = {([b2], a5, [b2a5])}. We have
maxeb2a5(a) = max{3, 5} = 5 due to the two suffix links pointing to u. Thus, the
longest prefix of P that occurs in S is a5b2amin{7,5} = a5b2a5.

Theorem 3. For any string S of length N , there exists an on-line algorithm
that computes the s-factorization of S in O(N + n log n) time and O(n) extra
space, where size(RLES) = n.

10

Proof. To describe our s-factorization algorithm, we use a similar assumption as
in Section 3: Assume that we have already computed the first (j − 1) s-factors

f1, f2, . . . , fj−1 of string S. Let
∑j−1

h=1 |fh| = ℓ−1, i.e., the next s-factor fj begins

at position ℓ of S. Let d = min{k |
∑k

i=1(pi) ≥ ℓ} + 1, i.e., the (d − 1)-th RL
factor a

pd−1

d−1 contains the occurrence of the ℓ-th character S[ℓ] = ad−1 of S.

Let q =
∑d−1

i=1 (pi) − ℓ + 1, i.e., S[ℓ..N] = aqd−1a
pd

d · · · apn
n . Note that 1 ≤ q ≤

pd−1. In addition, we assume that we have constructed RLE DAWGd−1
S , where

RLE DAWGd−1
S denotes the DAWG for RLES [1..d− 1] = ap1

1 ap2

2 · · · apd−1

d−1 .
By definition, the longest prefix Z of S[ℓ..N] that occurs in S[1..ℓ − 1] is a

prefix of fj . By Lemma 9, we can compute Z in O(size(RLEZ) × log d) time.

Let v be the node that corresponds to Z in RLE DAWGd−1
S . We retrieve the

ending position e of Z that is stored in v, and then we compute the longest
common prefix W of S[e + 1..N] and S[ℓ + |Z|..N]. Then we have fj = ZW .
It is clear that W can be computed in O(|W |) time. If fj overlaps a sequence
of g maximal runs of characters in S, then we compute RL factors apd

d · · · apd+g

d+g

in O(|fj |) time, and update RLE DAWGd−1
S to RLE DAWGd+g

S in amortized
O(g log n) time. The balanced binary search trees of Lemma 8 and the priority
search trees of Lemma 9 are updated in O(log |Σ|) time and in O(log n) time,
respectively. Thus we can compute the s-factorization in O(N +n log n) time, in
an on-line manner. O(n) space complexity follows from Lemmas 7, 8 and 9. ⊓⊔

5 Discussion

We proposed off-line and on-line algorithms that compute a well-known variant
of LZ factorization, called s-factorization, of a given string S in O(N + n log n)
time using only O(n) extra space, where N = |S| and n = size(RLES). The
algorithms are more efficient than the previous LZ factorization algorithms when
input strings are compressible by RLE.

Our algorithms can be easily extended to other variants of LZ factorization:
Let m be the size of the s-factorization without self-references of a given string.
We modify the on-line algorithm described in Theorem 3, in a way that the
longest prefix Z of S[ℓ..N] that occurs in S[1..ℓ− 1] is output as the s-factor fj .
Since Lemma 1 does not hold for s-factorization without self-references, the time
complexity of the algorithm is O(N +(n+m) log n). The working space remains
O(n) (excluding the output size). It is trivial that both of our off-line and on-
line algorithms can be extended for the LZ77 factorization [22] with/without
self-references, in the same time and space complexities as the s-factorization.

Our algorithms are based on RLE variants of classical string data structures.
It would be interesting to explore whether succinct data structures can be used
in combination with our approach to further improve the space efficiency.

References

1. Amir, A., Landau, G.M., Sokol, D.: Inplace run-length 2d compressed search. The-
oretical Computer Science 290(3), 1361–1383 (2003)

11

2. Apostolico, A., Landau, G.M., Skiena, S.: Matching for run-length encoded strings.
Journal of Complexity 15(1), 4–16 (1999)

3. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.:
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science 40, 31–55 (1985)

4. Chen, K.Y., Chao, K.M.: A fully compressed algorithm for computing the edit
distance of run-length encoded strings. Algorithmica (2011)

5. Crochemore, M.: Linear searching for a square in a word. Bulletin of the European
Association of Theoretical Computer Science 24, 66–72 (1984)

6. Crochemore, M., Ilie, L., Iliopoulos, C.S., Kubica, M., Rytter, W., Waleń, T.: LPF
computation revisited. In: Proc. IWOCA 2009. pp. 158–169 (2009)

7. Crochemore, M., Ilie, L., Smyth, W.F.: A simple algorithm for computing the
Lempel Ziv factorization. In: Proc. DCC 2008. pp. 482–488 (2008)

8. Duval, J.P., Kolpakov, R., Kucherov, G., Lecroq, T., Lefebvre, A.: Linear-time com-
putation of local periods. Theoretical Computer Science 326(1-3), 229–240 (2004)

9. Freschi, V., Bogliolo, A.: Longest common subsequence between run-length-
encoded strings: a new algorithm with improved parallelism. Information Process-
ing Letters 90(4), 167–173 (2004)

10. Jansson, J., Sadakane, K., Sung, W.K.: Compressed dynamic tries with applica-
tions to LZ-compression in sublinear time and space. In: Proc. FSTTCS 2007. pp.
424–435 (2007)

11. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In: Proc.
ICALP 2003. pp. 943–955 (2003)

12. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time Longest-
Common-Prefix Computation in Suffix Arrays and Its Applications. In: Proc. CPM
2001. pp. 181–192 (2001)

13. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proc. FOCS 1999. pp. 596–604 (1999)

14. Liu, J., Wang, Y., Lee, R.: Finding a longest common subsequence between a run-
length-encoded string and an uncompressed string. Journal of Complexity 24(2),
173–184 (2008)

15. Mäkinen, V., Ukkonen, E., Navarro, G.: Approximate matching of run-length com-
pressed strings. Algorithmica 35(4), 347–369 (2003)

16. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J. Computing 22(5), 935–948 (1993)

17. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)
18. Ohlebusch, E., Gog, S.: Lempel-Ziv factorization revisited. In: Proc. CPM’11. pp.

15–26 (2011)
19. Okanohara, D., Sadakane, K.: An online algorithm for finding the longest previous

factors. In: Proc. ESA 2008. pp. 696–707 (2008)
20. Starikovskaya, T.: Computing Lempel-Ziv factorization online (2012),

arXiv:1202.5233v1
21. Storer, J., Szymanski, T.: Data compression via textual substitution. Journal of

the ACM 29(4), 928–951 (1982)
22. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory IT-23(3), 337–343 (1977)
23. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.

IEEE Transactions on Information Theory 24(5), 530–536 (1978)

12

Appendix

This appendix provides complete proofs that were omitted due to lack of space.

Lemma 2. Given RLES for any string S ∈ Σ∗, RLE SAS can be constructed
in O(n logn) time, where n = size(RLES).

Proof. ΣRLES
consists of O(n) elements, and can be sorted in O(n log n) time.

By identifying each element of ΣRLES with its lexicographic rank, we can con-
sider RLES as a string of length n over an integer alphabet {1, . . . , n}. Then,
any linear time suffix array construction algorithm (e.g.: [11]) can be used to
construct RLE SAS in O(n) time. ⊓⊔

Lemma 3. For any string S ∈ Σ∗, given RLES and its RLE suffix array
RLE SAS, RLE LCPS can be computed in O(n) time, where n = size(RLES).

Proof. Our algorithm to construct RLE LCPS is analogous to the algorithm of
Kasai et al. [12] that computes the LCP array from a given suffix array.

Assume that we have already computed RLE LCPS [i] for some 2 ≤ i ≤ n,
and that the first h RL factors of RLES [rs(i−1)..n] and RLES [rs(i)..n] coincide,
and the (h + 1)-th RL factors differ. If h ≥ 2, then RLES [rs(i − 1) + 1..n] ≺
RLES [rs(i)+1..n] holds. Therefore, if t is such that rs(t) = rs(i)+1, then since
the first (h − 1) RL factors of RLES [rs(t − 1)..n] and RLES [rs(t)..n] coincide,
we can start by comparing their h-th RL factors. If h ≤ 1, then the relation
RLES [rs(i − 1) + 1..n] ≺ RLES [rs(i) + 1..n] may or may not hold. In this
case we compute RLE LCPS [t] in a näıve way of comparing the RL factors of
RLES [rs(t−1)..n] and RLES [rs(t)..n] from left to right. By a similar argument
to [12], the total number of comparisons is O(n). ⊓⊔

Lemma 7. For any string S of length N , let size(RLES) = n. RLE DAWGS

has O(n) nodes and edges, and can be constructed in O(N + n logn) time and
O(n) extra space in an on-line manner, together with the suffix link set F .

Proof. The proof is a simple adaptation of the results from [3]. The DAWG of a
string of length m has O(m) nodes and edges. Since RLE DAWGS is the DAWG
of RLES of length n, RLE DAWGS clearly has O(n) nodes and edges. If σ is
the number of distinct characters appearing in S, then the DAWG of a string of
length m can be constructed in O(m log σ) time and O(m) space, in an on-line
manner, using suffix links. Since |ΣRLES

| ≤ n and RLES can be computed from
S in O(N) time on-line, RLE DAWGS with F can be constructed in O(N +
n log n) time and extra O(n) space, on-line. ⊓⊔

13

