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Preface 
 

In epidemiology, or the study of public health in a population, theoretical 

approaches have been quite useful in the prevention or suppression of infectious 

diseases. Theoretical epidemiology consists of constructing mathematical and 

computational models, estimating parameters from statistical data, forecasting the 

spread of diseases, and examining the effectiveness of alternative policies. This gives 

estimates of key quantities such as basic reproductive number, final epidemic size and 

epidemic duration. Dynamics of susceptible, infected and recovered host, often called 

SIR model, and the diffusion process model describing the spread and the extinction of 

infectious diseases are the two classical models but still play important roles in 

theoretical epidemiology.   

Using the simplest SIR model, epidemic peak timing, prevalence at epidemic 

peak timing, final epidemic size and frequency of vaccinated host for prevention of 

outbreak can be solved analytically (Anderson and May 1991). However, this model is 

often difficult to apply directly to real epidemics, because of various factors causing 

heterogeneity. The basic SIR model includes many approximations and neglects 

heterogeneous factors. These simplifications sometimes are unrealistic when it is 

applied to real epidemics. For example, the basic model assumes that transmission rate 

is constant over time, but most epidemics show clear seasonality, demonstrating annual 

outbreaks. To cope with this situation, some theoretical studies analyzed the dynamics 

of reemergence of epidemics by assuming that the transmission rate is a simple periodic 

function of time. This makes the analysis of dynamics difficult mathematically, even if a 

periodic function of transmission rate is a sinusoidal function of time. Furthermore the 

results in this model are sometimes quite different from basic model, demonstrating for 

example periodic outbreaks with period longer then one year or chaotic fluctuations. 

Second, the transmission rate as a function of time may differ between strains 

of pathogens and also strains of hosts. As a result of invasion of new strains and 

replacement, the transmission rate should change over time, and this is a coevolutionary 

processes, as both pathogens and hosts evolve simultaneously. Human and other 

vertebrate have acquired immunity, which allow a much quicker adaptation to the 

change in the pathogen fauna, and the study of host-pathogen coevolution must consider 

acquired immunity of the host.  
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Third, perfect specificity is often assumed in the basic SIR model but cross 

reaction should play very important role in multi-strain systems. Cross reactive immune 

reaction usually protects hosts from infection with other strains that are similar to the 

original type, but sometimes enhances infection with other very different strains, called 

antibody-dependent enhancement. This aspect of immunity complicates the dynamics of 

epidemics because the transmission rate of each strain is determined by complicated 

genetic relationship between current strain and past strains that host had infected 

(chapter 1 and 2). Heterogeneity in host contact network changes not only final 

epidemic size and epidemic duration but also the fate of evolution of pathogen.  

Fourth, the simplest SIR model assumes complete graph in host contact 

network, but real host contact network is not homogeneous and changes over time. 

Details of the population dynamics of pathogen within hosts are emerging in recent 

studies and we can construct more precise mathematical models, and the results in these 

models are sometimes quite different from results in classical models (chapter 3). Age 

of host is not assumed in basic model, however, it is important for analysis of 

reemergence of epidemics when acquired immunity wanes. We need to understand 

effects of these heterogeneous factors in epidemiological models to dynamics of 

epidemics and extend classical model with that for application to real epidemics. 

The objective of this thesis is to illustrate how different heterogeneous factors 

affect the dynamics and evolution of infectious diseases. I especially focus on the 

following three aspects: i) co-evolution between host immunity and pathogen, ii) 

seasonality of epidemics, and iii) population dynamics of pathogen within hosts. I 

summarize the contents for chapters as follows: 

 

Chapter 1: Coexistence condition for strains with immune cross-reaction  
The accumulation of cross-immunity in the host population is an important 

factor driving the antigenic evolution of viruses such as influenza A. Mathematical 

models have shown that the strength of temporary non-specific cross-immunity and the 

basic reproductive number are both key determinants for evolutionary branching of the 

antigenic phenotype. Here we develop deterministic and stochastic versions of one such 

model. We examine how the time of emergence or introduction of a novel strain affects 

co-existence with existing strains and hence the initial establishment of a new 

evolutionary branch. We also clarify the roles of cross-immunity and the basic 
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reproductive number in this process. We show that the basic reproductive number is 

important because it affects the frequency of infection, which influences the long term 

immune profile of the host population. The time at which a new strain appears relative 

to the epidemic peak of an existing strain is important because it determines the 

environment the emergent mutant experiences in terms of the short term immune profile 

of the host population. Strains are more likely to coexist, and hence to establish a new 

clade in the viral phylogeny, when there is a significant time overlap between their 

epidemics. It follows that the majority of antigenic drift in influenza is expected to 

occur in the earlier part of each transmission season and this is likely to be a key 

surveillance period for detecting emerging antigenic novelty. 

 

Chapter 2: The timing of the emergence of new successful strains in seasonal 

influenza 
High evolvability of influenza virus and the complex nature of its antagonistic 

interaction with host immune system make it difficult to predict what strain of virus will 

become epidemic next and when it will emerge. To investigate the most likely timing at 

which a new successful strain emerges ever year in seasonal influenza, we here study an 

individual base model that takes into account the seasonality in transmission rate and 

the cross-immunity of host individual against a current viral strain due to the past 

infections of other strains. The model we consider in the paper deals with antigenic 

evolution of influenza that is originated by point mutations at epitope sites and driven 

by host immune response. Under the range of parameters at which influenza viral 

population shows a “trunk” shape in the phylogenetic tree, as is typical in influenza A 

virus evolution, we found that most successful mutant strains emerge in an early period 

of the epidemic season, and that the timing when the number of the hosts infected by 

them reach the maximum tends to be more than one season after the emergence. This 

carry over of the epidemic peak timing implies that we can detect the strain that will 

become dominant epidemic in the next year. 

 

Chapter 3: Disrupting seasonality to control disease outbreaks: the case of koi 

herpes virus 
Common carp accounts for a substantial proportion of global freshwater 

aquaculture production. Koi herpes virus (KHV), a highly virulent disease affecting 



 7 

carp that emerged in the late 1990s, is a serious threat to this industry. After a fish is 

infected with KHV, there is a temperature dependent delay before it becomes infectious, 

and a further delay before mortality. Consequently, KHV epidemiology is driven by 

seasonal changes in water temperature. Also, it has been proposed that outbreaks could 

be controlled by responsive management of water temperature in aquaculture setups. 

We use a mathematical model to analyse the effect of seasonal temperature cycles on 

KHV epidemiology, and the impact of attempting to control outbreaks by disrupting 

this cycle. We show that, although disease progression is fast in summer and slow in 

winter, total mortality over a 2-year period is similar for outbreaks that start in either 

season. However, for outbreaks that start in late autumn, mortality may be low and 

immunity high. A single bout of water temperature management can be an effective 

outbreak control strategy if it is started as soon as dead fish are detected and maintained 

for a long time. It can also be effective if the frequency of infectious fish is used as an 

indicator for the beginning of treatment. In this case, however, there is a risk that 

starting the treatment too soon will increase mortality relative to the case when no 

treatment is used. This counterproductive effect can be avoided if multiple bouts of 

temperature management are used. We conclude that disrupting normal seasonal 

patterns in water temperature can be an effective strategy for controlling koi herpes 

virus. Exploiting the seasonal patterns, possibly in combination with temperature 

management, can also induce widespread immunity to KHV in a cohort of fish. 

However, employing these methods successfully requires careful assessment to ensure 

that the treatment is started, and finished, at the correct time. 
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Chapter 1 
 

 

Coexistence conditions for strains of influenza 

with immune cross-reaction 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The study of this chapter, done in collaboration with Dr. Ben Adams and Prof. Akira 

Sasaki, was published in Journal of Theoretical Biology (262, pp48-57) in 2010. 
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Introduction 
One of the most striking characteristics of the influenza A virus is its 

extraordinarily rapid evolution due to strong selection mediated by the host immune 

response to viral antigens. If a strain of influenza causes a large epidemic, the majority 

of hosts acquire immunity against that strain. In order to be successful, subsequent viral 

strains must therefore escape the residual host immunity and this promotes the fixation 

of mutants with novel epitopes. A key feature of influenza A evolution is that, despite 

the appearance and spread of new strains each year, the vast majority become rapidly 

extinct and the number of persistent branches in the phylogenetic tree remains small 

(Bush et al. 1999; Smith et al. 2004; Holmes et al. 2005). One of the most important 

factors responsible for maintaining this slim phylogenetic tree is likely to be 

cross-immunity (Andreasen et al. 1997; Ferguson et al. 2003; Koelle et al. 2006; 

Andreasen and Sasaki. 2006), whereby infection with one strain suppresses subsequent 

infections with antigenically similar strains. Cross-immunity is a major determinant of 

phylogenetic branching because it can make it difficult for a mutant strain to coexist 

with the parental or sibling strains.  

A key feature of influenza dynamics is the strong seasonality of incidence in 

temperate regions. To understand the ecology and evolution of influenza, it is vital to 

understand the way in which host immunity mediates the epidemiological and antigenic 

interaction of viral strains in the context of seasonal epidemics. An earlier study 

(Andreasen and Sasaki. 2006) considered a simple model in which discrete annual 

epidemics of influenza were assumed to be caused by antigenic variants derived from a 

common ancestor in the previous year. The variants occupied a low-dimensional 

antigenic space and emerged serially to cause sequential, non-overlapping epidemics. 

This analysis indicated that strong temporary broad cross-immunity between all viral 

strains, a high basic reproductive rate and rapid decay in long term strain specific 

cross-immunity are required to prevent evolutionary branching and maintain the slim 

antigenic phylogeny of influenza (Andreasen and Sasaki. 2006). Empirical studies, 

however, show that antigenic variants do not appear in strict sequence each season and 

there may be extensive co-circulation. In New York State two distinct clades of H3N2 

co-circulated in the 2002 – 2003 transmission season and three distinct clades circulated 

in the 2003 – 2004 season (Holmes et al. 2005). In the 2006 – 2007 season multiple 

co-circulating clades causing overlapping epidemics were detected (Nelson et al. 2008). 
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In each season each clade is believed to have arisen from a novel introduction (Nelson 

et al. 2006; 2008).  

There are many complex factors governing the epidemiology and evolution of 

influenza. Here we will focus on the roles that seasonal epidemics and the extent of 

co-circulation pf antigenic variants play in antigenic branching. We show that partially 

over-lapping epidemics can enhance co-existence of antigenic variants, making 

branching more likely. This effect is strongly dependent on the time lag between the 

introduction of each variant. It may also be moderated by season to season variation in 

the sequence in which variants appear. Nevertheless maintenance of the characteristic 

unbranched phylogeny of influenza may require a higher basic reproductive number or 

stronger broad cross-immunity than anticipated by previous work.  

Models based on linear antigenic spaces are often used to analyze the coupled dynamics 

of the host population immune profile and the antigenic properties of the influenza virus 

(Sasaki. 1994; Andreasen et al. 1996; Haraguchi and Sasaki. 1997; Gog and Grenfell. 

2002; Andreasen. 2003; Lin et al. 2003; Boni et al. 2004; Adams and Sasaki. 2007;) 

because the antigenic drift of influenza A shows approximately linear evolution along a 

single phylogenetic trunk. However, antigen characteristics are thought to be high 

dimensional (Smith et al. 2004) and other approaches define antigenic types based on 

abstractions of the epitope sequence (Sasaki and Haraguchi. 2000; Ferguson et al. 2003; 

Tria et al. 2005; Adams and Sasaki. 2009). Therefore, we also use an individual-based 

simulation of the epidemic model to consider the effect of modeling the antigenic 

evolution through a high dimensional antigenic space. We find that the key 

characteristics of the evolutionary dynamics in this framework are similar to those of 

the simpler model, indicating that reducing the antigenic space to one-dimension is 

indeed a reasonable approximation that produces robust insights.  

Deterministic Model 

We consider an extension of the model proposed by Andreasen and Sasaki (2006), 

hereafter denoted the AS-model. This framework focuses on the seasonal dynamics of 

influenza to separate the epidemiological and evolutionary timescales. The 

epidemiological dynamics are expressed in a continuous time structure within a single 

transmission season. The evolutionary dynamics are expressed through a discrete time 

structure. Time is divided into a sequence of consecutive seasons and the host 
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population is classified according to the most recent season in which infection occurred. 

Within any given season the antigenic distance between viral genotypes in the same 

clade is assumed to be small relative to the distance between clades or the distance 

between genotypes in different seasons. The system is then simplified by representing 

the whole collection of genotypes making up a clade as a single ‘strain’. In temperate 

regions multiple introductions seed epidemics of antigenically distinct clades in each 

transmission season. Diversity is replenished each season from an extensive global gene 

pool but there is little positive selection over the course of the epidemic (Holmes et al. 

2005; Nelson et al. 2006, 2008). Therefore the antigenic type of each clade is assumed 

to evolve at a constant rate between seasons but remain static within any given season.  

At the beginning of each season a mutant strain with a fixed antigenic divergence 

from the ancestral strain in the previous season founds an epidemic in the host 

population. The epidemiology of the strain follows the standard SIR model, but the 

infectivity of the virus depends on host cross-immunity due to past infections. 

Cross-immunity is modeled as an exponentially decaying function of the time since last 

infection. At some point within the same season a second strain with fixed divergences 

from the ancestral and sibling strains is introduced. In the AS-model, the second strain 

is only introduced when the epidemic of the founder strain has finished. Here we also 

consider the impact of introducing the second strain during the founder epidemic. 

Persistence of both strains is a necessary condition for the establishment of a new 

antigenic branch. We are mainly interested in the conditions that prevent such 

co-existence and may thus lead to a slim phylogenetic tree.  
As in the AS-model, let 

 

Sk  denote the fraction of hosts whose most recent 

infection occurred k season ago, and have not yet been infected in the current season. 
Let 

 

Ik  denote the fraction of hosts that are currently infected, and whose last previous 

infection occurred k seasons ago. Similarly, let 

 

Rk  denote the fraction of hosts that 

have recovered from infection in the current season and whose last previous infection 

occurred k seasons ago. For simplicity, the total number of hosts is assumed to be 

constant (

 

(S j + I j + R j )j∑ = 1) and there is no birth, death, or immigration during the 

epidemic period. The infectivity of the strain in an infected host is assumed to depend 
on the number of years since the host was last infected, k, according to  ck . Here c is a 
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constant contact rate and  k  (

 

0 = τ 0 < τ1 < L < 1) is an increasing function describing 

the strength of cross-immunity. With these assumptions, the differential equations that 
describe changes in 

 

Sk  and 

 

Ik  in a season are: 

 

     

Sk
¢= - %L Sk ,

Ik
¢= %L Sk - gIk ,

Rk
¢= gIk ,

%L = c t k Ik
k

Â ,

 (1) 

where the prime ' denotes the time derivative   d / dt , Λ  denotes the force of infection 

and 

 

γ  is the recovery rate. As in the AS-model, we assume the following functional 

form for the cross-immunity: 

 

 

τ k = 1− α k .  (2) 

Here, 

 

α  describes how the strength of cross-immunity decays after one season. The 

cross-immunity decays exponentially with the number  k  of seasons since the last 

infection, as shown in Figure 1 for different values of 

 

α . We assume that among the 

past infection events, the most recent infection determines the strength of 

cross-immunity against the currently circulating strain.  Rescaling time in units of the 
average duration of infection 

 

1/γ , yields 

 

    

Sk
¢= - LSk ,

Ik
¢= LSk - Ik ,

Rk
¢= Ik ,

L = r t j I jjÂ ,

 (3) 

where     r = c / g  is the basic reproductive rate, the expected number of secondary 

infections from a single host infected with a particular strain when the rest of the host 

population has no immunity to any strain.  
 Let   Sk

p (∞) be the density of the hosts still uninfected at the end of season p 

whose most recent infection occurred k seasons ago, and   Rk
p (∞) be the corresponding 

quantity for the hosts infected and recovered in season p. Then the initial condition of 

the host population at the start of season p+1 is expressed in terms of the state at the end 

of season p by:  
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S1
p+1(0) = Rk

p (∞)
k =1
∑

Sk +1
p+1(0) = Sk

p (∞)     (k ≥ 1)
   (4) 

The epidemic dynamics in the year   p + 1 are then described by (3) where the 

superscripts to designate the year are dropped for notational simplicity.  

We now expand the AS-model to evaluate how the extent to which two strains 

co-circulate within the same epidemic season affects the evolutionary dynamics in terms 

of the establishment of novel antigenic branches. The immune profile of the host 

population becomes more complex. To incorporate the immune interaction between 

co-circulating strains we label the strain present at the start of the season A, the strain 

emerging at some later point B, fix the strength of partial cross-immunity 

 

α  and 

constant contact rate  c  to be the same for both strains and assume that strain A has 

been circulating for many seasons but strain B first reaches detectable prevalence in 

season T . Following the AS-model, we assume that both strains A and B are first 

present at very low prevalence at the end of season T – 1. Therefore, when they reach 

detectable prevalence, in season T, the antigenic distance between strains A and B is 

equal to the antigenic distance associated with two seasons in the one strain model. If 

there are multiple previous infections only the strongest partial cross-immunity is 

assumed to be effective.  

 Inter-pandemic influenza subtypes generally circulate for several decades, 

undergoing antigenic drift throughout this period. The H3N2 subtype currently 

responsible for the majority of seasonal influenza infections has circulated since 1968 

(Kilbourne, 2006) and it is reasonable to assume that the epidemiological dynamics 

have settled to a stable pattern. The initial immune profile of the population at the start 

of season T, in terms of the length of time since the most recent infection, is found from 

this steady state. The population is then challenged with a new strain, A, at the start of 

the T th season. Later in the same season the population is challenged with another new 

strain, B. Thereafter, the density of hosts infected with these strains is recorded. The 

population is now categorized into 9k states, susceptible (S), infected (I) and recovered 

(R) for each strain A and B with the most recent previous infection experienced k 

seasons ago. For example, the proportion of hosts currently infected with strain A, 

recovered from infection in the current season with strain B and, asides from the current 
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season, last infected k season ago is given by 

 

IRk . The rate of change of each host state 

is described by the differential equation system: 

 

 

SSk
′ = −(ΛA + ΛB )SSk,

ISk
′ = ΛA SSk − ISk −νΛB ISk,

RSk
′ = ISk −νΛB ISk,

SIk
′ = ΛB SSk − SIk −νΛA SIk,

IIk
′ = ν (ΛA SIk + ΛB ISk ) − 2IIk,

RIk
′ = νΛB RSk + IIk − RIk,

SRk
′ = SIk −νΛA SRk,

IRk
′ = νΛA SRk + IIk − IRk,

RRk
′ = RIk + IRk,

 (5) 

where the parameter  v  represents the proportional susceptibility reduction due to 

temporary non-specific cross-immunity. Ferguson et al. (2003), Tria et al. (2005) and 

Andreason and Sasaki (2006) all note that it is hard to produce a phylogenetic tree with 

the shape characteristic of influenza without this factor, unless the basic reproductive 

ratio is close to 1. Here, 0 ≤ v ≤ 1 and the effect of temporary non-specific immunity 

becomes smaller as 

 

ν  becomes larger. This immunity is only thought to persist for 3-4 

months so is not carried over to the next season. Note that co-infection with both strains 

can occur. However, the II compartment is expected to be very small, and unlikely to 

play a significant part in the dynamics, because the duration of infection is short and 

hosts infected with one strain immediately gain non-specific partial immunity to all 

other strains for the remainder of the season.  
 The forces of infection of strains A and B, 

 

ΛA  and 

 

ΛB , are given by 

 

ΛA = ρ( τ k (ISk + IIk + IRk ) + τ 0 (IS0 + II0 ) + τ 2IR0 )
k =1
∑ ,

ΛB = ρ( τ k (SIk + IIk + RIk )
k =1
∑ + τ 0 (SI0 + II0 ) + τ 2RI0 ),

 (6) 

Here   ρ = c / γ  is the basic reproductive rate, the expected number of secondary 

infections from a single host infected with a particular strain when the rest of the host 

population has no immunity to any strain. The suffix 

 

k = 0 indicates hosts that have 
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never been infected prior to the current season. The proportional reduction in infectivity 

due to partial cross-immunity of hosts who are currently infected with strain A, have 

recovered from an infection with strain B in the current season, but have never been 
infected prior to the current season (

 

IR0 ) is 

 

τ 2.  

Following Andreasen and Sasaki (2006), we assume that the host population 

has experienced annual outbreaks of a single constantly evolving virus line (A) for a 
long time, and hence the fractions 

 

sk  of hosts last infected  k  seasons ago at the onset 

of season are at steady state. The equilibrium values of 

 

sk  at the onset of season are 

thus given by 

 

 

ˆ s k = (1− φ)φ k −1,  (k = 1,2,L ), (7) 

where φ  is the fraction of hosts that remain susceptible in each year, determined from 

   0 = ρq(1− φ) + logφ , (8) 

where   q = τ k öskk∑ = τ k (1− φ)φ k −1
k∑ . This follows by considering the equilibrium of 

(4) noting that Sk
p (0) = Sk −1

p−1(∞) = ŝk  and Rk
p (∞) = Sk

p (0)φ = ŝkφ . With the partial 

cross-immunity function (2) assumed in this paper, 
  
q = (1− α k )(1− φ)φ k −1

k =1

∞∑  

 = 1− αφ(1− φ) / {φ(1− αφ)}  and hence (8) can be rewritten as 

  0 = ρ(1− φ)[1− αφ(1− φ) / {φ(1− αφ)}] + logφ . (9) 

In order to investigate overlapping epidemics of strains A and B, we introduce strain A 

at the beginning (  t = 0 ) of a season. The initial condition is then 

 

 

SSk (0) = (1− εA )ˆ s k,
ISk (0) = εA ˆ s k,

 (10) 

(

 

k = 1,2,L ) where  ε A  is a small positive constant representing the initial fraction of 

strain A infected hosts, and 

 

sk  is the initial fraction of hosts whose last infection was 

 k  seasons ago as given by (7) and (9). All other classes are zero at   t = 0 . Some time 

 t = Td  after the epidemic of strain A starts, strain B is introduced and the initial 

condition for the integration of (2) for  t ≥ Td  is: 

 
SIk (Td ) = εBSSk (Td − 0), SSk (Td ) = (1− εB )SSk (Td − 0)
IIk (Td ) = εBISk (Td − 0), ISk (Td ) = (1− εB )ISk (Td − 0)
RIk (Td ) = εBRSk (Td − 0), RSk (Td ) = (1− εB )RSk (Td − 0)

 (11) 
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(  k = 1,2,L ) where  εB  is a small positive constant and the fraction   SSk (Td − 0) , for 

example, represents the value of   SSk (t)  in the limit  t → Td . The other three classes 

for each  k , SRk (t) , IRk (t)  and RRk (t)  are zero at  t = Td . 

The invasibility of strain B in any given year is determined by the sign of the 

rate of change of the strain B infected population at time  t = Td , that is   IB
′ (Td )  where 

 

IB (t) ≡ (SIk (t) + IIk (t) + RIk (t))
k

∑
 

is the total fraction of strain B infected hosts. Strain 

B will invade the population and cause an outbreak in that year if  ′IB (Td ) > 0 . We 

examine how this invasibility is related to the degree of overlap between the epidemics, 
which is measured by   (Tea − Td ) / Tea , where 

 

Tea  is the time from the beginning of the 

season to the moment when the fraction of hosts infected with strain A falls below a 

fixed extinction threshold. 

 The coexistence of two strains in the same season is a necessary condition for 

branching. Influenza phylogenies, however, show distinct branches coexisting for 

several years until one forms the trunk of the phylogeny and the others become extinct 

(Bush et al. 1999). Therefore, we now consider the longer term persistence of branches. 

We assume that strain B successfully increases in the first season it emerges (T) and ask 

if the progeny of both strains A and B still persist  n  seasons after season T. To 

determine the invasibility of the progeny of strains A and B in season  T + n, we must 

know the degree of partial cross-immunity they experience i.e., the shortest path 

connecting the current strain and the strains responsible for any previous infections 

along the phylogenetic tree as shown in Figure 2. More specifically, we need to know 

not only the number of seasons  k  before T that the host has last infected, but also the 

infection history after season T in terms of the progeny of strains A and B. Let  a  ( b) 

be the number of seasons since the host was last infected by the progeny of strain A (B). 
Let  fa  ( fb ) be the number of seasons after T since the host was first infected by the 

progeny of strain A (B) (see Figure 2(a)). The infectivity 
  
cτ k ,a,b, fa , fb

 of strain A infected 

hosts depends on  k ,  a ,  b ,  fa , and  fb . The entries 
  
τ k ,a,b, fa , fb

 of Table 1 show the 

infectivity to the progeny strains of A and B in the year  T + n  for the hosts with state 
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{k,a,b, fa , fb} = {+,0,+,0,+} i.e. those who were last infected  k  years ago at the onset 

of the season T, have not been infected by any progeny of strain A since then 

  (a = fa = 0) , and have been infected at least once by progeny of strain B   (b, fb > 0) . 

The infectivity 
  
τ A,n

k ,a,b, fa , fb
of the progeny of strain A is determined by the most 

antigenically similar strain i.e. the smaller of 1− α n+ k  and 1− α 2n+2− fb  as shown in 
Figure 2(b). 

 

˜ τ k,a,b, fa , fb

A ,n is the corresponding quantity when the host has already been 

infected by the other co-circulating strain in the same year. 

 Each of the nine host states in the current season is now additionally classified 
according to infection history k, a, b,  fa ,  fb  (e.g.   IS(k ,a,b, fa , fb ) represents the density 

of hosts that are currently infected by strain A, have not yet been infected by strain B in 

the current season and whose infection history with respect to the ancestral strains of A 

and B is as shown in Fig 2a). The system is described by differential equations extended 
from (5) in the obvious way, with the forces of infection of strain A and B, ΛA  and 

 

ΛB , given by 

 

 

ΛA = ρ {τ k,a,b, fa , fb

A ,n (IS(k,a,b, fa , fb ) + II(k,a,b, fa , fb )) + ˜ τ k,a,b, fa , fb

A ,n

fb

∑
fa

∑
b
∑

a
∑

k
∑ IR(k,a,b, fa , fb )},

ΛB = ρ {τ k,a,b, fa , fb

B ,n (SI(k,a,b, fa , fb ) + II(k,a,b, fa , fb )) + ˜ τ k,a,b, fa , fb

B ,n

fb

∑
fa

∑
b
∑

a
∑

k
∑ RI(k,a,b, fa , fb )},

 (12) 

Coexistence is determined by the sign of the initial growth rate of the second strain to 

be introduced. For example, if strain A is initially present and strain B is introduced at 

 Td > 0, then the two strains coexist if   ′IB (Td ) > 0 . 

Results 

In order to understand the coexistence of two strains we the first consider the 

model in which only one strain circulates in each season (equation (3)). When the 
dynamics have stabilized, the distribution of the Sk  at the beginning of each season 

corresponds to the time interval between infections of the same host. As shown in 
Figure 3, when the basic reproductive number 

 

ρ  becomes larger, the time interval 

between infections becomes longer. 

With this observation regarding the immune profile in mind, we now analyze 

the model in which two strains may co-circulate in the same season. Figure 4(a) shows 

how coexistence in the season that strain B first emerges ( T ) depends on the basic 
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reproductive rate 

 

ρ , the strength of temporary non-specific immunityν, and the degree 

of overlap between the epidemics of the two strains. The results can be summarized as 
follows: (i) If two epidemic does not overlap (  Td = Tea ) coexistence occurs if ν and  

are large. (ii) If the epidemics overlap a little (   Td > (3 / 4)Tea ) the result remains the 

same. (iii) If the epidemics overlap a lot, the two strains always coexist except when  v  
is very small and  is very large. The observation that epidemics with different 

influenza strains often do overlap therefore indicates that, in order to prevent branching, 
the reproductive number  must be larger than previously suggested, or broad 

cross-immunity  v  must be stronger. Since it is known that the basic reproductive 

number of influenza is relatively small, this suggests that broad temporary 

cross-immunity is very effective or there are additional factors involved. If the order of 

emergence is same in seasons T  and T + 1 the condition for continued coexistence in 

season T+1 is exactly same. If the order of emergence is reversed between seasons T  
and T + 1 the way in which coexistence depends on ρ  and ν  remains qualitatively 

similar but is restricted to a smaller region of parameter space (Figure 4 (b)). In 
particular, if Td  is high and  is small coexistence always occurs for any value of ν. 

Furthermore, the range of values of 

 

Td  that result in large changes in the coexistence 

condition is narrower than when the order of epidemics is the same and the difference 
between the coexistence regions associated with Tea / 2  and 

 

Tea  is almost 

undetectable.  

Figure 5 summarizes the relationship between the sequence of epidemics and 
the fate of strains when the A and B epidemics in each season overlap (   Td = (1 / 4)Tea ) 

and do not overlap. The solid line shows the boundary for coexistence when the two 
strains appear in the same order   ( AB) in both seasons. The broken line shows the 

corresponding boundary when the two strains appear in the reverse order ( BA ) in the 

second season. If there is no overlap between the two epidemics the result agrees with 

the analysis of Andreasen and Sasaki (2006). If the two epidemics overlap, the region of 
the ρ − ν  parameter space in which strain B excludes strain A is wider when the order 

of epidemics is reversed between seasons. The effect of overlap between the two strains 

can thus be summarized as follows: (i) Coexistence occurs over a more extensive region 

of the r-n parameter space. (ii) If coexistence does not occur strain B is more likely to 

exclude strain A if the order of appearance is reversed between seasons. 

We now consider conditions for coexistence in the season in which strains A 
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and B appear together for the first time (T) and the following two seasons. There are 
four possible combinations for the order of epidemics   ( AB → AB → AB) , 

  ( AB → AB → BA) ,   ( AB → BA → AB)  and   ( AB → BA → BA) . In season   T + 2 , 

two progeny strains are more likely to coexist than their ancestors due to the increased 

antigenic distance between them. So if two strains coexist in   T + 1 and the order of 
epidemics in season T + 2  is the same as   T + 1 , ( (AB → AB → AB)  or 

  ( AB → BA → BA) ), coexistence will always continue. If, however, the order of 

appearance is reversed between seasons   T + 1 and   T + 2 , coexistence becomes more 

limited (Figure 6). Thus, reversal of the order of epidemics between seasons reduces 

coexistence in the same way as was observed when only seasons T  and T + 1 were 

considered. Phylogenetic analysis of data from New York State did not find any clear 

pattern in the order that strains appear from one season to the next (Nelson et al. 2006) 

suggesting that variation is extensive. Therefore, variation in the order that strains 

appear is expected to moderate some of the effects of overlapping epidemics and is 

likely to be a factor in the prevention of branching. 

Individual-based simulation 

 In the differential equation based model discussed so far the time scale of the 

epidemic is separated from that of the drift process. The main conclusion of our analysis 

was that two strains are more likely to coexist if there is a shorter time lag between their 

appearance and hence a greater overlap between their epidemics. Branching may be 

initiated if two strains appear at a similar point of the season. However, it may be 

subsequently terminated if the order in which these strains appear varies in later seasons. 

We now re-examine these conclusions using an individual-based model that simulates 

the epidemic and drift processes on the same time scale. Whereas the differential 

equation model is based on the approximation of constant antigenic change in each 

season, we now model mutation explicitly and only assume that the antigenic distance 

associated with each mutation is constant.  

We consider a host population of N = 105 individuals and record the immune 

state of each host with respect to each virus strain. The probability that a host 

susceptible to strain A becomes infected is 

 ΛA = ρ τ x,A
x  infected with A

∑ / N ,  (13) 
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where the summation is over all hosts, x, infected with strain A and 

 

τ x,A  is the reduced 

infectivity of strain A in host x due to partial cross-immunity, ρ = c / γ  is the basic 

reproductive rate, N = 105  is total host population size, c is a constant contact rate and 

 

γ  is the recovery rate. In order to determine the strength of partial cross-immunity, we 

need to determine the antigenic distance between two strains. Here we assume this is 

equal to the Hamming distance. We consider an epitope consisting of ten amino acid 

residues (loci) and assume each locus has two variants, 0 or 1. The antigenic distance 

between two strains is then given by the number of loci with different values. For each 

infected host, one locus of the infecting strain switches value due to mutation with 

probability µ. Denoting the infectivity reduction rate associated with one mutation by 

 

α , the Hamming distance between strains A and B by 

 

d(A,B)  and assuming only the 

strongest partial cross-immunity from all past infections is relevant, 

 τ x,A = min
B x recoverd from B 

(1− α d (A,B) )  . (14) 

Infected hosts recover with probability 

 

γ  and gain complete temporary immunity to all 

strains, which lasts an average of 1/5 of a year. The probabilities of birth and death are 

equal, and newborn hosts are susceptible to all strains. Initially ten hosts are infected 

with the same strain and susceptible to all other strains while the remainder of the 

population is susceptible to all strains. The system was iterated using a continuous time 

Markov process. 

Figure 7 shows a phylogenetic tree produced by this model. With temporary 

non-specific immunity the phylogenetic tree shows an approximately linear shape 

despite rapid turnover of antigenic strains, justifying our assumption that the viral 

population is nearly monomorphic in each year and escape mutations constantly 

accumulate .  As with the differential equation model, we now focus on the 

coexistence of a mutant strain M  and its immediate progenitor P . We define M  

and P  to be coexistent if they are both present in the population when another 

mutation occurs in M . This definition rules out situations in which small outbreaks of 

P  occur by chance even though sustained coexistence is not possible. 

 Using this model, we tested whether the lag between the appearance of strains 

P  and M  is correlated with their coexistence. Figure 8 shows the distribution of the 

number of mutant strains that coexist with their progenitor P  when the lag between 
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their appearance is  Td . This sampling distribution is compared with a theoretical 

distribution for the expected number of coexisting strains when the probability of 
coexistence is independent of  Td  and given by 

 F0 =
M g (Td )

Td =0

∞

∑

M (Td )
Td =0

∞

∑
 (15) 

Here M (Td )  denotes the number of strains M  for which the appearance lag relative 
to P  is  Td  and M g (Td )  denotes the number of strains that have an appearance lag 

relative to P  of  Td and coexist with P . The Kolmogorov-Smirnov test at the critical 

level 0.01 rejects the null hypothesis that the sampling distribution corresponds to the 

theoretical distribution. Hence appearance times are correlated with coexistence. Figure 
9 shows the relationship between the lag in the appearance time of P  and M  ( Td ) 

and the probability of coexistence. Spearman’s rank-correlation coefficient between the 

length of the lag and the coexistence probability is -0.4180821 (p-value < 0.01). We 

conclude that the key dynamics of the deterministic model based on assumption of 

continuous, linear antigenic divergence are in good agreement with the stochastic model 

based on a high dimensional antigenic space. If the lag between the appearance of two 

strains is shorter then they are more likely to coexist. Overlapping epidemics facilitate 

branching. 

Discussion 

We have developed a model for influenza evolution over discrete transmission 

seasons to examine the impact of emergence time and epidemic overlap on the 

coexistence of antigenically divergent strains and assess the implications for 

evolutionary branching. Previous work based on non-overlapping epidemics has shown 

that maintaining the slim antigenic phylogeny of seasonal influenza is likely to require a 

relatively high basic reproductive number and strong temporary broad immunity. We 

have shown that if epidemics overlap an even higher basic reproductive number or 

stronger temporary immunity are required to prevent branching although variation in the 

order in which strain appear over several seasons may moderate these constraints. We 

have also shown that these results arise in both a deterministic model with a basic 
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antigenic space and a stochastic model with a high dimensional antigenic space.  

A new branch is established when two distinct strains emerge and coexist. 

When two strains appear in the same season coexistence is determined by the survival 

of the second strain and cross-immunity means that hosts infected with, or recovered 

from, the first strain are difficult for the second strain to re-infect. The key parameters 

that determine coexistence, therefore, are the decay rate in the strength of partial 
cross-immunity after one season

 

α , the basic reproductive rate

 

ρ , the proportional 

reduction in the force of infection due to temporary non-specific immunityν, and the 
appearance time of the second strain 

 

Td . The role of 

 

α  and νis easy to understand as 

these parameters determine partial cross-immunity and temporary non-specific 
immunity directly. The role of 

 

Td  and 

 

ρ , however, is indirect as these parameters 

determine the immune profile of the host population. A larger value of the basic 
reproductive rate 

 

ρ  reduces the time between infections (Figure 3). Given that partial 

cross-immunity decays with each passing season, and is almost absent after about five 
seasons, the fraction of hosts who benefit from partial cross-immunity is larger when 

 

ρ  

is larger. In addition to reducing the time between infections, larger values of the basic 
reproductive rate increase the magnitude of epidemics as shown by

 

S1 in Table 2. So 

 

ρ  

affects both the fraction of hosts infected and the time between infections. Increasing 
the time lag between the appearance of each strain (

 

Td ) means that larger values of 

 

ρ , 

or smaller values of ν, are required for coexistence, as Figures 4 and 6 show. This 

happens because, if the second strain emerges later, a larger fraction of the host 

population have immunity due to infection with the first strain. 

The sequence in which strains appear is also important for coexistence over 

two seasons. If the sequence of appearance is the same in seasons T and T+1, continued 

coexistence is more likely than if the sequence is reversed between seasons (Figure 4). 

In order to understand this phenomenon, we focus on the case in which the sequence is 

reversed. In season T, strain A emerges first and strain B is suppressed due to host 

immunity. Hence the number of hosts infected with strain B is small, and so the number 

of hosts acquiring complete immunity to strain B is also small. This small epidemic may, 

however, be a herald wave (Glezen et al. 1982), because if strain B appears first in 

season T+1, host immunity is weak and a large strain B epidemic follows. The host 

immunity arising from this epidemic then suppresses the prevalence of strain A, 

possibly driving it to extinction. When two epidemics overlap, the exclusion of the 
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preexisting strain by a strain newly established in a herald wave is much more likely to 

occur (Figure 5). Once two strains succeed in coexisting it becomes more likely in 

subsequent seasons, although the extent of potential coexistence is always reduced by a 

reversal in the order of appearance between seasons. 

The key result of both the differential equation based model and the 

individual based model is that strains are more likely to coexist if the difference 

between their appearance times is smaller. This conclusion offers important insight into 

the timing of the emergence of novel influenza strains. For the individual based model, 

the sampling distribution shown in Figure 8 corresponds to non-neutral evolution 

whereas the theoretical distribution corresponds to neutral evolution. Here, the degree of 

overlap between epidemics can also be interpreted as the time at which a mutant 

emerges from a circulating strain. The peak of the sampling distribution is earlier than 

that of the theoretical distribution indicating, in agreement with the analysis of Boni et 

al. (2006),  that host immune selection causes excess antigenic drift and most of this 

drift occurs in the earlier part of each influenza season. 

 Genetic analysis of H3N2 and H1N1 isolates collected in the United States 

over the last decade show that there are multiple introduction events each season and 

several antigenically distinct clades may co-circulate (Nelson et al. 2006, 2007, 2008). 

Here we have shown that the extent of overlap between the epidemics associated with 

these clades is an important factor in determining whether or not a new antigenic branch 

is established, and persists. Clades that appear, by mutation or introduction, at a similar 

time are more likely to coexist and so result in a new antigenic branch. However, 

variation in the order in which these clades appear in subsequent seasons limits 

co-existence and may be an important factor preventing the persistence of new antigenic 

branches. Analysis of H1N1 epidemiological data has shown that the mutant or clade 

that emerged earliest in the influenza season caused a major epidemic whilst clades 

emerging later caused much smaller outbreaks (Nelson et al. 2008). Correspondingly, in 

our model, strains that emerge when an epidemic of another strain is already well 

underway are unlikely to lead to significant co-circulation or the establishment of new 

antigenic branches. This insight suggests that tracking and predicting the antigenic 

evolution of influenza virus may be improved by focusing attention on the early stages 

of epidemics. 
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Figure legends 
Figure 1: Decay in partial cross-immunity with time. The horizontal axis is the number 

of seasons k that have elapsed since the most recent infection. The vertical axis is the 

reduction in the force of infection due partial cross-immunity, τ = 1− α k . The 
parameter 

 

α  determines the decay in partial cross-immunity after one season has 

elapsed. 

 

Figure 2: (a) Relationship between the season in which strains circulate relative to the 

first potential branch point in season T and the antigenic distance between them, 
indicating the definition of  k ,  a ,  b ,  fa , and  fb . (b) Cross-immunity is determined 

by the strain most antigenically similar to the one circulating in the current season 

T + n  i.e. the smaller of 1− α n+ k  and 1− α 2n+2− fb . 
 
Figure 3: The relationship between the basic reproductive rate 

 

ρ  and the mean time 

interval between of infections of same host when there is only one strain and it has 

reached equilibrium. Error bars denote standard deviation. 

 
Figure 4: Conditions for coexistence of strains A and B in terms of parameters 

 

ρ  and ν 

for different lags between the appearance time of the strains, expressed as a proportion 

of the total epidemic duration Tea (a) The sequence of epidemics is the same in seasons 

T and T+1. (b) The sequence of epidemics is reversed between seasons T and T+1. The 

two strains coexist in the regions above the solid lines, one strain is excluded in the 

regions below the lines, The initial number of infections when each strain appears is 

εA = εB = 10−6 . The extinction threshold for each strain is 

 

Ik
k

∑ = 5 ×10−7 .  

 

Figure 5: Relationship between the sequence of epidemics and the fate of the progeny of 
strains A and B when epidemics overlap (   Td = (1 / 4)Tea ) and do not overlap. The solid 

line is the boundary condition for coexistence if the sequence of epidemics is same in 

seasons T and T+1. The broken line is the boundary if the sequence of epidemics is 

reversed between seasons. The diagrams show which strains persist. ● indicates 

persistence, × extinction. In region (i) the two strains coexist. In region (iii) one strain is 
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excluded. In the region between the solid and broken lines (ii) , the outcome depends on 

the order of appearance. If strain A appears first in season T+1 there is coexistence but if 

strain B appears first in season T+1 strain A will be driven to extinction. 

 
Figure 6: Conditions for coexistence of strains A and B in terms of parameters 

 

ρ  and ν 

for different lags between the appearance time of the strains. The two strains coexist in 

the region above the solid line. One strain is excluded in the region below the line, (a) 
The sequence of epidemics in season T+1 and T+2 is (AB → AB → BA) . (b) The 

sequence of epidemics in season T+1 and T+2 is (AB → BA → AB) . 

 

Figure 7: Phylogenetic tree resulting from a 100 year simulation using the individual 

based model. Strains that caused less than 2000 infections and did not produce mutants 

have been excluded. Each branch shows a strain created by one site mutation. Basic 
reproductive ratio 

 

ρ  is 3.9968, host population size is 105, mutation rate µ = 0.0005 , 

mean duration of protection due to temporary non-specific immunity is 1 / 5  year. 

During temporary immunity hosts cannot be infected by any strain. Initially all of the 

host population is susceptible to all strains except for 10 hosts infected with the same 

strain. 

 

Figure 8: The number of progeny strains that emerged the relative lag Td after the 

appearance of their ancestors, and coexisted with the ancestors until they leave the next 

progeny strain, where the lags are scaled in units of the duration of the ancestral strain 

epidemic. Black bars: the observed distribution from the individual based model; gray 

bars: the theoretical distribution when there is no correlation between the probability of 

coexistence and the appearance time. Earlier emerging progeny strains are more likely 

to coexist with their ancestral strains than random expectation. See text for the 

definition of the coexistence between ancestral and progeny strains. 

 

Figure 9: Probability that a mutant strain coexists with its progenitor as a function of the 

lag between the appearance of the two strains, Td . Error bars denote standard error. As 

in Figure 8, this shows that earlier emerging progeny strains are more likely to coexist 

with their ancestral strains. 
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Table 1: Relationship between infection history and strength of partial cross-immunity 

(τ) in season T + n . “(not) infected by A(B)” indicates whether or not the host is 

infected with strain A(B) in the current season. Suffix k indicates how many seasons 

before T the most recent infection occurred. Suffix a indicates how many seasons before 

the present, but after season T, the most recent infection with strain A occurred. Suffix 

fa denotes how many seasons before the present, but after T, the first infection with 

strain A occurred. Suffixes b and fb are similarly defined for strain B. 
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Chapter 2 
 

 

The timing of the emergence of new successful 

strains in seasonal influenza 
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Introduction 

Influenza viruses rapidly change their antigenicity (antigenic drift), making the 

vaccination strategy against them very difficult. Forecasting the evolutionary trajectory 

of influenza antigenicity is therefore quite important to prevent an epidemic. The 

evolution of influenza is driven by selection due to the change in the host herd immunity, 

as well as random factors like mutations, demographic stochasticity, and environmental 

fluctuation. Combined effect of these factors should mold the direction of the 

evolutionary trajectory. A new viral strain must face not only the immune response 

directly mounted against it, but also partial cross-immunity due to the past infection of 

related strains. In addition to the specific immune responses, a newly infected strain 

must face temporal non-specific immunity raised by the infection of an arbitrary strain. 

These immune-driven processes should play a key role in the evolution of influenza. 

The immune response due to earlier infection of a strain would suppress the 

epidemiological outbreak of other strains emerging later, which would drive the late 

coming strains to go extinct. This 'mass extinction' of strains, which would be highly 

successful if it originated in a susceptible population, but not in the population 

experienced the recent outbreaks of closely related strains, makes phylogenetic tree of 

influenza slender (Andreasen et al., 1997; Ferguson et al., 2003; Koelle et al., 2006; 

Andreasen and Sasaki, 2006; Omori et al. 2010). The strength of host herd immunity 

against a new flu strain is determined by how far it is genetically or antigenically distant 

from the strains the host population experienced in the past. Mathematical models that 

explicitly take into account the phylogenetic relationship between strains are therefore 

necessary to understand the evolution of influenza. In this paper, we study the model 

describing the evolution of antigenic sites of virus that allows the mutation to alter the 

antigenicity and is exposed to the selection due to host immunity and cross-immunity. 

We used the mathematical model that described host population dynamics in each host 

immune classes with each strain, so called multi strain model. Previous studies based on 

multi strain model have revealed which of possible strains is dominant at equilibrium 

(Gupta et al., 1996, Minayev and Ferguson, 2009, Recker et al., 2007). We focus on the 

distribution of the emergence timing, the epidemic peak timing and the epidemic 

duration of strain which will successfully establish itself in the host population, by 

extensive simulations of individual based model for the co-circulation of antigenic 
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strains. 

Method 

We consider  host population, and keep track of the immune status of each 
host individual against each virus strain. Let  denote the immune status of the 

-th person against a viral strain n, 

  (16) 

where the state 0, 1, and 2 respectively means that the host is susceptible to, infected by, 

and recovered from the viral strain . We consider the immunity and cross-immunity 

against a viral strain in term of the infectivity of the strain. For example, the force of 
infection  of strain A, or the rate at which a host is infected by strain A, is defined 

as 

  (17) 

where summation is taken for all the hosts, , infected by strain A (i.e. with the state 

).  is the transmission rate of virus, constant over strains but has seasonal 

variation with annual cycle 

 β(t) = β0 (1+ acos(2π t)),  (18) 

where  is the mean transmission rate,  is the amplitude of seasonal fluctuation of 
the transmission rate.  is infectivity of strain A reduced by cross-immunity of x-th 

person, 

 . (19) 

Here we assume that the closer is the antigenic distance  between strains A and 

B, the stronger is the degree immune protection, , by cross immunity, where  
is a constant in the range . The infectivity of a strain A is assumed to be 

determined by the strongest cross-immunity in all the past infections of xth person. This 

corresponds to take the minimum of infectivity over all the viral strains B that has 

infected the host  in the past.  is infectivity reduction rate by one mutation.  
 The antigenic distance  is defined as the hamming distance between 

the epitope sequences of strain A and B. We consider epitope sequence of length ten, 
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where each site has two alleles 0 and 1. The immunological distance between two 

strains is determined by the number of unmatched sites in the epitope (hamming 
distance). Each site changes its allelic states by mutation with the rate .  

 An infected host recovers at the rate , and the recovered host gets 

temporary non-specific immunity. The host in this class is protected from any strain. 

Temporary immunity is lost at a constant rate . For the sake of simplicity, birth and 

death rates of a host, denoted by , are assumed to be the same so that the total 

population is kept constant, and newborns are susceptible to all the strains. The initial 

condition is that the host population is completely susceptible to any strain except ten 

host individuals infected by a single inoculated strain with the epitope sequence 00…0. 

Birth and death of hosts, infection and recovery events, and mutations at antigenic sites 

of influenza occur randomly with the rates described above (the model is therefore falls 

into the category of a multi-agent continuous-time Markov chain).  

Previous studies revealed that, to realize a slender phylogenetic tree that 

characterizes of the evolutionary pattern of influenza A virus, the epidemiological 

parameters must reside in a certain range. Firstly, an intermediate basic reproductive 

ratio is necessary for a long persistence of viruses by continuously escaping host 

immune response (Sasaki and Haraguchi 2000). Secondly, for a secure long persistence 

of slender phylogenetic tree during antigenic drift, sufficiently strong general temporary 

immunity or suppression of co-infection is necessary (Andreasen and Sasaki 2006, 

Omori et al. 2010). As we are interested in the long lasting antigenic drift of influenza 

viruses, we restricted our analysis in the range of epidemiological parameters of 

cross-immunity and general temporary immunity (β, ν, α and a) so that the viruses 
succeeded to persists more than 1000 years by continuously evading immune response 

in the simulation. If co-infection is not suppressed, strong enough general temporal 

immunity is required (Figure s1), this agrees with Andreasen and Sasaki 2006 and 

Omori et al. 2010. In the case that co-infection is suppressed, the lineage of virus can 

persist for a long time even if there is no general temporal immunity. Other parameters 
are kept constant : γ  = 25.0 per year by which the infectious period  1/ γ  is set about 

two weeks,  u = 1/50 by which mean host life time is 50 years, and mutation rate per 

antigenic site per infection event m = 0.001. 

Results and Discussion 
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We first focus on the distribution for the emergence times of new strains in a year 

observed in our Monte Carlo simulations. The peak time for the generation of new 

strains in a year was earlier than the time at which the infection rate attained its 

maximum (Figure 10a). A new strain of virus here is defined as the one having at least 

one mutation at epitope sites from its direct ancestor. We then focus on a subset of new 

strains that will later succeed in producing further new strains (Figure 10b-d). We call 

these strains the second-generation-producing strains. Among a large number of new 

viral strains generated by mutations in each year, only a small fraction of them could 

establish themselves in host population (compare the vertical axis of Figure 10a with 

those of Figure 10b-d). All the other new strains went extinct without showing any 

detectable increase in the population. As a result the shape of phylogenetic tree became 

nearly linear, as has been shown empirically in influenza A viruses (Buonagurio et al., 

1986, Cox and Subbarao, 2000, Fitch et al., 1991, Fitch et al., 1997, and Hay et al., 

2001). The second-generation-producing strains in our simulations thus correspond to 

the strains constituting the “trunk” of cactus shaped phylogenetic tree of influenza.  

Let us now consider the emergence time, the time at which it is generated by 

mutation, of the second-generation producing strains. The peak times of the emergence 

of the second-generation-producing strains were earlier than those of all the strains 

(Figure 10b as compared with Figure 10a). We also studied the peak times of the 

emergence of the third-generation-producing, and the forth-generation-producing strains. 

However, there were no clear difference between the peak emergence time of these 

strains from that of the second-generation-producing strains (Figure 10b-d). This means 

that, although the success in the production the second generations critically depended 

on the timing of its emergence in a year, further success in the production of the third or 

further generations was nearly independent of the emergence time of the strain.  

Markedly earlier emergence of successful (the second generation producing) 

strains in the year among all the new strains was shown over a wide range of parameters 

(Figure 11). The emergence times in a single epidemic season of the second-generation 

producing strains were consistently and considerably earlier than the mean emergence 

times of all the new strains that include those went extinct before increasing in the host 

population (red, blue, green lines in comparison to black lines in Figure 11).  

Although the advanced emergence times of successful strains over the other strains 

hardly changed with the parameters, they change in accordance with each 
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epidemiological parameter. The increased mean basic reproductive ratio  led to 

earlier peak time of the emergence of all the new strains (Figure 11a). This can be 

simply ascribed to the classical result of epidemiological model (e.g. Anderson and May 

1991) --- an earlier peak of outbreak for a larger basic reproductive ratio. It is 
interesting to note that for a sufficiently large , the mean emergence time was set 

back again due to demoted synchronizations of epidemiological outbreaks by different 
strains (denoted by larger variances in peak emergence times towards larger  -- see 

supporting information for the theoretical explanation for the demoted synchronization 

with a larger basic reproductive ratio). In the similar vein, the decrease in the degree of 

cross-immunity (the decrease of ) by a single mutation in antigenic sites led to an 

earlier peak of emergence (Figure 11b). We also observed that a more strong general 

temporal immunity (i.e. a longer mean duration of general temporal immunity) led to an 

earlier peak of emergence (Figure 11c). There was no clear effect of the amplitude  

of seasonal fluctuation of transmission rate (Figure 11d). 

The reason why the emergence time of successful strain (the second-generation 

producing strains) was earlier than the other strains can be explained by the advantage 

of strains emerged in an early stage of epidemic season over the other strains (Omori et 

al. 2010). An earlier coming strain in an epidemic season suffers less from 

cross-immunity or temporal immunity mounted by the other strains. Later coming 

strains, on the other hand, are more heavily suppressed by the cross-immunity of the 

hosts infected by antigenically similar strains. General temporary immunity also 

contributes to the advantage of an earlier strain, as in the same vein cross-immunity 

does. This by no means implies that the strain with the earliest emergence in the season 

become the major strain of the year; the strains emerging too early must face smaller 

transmission rates (which is fluctuating seasonally) than in the peak season. There is 

therefore the optimum timing of the emergence in a year to be successful for the virus, 

which is much earlier than the peak time of the epidemic, and against which we must be 

precautious. 

We next focus on the time for a strain to reach the maximum infectious population 

after it emerged. Figure 12 shows that, during the epidemic courses of particular strains, 

most epidemic peaks were attained around one year after their emergences. This means 

that, in most cases, the strain that causes an epidemic have already emerged in the last 

epidemic season, suggesting that we can detect the strain that will become dominant in 
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the next year by looking in current epidemic season. However, if  was too large this 

was no longer the case: there is high probability of failing such prediction. If  was 

large, many strains attained their epidemic peaks in the same season they emerged. This 

means that even at the late stage of epidemic season, it is too early to find the potential 

dominant strains of the next season if the basic reproductive ratio is large. The other 

parameters (α, 1/ν and a) made small difference in the fraction of hosts who were 
infected in the first year the strain emerged. They, however, made big difference in the 

distribution for the time of infection after the second year the strain emerged. The 

increased infectivity reduction rate α, the prolonged duration of temporal immunity 1/ν, 
and the decreased amplitude of seasonality in transmission rate a, all contributed to 

reduce the frequency of the hosts that were infected in the second year the strain 

emerged. Despite these parametric dependencies for the infection timing spectrum after 

the second year, the mean time of infection did not change much by ,  or , 

because they hardly affected the frequency of the hosts who were infected in first year 

the strain emerged. 

This carry-over of epidemic peak of a strain from the season it emerged to the 

next or later epidemic seasons would be quite important to predict new successful 

strains. What, then, makes this carrying over? To answer this question we constructed a 

deterministic model for the epidemics of a single strain in the host population where its 

immune structure changed with time according to the mean behavior observed in the 

individual-based model simulation. The epidemic peak timing of the model fitted with, 

or was self-consistent with, the result of the IBM model (Figure 13). Prohibition of 

co-infection and addition of general temporal immunity both contributed to carry over 

the epidemic peak timing of the strains that emerged in early stage of the season. 

We also analyzed the dependence of the epidemic duration of the 
second-generation-producing strain on the parameters ( , α, 1/ν and a). The epidemic 

duration is defined as the period from the emergence time of the first infectious host to 

the time when the last infectious host recovered. The results as shown in Figure 14 can 
be summarized as follows: the epidemic duration increased if  was increased, and if 

α and a were decreased. There was, however, no clear effect of general temporal 
immunity, , on the epidemic duration. 

 A larger basic reproductive ratio makes the epidemic duration shorter in the 

SIR model if there were only one strain (i.e. in a standard SIR model) (Figure S2). In 
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contrast, in the IBM model with many co-circulating strains, the increase in the mean 
basic reproductive ratio  led to the increase in the epidemic duration of the 

second-generation-producing strain (Figure 14a). To understand this discrepancy in the 

dependence of epidemic duration on , we focus on the role of competition between 

co-circulating strains for their hosts. For a larger number of co-circulating strains, we 

expect more intense competition between them, and hence we expect a smaller peak of 

epidemic and prolonged epidemic duration by each strain. This was supported by the 

IBM model. We found that the total number of hosts infected in a season increased with 
 (Fig S3a), but that the mean number of hosts infected by each strain decreased with 

 (Fig, S3c). This is because the “denominator”, the number of emerged strains per 

season, increased further than the “numerator”, the total number of infected hosts, with 
 (compare Fig. S3a with S3b).  Similarly, a longer epidemic duration with a smaller 

 (Figure 14b) suggests that more efficient cross-immunity by a single mutation (i.e. 

decreased ) led to a more intense competition between co-circulating strains. 

The reason why a greater fluctuation in transmission rate (by increased a) makes 

epidemic duration of the second-generation-producing strain shorter (Figure 14d) can 

also be explained by more intense competition between co-circulating strains. Indeed, 

the denominator of mean number of hosts infected by a particular strain (i.e. the number 

of strains emerge in a season) increased further than the numerator (i.e. the total number 

of infected hosts) with increasing a (Figure S4a and S4b). Rambaut et al. (2008) 

revealed that the epidemic of influenza A in high latitude region has stronger seasonality 

than low latitude region, it is suggested that epidemics of each influenza strain in low 

latitude region should persist longer. 

As for general temporal immunity, there was no clear effect on epidemic durations 

(Figure 14c). This is consistent with the fact that there is no clear difference in the mean 

number of hosts infected by the second-generation-producing strain that emerged in a 

season for varying  (Figure S5c). A greater general temporal immunity (i.e. a 

longer duration of temporal immunity) decreased to the same extent both the total 

epidemic size and the number of strains emerging per year (Figure S5a and S5b). 

The key result of our paper is that the strains that will produce new strains tended 

to emerge in an early stage of epidemic season, and to reach its maximum number of 

infected hosts in the next season. Predicting a strain that will become dominant in the 

next year is usually difficult, but our study suggest that the census of the already 
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emerged strains has high chances of finding a dominant strain of the next year. 
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Supporting information 1. 
Supporting figures referred in the main body. See legends for the explanation. 

 

Figure S1: Persistence condition of virus in the IBM model when there is co-infection 

and general temporal immunity. We counted the frequency of simulation runs in which 

the lineage of virus survived over 70 years (over a generation time of host) in 20 

simulation runs of individual based model. In the region marked as “Persistence”, virus 

survived for over 70 years in all 20 simulation runs; whereas, in the region marked as 

“Extinction”, virus went extinct within 70 years in all 20 simulation runs. The 
parameters except  and  were set as , , u = 1/50 and m = 

0.001. 
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Figure S2: The dependence of epidemic duration on basic reproductive ratio in a single 

strain SIR model. Time course change of the frequencies of S, I and R in a single strain 
SIR model is , and . Mean duration of infectiousness 

is constant, (days), and the basic reproductive ratio  is changed by 

changing . Initial condition is , , and . The 

epidemic duration is defined as the duration from the beginning of simulation to the 

time when I will become smaller than the initial value of I, I(0). 
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Figure S3: The relationship between  and (a) the total number of hosts infected with 

the second-generation producing strains that emerged in a season (b) the number of 

second-generation producing strains emerged in a season (c) the mean final epidemic 

size of each of second-generation producing strain, i.e. the mean number of hosts 

infected by each of second-generation producing strain. (a), (b) and (c) are generated 
from a 1000-year simulation in the IBM model. The parameters except  were set as 

,  (7 days), , u = 1/50 and µ = 0.001. 
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Figure S4: The relationship between the amplitude, , of seasonal fluctuation of the 

transmission rate and (a) the total number of hosts infected with the second-generation 

producing strains that emerged in a season (b) the number of the second-generation 

producing strains emerged in a season (c) the mean final epidemic size of each of 

second-generation producing strains. (a), (b) and (c) are generated from a 1000-year 
simulation in the IBM model that the parameters except a were set as , , 

 (7 days), u = 1/50 and µ = 0.001. 
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Figure S5: The relationship between mean duration of temporal immunity 1/ν and (a) 
the total number of infected hosts with the second-generation producing strains that 

emerged in a season (b) the number of the second-generation producing strains that 

emerged in a season(c) the mean number of the hosts infected by each of 

second-generation producing strain that emerged in a season. (a), (b) and (c) are 

generated from a 1000 year IBM simulation that the parameters except 1/ν were set as 
, , , u = 1/50 and µ = 0.001. 
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Supporting information 2. 

The demoted synchronization of epidemical peak timing with a larger basic 

reproductive ratio 

 For the analysis of the relationship between synchronization of epidemic 

peaks and basic reproductive ratio, we used a standard SIR model with seasonal 

fluctuation of transmission rate, 

  
′S = −βSI ,
′I = βSI − γ I ,
′R = γ I ,

      (S1) 

where  and . See Figure S6 legends for the 

parameter values and initial condition. Using this model, we analyzed the relationship 

between the emergence time in a year (i.e. introduction time of a strain into the host 
population) and epidemic peak timing in a year. If  is small, the epidemic peak 

times in a year are limited in a narrow range in a year when the emergence times are 
varied over a year; whereas, if  is large, the epidemic peak times varied over a 

wider range in a year (Figure S6a-c). This implies that a smaller  promotes 

synchronization of epidemic peak timing in a year among co-circulating strains that 

emerged at different emergence times. 

“Mean-field” single strain model 
To understand what makes the carry-over of epidemic peak time, we analyzed 

the key behavior of the IBM model (equation 16-19 in the main text) by constructing a 

simple deterministic model described below. In IBM model, the relative infectivity 

reduction by cross-immunity in the force of infection of a particular strain is determined 

by the mean susceptibility to this strain of host population (equation 17 and 19 in the 

main text). In this model, for the sake of simplicity, we assumed that the susceptibility 

to a particular strain is constant during the epidemic of this strain, and equals to the 

mean value observed in IBM simulations averaged over all emerged strains. Therefore 

the force of infection to strain A (equation 2 in main text) is rewritten by 

 ΛA = βQiA ,  (S2) 

where  denotes the frequency of hosts infect with strain A,  denotes the mean 
susceptibility and . 

Under these approximations, we now consider the epidemic dynamics of a 
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strain “in the mean field”, in which the influence of the other cocirculating strains is 

embedded in the mean host susceptibility. Suppose that co-infection is possible, but 

there is no general temporal immunity. The dynamics for the population of each 
immunity status to stain A, the hosts that are susceptible to strain A ( ), the hosts that 

are currently infected and infectious with strain A ( ), and the hosts that are immune to 

strain A ( ), is described, with equation (S2), by 

 
′sA = −ΛAsA ,
′iA = ΛAsA − γ iA ,
′rA = γ iA ,

 (S3) 

where   by definition.  Here We used the mean value of the 

susceptibility to all strains in a 1000-year simulation of the IBM model with the same 

parameter values as the value of Q ; Q = 0.85 .  

 Next, we consider the case in which there is general temporal immunity but 

no co-infection. The time course of frequency of each immunity status is rewritten, with 

equation (S2), as follows 

 

′sA = −ΛA(sA − î (t) − ŵ(t)),

′iA = ΛA(sA − î (t) − ŵ(t)) − γ iA ,
′rA = γ iA

 (S4) 

where  denotes the frequency of hosts that have general temporal immunity, and 

 denotes the frequency of hosts that are currently infected by some other strain. We 
used the mean frequency of hosts infected by any strain at each time in a year over 1000 

years in the IBM model as  and the mean frequency of hosts that have general 

temporal immunity at each time point in a year over 1000 years in the IBM model as 

. For the calculation of  and  in the IBM model, the parameters were set 
as , ,  (7 days),  and  µ = 0.001. 
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Figure S6: Relationship between the emergence time in a year and the epidemic peak 

time in a year. Points show the emergence time in a year (horizontal axis) and the 

epidemic peak time in a year (vertical axis). The emergence time in a year is varied 

from 0 to 0.99 year and with 0.01 year interval. The initial condition is that there are a 
few hosts infected ( I(0) = 0.000001) and the other hosts are susceptible ( S(0) = 1− I(0) , 

 

R(0) = 0). The mean basic reproductive ratio R0 = β /γ  was adjusted by changing . 
The parameters were set as  and  1/ γ = 14 / 365  (14 days). 
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Figure legends 
Figure10. The distribution of the emergence times of new strains observed in a 

1000-year simulation run of the IBM model. a: The solid line indicates the distribution 

of the timing in each year of the number of epitope changing strains emerged by 

mutation with the moving averaged of 1/10 year window. The dashed line indicates the 

seasonally varying transmission rate. b-d: The conditional distributions for the timing of 

the emergence of strains that succeeded to produce the second generation (b), the third 
generation (c), and the forth generation (d). The parameters were set as , 

,  (7 days), ,  (years), and  (per 

infection). 

 

Figure 11. The peak emergence times of all the new strains, and the subset of successful 

(the second-, the third-, and the forth-generation producing) strains as functions of 

epidemiological parameters. In each panel, black line shows the peak emergence time 

(relative to a year – see the scale of the horizontal axis of Figure10) of all the new 

strains (antigenicity mutants); blue, red, green lines, that of the second-, the third-, and 

the forth-generation producing strains.  The epidemiological parameters varied along 

the horizontal axis of each panel are: (a) the mean basic reproductive ratio averaged 
over a year, , (b) the infectivity reduction  by the cross immunity 

mounted by a single-step distant strain, (c) the mean duration of temporal immunity, 

, and (d) the amplitude of seasonal fluctuation of transmission rate, . Each point 

represents the mean value of 10,000 times boot-strap resampling of the simulation 

results over 1000 years, and the error bars denote their standard deviations. Apart from 

the parameter values varied in the horizontal axis, the other parameters were set to 
, ,  (7 days), , u = 1/50 and µ = 0.001. 

 

Figure 12. The cumulative distribution for the timing of infections of all the strains that 

emerged in a 1000-year simulation of the IBM model. The vertical axis denotes the 

cumulative distribution for the timing of infection, i.e., the number of hosts infected by 

a strain by time , divided by the final epidemic size of that strain. (a) The distribution 

for varying mean basic reproductive rate over a year, , from 2 to 4, (b) that for 

varying infectivity reduction rate by cross-immunity, , from 0.1 to 0.3, (c) that for 

varying mean duration of temporal immunity, , from 2 to 36 days, and (d) that for 
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varying amplitude of seasonal fluctuation of transmission rate, , from 0.3 to 0.6. The 
basic parameters were set as  (b-d), (a, c, d),  (7 days; a, 
b, d),  (a-c),  (years), and  (per infection). 

 

Figure 13. The relationship between the time of the emergence of a strain in a year 

(horizontal axis) and the waiting time until the number of infected hosts attains its peak 

since it emerges (vertical axis, in units of year). Note that the transmission is maximum 

at  or , and is minimum at . The vertical axis greater than 1 

indicates that the epidemic peak is carried over to the next year from the year of 

emergence. Red points indicate the median of the waiting time, observed in a 1000-year 

simulation of the IBM model, until a second-generation producing strain attains its peak 

epidemic size. Blue points are the result for “mean-field” single strain model described 

in Supporting Information 2 when there is co-infection but no general temporal 

immunity. Green points are the result for the same mean-field single strain model but 

now there is general temporal immunity but no co-infection. The parameters were 
, ,  (years, or 7 days), ,  (years) and 

. 

 

Figure 14. The epidemic duration of the second-generation-producing strain in a 

1000-year simulation of the IBM model. Each line denotes mean values of the epidemic 

duration of the second-generation-producing strains and error bar is standard deviation. 

Apart from the parameter values varied in the horizontal axis, the other parameters were 
set to , ,  (7 days), , u = 1/50 and µ = 0.001. 
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Figure 
Figure 10. 
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Figure 11. 
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Figure 14. 
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Chapter 3 
 

 

Disrupting seasonality to control disease 

outbreaks: The case of koi herpes virus 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The study of this chapter, done in collaboration with Dr. Ben Adams, was published in 

Journal of Theoretical Biology (271, pp159-165) in 2011. 
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Introduction 
The dynamics of many infectious diseases are governed by seasonally varying 

factors. As reviewed in Altizer et al. 2006, for example, aggregation patterns associated 

with the school year drive the transmission of measles. Seasonal variation in rainfall 

drives the transmission of cholera. The incidence of vector-borne disease such as 

malaria, dengue and West Nile virus is influenced by the effects of temperature and 

rainfall on mosquito population sizes and viral incubation rates. Many authors have 

used mathematical models to study the role of natural seasonality in epidemiological 

dynamics. They have shown that the effects of seasonally varying epidemic drivers may 

go far beyond simply correlated patterns of incidence (e.g. London and Yorke 1973; 

Dietz 1976; Hethcote and Yorke 1980; Schwartz and Smith 1983; Aron and Schwartz 

1984; Schwartz 1985; Keeling et al. 2001; Greenman et al, 2004; Adams and Boots, 

2007). In some cases, it has also been shown that it may be possible to moderate or 

control disease outbreaks by disrupting the normal seasonal pattern of transmission, for 

instance by closing schools. Here we take koi herpesvirus (KHV) as a case study. We 

examine how seasonal variation in water temperature affects KHV epidemiology, and 

consider how outbreaks may be controlled by managing the water temperature.  

Common carp (Cyprinus carpio) is cultivated for food in many countries. In 

2002 it accounted for 14% of global freshwater aquaculture production (Peteri, 2005). 

The koi subspecies is also of economic importance as an ornamental fish. Koi 

herpesvirus is in the family herpesviridae (Waltzek et al. 2005). It infects common and 

koi carp and is highly virulent (Perelberg et al. 2003; Ronen et al. 2003; Pikarsky et al. 

2004). The first report of KHV was in 1998 in Israel. Since then it has also been 

reported in the US and many European and Asian countries (Perelberg et al. 2003; 

Walster, 1999; Hedrick et al. 2000; Miyakazi et al. 2000; Oh et al. 2001; Taylor et al. 

2010). KHV represents a series economic threat to the freshwater aquaculture industry. 

The epidemiology of KHV shows marked seasonality related to water temperature. 

Outbreaks are generally observed in spring or autumn and do not occur when water 

temperatures are high in summer, or low in winter (Yuasa et al. 2008; Gilad et al. 2003). 

On the basis of this temperature dependence, it has been proposed that KHV outbreaks 

in isolated aquaculture environments could be controlled by increasing the water 

temperature beyond the limit for viral growth. However, it has been reported that carp 

treated in this way may become symptomatic again after the treatment is stopped and it 
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has been suggested that this control strategy may suppress the epidemic, but not stop it 

completely (Iida and Sano, 2005).  

In this article we introduce and analyse a mathematical model for KHV 

epidemiology that, based on published experimental data, is driven by seasonally 

varying delays between infection and infectiousness, infectiousness and mortality. The 

model is developed from a delay differential equation framework with variable delay 

originally introduced to study stage-structured insect population dynamics (Nisbet and 

Gurney, 1983). After introducing the model we consider the dynamics of outbreaks 

starting at different times of year under natural seasonality. We then consider the 

impacts, and risks, of attempting to control outbreaks by water temperature 

management.  

 

Model 
We developed a mathematical model for the epidemiology of KHV based on 

the published observations of experimental infections. Yuasa et al. (2008) tested 

infectiousness by infecting groups of fish and then exposing naive fish to them at fixed 

time intervals. Their observations indicate that a minimum incubation period is required 

between infection and infectiousness. The rate of progression through this ‘exposed’ 

state depended on temperature in a non-monotonic way, with a maximum rate, equating 

to a duration of approximately 1 day, at 23°C (Fig. S7a). In separate experiments, Yusua 

et al. (2008) assessed KHV mortality by monitoring groups of fish following exposure 

to the virus. They found that no deaths at all occurred for several days after infection but 

high mortality followed. The duration of this delay also depended on temperature with 

the shortest periods, of approximately four days, occurring at 23°C and 28°C (Fig. S7b). 

Similar results were reported by Gilad et al. (2003). Combined with the data on the time 

between infection and infectivity, these observations suggest that, after the incubating 

state, there is a second temperature dependent state in the progression of KHV when the 

fish is infectious but viremia is not sufficient to cause death. After the delay of the 

exposed and infectious states, the experimental observations indicated that the fish 

entered an ‘ailing’ state where mortality was rapid and largely independent of 

temperature (Fig. S7c). A proportion of the cohort, however, did not die, suggesting that 

they had recovered from the infection and gained immunity.  
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On the basis of these observations, we classify the model population into five 

states with respect to KHV infection: susceptible S, exposed E, infectious I, ailing A and 

recovered R. States I and A are infectious and new infections occur at rate βS(I + A). We 
assume that a cohort of fish infected simultaneously all become infectious after exactly 
the same waiting period in the E state, the duration of which  Eτ  depends only on water 

temperature  T . In the same way, the duration of the infectious state (I) is modelled by a 
temperature dependent delay  ( )I I Tτ τ= . We express the natural seasonality in water 

temperature T(t) by a cosine function. St Hilaire et al. (2009) conducted experiments in 

which they observed a significant lag between exposure to KHV and detectable 

antibodies. We approximate this delay by assuming that fish in state E do not recover 

but fish in states I and A recover, and enter state R, at rate η. Fish in all states are subject 

to natural mortality at rate µ. Fish in state A are also subject to disease induced mortality 

at rate ξ.  

 These considerations lead to a system of differential equations with two 
temperature dependent delays  ( ( )), ( ( ))E IT t T tτ τ . As detailed in the Supplementary 

Information, to find expressions for these delays we define ( ( ))T tγ  to be a scaled form 

of a notional rate of increase of viremia following infection, estimating the temperature 

dependence by fitting a Weibull function to the data of Yuasa et al. (2008) (see Figs. 

S7a,b). Then, following the derivation set out in detail for stage-structured insect 

populations by Nisbet and Gurney (1983) and Nisbet (1997), and also given in the 

Supplementary Information, we arrive at the delay differential equation model 
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We assume closed population of host, birth/death of host does not occur and number of 

initial infected host is small enough. The symbol denotes each state of host (S, E, I, A 
and R) is proportion to initial value of whole hosts. Here ( ) exp( ( ))E EP t tµτ= − is the 

proportion of the original cohort that survived the incubation period to mature from 
state E at time t, ( ) exp( ( ) ( ))I IP t tµ η τ= − + is similarly defined for state I, and  
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All parameter values are given in Table 1. The system was solved numerically using the 
solv95 package in C and initial conditions 0( ) 1, ( ) ( ) ( ) 0 for ,S t E t A t R t t t= = = = <  

0 0 0 0 0( ) 0.001, ( ) 0.999, ( ) ( ) ( ) 0, I t S t E t A t R t= = = = =
0

0 0

0
( )

( ) such that ( ) 1,
E
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0 0
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τ
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Results 
We analysed the model dynamics to investigate how natural seasonal 

variation in water temperature is related to the extent of KHV epidemics, and how 

epidemics may be moderated by artificially controlling water temperature. First, we 
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consider some of the fundamental implications of the seasonal variation in the delay 

between infection and infectiousness, infectiousness and mortality.  

 

Basic epidemiology without treatment 
The delay term ( )E tτ is defined such that fish that entered the exposed state (E) 

at time t – ( )E tτ  move to the infectious state (I) at time t. The term ( )I tτ is similarly 

defined for the delay between entering the infectious state (I) and moving to the ailing 
state (A). So, ( )E tτ and ( )I tτ  are the delay times looking backward. We also define the 

delay time looking forward, ˆ ( )E tτ , such that fish entering state E at time t will move to 

state I at time ˆ ( )Et tτ+ . The forward delay ˆ ( )I tτ is similarly defined for the transition 

from state I to state A. Seasonal variation in temperature results in seasonal variation 
in ˆ ( )E tτ and ˆ ( )I tτ  (Fig. 15a). However, the skewed relationship between temperature 

and the rate at which infection progresses means that the delay terms do not track the 

temperature fluctuations in a straightforward manner. The delays suddenly increase in 

autumn, around the midpoint of the seasonal decline in water temperature, and then 

decrease monotonically until spring. This pattern is indicative of the decreasing waiting 

time until the temperature becomes permissive for the development of KHV. The delays 

remain fairly constant between spring and autumn because disease progression is rapid 

for most of this period and the duration of the non-permissive temperatures in 

mid-summer is short. 
The basic reproductive number 

 

R0  is generally defined such that the 

transition between long-term dynamics characterized by disease free and endemic states 
occurs at the threshold 0 1R = . In non-seasonal environments this definition of 

 

R0  is 

usually consistent with the interpretation of 

 

R0  as the expected number of secondary 

infections caused by a single infected individual in an otherwise susceptible population. 

In seasonal environments, this expected number of secondary infections depends on the 

time at which the infected individual was introduced. Therefore, in order to preserve the 
threshold definition of 

 

R0 , the number of secondary infections resulting from a single 

infectious individual introduced to a naive population at time t is termed the 
(time-dependent) effective reproductive number   Re(t)  (Grassly and Fraser, 2006; 

Nishiura and Chowell, 2009). Here we are interested in disease outbreaks, rather than 

endemic circulation, and so focus on the effective reproductive number. In order to 
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construct  Re(t) , let J(φ) be the density of individuals in states I and A combined at time 

φ. Then 

 
ˆ( ) ( )
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I

I
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we focus on expected number of secondary infection by individuals who become state I 

at just time t, therefore, J(t) = 1 as a initial condition of J. Solving 
ˆexp( ( )( ))  ( )

( )
ˆexp( ( ) ( )) exp( ( )( ( ))) ( )
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I I I

t if t t
J

t t t if t t
µ η φ φ τ
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µ η τ µ η ξ φ τ φ τ

− + − − ≤
=  − + − + + − − − >
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Then, noting that if secondary infection occurs at time φ, the probability that 
the newly infected individual will survive until progressing to state I 
is ˆ( ) exp( ( ))E EP φ µτ φ= − , the effective reproductive number is 

( )
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+

=

∞
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∫

∫
(24) 

 
The time dependence of the effective reproductive number   Re(t) is shown in 

Fig. 1b. The effective reproductive number is highest during winter, and lowest during 
early and late summer.   Re(t)  is high when the delay ˆIτ  is long, for instance at the 

beginning of winter, because infectious fish live longer as disease induced mortality 
only occurs in the A state.   Re(t)  is small when the delays are short because infectious 

fish rapidly move to the ailing state and die.  

 Farmed carp are harvested after around two years. We now assume that a 

cohort contaminated with a single infectious individual is established at time t0 and 

consider the state of the population when it is harvested at time t0 + 730 (days). An 

equivalent interpretation is that an established cohort is first infected at time t0 and then 

maintained for a further two years. Fig. 1c shows the total proportion of the cohort that 

dies due to KHV, and the total proportion of the cohort that becomes immune. Immunity 

is negatively correlated with mortality. The greatest total mortality occurs if the cohort 
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is established when ˆEτ  and ˆIτ  are short, in early and late summer. Large epidemics 

occur even if the infection is introduced in winter, when the delays ˆEτ and ˆIτ  are long 

because the secondary infected fish just remain in the latent state until spring when 

Eτ and Iτ  become shorter. Strikingly, the smallest outbreaks occur when the infected 

cohort is established at the end of autumn. At this time infected (E) fish quickly become 

infectious (I) because ˆEτ  is short (Fig 1a). However, ˆIτ  is long and, as Fig. 16 shows, 

most of these fish in the I state recover to the R state rather than progressing to the 

ailing state (A) and dying. In general, however, the seasonal changes in the delays mean 

that, if an infected cohort is established when ˆEτ  and ˆIτ  are long, the epidemic is 

simply postponed. Consequently mortality is seasonal, and concentrated in summer, 

regardless of when the initial infection occurs (Fig. S8).  

 

Outbreak control using a single period of treatment  
We now consider the impact of managing water temperature in order to 

control a KHV epidemic. We assume that, as soon as a specified outbreak measure 

exceeds a given threshold, the entire aquaculture environment is maintained for a fixed 

length of time at a constant temperature that is non-permissive for KHV development 

(T = 33°C ). We consider outbreak measures defined by the instantaneous frequency of 
infectious and ailing fish *( )I A+ and the cumulative frequency of KHV related 

mortality D* . Initially we assume that treatment is only provided once, even if the 
outbreak thresholds are subsequently exceeded again. Carp aquaculture usually begins 

with new cohorts in spring, so we assume that an infected cohort is established at t0 = 

90. 

We first consider the outbreak measure defined by the frequency of infectious 

fish. Fig. 17a shows the relationship between the total proportion of the cohort that dies 

due to KHV within the two years of aquaculture, the duration of the treatment by 

temperature control, and the infection threshold at which the treatment is started. In 

terms of the timing of treatment, it is most effective if it is started when the frequency of 

infectious fish is just before its maximum (Fig. 17a, (I + A)* ≈ 0.64). However, if the 

treatment is started slightly after this critical frequency, which will be extremely 

difficult to pinpoint during the course of an outbreak, it has almost no impact at all. The 
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high water temperature extends the waiting times in the E and I states. The extended 

time in the infectious state means that that the majority of infectious fish recover rather 

than die. The treatment is most effective when the proportion of the cohort that is 

infectious, and may recover, is large but the proportion that is latently infected, and may 

become infectious when treatment stops, is small. Starting the treatment too soon 

reduces its effectiveness because it only postpones the epidemic. Worse, it can increase 

total mortality relative to no treatment, as indicated by the white areas in Fig. 17a. In the 

early stages of the outbreak, the majority of infected fish are in still in the exposed state 

(E). Since exposed fish cannot gain immunity and recover, the high temperature simply 

causes these fish to remain in this state until the treatment is stopped. If the treatment 

period ends when temperatures allow rapid KHV progression, these fish restart an 

epidemic in which fish rapidly enter the ailing state and have only a brief opportunity to 

recover.  

As regards the duration of treatment, mortality is lowest when temperature 

control is maintained for around 160 days. The difference between this low point and 

the mortality associated with shorter treatment durations is marked, particularly when 

the threshold infection frequency for the start of treatment is low. This sudden decrease 

occurs because of the time of year when the treatment ends. Previously we showed that 

infected cohorts established at the end of autumn have markedly lower mortality than 

cohorts established at any other time of year because the E state is brief but the I state is 

long, leading to extensive immunity. Similarly, treatment is particularly effective when 

the start time, which is determined by the infection frequency, and the duration combine 

such that the treatment ends when the forward delay in the E state is short, but the 

forward delay in the I state is long. Then, as shown in Fig. 18, the backward delay in the 
E state ( Eτ , where a fish that moves from the E state to the I state at the current time 

was initially infected Eτ  days previously), decreases sharply soon after the treatment 

ends but the backward delay in the I state Iτ  continues to increase monotonically. 

Consequently, fish leave the E state and accumulate in the I state. As the seasonal 

temperature continues to fall, progression between all states slows and many of these 

fish recover before temperatures increase in spring.   

We now consider the outbreak measure defined by the cumulative frequency 

of dead fish. Since it may be difficult to accurately identify infectious or ailing fish, 

particularly in large populations, this threshold may be easier to apply in practice. The 
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detection of mortality due to KHV means that there are fish in the ailing (A) state and 

the infection has already spread extensively through the population. Starting treatment 

earlier, i.e. at lower mortality thresholds, is increasingly effective at suppressing further 

mortality (Fig. 17b). It cannot lead to an increase in the total mortality relative to no 

treatment because the majority of fish are already in the I state, and there cannot be 

another major outbreak if temperatures become permissible again. Longer duration 

treatments generally reduce total mortality by allowing more fish to recover to the 

immune state. However, if the mortality threshold at which treatment is started is low 

(D < 0.1), the latent population is still sufficiently large that extending treatment beyond 

approximately 150 days can marginally reduce its effectiveness.  

 

Outbreak control using several periods of treatment 

A single period of treatment can effectively reduce the mortality associated 

with a KHV epidemic if it is initiated at the correct point in the outbreak, and 

maintained for a sufficiently long time. However, only continuing the treatment for long 

enough can render it ineffective. Starting the treatment too early be counterproductive. 

We now consider the impact of applying more than one treatment bout. As before, we 

assume that, as soon as the frequency of infectious and ailing fish exceeds a given 

threshold, the entire aquaculture environment is maintained for a fixed length of time at 

a constant temperature that is non-permissive for KHV development. It is then returned 

to the normal environmental temperature. However, if the outbreak threshold is 

exceeded again, another bout of temperature control is started, and maintained for the 

same duration as the first bout. We consider the impact of allowing up to two, or up to 

three, bouts of temperature control.  

As Fig. 19a shows, two treatment bouts are generally very effective for 

controlling KHV outbreaks. The main exception is when the duration of each treatment 

bout is short and the outbreak threshold for the start of treatment is low. Then treatment 

can  increase mortality relative to an outbreak that is not treated. If the outbreak 

threshold for beginning treatment is high, then only one treatment bout is used, even 

though this is less effective than using two bouts at a lower threshold (Fig. 19b). In this 

case, there is a resurgence of infections after the treatment is stopped, but it is not 

sufficient to trigger further treatment. Employing three treatment bouts, rather than two, 

leads to a small improvement in the effectiveness of short duration treatments, but has 
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little impact otherwise (Fig. S9).  

 

Discussion 
We have introduced a mathematical model for koi herpesvirus epidemiology 

characterized by temperature dependent periods in latent and infectious states before 

progression to an ailing state in which mortality is high. We have used this model to 

examine how seasonal fluctuations in water temperature drive the epidemiology of koi 

herpesvirus, and analysed how disrupting this seasonal pattern can be employed as an 

outbreak control strategy.  

In our model the delay between infection and infectiousness is shorter than 

the delay between infectiousness and ailing at all temperatures, as observed in 

experiments (Yuasa et al. 2008). The water temperature fluctuates between 5℃ and 

28℃ over the course of a year, as observed in lake Kasumigaura, Japan. We have 
shown that, under these conditions, disease progression is rapid in summer and slow in 

winter. But the morality associated with outbreaks that start in winter is only slightly 

lower than those that start in summer because fish remain in the latent class, rather than 

recovering, until spring. However, outbreaks that start during a brief interval at the end 

of autumn can result in low mortality and widespread immunity. At this time a phase 

shift in the delays associated with the latent and infectious states allows fish to progress 

from the latent to the infectious state, where recovery occurs throughout the winter, but 

prevents them from progressing to the high mortality ailing state. A major concern in 

aquaculture is the possibility of KHV contamination in a newly established cohort. Our 

analysis suggests that introducing new cohorts, or importing new fish into an existing 

cohort, at the end of autumn, may suppress the mortality associated with any KHV that 

is present and lead to a high prevalence of immunity in the population. Similarly, it may 

be possible to immunize uncontaminated cohorts cost-effectively and with minimal 

mortality by introducing KHV during this critical late autumn window.  

We have considered the effectiveness of epidemic control strategies that halt 

disease progression in infected fish by artificially maintaining the water at a 

non-permissive temperature (33℃) for a fixed time when outbreak indicators exceed 

given thresholds. We have shown that, when the outbreak indicator is the number of 

dead fish, this control strategy is most effective if it is started as soon as the first dead 

fish is observed and maintained for a long time. The outbreak is well underway by the 
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time the first dead fish appear. A large part of the population is already in the infectious 

state, and the best strategy is to maintain this state for as long as possible to allow 

recovery, and prevent mortality. Using the number of infectious fish, including those 

that are in the ailing state, to determine when to start a single period of water 

temperature management can also result in effective outbreak control. In this case, the 

strategy is most effective if treatment is started when the number of infectious fish is 

close to the maximum of the uncontrolled outbreak, and maintained until the normal 

seasonal water temperature is decreasing into the non-permissive range for disease 

progression. As before, these conditions ensure that infection is widespread, but the 

majority of infected fish recover. If, however, treatment is started too soon or not 

maintained for the correct duration, mortality may exceed that of the uncontrolled 

epidemic if fish are held in the latent state until the temperature becomes permissive 

again for disease progression. This effect can be avoided if fixed periods of temperature 

control are applied every time the number of infected fish exceeds the critical threshold.  

Our model is based on data from laboratory studies of koi herpesvirus. There 

are, however, areas of uncertainty. We assumed that only infectious and ailing fish can 

recover and gain immunity. We based this assumption on experiments conducted by St 

Hilaire et al. (2009) in which they briefly exposed fish to KHV at 21°C and then 

reduced the temperature to 12°C. They found that, 10 weeks after exposure, 

seroprevalence increased in a single jump from 0 to approximately 30%. After a further 

15 weeks they increased the temperature to a permissive level for KHV progression. 

Subsequently there was approximately 40% mortality due to KHV. These observations 

suggest that temperatures that are not permissive for the general progression of KHV 

are permissive for the slow development of a measurable immune response following 

an initial challenge. However, it is not clear from these experiments whether the fish 

with antibodies had actually recovered from the infection, or possessed any immunity to 

re-infection. We modified our model such that fish in the latent state recover and gain 

immunity at the same rate as those in the infectious and ailing states. We found that 

mortality is still lowest, and immunity highest, in contaminated cohorts established in 

late autumn (Fig. S10); large, postponed, outbreaks still occur even if contaminated 

cohorts are established in winter (Fig. S10); single treatment control strategies are still 

most efficient when treatment duration is around 155 days (Fig. S11); the value of the 
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threshold   (I + A)*  at which the control efficiency is greatest is lower than when fish in 
the latent state cannot recover (Fig. S11) because the optimal strategy is to begin the 

treatment when (E+I) is close to its maximum. We have also assumed that the 

transmission process itself does not depend on temperature. We were unable to find 

experimental evidence for or against this assumption, and so took the most 

parsimonious approach. Exploring the possibility of temperature dependent 

transmission and its implications may be a worthwhile area of future experimental and 

theoretical research. Finally, we have not considered the economic implications of 

outbreak control by water temperature management. Maintaining elevated water 

temperatures is costly, particularly for long treatment periods. It may also decrease the 

yield from the cohort by interfering with the development of the fish. Conditions for 

optimal control of KHV to maximize profit could be explored by integrating these 

economic factors into the epidemiological model. In this paper, we do not assume 

specific environment as rivers, lakes and tanks, we can control water temperature by 

temporal transportation of fishes to tank where water temperature is controllable, this 

way might be effective in terms of economical cost. 

In conclusion, disrupting normal seasonal patterns in water temperature can 

be an effective strategy for controlling koi herpesvirus. Seasonal patterns may also be 

exploited, possibly in combination with temperature management, to induce widespread 

immunity to KHV in a cohort of fish. However, employing these methods successfully 

requires careful assessment to ensure that the treatment is started, and finished, at the 

correct time. Errors in the timing can render the treatment ineffective, or 

counterproductive.  
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Supplementary infromation. 
Derivation of Model 

Our model is closely based on a model for a stage-structured insect population 

with temperature dependent growth introduced by Nisbet and Gurney (1983). Here we 

review their derivation in the context of our epidemiological model.  

 

Differential equations in terms of recruitment, maturation, death and recovery 
We assume that fish can be in one of six possible states: susceptible (S), 

latently infected (E), infectious (I), ailing (A), recovered (R) or, implicitly, dead (D). The 

processes by which transitions between these states occur are infection, incubation, 

recovery, natural mortality and disease induced mortality. The waiting times associated 

with infection, mortality and recovery are exponentially distributed. The waiting times 

associated with incubation, which connects state E to state I, and state I to state A, are 

such that a cohort of fish that enter a given state at the same time all leave that state 

after exactly the same period, the duration of which depends only on water temperature. 

In order to evaluate the incubation periods when temperature varies with time, q is 

defined to be the intensity of a notional viremia such that q increases at a temperature 
dependent rate ( ( )) ( )T t tγ γ= and q=qE = 0 at the transition from state S to E, q=qI at the 

transition from E to I, q=qA at the transition from I to A. ρ(q,t)  is then defined to be 

the density of fish with viremia q at time t. 

The system can be written very generally in terms of the rates of total influx, 
or ‘recruitment’ ( )XQ t  (X = S, E, I, A, R), out-flux due to infection and incubation, or 

‘maturation’ ( )XM t  and out-flux due to death and recovery ( )XZ t . There are no 

births in the model, so the recruitment into the S state is ( ) 0SQ t = . Maturation form the 

S state is equal to recruitment into the E state occurs solely by infection. Individuals in 

the I and A states are infectious. Infection results in immediate transition from the S 

state to the E state. Contact is assumed to be density dependent. Hence 
( ) ( ) ( )( ( ) ( ))S EM t Q t S t I t A tβ= = + . Maturation out of state E is identical to recruitment 

into state I and occurs when viremia intensity q=qI. So ( ) ( ) ( ) ( , )E I IM t Q t t q tγ ρ= = . 

Similarly, maturation out of state I is identical to recruitment into state A and occurs 
when viremia intensity q=qA. So ( ) ( ) ( ) ( , )I A AM t Q t t q tγ ρ= = . Recruitment into the R 

class is the result of recovery, which occurs at constant rate h in the I and A states. 
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Hence ( ) ( ( ) ( ))RQ t I t A tη= + .  

Finally, natural mortality occurs in all states at rate m. In state A there is additional 
disease induced mortality at rate x. Hence ( ) ( )SZ t S tµ= , ( ) ( )EZ t E tµ= , 

( ) ( ) ( )IZ t I tµ η= + , ( ) ( ) ( )AZ t A tµ η ξ= + +  and ( ) ( )RZ t R tµ= . Then we can write 

the complete system as:  

 

( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ),

( ) ( ).

E S

E E E

E I I

I A

R R

dS Q t Z t
dt
dE Q t M t Z t
dt
dI M t M t Z t
dt
dA M t Z t
dt
dR Q t Z t
dt

= − −

= − −

= − −

= −

= −

 (S5) 

Finding ( )EM t  and ( )IM t  

The maturation rates ( )EM t  and ( )IM t  are expressed in terms of the 

introduced variable ρ(q,t) . ρ(q,t)  can be re-written in terms of the durations of the 

latent and infectious periods, ( )E tτ  and ( )I tτ  respectively, where 

 
( )

ˆ ˆ( )
E

t

I E
t t

q q t dt
τ

γ
−

− = ∫ , (S6) 

 
( )

ˆ ˆ( )
I

t

A I
t t

q q t dt
τ

γ
−

− = ∫ . (S7) 

To do this, the McKendrick – von Forster partial differential equation for 
ρ(q,t)  (e.g. Kot, 2001) is used. If J(q,t)  is the flux, in the direction of increasing q, of 

individuals with viremia intensity q at time t then  

 .J
t q
ρ µρ∂ ∂

= − −
∂ ∂

 (S8) 

For Eq q> , the rate of increase of viremia is γ (t) . So J(q,t) = ρ(q,t)γ (t) . Hence 

 ( , ) [ ( ) ( , )] ( , )q t t q t q t
t q

ρ γ ρ µρ∂ ∂
= − −

∂ ∂
. (S9) 
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For the E state this partial differential equation has boundary condition 

( )( , )
( )

E
E

Q tq t
t

ρ
γ

=  and can be solved (for details see Nisbet and Gurney, 1983) to give  

 
( , )

( ( , )) ˆ( , ) exp( )
( ( , ))

E

t
E E

E t q t

Q t q tq t dt
t q t τ

τρ µ
γ τ −

−
= −

− ∫  (S10) 

where ( , )E q tτ  is the time already spent in the E state by a fish with viremia q at time t. 

By definition ( ) ( , )E E It q tτ τ= . In addition, define ( )EP t  to be the proportion of the 

cohort that entered the E state at time ( )Et tτ−  that actually matures at time t, rather 

than dying during the waiting period. So 

 

  

PE (t) = exp(− µ döt
t −τ E (t )

t

∫ ),

= exp(−µτ E (t)).

 (S11) 

Then, using (S11) and (S12) 

 ( )( ) ( ) ( , )  Q ( ( )) ( )
( ( ))E I E E E

E

tM t t q t t t P t
t t
γγ ρ τ

γ τ
= = −

−
. (S12) 

For the I state the McKendrick-von Foerster equations becomes 

 ( , ) [ ( ) ( , )] ( ) ( , )q t t q t q t
t q

ρ γ ρ µ η ρ∂ ∂
= − − +

∂ ∂
 (S13) 

with boundary condition ( ) ( )( , )
( ) ( )
I E

I
Q t M tq t

t t
ρ

γ γ
= = . The solution of this equation is 

 
  
ρ(q,t) =

M E (t  -τ I (q,t))
γ (t  -τ I (q,t))

exp(− µ + η döt
t  -τ I (q,t )

t

∫ )  (S14) 

where ( , )I q tτ  is the time already spent in the I state by a fish with viremia q at time t. 

By definition ( ) ( , )I I At q tτ τ= . In addition, define ( )IP t  to be the proportion of the 

cohort that entered the I state at time ( )It tτ−  and actually matures at time t, rather 

than dying or recovering during the waiting period. So 
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PI (t) = exp(− µ + η döt
t  -τ I (t )

t

∫ ),

= exp(−(µ + η)τ I (t)).

. (S15) 

Then  

 

( )( ) ( ) ( , ) = ( ( )) ( )
( ( ))

( )( ( ( )) ( )) ( ( )) ( ).
( ( ( )) ( ))

I I E I I
I

E E I I E I I
E I I

tM t t q t M t t P t
t t

tQ t t t t P t t P t
t t t t

γγ ρ τ
γ τ

γτ τ τ τ
γ τ τ τ

= −
−

= − − − −
− − −

 (S16) 

Using (S6), (S7), (S11), (S12), (S15) and (S16) system (S5) can be written as a set of 

integro-differential equations 

  

 

( )[ ( ) ( )] ( ),

( )( )[ ( ) ( )] ( )[ ( ) ( )] ( ) ( ),
( )

( )( )[ ( ) ( )] ( )
( )

( )( )[ ( ) ( )] ( ) ( ) ( ) ( ),
( )

E E E E
E

E E E E
E

EI EI EI E I I
EI

dS S t I t A t S t
dt
dE tS t I t A t S t I t A t P t E t
dt t
dI tS t I t A t P t
dt t

tS t I t A t P t P t I t
t

dA
d

β µ

γβ β µ
γ

γβ
γ

γβ µ η
γ

− − −
−

− − −
−

− − − −
−

= − + −

= + − + −

= +

− + − +

( )( )[ ( ) ( )] ( ) ( ) ( ) ( ),
( )

( ( ) ( )) ( ),

EI EI EI E I I
EI

tS t I t A t P t P t A t
t t

dR I t A t R t
dt

γβ µ η ξ
γ

η µ

− − − −
−= + − + +

= + −

 (S17) 

where 

    

( ),

( ),

( ( )) ( ).

E E

I I

EI I E I

t t t
t t t
t t t t t

τ

τ

τ τ τ

−

−

−

= −

= −

= − − −

 

 

Transforming the integrals to differential equations 

The system (S17) can be transformed into a set of delay differential equations if 
differential equations are written for the integral terms ( ), ( ), ( )E I Et t P tτ τ  and ( )IP t . 

For ( )E tτ , differentiating (S6) 
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 ( )0 ( ) ( ( )) 1 E
E

d tt t t
dt

τγ γ τ  = − − − 
 

. (S18) 

Rearranging 

 ( ) ( )1
( ( ))

E

E

d t t
dt t t

τ γ
γ τ

= −
−

. (S19) 

Similarly 

 ( ) ( )1
( ( ))

I

I

d t t
dt t t

τ γ
γ τ

= −
−

. (S20) 

Fitting to experimental data 

Estimation of delay times 
We estimated durations of the E and I states, *

Eτ  and *
Iτ , at fixed temperatures from 

experimental results reported Yuasa et al. (2008), shown as *1/ Eτ and *1/ Iτ  in Fig. 1a,b. 

We interpreted their observation that no KHV infection was detected at 13 °C and 30 °C 

to mean that no disease progression was occurring. We assumed that, for fixed 

temperature, viremia increases at a constant rate throughout the E and I states. We 

defined the notional viremia threshold for the transition from E to I to be qE = 1.  We 

then made the simplifying approximation that ratio of the latent and infectious delays is 

independent of temperature. So the notional viremia intensity required for the transition 

from I to A is given by ( )
( )

I I
I

E E

T q q
T q

τ
τ

= = . Using the delays reported at 23 °C, we thus 

set qI = 4. We then used least squares to fit parameters w1, w2 and w3 of a Weilbull 

function for the temperature dependent rate of increase of viremia  

 
1

1 11
3 1 2

2

( ) exp
w

w wTT w T w w
w

γ − −
  
 = −    

 (S21) 

to the combined data set of *1/ ( )E Tτ  and */ ( )I Iq Tτ .  

 

Estimation of mortality and recovery rates 
We also estimated disease induced mortality and recovery rates from the experimental 

results reported by Yuasa et al. (2008), as shown in Fig. 15c. They observed the time 



 84 

between exposure and death at a constant temperature of 23 °C. The first dead fish was 

observed five days after exposure. Mortality saturated at 70% of the population 21 days 

after exposure. For a cohort exposed at time t0 = 0, the rates of change of the proportion 

of the cohort in the R and D states are given by 

 

0
  

0
 

 

E

E E I

E I

E I

E I

if t
dR I if t
dt

A if t

if tdD
A if tdt

τ
η τ τ τ
η τ τ

τ τ
ξ τ τ

<
= ≤ ≤ +
 > +

< +
=  ≥ +

 (S22) 

Taking E(0) = 1 and R(0) = D(0) = 0, and assuming there is no natural mortality, solving 

(S22) until the cohort moves from the I to the A state  

 ( ) 1 exp( )E I IR τ τ ητ+ = − − . (S23) 

So, the total proportion of the cohort entering state A is 1 ( )E IR τ τ− +  and, for 

 E It τ τ> +   

 
( ) ( ) (1 ( )) (1 exp( ( )( ))),

( ) (1 ( )) (1 exp( ( )( ))).

E I E I E I

E I E I

R t R R t

D t R t

ητ τ τ τ η ξ τ τ
η ξ

ξτ τ η ξ τ τ
η ξ

= + + − + − − + − −
+

= − + − − + − −
+

 (S24) 

We used nonlinear regression to estimate ξ and η for these expressions, with *
Eτ (23) 

and *
Iτ (23) as above, from the time series of cumulative mortality reported by Yuasa et 

al (2008).  
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Figure Legends 
Figure 15: Key epidemiological characteristics as functions of time. Gray curves and the 

right hand axes denote water temperature (T). (a) Forward delays in the exposed 
(dashed) and infectious (solid) states ( ˆEτ  and ˆIτ  respectively); (b) Effective 

reproductive number Re(t); (c) Total proportion of the cohort that dies due to KHV (true 

line) and recovers (broken line) within two years, when the cohort is established at time 

t0 and contains one infectious individual. 

 

Figure 16: Progression of epidemic following the establishment of a cohort containing 

one infectious individual on day 250. Lines show the proportion of the population that 

is exposed (E, solid), infectious (I, dashes), ailing A (dot-dash) and recovered (R, dots). 

 

Figure 17: Impact of treatment. Total mortality due to KHV over two years of 

aquaculture as a function of the epidemic threshold at which temperature control 

treatment is started (horizontal axis) and the duration of this treatment (vertical axis). 

Shading denotes mortality relative to the case without treatment. Black indicates 

reduced mortality, white indicates excess mortality. Cohorts were established at t0 = 90 

and included one infectious individual. (a) Threshold for starting treatment defined in 

terms of the instantaneous frequency of infectious fish, (I + A)*. (b) Threshold defined 

in terms of the cumulative frequency of dead fish due to KHV, D*. 

 

Figure 18: Backward delays resulting from the combination of seasonality and treatment. 
The duration of the E and I states, Eτ  (dashed) and Iτ  (solid) respectively, as 

functions of time. A fish that moves from the E state to the I state at the time indicated 
on the horizontal axis was initially infected Eτ  days before, where Eτ  is the value 

indicated on the vertical axis. The interpretation of Iτ  is similar. Treatment was started 

on day 115 and ended on day 275. 

 

Figure 19: Impact of up to two treatment bouts. (a) Total mortality due to KHV over 

two years of aquaculture as a function of the epidemic threshold at which temperature 

control treatments are started (horizontal axis) and the duration of this treatment 

(vertical axis). Shading denotes mortality relative to the case without treatment: black 

indicates reduced mortality, white indicates excess mortality. (b) Number of treatment 
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bouts used: white – two, gray - one, black - none. Cohorts were established at t0 = 90 

and included one infectious individual. 

 

Figure S7: Key epidemiological characteristics of koi herpesvirus. (a) Rate of 
progression from the exposed to the infectious class (1 / τ E ) as a function of water 

temperature (T); (b) Rate of progression from the infectious to the ailing class (  1 / τ I ) as 

a function of water temperature (T); (c) Cumulative mortality as a function of time since 

first exposure to infection at 23°C. In all panels, points are experimental results from 

Yuasa et al. (2008), lines are the model functions fitted with parameter values shown in 

Table 1. 

 
Figure S8: Seasonal distribution of mortality depending on the time at which a cohort 

containing one infectious individual is established. The shading indicates the relative 

frequency of mortality due to KHV ( D(t) / Max(D(t)) , D(t) = ξA(t) ) at the time 

indicated on the horizontal axis in a cohort established at the time indicated on the 

vertical axis. Black denotes high mortality, white denotes no mortality 

 

Figure S9: Impact of up to three treatment bouts. (a) Total mortality due to KHV over 

two years of aquaculture as a function of the epidemic threshold at which temperature 

control treatments are started (horizontal axis) and the duration of each bout of this 

treatment (vertical axis). Shading denotes mortality relative to the case without 

treatment: black indicates reduced mortality, white indicates excess mortality. (b) 

Number of treatment bouts used: white – three, light gray – two, dark gray - one, black - 

none. Cohorts were established at t0 = 90 and included one infectious individual. 

 

Figure S10: Total proportion of the cohort that dies due to KHV (true line) and recovers 

(broken line) within two years if fish in state E can recover at the same rate as those in 

states I and A. The cohort is established at time t0 and contains one infectious individual.  
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Figure S11: Impact of a single treatment bout if fish in state E can recover at the same 

rate as those in states I and A. Total mortality due to KHV over two years of aquaculture 

as a function of the epidemic threshold at which temperature control treatment is started 

(horizontal axis) and the duration of this treatment (vertical axis). The threshold for 

starting treatment is defined in terms of the instantaneous frequency of infectious fish, (I 

+ A)*. Shading denotes mortality relative to the case without treatment. Black indicates 

reduced mortality, white indicates excess mortality. Cohorts were established at t0 = 90, 

and included one infectious individual.  

 

Table 3 : Functions and parameter values used throughout this article. All rates are 

expressed per day. 
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Figure. 
Figure 15 

 
Figure 16 
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Figure 17 

 
Figure 18 
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Figure 19 
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Figure S7 
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Figure S8 

 

Figure S9 
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Figure S10 

 
Figure S11 
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Table. 
Table 3 

Parameter Meaning Value 

β transmission rate 0.877 

η recovery rate 0.0467 

ξ morality rate due to KHV 0.2 

µ natural mortality rate 1/7300 

T(t) water temperature (°C) 2cos
365

ta b π −  
 

  

a a parameter of  a  16.5 

b a parameter of  b  11.5 

 

γ(T(t)) 
 

rate of increase of viremia 
1

1 11
3 1 2

2

exp
w

w wTw T w w
w

− −
  
 −    

 

w1 a parameter of γ  8.11 

w2 a parameter of γ  25.148 

w3 a parameter of γ  9.745 
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