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Abstract

Quantum chromodynamics (QCD) is the theory of the strong inter-

action between quarks and gluons. The interaction becomes small at

high energy, while it does strong at low energy. It is highly expected

from the energy dependence that the QCD matter at high tempera-

ture T and/or high quark chemical potential µq experiences a phase

transition from a confined state with the chiral symmetry breaking to

a deconfined state with the symmetry restoration. The phase diagram

in the T -µq plane is relevant to the early universe, compact stars and

heavy-ion collisions. The first-principle lattice QCD (LQCD) suffers

from the sign problem at finite µq where the integrand of the parti-

tion function is complex and LQCD techniques break down. Therefore

the QCD phase diagram at finite µq is unclear. In this thesis, we pro-

pose a new strategy to investigate the QCD phase diagram at finite

µq. There are some regions with no sign problem, imaginary µq and

real and imaginary isospin chemical potentials µiso. We then propose

an analytic continuation from the regions with no sign problem to

the real µq region with the sign problem by using an effective model

that can evaluate the QCD partition function in all the regions. The

Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model is only

the effective model that can do this. We show that the PNJL model

reproduces LQCD data qualitatively in all the regions, but not quan-

titatively. We then extend the PNJL model in order to reproduce

the LQCD data quantitatively. The QCD phase diagram at real µq is

predicted by the new model.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) is the theory of the strong interaction be-

tween quarks and gluons. The interaction becomes small at high energy, while it

does strong at low energy. As a result of the strong interaction, the QCD vac-

uum has two remarkable phenomena, spontaneous chiral symmetry breaking and

confinement. The spontaneous chiral symmetry breaking provides us the mech-

anism of generation of massive nucleons from light quarks and that of pions as

Nambu-Goldstone bosons. The confinement is a phenomenon that color charged

particles, quarks and gluons, cannot be isolated. Since the interaction decreases

with increasing the energy scale, it is natural to consider that the QCD matter

at high energy density undergoes a phase transition from a confined state with

the chiral symmetry broken to a deconfined state with the symmetry restored.

The QCD phase diagram in the plane of temperature T and quark chemical po-

tential µq provides us many insights of nature. The early universe after the Big

Bang would be very hot and thus have experienced the QCD phase transition at

high T and low µq. The core of compact stellar objects such as neutron stars

would be a relevant place for dense QCD matter at low T and high µq. Ex-

perimentally, the heavy-ion collisions, such as the Relativistic Heavy-ion Collider

(RHIC) at BNL, the Large Hadron Collider (LHC) at CERN and Japan Proton

Accelerator Research Complex (J-PARC) at JAEA and KEK, provides us with a

chance to create hot and/or dense QCD matter. In order to investigate the QCD

phase diagram, we have to deal with some nonperturbative methods. Lattice

QCD (LQCD) is only a reliable method of solving the nonperturbative nature,
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i.e., to evaluate the partition function numerically on a spacetime lattice. LQCD

provides us many insights at finite T and zero µq; for example the chiral phase

transition is crossover there. It, however, suffers from the sign problem at finite

µq where the integrand of the partition function is complex and thereby LQCD

techniques break down. The QCD phase diagram at finite µq is therefore unclear.

In this thesis, we propose a new strategy to investigate the QCD phase diagram

at finite µq. There are some regions with no sign problem, imaginary µq, real and

imaginary isospin chemical potentials µiso. We then propose an analytic contin-

uation from the regions with no sign problem to the real µq region by using an

effective model that can evaluate the QCD partition function in all the regions.

The Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model is an effective

model that can do this. We show that the PNJL model reproduces LQCD data

qualitatively in all the regions with no sign problem, but not quantitatively. We

then extend the PNJL model in order to reproduce the LQCD results quantita-

tively.

This thesis is organized as follows. In Chapter 2, we overview properties of QCD

at vacuum and the QCD phase diagram at finite T and µq. This shows current

states and difficulties in the study of the QCD phase diagram. In Chapter 3,

we recapitulate thermal properties of the PNJL model at zero µq. After these

introductory chapters, Chapters 4-7 are devoted to our study. In Chapter 4, we

investigate the sign problem by using the PNJL model. We evaluate the average

phase factor as an indicator of the sign problem. The severe region where the

factor is small or zero spreads widely over the phase diagram. It is thus difficult

to investigate the phase diagram by LQCD directly. In Chapters 5 and 6, we

analyze the imaginary µq region and the real and imaginary µiso regions with

the PNJL model, respectively. For all the regions, the PNJL model reproduces

the LQCD data qualitatively, but not for the coincidence between the chiral and

deconfinement crossover transitions. In Chapter 7, we extend the PNJL model

to solve this problem. The new model reproduces LQCD data quantitatively in

all the regions with no sign problem. Finally we predict the QCD phase diagram

with the new model.
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Chapter 2

Quantum Chromodynamics

In this chapter we introduce Quantum chromodynamics (QCD) as the fundamen-

tal theory of strong interactions. We discuss two important phenomena of QCD

vacuum, the spontaneous chiral symmetry breaking and confinement, which play

an important role in later parts of this work. We also discuss the QCD phase

diagram at finite temperature and finite quark chemical potential [1].

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD), the non-Abelian gauge theory with color

SU(3)c gauge invariance, is the theory of the strong interaction. The fundamen-

tal degrees of freedom are spin-1 gauge bosons (gluons Aµ), and massive spin-1
2

fermions (quarks q). Gluons and quarks belong to the adjoint and fundamental

representations of SU(3)c, respectively. QCD is defined as a field theory with the

Lagrangian density,

L = q̄ (iγµDµ −m) q − 1

4g2
F a

µνF
µν
a , (2.1)

where m is the current quark mass, Dµ = ∂µ + iAa
µt

a is the covariant derivative

with the coupling constant g and ta is the generators of SU(3)c satisfying the

commutation relations, [ta, tb] = ifabctc, and the normalization, tr(tatb) = 1
2
δab,

where fabc are the group structure constants. The field strength tensor is defined

as F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν . The Lagrangian density is invariant under

3



2. Quantum Chromodynamics

the SU(3)c gauge transformation

q → U(x)q, Aµ → U(x)(Aµ + i∂µ)U †(x), (2.2)

where U(x) = exp(−iθa(x)ta). Since QCD is renormalizable, its bare parameters

g and m depend on the energy scale Q. The renormalization group equation

based on the perturbative calculation reads

α(Q2) =
g(Q2)

4π
=

1

4πβ0 ln(Q2/ΛQCD)
, (2.3)

where β0 = 1
(4π)2

(
11 − 2

3
Nf

)
and Nf is the number of quark flavors. The QCD

scale parameter is given by ΛQCD = κ exp(−1/2β0g
2) with the renormalization

point κ and determined from experiment to be ΛQCD ≈ 200MeV ≈ 1fm−1. As

long as β0 > 0 (Nf ≤ 16), the running coupling decreases logarithmically at

large energy (or short distance) so that the asymptotic freedom of QCD can be

realized [2]. In contrast, the coupling increases at low energy and the perturba-

tive calculation breaks down. Quarks have flavors of Nf = 6 with the masses

mu ≈ md ≈ 5MeV, ms ≈ 150MeV, mc ≈ 1.5GeV, mb ≈ 5GeV, mt ≈ 170GeV,

respectively. In this thesis, we focus on physics at the energy scale ∼ ΛQCD and

we consider mainly the two-flavor case of u and d, since the influence of heavy

quarks is negligible there.

2.2 Symmetries in QCD Lagrangian

Symmetries of Lagrangian are important to describe a main property of theories.

As for QCD, one of important symmetries is the chiral symmetry. In the massless

limit m = 0, the QCD Lagrangian density (2.1) is divided into the left- and

right-handed quark parts that are the eigenstates of the chirality operator γ5,

qR/L = 1
2
(1± γ5)q. In this limit, the QCD Lagrangian is thus invariant under the

flavor U(Nf)L × U(Nf)R global transformation, qR/L → exp (−iθata) qR/L where

ta is the generator of U(Nf). This is the chiral symmetry. The transformation

4



2. Quantum Chromodynamics

converts the vector and axial-vector ones as

q → e−iθa
Vtaq, q → e−iθa

Ataγ5q, (2.4)

with θV = θL = θR and θA = −θL = θR. The corresponding conserved currents are

vector and axial-vector currents, Jaµ
V = q̄γµtaq and Jaµ

A = q̄γµγ5t
aq, and thereby

they have the following relations

∂µJ
aµ
V = iq̄[m, ta]q, (a = 0, ..., N2

f − 1), (2.5)

∂µJ
aµ
A = iq̄{m, ta}γ5q, (a = 1, ..., N2

f − 1), (2.6)

∂µJ
0µ
A =

√
2/Nf

(
iq̄mγ5q −

2Nf

64π2
F µν

a F̃ a
µν

)
, (2.7)

where F̃ a
µν = ϵµνρσF

ρσ
a (ϵ0123 = 1) is the dual field strength. The U(1)A current J0µ

A

is explicitly broken even at m = 0 by the quantum effect that is originated from

the non-invariance of the path integral measure under the U(1)A transformation.

This gives rise to an unnaturally large η′ meson mass.

2.3 QCD vacuum structure

Since the QCD running coupling becomes stronger at low energy, quarks and glu-

ons interact nonperturbatively there. There are two remarkable phenomena in the

nonperturbative regime, spontaneous chiral symmetry breaking and confinement.

2.3.1 Chiral symmetry breaking

The chiral symmetry SU(Nf)V×SU(Nf)A in the Lagrangian is broken at vacuum.

Here we consider the Nf = 2 case for simplicity. In nature, there is a triplet of

light pseudoscalar mesons π, while the parity partner of scalar meson σ has much

heavier mass. This mass gap is explained as spontaneous breaking of the chiral

symmetry. For nonperturbative nature, the ground state |0⟩ of QCD is symmetric

only under the SU(Nf)V transformation generated by the vector charges Qa
V =∫

d3xJa0
V , i.e., Qa

V|0⟩ = 0, but not under the SU(Nf)A transformation generated

by the axial-vector charges Qa
A =

∫
d3xJa0

A , i.e., Qa
A|0⟩ = |πa⟩ ̸= 0, which is

5



2. Quantum Chromodynamics

energetically degenerate with the ground state |0⟩ and which carries the quantum

numbers of the corresponding axial charges. These are Nambu-Goldstone bosons

of light pseudoscalar mesons. The SU(Nf)A transformation of the pion state,

πa = q̄iγ5t
aq, is given as, for Nf = 2

[Qa
A, q̄iγ5t

aq] = −iδabq̄q, (2.8)

thus the chiral partner of the pseudoscalar mesons is the sigma meson σ = q̄q and

the expectation value of the σ state is an order parameter of the chiral symmetry,

⟨q̄q⟩ = ⟨q̄LqR + q̄RqL⟩. (2.9)

The decay amplitude of the pion is written as

⟨0| Jaµ
A (x)

∣∣πb(p)
⟩

= −ipµfπδ
abe−ipx, (2.10)

where fπ is the pion decay constant. By combining (2.6) with (2.8), we obtain

⟨0|
[
Q1

A, ∂µJ
1µ
A

]
|0⟩ = − i

2
(mu +md)⟨q̄q⟩, (2.11)

where mu and md are u and d quark masses, respectively. The expression on

the left-hand side can also be calculated from (2.10) by inserting a complete set

of pseudoscalar states in the commutator. Truncating this set by the one-pion

states |πa⟩, one obtains

M2
πf

2
π = −m ⟨q̄q⟩ + O(m2), (2.12)

where the isospin symmetry is assumed, mu = md = m. The relation (2.12) is

called the Gell-Mann–Oakes–Renner relation [7]. Here inserting fπ ≈ 93MeV,

Mπ ≈ 140MeV and m ≈ 5MeV into (2.12), we obtain ⟨q̄q⟩ ≈ −(250MeV)3 and

the chiral symmetry is spontaneously broken at vacuum.
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2. Quantum Chromodynamics

2.3.2 Confinement

Another important aspect of nonperturbative QCD is quark confinement. The

mechanism is however much less known. Confinement is the phenomenon that all

color charges are completely screened in the far away region of the color source.

In the heavy quark limit, confinement means that a system with a static color

source and a static color sink at infinite separation has an infinite free energy.

More precisely, the free energy FQ̄Q of a heavy quark Q̄Q pair is proportional

to the separation R of the two quarks. The free energy is obtained from the

expectation value of the Wilson loop [8]

W (C) = Tr

[
P exp

(
−i

∮
C

Aµdx
µ

)]
, (2.13)

where the integral is made over a closed path C and P denotes the path ordering.

In order to relate the Wilson loop to the free energy, we consider the process where

a heavy static Q̄Q pair is created at x0 = 0, propagates to time x0 = T → ∞,

and then is annihilated. The Euclidian amplitude for the process is obtained as

⟨
QQ̄

∣∣ e−HT
∣∣QQ̄⟩

=

∫
DAa

µe
−S−i

∫
Aa

µJaµd4x = e−FQ̄Q(R)T , (2.14)

where H is the Hamiltonian and FQ̄Q is the free energy. The current Jaµ describes

the closed path C of the creation and annihilation of the QQ̄ pair. We take the

current Jaµ =
∮

C
dzµtaδ4(x − z) corresponding to a quark Q moving along the

path C,

e−FQ̄Q(R)T =

∫
DAa

µe
−S−i

∮
C Aa

µtadxµ

= ⟨W (C)⟩. (2.15)

Evaluating the expectation value of the Wilson loop, we thus get the free energy

of a heavy static particle-antiparticle pair. The free energy proportional to the

distance does not allow the flux to spread over infinite space. The factor of the

proportionality is called string tension.
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2. Quantum Chromodynamics

2.3.3 Relation between two phenomena

The chiral symmetry is realized only in the limit of light quark. Meanwhile, the

confinement is well defined only at heavy quark masses. Thus the two phenomena

can be considered in the opposite limits. Here we comment on the simple argu-

ment about the relation between the two phenomena. An argument [4] made by

Casher is that the chiral symmetry should be broken in the confinement phase.

The argument is simple and transparent. Suppose quarks are confined in hadrons

and the attraction is chiral invariant. In a semi-classical description a bound state

is constructed by superposing paths where the bound quarks have to reverse its

direction of motion. Since the chirality, that is helicity in massless limit, is con-

served in the interaction, the force can flip neither the spin nor the direction of

motion due to the helicity conservation. In compensation for the chirality the

chiral condensate has a non-zero expectation value and then the chiral symmetry

is spontaneously broken in the confinement phase. Another argument [5] is based

on the anomaly matching condition proposed by ’t Hooft [6]. Some of the elec-

troweak anomalies are canceled between quarks and leptons. Since the leptonic

anomaly is unchanged in the confinement phase, the hadrons must represent the

flavor anomalies of QCD and ensure the cancellation of the leptonic anomaly. We

consider flavor currents such as a left-handed current Jµ = q̄ξ(1 − γ5)γµq where

ξ is some combination of the generators of SU(Nf) with tr(ξ3) ̸= 0. This current

has an anomaly expressed as

rαΓµνα(p, q, r) = i
g2

4π2
tr(ξ3)ϵµνβγp

βqγ, (2.16)

Γµνα(p, q, r) =

∫
d4x1d

4x2e
ipx1+iqx2 ⟨Jµ(x1)Jν(x2)Jα(0)⟩ (2.17)

where (p+ q + r)α = 0. This amplitude Γµνα has massless poles like p2, q2 or r2.

Thus the current Jµ has to create massless states, that is, the Nambu-Goldstone

boson due to the spontaneous chiral symmetry breaking.

8



2. Quantum Chromodynamics

2.4 QCD phase diagram

Since the QCD running coupling decreases with respect to increasing the energy

scale, it is natural to consider that the QCD matter at high energy density under-

goes the phase transition from a confined state with the chiral symmetry breaking

to a deconfined state with the chiral symmetry restoration. The former (latter)

is called the hadron (quark-gluon plasma: QGP) phase. Since the intrinsic scale

of QCD is ΛQCD ∼ 200MeV, the QCD phase transition may take place around

temperature T ∼ ΛQCD or the baryon number density ρ
1/3
B ∼ ΛQCD = 1fm−1.

In the early universe about 10−5s after the Big Bang, the universe would have

�QCD

Quark-Gluon Plasma

Temperature

Color Superconductor

Quark Chemical Potential

Hadron Phase

Figure 2.1: Schematic picture of the QCD phase diagram.

experienced the QCD phase transition. The core of compact stellar objects such

as neutron stars thus would be the relevant place where dense QCD matter at

low temperature is realized. For asymptotically high density, the QCD ground

state forms a condensate of quark Cooper pairs, namely the color superconductor.

Since quarks have color and flavor quantum numbers, the color superconductor

phase has a rich structure. Experimentally, the heavy-ion collisions such as the

Relativistic Heavy-ion Collider (RHIC) at BNL, the Large Hadron Collider (LHC)

at CERN and Japan Proton Accelerator Research Complex (J-PARC) at JAEA
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2. Quantum Chromodynamics

and KEK provides us with a chance to create hot and/or dense QCD matter [3].

Figure 2.1 sketches a schematic picture of the QCD phase diagram in the plane

of temperature T and quark chemical potential µq. At present, our knowledge

is limited only in asymptotically high µq region, where the perturbative calcula-

tion is available, and small µq/T ≪ 1 region, where the numerical calculation on

lattice is available as explained in Sec. 2.6.

2.5 Thermodynamics of QCD

For QCD in equilibrium with volume V , temperature T and quark chemical

potential µq, the partition function of the grand-canonical ensemble Z(T, µq) is

defined as

Z(T, µq) = tr
(
e−β(Ĥ−µqN̂q)

)
, (2.18)

where β = 1/T and Ĥ and N̂q are the Hamiltonian and the quark-number opera-

tors, respectively. The thermodynamic potential is defined as Ω = − T
V

lnZ. The

partition function (2.18) is expressed as a Euclidian functional integral

Z(T, µq) =

∫
Dq̄DqDAν exp

[
−

∫ β

0

dτ

∫
d3x (LE − µqq̄γ4q)

]
, (2.19)

where LE denotes the Lagrangian density in the Euclidian spacetime. Quarks and

gluons satisfy antiperiodic and periodic boundary conditions in τ , respectively.

Since the τ direction is compacted, the momentum integral is replaced as∫
d4p

(2π)4

T ̸=0−−→ 1

β

∑
n

∫
d3p

(2π)3
(2.20)

with the momentum p = (p, ωn) where ωn = 2nπT for gluons and ωn = (2n+1)πT

for quarks. From now on we work in Euclidean spacetime without exception. The

Wilson loop (2.13) with the path connecting two points at τ = 0 and β is then

rewritten into

⟨W ⟩ = ⟨trcL
†(R)trcL(0)⟩ = e−FQ̄Q(R)β, (2.21)

10



2. Quantum Chromodynamics

where FQ̄Q(R) is the free energy of heavy quarks with the separation R. Here the

contributions from two paths in the opposite space direction at τ = 0 and β are

canceled out each other, note that the τ direction is compacted. The Polyakov

loop Φ [9] is defined by

Φ(x) =
1

3
trcL(x), L(x) = P exp

(
−i

∫ β

0

A4(τ,x)dτ

)
, (2.22)

where P denotes the path ordering. Therefore the Polyakov loop Φ(x) is related

to the free energy FQ̄Q at temperature T of two static color sources Q̄ and Q with

a spatial separation R [10]. In the limit |R| → ∞, the free energy is reduced to

F∞
Q̄Q = −T ln |⟨Φ⟩|2. (2.23)

This expression can be related to the free energy of a single quark, F∞
Q , and a sin-

gle antiquark, F∞
Q̄

. Consequently, ⟨Φ⟩ is an order parameter for the confinement.

In the confinement phase, the free energy is infinite so that ⟨Φ⟩ = 0, while ⟨Φ⟩ ̸= 0

in the deconfinement phase. The Polyakov loop is also an order parameter of the

Z3 symmetry [11] that is the center elements of color SU(3)c, zk = e−2πik/3 for

integer k. Under a non-periodic gauge transformation Uk(x) = [zk]
τ/β, the tem-

poral gauge field is shifted as A4 → A4 + 2πk
3β

so that the Polyakov loop is changed

as Φ → zkΦ. The gauge fields satisfy the periodic boundary condition and the

Z3 symmetry is exact in pure gauge limit. The boundary condition for quarks is

however changed as q(β,x) = zkq(0,x) under the transformation so that the Z3

symmetry is explicitly broken in the presence of quarks.

2.6 Lattice QCD

In order to investigate the QCD phase diagram, we have to deal with some non-

perturbative methods. Only a reliable method to do this is lattice QCD (LQCD)

where the partition function (2.19) is evaluated numerically on the spacetime lat-

tice with a lattice spacing a by using importance sampling techniques. In LQCD,

the ingredients are the link variables Uµ(n) = e−iaAµ(n) that connect the neighbor

sites at n and n + µ̂. The path integral over quark fields can be carried out

11



2. Quantum Chromodynamics

analytically:

Z =
∑

n

∑
µ

det D[U ]e−Sg [U ], (2.24)

where D[U ] tends to the Dirac operator γνDν + m − µqγ4 in the continuum

limit. For a lattice with Ns (Nt) sites in each spatial (temporal) direction, the

total number of integration is N3
s × Nt × NU where NU = 4 × 8 is degrees of

freedom of the link variables at a point. For such a high-dimensional integral,

Monte-Carlo methods with importance sampling are suitable where the sampling

is generated with a probability proportional to detD[U ]e−Sg [U ]. For finite quark

chemical potential µq, the probability is no longer positive due to the property

of the Dirac operator

[det D(µq)]
∗ = det (γνDν +m− µqγ4)

†

= det
[
γ5

(
γνDν +m+ µ∗

qγ4

)
γ5

]
= det D(−µ∗

q), (2.25)

so that the importance sampling techniques break down for finite µq. This

is called the sign problem. Several approaches have been proposed so far to

circumvent the difficulty; for example, the Taylor-expansion method [13], the

reweighting method [12], and the analytic continuation from imaginary µq to real

µq [34; 35; 36; 37]. The Taylor-expansion method has the convergence problem,

i.e., the radius of convergence is limited to µq/T < 1. In the reweighting method,

an expectation value of operator O at µq ̸= 0 can be rewritten in terms of an

ensemble average at µq = 0:

⟨O⟩µq = ⟨OR(µq)⟩0
/
⟨R(µq)⟩0, (2.26)

whereR(µq) = det D(µq)/ det D(0) is called the reweighting factor. The reweight-

ing method has the overlap problem that the factor R is small in addition to the

sign problem. For imaginary µq, there is no sign problem because of the relation

(2.25). Quantities evaluated in LQCD at imaginaryµq can be continued to real µq

by some analytic functions. The truncation of the functions, however, limits the

range of applicability of this method. All the methods are still far from perfection
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2. Quantum Chromodynamics

and the QCD phase diagram at finite µq is still under discussion.
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Chapter 3

Polyakov-loop extended

Nambu–Jona-Lasinio model

In the previous chapter, we discussed the QCD phase diagram. The first-principle

lattice QCD (LQCD) is only a reliable method to investigate such a nonperturba-

tive region, however it has the sign problem at finite quark chemical potential. As

an approach complementary to LQCD, many effective models have been proposed

so far. In the QCD phase diagram, important phenomena are chiral symmetry

restoration and deconfinement. Recently an effective model which can treat both

the phenomena was proposed. The model is call the Polyakov-loop extended

Nambu–Jona-Lasinio (PNJL) model. In this chapter, we review properties of the

PNJL model at finite temperature and zero chemical potential.

3.1 PNJL Model

The Nambu–Jona-Lasinio (NJL) model [14] has a long history and has been used

extensively to describe the dynamics and the thermodynamics of light hadrons,

including investigations of the phase diagrams [15]. Such a schematic model offers

a simple and practical illustration of the mechanism of the spontaneous chiral

symmetry breaking that is a key feature of low-energy QCD. The NJL model is

based on an effective Lagrangian of quarks that interact through local current-

current couplings, assuming that gluonic degrees of freedom can be frozen into
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3. PNJL model

pointlike effective interactions between quarks. The gluonic correlation length

calculated in lattice QCD (LQCD) [16] is small, say ∼ 0.2 fm, compared with a

characteristic momentum scale Λ−1
QCD ≈ 1 fm. Consider the non-local interaction

between two quark color currents, Jaµ = q̄γµtaq, where ta are the generators of

the color SU(3)c gauge group. The contribution of this current-current coupling

to the action is

Sint = −1

2

∫
d4xd4yJaµ(x)Dab

µν(x− y)J bν(y), (3.1)

where Dab
µν is the full gluon propagator. This Sint generates the familiar one-gluon

exchange between quarks and maintains its higher interactions. Since the gluonic

correlation length is much shorter than the typical momentum scale of quarks, the

interaction can be approximated by a local coupling between their color currents

Sint = −Gc

∫
d4xJaµ(x)Ja

µ(x). (3.2)

By integrating out gluon degrees of freedom and absorbing them in the four-

quark interaction Sint, the local SU(3)c gauge symmetry is now reduced to a

global one in the NJL model. The interaction action Sint evidently preserves

the chiral symmetry in the massless limit. A Fiertz transformation of the color

current-current interaction (3.2) produces a set of exchange terms acting in quark-

antiquark channels: for the two-flavor case,

Sint → −Gs

∫
d4x[(q̄q)2 + (q̄iγ5τ⃗ q)

2] + · · · , (3.3)

where τ⃗ are the isospin SU(2) Pauli matrix. The color-singlet pair of scalar-

isoscalar and pseudoscalar-isovector operators (3.3) is a minimal subset satisfying

the chiral symmetry. The four-quark interaction (3.3) is the starting point of

the NJL model. The NJL model illustrates the spontaneous chiral symmetry

breaking, that is, the generation of massive quasiparticles from light quarks and

that of pions as Nambu-Goldstone bosons. Despite of the success to describe

the chiral symmetry breaking, the NJL model lacks the confinement mechanism,

a key feature of low-energy QCD besides the chiral symmetry breaking. The
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3. PNJL model

deconfinement phase transition is characterized by spontaneous breaking of the

Z3 center symmetry of color SU(3)c as discussed in Sec. 2.5. The order parameter

is the Polyakov loop

Φ(x) =
1

3
trcL(x), L(x) = P exp

(
−i

∫ β

0

dτA4(x, τ)

)
, (3.4)

where A4 is the temporal gauge field and P denotes path ordering. The Polyakov-

loop extended NJL (PNJL) model, recently proposed in Ref. [64], can describe the

spontaneous breaking of the chiral symmetry and the deconfinement mechanism

simultaneously. In the PNJL model, the coupling of the Polyakov loop Φ to the

quark fields q is accomplished by the minimal gauge coupling procedure, where

the temporal component of the gauge field is assumed to be spatially constant

and the other components are neglected. Its basic ingredients are the NJL type

four-quark contact interaction and the coupling to a spatially-constant temporal

gauge field representing the Polyakov loop. The model Lagrangian is obtained in

the Euclidian spacetime as

L = q̄(γνDν +m0)q −Gs[(q̄q)
2 + (q̄iγ5τ⃗ q)

2] + UΦ, (3.5)

where Dν = ∂ν + iA4δ4ν and m0 is the current quark mass. UΦ is an effective

potential for the Polyakov loop and is called as the Polyakov potential. In the

PNJL model, the chiral and deconfinement transitions are described as the four-

quark interaction and the Polyakov potential, respectively.

3.2 Polyakov potential

In the PNJL model the gluonic dynamics is incorporated into the Polyakov po-

tential UΦ. The functional form is inspired by the strong coupling expansion [17].

In the strong coupling limit, the effective action in terms of the Polyakov loop

reads

SL = −e−σaβ
∑
n.n.

trcL
†(xi)trcL(xj), (3.6)
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3. PNJL model

which describes a hopping interaction between adjacent Polyakov loops. Here a

and σ are the lattice spacing and the string tension, respectively. This action is

similar to the nearest neighbor interaction of a spin system of the Polyakov loop.

The partition function of the action is

ZΦ =

∫
DL e−SL = e−V eff

Φ , (3.7)

where DL represents the functional integral with the group invariant (Haar)

measure, i.e., the Faddeev-Popov determinant. In the mean field approximation,

the effective potential (per volume) for the Polyakov loop is obtained as

V eff
Φ = −54e−σaβΦ∗Φ − ln MHaar, (3.8)

where the Haar measure for the SU(3)c group is given by

MHaar = 1 − 6Φ∗Φ + 4(Φ∗3 + Φ3) − 3(Φ∗Φ)2 (3.9)

in the Polyakov gauge where the temporal gauge field is diagonal and static. The

second term in (3.8) favors the confined state at Φ = 0, while the first term does

the deconfined state Φ = 1. Thus, the Haar measure could play an essential role

in the realization of the confinement [18]. Together with the two terms, a phase

transition takes place. Here, we distinguish the conjugate of the Polyakov loop,

Φ∗ = ⟨1
3
trcL

†⟩, from Φ; they are just identical at zero quark chemical potential,

µq = 0, but a difference between them arises at finite µq. The difference has much

to do with the sign problem as discussed in Sec. 4.6.1. Inspired by the functional

form from the strong-coupling analysis, we adopt the following ansatz to fit the

pressure in the pure gluonic sector [25]:

UΦ = −a(T )

2
Φ∗Φ + b(T ) ln[1 − 6Φ∗Φ + 4(Φ∗3 + Φ3) − 3(Φ∗Φ)2]. (3.10)

The parameters are determined to reproduce the LQCD data [19] in the pure

gauge limit, a(T )/T 4 = 3.51 − 2.47t + 15.2t2 and b(T )/T 4 = −1.75t3 with t =

T0/T . The first term in a(T ) is constrained by the Stefan-Boltzmann limit at

T → ∞. The potential enforces the first-order phase transition at T = T0 and
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3. PNJL model

LQCD yields T0 = 270 MeV in pure gauge limit.

3.3 Thermodynamics in the PNJL model

3.3.1 Thermodynamic potential

Given the PNJL model Lagrangian (3.5), we can discuss the thermodynamics.

We start with the partition function

Z =

∫
dA4Dq̄Dq exp

[
−

∫
d4x (L − µqq̄γ4q)

]
, (3.11)

where the temporal gauge field A4 is assumed to be spatially and temporally

constant in the PNJL model. For proceeding the path integral of the quark field

q, we introduce the auxiliary bosonic fields, σ and π⃗.

N =

∫
DσDπi exp

(
−Gs[(q̄q − σ)2 + (q̄iγ5τiq − πi)

2]
)
. (3.12)

Inserting the constant terms in the partition function, we can convert the four-

quark interaction to the bosonic one. The path integration over the quark fields

can be carried out and then the partition function is obtained as

Z =

∫
dA4DσDπi e

−Sbos , (3.13)

with the bosonized action

Sbos = −ln det[β(γνDν +Mq − µqγ4)] +

∫
d4x

(
Gs[σ

2 + π⃗2] + UΦ

)
, (3.14)

where the symbol det denotes the functional determinant and Mq = m0−2Gs(σ+

iγ5τiπi) is the dynamical quark mass. We evaluate the partition function (3.13)

in the mean field approximation. In the mean field approximation, the field

variables φ are replaced by the mean fields φ̄. The mean field configurations are

spatially and temporally constants that contribute mostly to the path integral.

In this approximation, the partition function is reduced to Z = e−S(φ̄) = e−βV Ω,

where Ω is the thermodynamic potential and V is the volume. The mean fields
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3. PNJL model

are determined by minimizing the potential, i.e., the stationary condition

∂Ω

∂φ
= 0 for φ = φ̄. (3.15)

For finite quark chemical potential µq, the action (3.14) is in general complex. It

is then difficult to take the configurations that most contribute to the partition

function, i.e., the sign problem. We address this problem in Chapter 4. Here we

consider only the zero µq case where the action remains real. The thermodynamic

potential Ω in the mean field approximation is obtained as

Ωmf = −2Nf
1

β

∑
n

∫ Λ d3p

(2π)3
trc ln

[
(ωc

n)2 + p2 +M2
q

]
+Gs[σ

2 + π2
i ] + UΦ, (3.16)

where ωc
n = ωn − iµq − A4 and ωn = (2n + 1)πT are the Matsubara frequencies

for quarks. Here we introduce the momentum cutoff Λ since the PNJL model

is nonrenormalizable. We assume that there is no pion condensate ⟨πi⟩ = 0,

which is justified whenever the isospin chemical potential is zero. By using some

technique for the sum, the first term of the potential becomes

ln
[
(ωc

n)2 + p2 +M2
q

]
=

[
Eq + ln

(
1 + Le−β(Eq−µq)

)
+ ln

(
1 + L†e−β(Eq+µq)

)]
(3.17)

with the quasiparticle energy Eq =
√

p2 +M2
q and L = e−iβA4 in the Polyakov

gauge. Furthermore the color trace is explicitly taken to be a form of

trc ln
(
1 + Le−β(Eq−µq)

)
= ln

(
1 + 3Φe−β(Eq−µq) + 3Φ∗e−2β(Eq−µq) + e−3β(Eq−µq)

)
, (3.18)

trc ln
(
1 + L†e−β(Eq+µq)

)
= ln

(
1 + 3Φ∗e−β(Eq+µq) + 3Φe−2β(Eq+µq) + e−3β(Eq+µq)

)
. (3.19)

From the stationary condition for σ, we can get the relation

⟨σ⟩ = −4Nf
1

β

∑
n

∫
d3p

(2π)3
trc

(
Mq

(ωc
n)2 + p2 +M2

q

)
= ⟨q̄q⟩, (3.20)

that is the self-consistence condition in the PNJL model. This relation connects

the scalar meson field σ to the chiral condensate.
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3.3.2 Meson properties

Here we consider the mesonic fluctuations around the mean fields. We write

σ(x) = ⟨σ⟩ + δσ(x), πi(x) = δπi(x) and expand the bosonized action (3.14) per

volume around the mean field up to the second order of the mesonic fluctuations

δσ, δπ

Sbos = S
(0)
bos + S

(2)
bos, (3.21)

where S
(0)
bos corresponds to the mean field part (3.16). The second term is obtained

as

S
(2)
bos =

1

2

∫
d4p

(2π)4

(
F+(p2)δσ(p)δσ(−p) + F−(p2)δπi(p)δπi(−p)

)
, (3.22)

where p = (p, ωm) with the Matsubara frequencies ωm = 2mπT for meson. The

inverse meson propagators, F+(p2) = 1
V

δ2Sbos

δσ(p)δσ(−p)
and F−(p2) = 1

V
δ2Sbos

δπ(p)δπ(−p)
, are

obtained as

F±(p2) =

∫
d4q

(2π)4
tr

[
Γ±S(q+)Γ±S(q−)

]
+ 2Gs = (2Gs)

2

(
N±I(p2) +

m0

2GsMq

)
, (3.23)

where S(q±) = (iγ · q± +Mq)
−1 is the quark propagator with q± = q ± p/2 and

q = (q, ωc
n). The trace is taken over Dirac, flavor and color. The symbol +(−)

represents the σ (πi) meson mode and N+ = p2 − 4M2
q , N− = p2, Γ+ = 1,

Γ− = iγ5τi and

I(p2) = 2Nf

∫
d4q

(2π)4
trc

1

[(q+)2 +M2
q ][(q−)2 +M2

q ]
. (3.24)

The pion mass Mπ is determined by the pole of the pion propagator, while the

quark-pion coupling constant g2
πq̄q is by the residue of the pion pole,

M2
π = g2

πq̄q

m0

2GsMq

, g−2
πq̄q = I(p2). (3.25)

This relation shows that when the chiral symmetry is broken in the massless

limit m0 = 0, the pion behaves as the massless Nambu-Goldstone boson. The
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pion decay constant is defined as the matrix element connecting the vacuum to

the pion state through the axial current Jaµ
A . The pion decay constant therefore

is evaluated as

ifπp
µδab = ⟨0|Jaµ

A (0)|πb(p)⟩ = −igπq̄qδ
abpµMqI(p

2). (3.26)

Combining (3.25) and (3.26), we obtain the Gell-Mann–Oakes–Renner relation

f 2
πM

2
π =

m0Mq

2Gs

= −m0⟨q̄q⟩ + O(m2
0). (3.27)

3.3.3 Parameter set

The parameters of the PNJL model, Gs, Λ and m0, are determined to reproduce

the meson properties at vacuum, the pion mass Mπ = 138GeV and its decay

constant fπ = 93.3MeV, and the chiral condensate ⟨q̄q⟩ = (247MeV)3. The

parameters result in Λ = 631.5MeV, Gs = (426.5MeV)−2 and m0 = 5.5MeV [20].

3.3.4 Chiral and deconfinement phase transitions

The order parameters of the chiral and deconfinement phase transitions are the

chiral condensate σ and the Polyakov loop Φ, respectively. The critical tem-

peratures of the phase transitions are determined by the peak positions of the

corresponding susceptibilities,

χσ = χσσ = ⟨(σ − ⟨σ⟩)2⟩, χΦ = χΦΦ = ⟨(Φ − ⟨Φ⟩)2⟩, (3.28)

for the chiral and deconfinement phase transitions, respectively . The suscepti-

bility represents the correlation of the order parameters and has the maximum at

the critical point. The susceptibilities χφiφj
are defined as the inverse curvature

matrix C of the potential

χφiφj
= C−1

φiφj
, Cφiφj

=
∂2Ωmf

∂φi∂φj

, (3.29)

where φ is the field variables. Figure 3.1 shows T dependence of σ (solid) and Φ
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Figure 3.1: T dependence of the chiral condensate σ (solid) and the Polyakov
loop Φ (dashed) at µq = 0. The chiral condensate is normalized by the value σ0

at vacuum. The bold curves represent the PNJL model results, while the thin
curves does the NJL model with m0 = 0 for σ and the Polyakov potential for Φ.

(dashed) at µq = 0. The thin solid and dashed curves represent σ in only the NJL

sector with m0 = 0 and Φ calculated in only the Polyakov potential. In the case

of no coupling between the quark fields and the Polyakov loop, the second-order

chiral phase transition and the first-order deconfinement transition appear at very

different critical temperatures, that is Tσ ≈ 172MeV for the chiral phase transition

and TΦ ≈ 270MeV for the deconfinement one. The coupling between the quark

fields and the Polyakov loop moves the deconfinement transition to lower tem-

perature, while the chiral transition to higher temperature, and eventually both

the transitions nearly coincide with each other, Tσ ≈ TΦ ≈ 220MeV. However the

nearly coincidence temperature is different from LQCD one, Tσ ≈ TΦ ≈ 173MeV.

The difference can be understood below [21]. The Polyakov potential UΦ has a

parameter to determine the scale of T , i.e., T0. When only the Polyakov potential

is considered, the first-order Z3 phase transition occurs at T = T0 as shown by

the thin-dashed curves of Fig. 3.1. The value of the QCD scale parameter ΛQCD

decreases as the number of flavor Nf , so that T0 decreases similarly. The Nf de-

pendence is estimated with perturbation [21]. Here we determine T0 = 212MeV to
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Figure 3.2: (a) T dependence of the chiral condensate σ (solid) and the Polyakov
loop Φ (dashed) in the PNJL model with T0 = 212MeV at µq = 0. (b) T
dependence of the susceptibilities χσ (solid) and χΦ (dashed) at µq = 0.

reproduce TΦ = 173MeV of the LQCD result. Figure 3.2 (a) shows T dependence

of σ and Φ with T0 = 212MeV. Figure 3.2 (b) shows T dependence of the suscep-

tibilities for σ and Φ, χσ and χΦ, with T0 = 212MeV. The critical temperatures

move to lower temperature and the values are Tσ = 216MeV and TΦ = 173MeV.

The relative difference of the two critical temperatures is Tσ −TΦ ≈ 40MeV. The

result is inconsistent with the LQCD one where the two critical temperatures

coincide with each other. We address this problem in Chapter 7. From now on

T0 = 212MeV is taken unless explicitly mentioned.

3.3.5 Thermodynamic quantities

Figure 3.4 shows T dependence of the pressure p at µq = 0. The pressure is

obtained from the thermodynamic potential Ω with p = −Ω. In the mean field

approximation, the pressure is determined by the quarks moving as quasiparti-

cles in the background with the expectation values of the sigma field σ and the

Polyakov loop Φ. In the hadronic phase at lower T , however, the mesonic contri-

butions are dominant and we have to evaluate them. The mesonic contributions

come from the effective action with the inverse propagators (3.22) of σ and π.

In the pole approximation, where the imaginary part of the propagators corre-

sponding to the decay modes is ignored, the inverse propagators of mesons with

momentum p and masses Mm are proportional to p2 +M2
m, so that the mesonic
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3. PNJL model

pressure pm is obtained as

pm = −T
2

∑
m=π,σ

∫
d3p

(2π)3
ln

(
1 − e−β

√
p2+M2

m

)
. (3.30)

Each meson mass is determined by a pole of each meson propagator (3.23). Figure
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Figure 3.3: T dependence of the sigma Mσ (solid) and the pion mass Mπ (dashed)
at µq = 0. The dotted line shows twice the quark mass Mq.

3.3 shows T dependence of the sigma-meson mass Mσ and the pion mass Mπ at

µq = 0. In the chiral symmetry broken phase at low T , the π meson behaves as

the Nambu-Goldstone boson, while the σ meson has the mass about 2Mq. In the

chiral symmetry restored phase at high T , the chiral partner, π and σ, degenerates

with each other and the mass increases with T . Figure 3.4 shows T dependence of

the pressure. The dashed and dotted curves represent the quark pressure in the

mean field approximation and the mesonic pressure, respectively. The solid curve

represents the total pressure in the mean field approximation plus the mesonic

correction. In the confinement phase at low T , the pressure is dominated by the

mesonic one. In the deconfinement phase at high T , the pressure is dominated

by the quark-gluon one calculated in the mean field approximation.
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Figure 3.4: T dependence of pressure. The dashed and dotted curves represent
the quark (in the mean field) and the mesonic pressure, respectively. The solid
curve represents the total pressure of the mean field plus the mesonic correction.

3.4 Summary

We review thermodynamic properties of the PNJL model at zero quark chemical

potential µq = 0. The PNJL model can treat both the chiral and deconfine-

ment phase transition simultaneously. The model possesses the chiral properties

such as the Gell-Mann–Oakes–Renner relation. Recent study [25] reported that

the model reproduces the first-principle lattice QCD data at zero µq, but it is

highly nontrivial whether the model predicts properly physical quantities at fi-

nite chemical potential. In this thesis, we propose a new approach to test the

model reliability in the finite chemical potential regions. We show how reliable

the PNJL model is and extend the model.
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Chapter 4

Sign Problem

When we consider the effect of the quark chemical potential µq in QCD, we

encounter the sign problem. The integrand of the partition function with fi-

nite µq oscillates hardly and hence the importance sampling in the Monte Carlo

calculation breaks down. The sign problem appears even in the mean field ap-

proximation. In this chapter, we consider the sign problem by using the PNJL

model. This chapter is mainly based on our paper of Ref. [22].

4.1 Sign Problem in the PNJL model

The PNJL model provides us with an ideal setup to consider the sign problem.

The thermal part of the PNJL thermodynamic potential (3.16) is given by

Ωth
PNJL = −2Nf

1

β

∫
d3p

(2π)3

∑
j

{
ln

(
1 + e−β(Eq−µq+iϕj)

)
+ ln

(
1 + e−β(Eq+µq−iϕj)

)}
(4.1)

with the Polyakov gauge where the temporal gauge fields ϕj is diagonal and

static. For the SU(Nc) gauge group, the gauge fields ϕj satisfy the condition,∑
j ϕj = 0 mod 2π/β. The first and second logarithms represent quark and anti-

quark excitations, respectively. In the SU(2) gauge group, the terms with j = 2

are the complex conjugate to the terms with j = 1, since ϕ1 = −ϕ2. Thus the

thermodynamic potential ΩPNJL is real and hence there is no sign problem. Unless

the gauge group is SU(2), the potential Ωth
PNJL generally takes a complex value.
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4. Sign Problem

It is difficult to determine the energetically favorite values of internal variables,

i.e., ϕj, from such a complex potential. This complex potential manifests the

sign problem. The sign problem hinders the LQCD simulation at finite chemical

potential. The sign problem is actually a quite generic problem of the importance

sampling not only in the LQCD simulation but also in the mean field approxi-

mation. Note that the mean field variables are chosen to be a configuration that

maximizes the weight w ∼ exp (−βV Ω). When the potential is complex, there-

fore, the mean field approximation breaks down. We can also use (4.1) in order

to deduce the situation where the sign problem does not appear: for example,

• Isospin Chemical Potential

We see from (4.1) that ΩPNJL(−µq) = Ω∗
PNJL(µq), meaning that ΩPNJL is

positive for two degenerate quarks that have a chemical potential opposite

to each other. For example, µu = µiso for u-quarks and µd = −µiso for

d-quarks when it is assumed that mu = md. This reality of the potential

comes from the property of the Dirac operator D = γνDν +m− µqγ4,

det D(µu) det D(µd) = | det D(µiso)|2 ≥ 0. (4.2)

This relation shows that the theory with the isospin chemical potential

corresponds to the phase-quenched theory. Some physical features of QCD

at isospin chemical potential are addressed in Chapter 6.

• Imaginary Chemical Potential

The sign problem is originated from the imbalance between the quark and

antiquark loop in (4.1). The imbalance does not appear when µq is purely

imaginary, i.e., µq = iθq/β for real θq. ΩPNJL is then obviously real. Note

that, in this case, the thermodynamic potential has the dimensionless chem-

ical potential only with the form θq−βϕj. The chemical potential therefore

can be partially canceled by the ZNc transformation, βϕj → βϕj + 2π/Nc.

This means that the potential has a periodicity of θq with 2π/Nc. Some

physical features at imaginary chemical potential are addressed in Chapter

5.
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4. Sign Problem

In spite of the complex potential, the partition function and the expectation val-

ues of real fields have to be real. The reality is guaranteed by charge-conjugation

symmetry of the partition function [23; 24]. The partition function Z is trans-

formed is ZC under charge-conjugation:

Z = ZC =

∫
DACe−SC [A,µq] =

∫
DA e−S[A,−µq] =

∫
DA e−S∗[A,µq] = Z∗, (4.3)

where use has been made of the relation, S[A,−µq] = S∗[A, µq]. The partition

function Z is thus real even at finite quark chemical potential. The expectation

values can be evaluated similarly. Actually the expectation value of the complex

Polyakov loop is real:

⟨Φ⟩ =

∫
DAνΦ e−S[Aν ,µq] =

∫
DAνΦ

∗ e−S∗[Aν ,µq] = ⟨Φ⟩∗, (4.4)

where the Polyakov loop Φ is Φ = 1
Nc

trcP(e−i
∫ β
0 A4dτ ) with the path ordering P.

The same can of course be written down for ⟨Φ∗⟩. The expectation values ⟨Φ⟩
and ⟨Φ∗⟩ however differ from each other. The difference is physically natural.

The Polyakov loop represents the propagation of a quark and its conjugate does

of an antiquark. The chemical potential exceeds quarks over antiquarks, so at

µq ̸= 0, quarks and antiquarks propagate differently and then ⟨Φ⟩ ≠ ⟨Φ∗⟩.

4.2 Mean Field Approximation

In the mean field (MF) approximation, the MF variables are chosen to be a

configuration that maximizes the weight w ∼ exp (−βV Ω). This approximation

is guaranteed in the infinite volume limit V → ∞. For the real potential, the MF

variables satisfy the stationary condition where the potential is minimum. For

the complex potential, however it is difficult to determine the MF variables. The

imaginary part of the potential causes an oscillation with higher frequencies, so

that the strong cancellation occurs in the integration. This is also the case for

the PNJL model. The field configuration φ that contributes most importantly

to the path integral is considered to be the configuration that minimizes the real
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4. Sign Problem

part of the potential. The necessary condition for this minimum is

∂Re
(
Ωmf

)
∂φ

= 0. (4.5)

In addition, it has to be ensured that the MF configuration obtained by solving

(4.5) leads to a real-valued thermodynamic potential. Two methods for making

the MF approximation have been proposed so far in the PNJL model:

I) One method [25] is based on the assumption that, in the MF approximation,

the expectation values of the gauge fields, ⟨ϕ3⟩ and ⟨ϕ8⟩, are related to these

of the Polyakov loop, ⟨Φ⟩ and ⟨Φ∗⟩, through

⟨Φ⟩ =
1

Nc

trce
−iβ(⟨ϕ3⟩λ3+⟨ϕ8⟩λ8), ⟨Φ∗⟩ =

1

Nc

trce
iβ(⟨ϕ3⟩λ3+⟨ϕ8⟩λ8). (4.6)

This condition is in general not true because Φ and Φ∗ are nonlinear func-

tions of ϕ3 and ϕ8. Under this condition, ⟨Φ∗⟩ is the complex conjugate of

⟨Φ⟩ even in the MF approximation. In order to keep the thermodynamic

potential real, we have to take ⟨Φ⟩ = ⟨Φ∗⟩ ∈ R, leading to ⟨ϕ8⟩ = 0. The

derivative ∂Ωmf

∂ϕ8
at ⟨ϕ8⟩ = 0 is purely imaginary. The stationary condition

(4.5) is satisfied under the condition ⟨ϕ8⟩ = 0.

II) In the second method [64], the Polyakov loop Φ and its conjugate Φ∗ are

treated as the internal variables instead of the gauge fields ϕ3 and ϕ8. Since

the gauge fields appear only as the Polyakov loop in the PNJL model,

we can consider the Polyakov loop and its conjugate instead of the gauge

fields. There is no relation between the expectation values of the Polyakov

loop, ⟨Φ⟩ and ⟨Φ∗⟩, and these of the gauge field, ⟨ϕ3⟩ and ⟨ϕ8⟩. In this

MF approximation, ⟨Φ⟩ and ⟨Φ∗⟩ differ from each other at finite chemical

potential.

4.3 Average Phase Factor

The sign problem is the main obstacle for the first-principle numerical investi-

gations of the QCD phase diagram. Several approaches have been proposed so
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far to circumvent the difficulty: see Sec. 2.6 for the details. The success of the

approaches is linked to how difficult the sign problem is. As a good indicator of

the difficulty, we can consider the average of the phase factor

e2iθ =
det D2

| det D|2
(4.7)

with the Dirac operator D = γνDν +m−µqγ4. If the average of the phase factor

is tiny, then severe cancellations take place in the path integral. In this situation,

validity of LQCD computations should be examined carefully. Studies on the

average phase factor are therefore important in order to understand the validity

of LQCD computations. The average is obtained by taking the expectation value

of the phase factor in the phase-quenched theory where the fermion determinant

is replaced by the absolute value. In the two-flavor case, the average is

⟨
e2iθ

⟩
pq

=

∫
DAν e

2iθ| det D|2e−S[Aν ]∫
DAν | det D|2e−S[Aν ]

=
Zfull

Zpq

, (4.8)

where Zfull is the partition function of the ordinary two-flavor theory and Zpq is

that of the two-flavor phase-quenched theory. Therefore, the average phase factor

expresses how the phase-quenched theory is different from the full theory. In the

two-flavor case, the phase-quenched theory with the quark chemical potential µq

is equivalent to the theory with the isospin chemical potential µiso = µq, as shown

in (4.2).

4.4 Purpose

It is not easy to calculate the average phase factor with LQCD even for small

chemical potential. Actually, several LQCD results on the average phase factor

are spotted [27]. It is then important to make a systematic analysis on the

phase factor by using effective theories. This was done by the chiral perturbation

theory [28; 29]. The result is consistent with the LQCD one [27] at lower T .

However, the theory is not valid for temperature near and above the transition

one Tc. The purpose of this chapter is to examine the average phase factor also

above Tc where the chiral perturbation theory is not applicable. In order to carry
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out such a study we have to rely on a specific model. Here we consider the

PNJL model. The PNJL model is suitable for this study since the model has

the sign problem induce by the Polyakov loop at finite chemical potential just

like QCD. We evaluate the average phase factor with the MF approximation and

investigate the relation between the Polyakov loop and the average phase factor.

We also consider the dynamical mesonic fluctuations as a correction to the MF

approximation and investigate the effect on the average phase factor.

4.5 Formulation

We start with the Lagrangian of the two-flavor PNJL model with the chemical

potential µ̂,

LPNJL = q̄(γνDν +m0 − γ4µ̂)q −Gs

[
(q̄q)2 + (q̄iγ5τ⃗ q)

2
]
+ UΦ, (4.9)

where Dν = ∂ν + iA4δ4ν . The chemical potential µ̂ takes µ̂ = µq for the full

theory with the sign problem and µ̂ = µqτ3 for the phase-quenched theory. Note

that, as mentioned in (4.2), the phase-quenched theory is equivalent to the theory

with the isospin chemical potential. Here we summarize the symmetries and their

breaking patterns in the two theories. For m0 = µ̂ = 0, the PNJL Lagrangian

has the SU(2)L × SU(2)R × U(1)V symmetry. In the full theory, the symmetry

is reduced to SU(2)V × U(1)V at finite quark masses. In the phase-quenched

theory, furthermore, the symmetry is reduced to U(1)I3 × U(1)V at the finite

chemical potential, where U(1)I3 is the isospin subgroup and quark is transformed

as q → e−iατ3q under the transformation. The spontaneous breakings of the chiral

and the U(1)I3 symmetry are described, respectively, by the chiral condensate

σ = ⟨q̄q⟩ and the charged pion condensate π = ⟨q̄iγ5τ1q⟩, where the τ1 direction

is taken as the U(1)I3 symmetry breaking. In the full theory, the chiral symmetry

is spontaneously broken but the U(1)I3 symmetry is not. In the phase-quenched

theory, both the chiral and U(1)I3 symmetries are spontaneously broken1.

1We address this point in Sec. 6.2.
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4.5.1 Mean Field Approximation

As discussed in Sec. 4.2, the PNJL model has the sign problem, so that the mean

field (MF) approximation cannot be defined uniquely. In the PNJL model, there

are two kinds of the MF approximations. Here we take the method I) where the

mean field variables φmf = (σ, π⃗, ϕ3, ϕ8) are obtained by the stationary condition

∂ Re
(
Ωmf

)
∂φ

= 0, φ = φmf (4.10)

under the constraint ϕ8 = 0 that keeps the thermodynamic potential real. In the

MF approximation, we can obtain the MF Lagrangian as

Lmf
PNJL = q̄(γν∂ν + γ4{iA4 − µ̂} +Mq +Niγ5τ1)q +Gs

[
σ2 + π2

]
+ UΦ (4.11)

with A4 = ϕ3λ3 + ϕ8λ8 under the Polyakov gauge, M = m0 − 2Gsσ and N =

−2Gsπ. The thermodynamic potential is then obtained as

Ωmf = −2
∑
i=±

∫
d3p

(2π)3

[
3Ei

q +
1

β
ln F(Ei

q)

]
+Gs

[
σ2 + π2

]
+ UΦ (4.12)

with F(Ei
q) = 1 + 3Φ(e−βEi

q + e−2βEi
q) + e−3βEi

q . Note that Φ = Φ∗ in this MF

approximation, since we set ϕ8 = 0. The difference between the full and the

phase-quenched theory appears only though the quasi-particle energies Ei
q. They

are written as

E+
q = Eq + µq, E−

q = Eq − µq, (4.13)

for the full theory, and, as

E+
q =

√
(Eq + µq)2 +N2, E−

q =
√

(Eq − µq)2 +N2, (4.14)

for the phase-quenched theory. It is clear from (4.12)-(4.14) that when the pion

condensation does not occur in the phase-quenched theory, the thermodynamic

potential Ωpq is the same as the thermodynamic potential Ωfull in the full theory.

As discussed in Chapter 7, when the chemical potential exceeds half the pion
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mass in the phase-quenched theory, the vacuum with the pion condensate is

more stable than the vacuum without the pion condensate, that is, Ωfull > Ωpq.

The two thermodynamic potentials thus differ from each other there. In the MF

approximation, the partition function Zmf is proportional to e−βV Ωmf
and hence

the average phase factor becomes

⟨e2iθ⟩mf = exp
[
−βV (Ωmf

full − Ωmf
pq)

]
. (4.15)

Therefore the average phase factor is ⟨e2iθ⟩mf is 1 for the vacuum without the pion

condensate, and ⟨e2iθ⟩mf nearly zero for the vacuum with the pion condensate.

4.5.2 Effect of the Static Fluctuation

In the normal phase where there is no pion condensate, the average phase factor

does not depend on temperature and chemical potential and hence an unphysical

discontinuity appears when the chemical potential exceeds half the pion mass.

This implies that we should consider the fluctuations around the MF. Here we

consider the static (homogeneous) fluctuations (SF) up to the second order terms.

The assumption ϕ8 = 0 is an approximation in the MF level. The gradient δΩmf

δϕ8

is thus finite and pure imaginary. We expand Ωmf up to quadratic terms of the

fluctuations:

Ωsf = Ωmf +

(
δΩmf

δϕ8

)
δϕ8 +

1

2

(
δ2Ωmf

δφiδφj

)
δφiδφj, (4.16)

where φi = (φi)
mf + δφi for mean fields (φi)

mf and static fluctuations δφi. Since

first-order terms in δϕ8 are purely imaginary, we can regard an integral over φi

as a Fourier integral. We then obtain

Zsf =

∫
Πid(δφi) exp

(
−βV Ωsf

)
=

1

N
exp

(
−βV Ω̃sf

)
, (4.17)

with

Ω̃sf = Ωmf +
1

2

(
δ2Ωmf

δϕ2
8

)−1 (
δΩmf

δϕ8

)2

, Nsf =

(
βV

2π

)n/2

det

(
δ2Ωmf

δφiδφj

)1/2

, (4.18)
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where n is the number of fields. Note that the correction term of the poten-

tial respects contributions from non-vanishing imaginary parts of the potential.

The corrected potential Ω̃sf is real. The average phase factor with the static

fluctuations turns out to be

⟨
e2iθ

⟩
=

Nsf
pq

Nsf
full

exp
[
−βV

(
Ω̃sf

full − Ω̃sf
pq

)]
. (4.19)

We can see some features from this explanation. When the pion condensate does

not occur in the phase-quenches theory, the thermodynamic potentials of the

full and phase-quenched theories coincide with each other even in the MF+SF

approximation, Ω̃sf
full = Ω̃sf

pq. Thus the average phase factor is dominated by the

prefactor Nsf
pq/N

sf
full. When the pion condensate occurs in the phase-quenched

theory, a massless mode in the τ2 direction appears because we choose the τ1

direction as the massive mode. Thus the average phase factor vanishes because

of (
δ2Ωmf

δπ2δφj

)
pq

= 0 → Nsf
pq = det

(
δ2Ωmf

δφiδφi

)
pq

= 0. (4.20)

The expectation value of the Polyakov loop ⟨Φ⟩ and its conjugate ⟨Φ∗⟩ are cal-

culated in the MF+SF level [25]:

⟨Φ⟩sf = ⟨Φ⟩mf −
(
∂Ωmf

∂ϕ8

)(
∂2Ωmf

∂ϕ2
8

)−1 (
∂Φmf

∂ϕ8

)
, (4.21)

⟨Φ∗⟩sf = ⟨Φ∗⟩mf −
(
∂Ωmf

∂ϕ8

) (
∂2Ωmf

∂ϕ2
8

)−1 (
∂Φ∗mf

∂ϕ8

)
, (4.22)

where the factor
(

∂Φ∗mf

∂ϕ8

)
is the complex conjugate of

(
∂Φmf

∂ϕ8

)
and both are purely

imaginary. The factor
(

∂Ωmf

∂ϕ8

)
comes from the imaginary part of the potential

and then purely imaginary. This property makes the expectation values, ⟨Φ⟩sf

and ⟨Φ∗⟩sf purely real and the expectation values are split out each other due

to the correction from the imaginary part of the potential induced by the gauge

field ϕ8.
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4.5.3 Effect of the Dynamic Fluctuation

The static fluctuations should be considered for σ, π⃗, ϕ3 and ϕ8. The PNJL

Lagrangian has the kinetic term for the quarks but not for the gauge fields, ϕ3

and ϕ8. Therefore we can consider both the dynamical and static fluctuations for

the meson fields, σ and π⃗, while we keep treating only the static fluctuations for

the gauge fields. Therefore, in (4.16), the second derivative terms with respect

to the meson fields φ = (σ, π⃗) are rewritten as∫
d4xd4yΓij(x− y)δφi(x)δφj(y), Γij(x− y) =

δ2Ωmf(x− y)

δφi(x)δφj(y)
. (4.23)

The second derivatives Γij of the potential with respect to meson fields yield the

inverse meson propagators. If there is no pion condensate, where the parity is

not broken, the scalar- and the pseudoscalar-meson modes are decoupled to each

other. Hence, the mesonic polarization function matrix Γij does not have any

off-diagonal elements. Then it is written in the momentum space as

Γii(p) ∝ Πi

(
p2 +M2

i

)
, (4.24)

where the Mi are the meson masses. Here we take the pole approximation [30]

that neglects the imaginary part of Γij, that is the scattering phase shift of quark-

antiquark scattering in the interaction channel. Since we are interested in temper-

ature lower than the critical one, and in the normal phase, the pole approximation

works well. In this approximation, the thermodynamic potential can be obtained

by a sum of four quasiparticles, σ, π0, π+, and π−:

Ωdf = Ωmf +
∑

j

∫
d3p

(2π)3

[
1

2
(Ej − µj) +

1

β
ln

(
1 + e−β(Ej−µj)

)]
(4.25)

with the meson energies Ej =
√

p2 +M2
j and the meson chemical potentials

µj. In the full theory, the mesons cannot carry the chemical potentials and then

µj = 0 for all the mesons. In the phase-quenched theory where the chemical

potential corresponds to the isospin chemical potential, the π± mesons carry the

chemical potentials and then µπ+ = 2µq, µπ− = −2µq and µσ = µπ0 = 0. Here
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the meson masses Mj are calculated at zero chemical potential. Combined with

the static fluctuations of the gauge fields, ϕ = (ϕ3, ϕ8), the partition function

with the mesonic dynamical fluctuations becomes

Zdf =
1

Ndf
exp

(
−βV Ω̃df

)
, (4.26)

with

Ω̃df = Ωdf +
1

2

(
δ2Ωmf

δϕ2
8

)−1 (
δΩmf

δϕ8

)2

, Ndf =

(
βV

2π

)
det

(
δ2Ωmf

δϕiδϕj

)1/2

. (4.27)

The average phase factor with the dynamical fluctuations (DF) is then obtained

by

⟨
e2iθ

⟩
=

Ndf
pq

Ndf
full

exp
[
−βV

(
Ω̃df

full − Ω̃df
pq

)]
. (4.28)

Even when the pion condensate does not occur in the phase-quenches theory, the

thermodynamic potentials of the full and phase-quenched theories differ from each

other in the MF+DF level due to the existence of the mesonic fluctuations. The

static fluctuations correspond to the dynamical ones with only zero momentum

since the static fluctuations are constant in the space and time. The MF+SF

calculation is thus an approximation of the MF+DF one.

4.6 Numerical Results

4.6.1 The Polyakov loop and its conjugate

As mentioned in Sec. 4.2, there are two methods for taking the MF approximation

in the PNJL model. In the method I), the expectation values of the Polyakov

loop ⟨Φ⟩ and its conjugate ⟨Φ∗⟩ coincide with each other in the MF level because

of the constraint of the gauge field ⟨ϕ8⟩ = 0. Meanwhile, in the method II), the

two expectation values are split out each other in the MF level at µq ̸= 0. It is

important to compare the difference between the MF approximations. Figure 4.1

shows T dependence of ⟨Φ⟩ and ⟨Φ∗⟩ at (a) µq = 100MeV and (b) µq = 200MeV.
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Figure 4.1: T dependence of the Polyakov loop Φ and its conjugate Φ∗ in two
kinds of MF approximations at (a) µq = 100MeV and (b) µq = 200MeV.
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The result of the method I) is shown by the solid lines, where Φ = Φ∗. The

results of the method II) are shown by dashed and dotted lines for ⟨Φ∗⟩ and ⟨Φ⟩,
respectively. Comparing these three lines, we can see that the difference between

the MF approximations is small. As shown in Ref. [25], the difference between

the two MF approximations is improved by considering the static fluctuations,

(4.21) and (4.22) in the method I). The splitting between ⟨Φ⟩ and ⟨Φ∗⟩ is caused

by the corrections from the imaginary part of the potential induced by the gauge

field ϕ8. Thus the difference ⟨Φ∗⟩ − ⟨Φ⟩ is naively related to the imaginary part

of the potential, that is, the severeness of the sign problem. Figure 4.2 shows the

difference ⟨Φ∗⟩mf − ⟨Φ⟩mf in the T -µq plane, where the method II ) is considered

in the MF level. The difference vanishes at zero chemical potential or large

temperature. The difference increases with µq for small T .
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Figure 4.2: The difference between the Polyakov loop and its conjugate ⟨Φ∗−Φ⟩mf

in the µq-T plane.
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4.6.2 Average Phase Factor

The average phase factor ⟨e2iθ⟩ is a good indicator for the severeness of the sign

problem. As shown in (4.15), (4.19) and (4.28), the average phase factor depends

on the volume βV . Here we take the condition, L = 4β, where L and β are the

spatial and temporal lengths, respectively, in the PNJL calculation. Thus the

volume βV = 64β4 is controlled by β. This condition agrees with the condition

where many LQCD calculations have. Although the average phase factor seems

to depend on the volume, the volume dependence appears only when the ther-

modynamic potential in the phase-quenched theory differs from that in the full

theory, Ωfull ̸= Ωpq, where the pion condensate occurs. When the pion condensate

occurs, meanwhile, the average phase factor is almost zero. The average phase

factor is thus dominated by the prefactor Npq/Nfull in (4.19) and (4.28), and the

following results little depend on the value. Figure 4.3 shows µq dependence of

the average phase factor at T = 0.9Tc, Tc, and 1.1Tc, where Tc is the deconfine-

ment transition temperature at zero chemical potential and Tc = 173MeV in the

present calculation. The red, green and blue lines are results of the MF, MF+SF

and MF+DF approximations, respectively. The results at T = 0.9Tc and Tc are

almost the same. The average phase factor at T = 1.1Tc is larger than those

at lower T . Therefore the average phase factor does not depend on T below Tc,

while it increases with T above Tc. In the MF and MF+SF calculations, the

average phase factor has an unphysical singularity at µq = Mπ/2 where Mπ is the

pion mass at vacuum, but it smoothly tends to zero in the MF+DF calculation.

Furthermore the effects of the fluctuations suppress the average phase factor at

both lower and higher temperatures.

4.6.3 Comparison to the LQCD results

The average phase factor was calculated with LQCD [31] where the lattice size

is 163 × 4 and the pion mass at vacuum is MLQCD
π ≈ 280MeV. In the PNJL

calculation, we have varied the quark mass from m0 = 5.5MeV to 22.5MeV to

reproduce MLQCD
π = 280MeV. For this value of m0, the deconfinement transition

temperature becomes a bit higher value, i.e., Tc = 180MeV. Figure 4.4 shows

µq dependence of the average phase factor at T = 0.9Tc, Tc and 1.25Tc. The
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Figure 4.3: The average phase factor ⟨e2iθ⟩ as a function of µq at (a)T = 0.9Tc,
(b)Tc, and (c)1.1Tc. The red, green, and blue lines represent results of the MF,
MF+SF, and MF+DF approximations, respectively.
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Figure 4.4: Comparison of the PNJL results in MF+DF calculations to the LQCD
results at (a) T = 0.9Tc, (b) Tc and (c) 1.25Tc. In each panel, the hatched region
represents the LQCD prediction [31].
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LQCD results are evaluated from analytic continuation of LQCD data at imagi-

nary chemical potential by assuming a polynomial function. The hatched regions

represent the LQCD results with the 90% confidence level for the extrapolation.

The greed and red lines represent results of the MF+SF and MF+DF calculations,

respectively. The MF+DF calculation almost reproduces the LQCD data as a

consequence of the strong suppression by the mesonic fluctuations. Meanwhile,

the MF+SF calculation underestimates the suppression due to not including the

mesonic fluctuations with finite momentum. Below Tc, the pion mass is almost

constant as shown in Fig. 3.3, so that the average phase factor little change with

T because the pion modes are dominant in the fluctuations. Above Tc, the pion

mass increases with T . The increase of the pion mass suppresses the pion fluc-

tuation effects, so that the average phase factor becomes larger than that below

Tc. As a consequence of the suppression of the mesonic fluctuations, the average

phase factor in the MF+DF calculation is enhanced and approaches that in the

MF+SF calculation.

4.6.4 The average phase factor in the µq-T plane

The full plot of the average phase factor in the µq-T plane is given in figure

4.5. In this figure, the average phase factor is calculated in the MF+SF calcula-

tion. The sign problem is exponentially bad in the pion condensate phase in the

phase-quenched theory. Before reaching this region, the average phase factor is

dominated by the mesonic fluctuations and it drops smoothly from one to zero.

The critical end point (CEP) of the first-order chiral phase transition is plotted

as a plus (+) for the PNJL model. The CEP and the first-order phase transition

are in the ⟨e2iθ⟩ = 0 region. This implies that the location of the CEP cannot be

determined by LQCD directly.

4.6.5 Relation of the phase factor to the Polyakov loop

Figure 4.6 shows the relation of the average phase factor and the pion condensate

to the Polyakov loop, varying T at µq = 100MeV. Since Φ is an increasing function

of T , the increase of Φ means that of T . The pion condensate π decreases as Φ

increases and finally vanishes at a critical value Φc. Below Φc, the average phase
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Figure 4.5: The average phase factor ⟨e2iθ⟩ in the µq-T plane.
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Figure 4.6: The Polyakov loop Φ dependence of the pion condensate π and the
average phase factor ⟨e2iθ⟩ at µq = 100MeV. Here, the pion condensate is scaled
by the chiral condensate at vacuum. The solid and dashed lines represent the
pion condensate and average phase factor, respectively.
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factor is always zero, while π is finite. Above Φc, inversely, the average phase

factor is finite, while π is always zero. Thus, there is a negative correlation

between the average phase factor and the pion condensate. In contrast, there

exists a positive correlation between the average phase factor and the Polyakov

loop; the average phase factor is zero at small Φ such as Φ < Φc, but at large Φ

such as Φ > Φc the average phase factor is finite and an increasing function of Φ.

In the Φ = 1 limit, the average phase factor tends to 1.

4.7 Summary

We have investigated the sign problem by using the PNJL model. The inte-

grand of the partition function with finite chemical potential µq oscillates hardly,

so that the importance sampling breaks down. The sign problem appears even

in the mean field (MF) approximation. The MF approximation is not defined

uniquely, actually the two types of the MF approximations are possible in the

PNJL model. The difference between the two MF approximations mainly ap-

pears at the expectation value of the Polyakov loop. The difference is however

tiny and the two MF approximations give qualitatively same results. The phase

factor of the partition function is a good indicator for the severeness of the sign

problem. We have evaluated the average phase factor by using the PNJL model.

We have calculated the average phase factor in three type of approximations:

the MF, the MF with the static fluctuations (MF+SF), and the MF with the

dynamical mesonic fluctuations (MF+DF). The MF+DF calculation reproduces

the lattice QCD (LQCD) result for the average phase factor. The average phase

factor is dominated by the mesonic fluctuations in the MF+DF calculation. The

fluctuation with the massless mode makes the sign problem worst when the pion

condensate takes place in the phase-quenched theory. The worst region is the re-

gion of µq bigger than half the pion mass. The critical end point (CEP) exists in

the worst region in the present calculation. This implies that the location of the

CEP cannot be determined by LQCD directly. In the next chapter, we propose

one possibility to approach the finite µq region and even the CEP. This approach

is based on the first-principle LQCD and the PNJL model.
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Chapter 5

Imaginary Chemical Potential

Lattice QCD (LQCD) has the sign problem at real quark chemical potential µq,

but not at imaginary µq. This brings up the possibility of studying QCD at real

µq by analytic continuation of LQCD data from imaginary µq. In this chapter,

we review properties of QCD at imaginary µq. We point out importance of the

imaginary µq region to check the reliability of effective models. We show that the

PNJL model reproduces LQCD data qualitatively at imaginary µq. This chapter

is mainly based on our papers [32].

5.1 Relation between real and imaginary µq

The QCD partition function Z has charge-conjugate symmetry: µq → −µq, then

Z is a function of µ2
q. The real and imaginary µq regions correspond to the regions

with µ2
q > 0 and µ2

q < 0, respectively. The LQCD results show the derivatives

of Z with respect to µ2
q have no singularity at µ2

q = 0. Therefore we can make

an analytic continuation of LQCD data from imaginary µq to real µq. So far

LQCD has provided some observables such as the transition line at imaginary

µq [34; 35; 36; 37]. The observables O are transformed into the real µq region by

a polynomial function

O(µ2
q) =

∑
n

cnµ
2n
q , (5.1)
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5. Imaginary Chemical Potential

where the coefficients cn are fitted to reproduce the LQCD data at imaginary

µq. Furthermore the partition function with imaginary µq has a mathematically

definite relation to that with real µq. The canonical partition function ZC(Nq)

with real quark-number Nq is the Fourier transform of the grand-canonical one

ZGC(θq) with imaginary µq = iθq/β [33],

ZC(Nq) = Tr
(
e−βĤδ(n̂q −Nq)

)
=

∫ 2π

0

dθq

2π
e−iθqNqZGC(θq). (5.2)

Thus, the partition function at imaginary µq includes all dynamics at real Nq

and hence at real µq. Figure 5.1 shows a schematic picture of the phase diagram

in both the real and imaginary µq regions. The µ2
q > 0 and µ2

q < 0 regions

correspond to the real and imaginary µq regions. The crossover transition line

continues smoothly from imaginary µq to real µq. This makes it possible to make

the analytic continuation of O from imaginary µq to real µq. Moreover the ther-

modynamics at real µq is obtained directly through the Fourier transformation

from imaginary µq.

2
 0

T

µq

CEP

EP

analytic continue

µq < 02 µq > 02

Figure 5.1: Schematic picture of the QCD phase diagram in the µ2
q-T plane. The

µ2
q < 0 and µ2

q > 0 regions corresponds to the imaginary and real µq regions,
respectively. The solid (dashed) line represents the first-order (crossover) tran-
sition line. CEP and EP are the end points of the first-order transition lines at
real and imaginary µq, respectively.
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5.2 Purpose

The first-principle LQCD simulations have become feasible for thermal systems

at zero µq [38; 39]. As for real µq, however, LQCD has the sign problem and

hence the results are still far from perfection. Several approaches have been

proposed to circumvent the difficulty. One approach is the analytic continua-

tion from imaginary µq to real µq. When physical quantities are available with

LQCD at imaginary µq, we can extrapolate them to real µq, until there appears

a discontinuity. Actually, such an extrapolation was made for the phase tran-

sition curve by assuming some analytic functions for the curve [34; 35; 36; 37].

This direct extrapolation may work for small real µq, but its accuracy is quite

unknown for large real µq. This problem may be circumvented by the effective

model that can evaluate the partition function at both real and imaginary µq and

reproduce results of LQCD at imaginary µq, if such an effective theory is found.

The imaginary µq region is thus a good test ground of the model reliability. So

far many effective models have been proposed as an approach complementary to

LQCD simulations. Figure 5.2 summarizes the model predictions for the location

of the critical endpoint of the chiral phase transition at real µq [40]. The results

spread out very widely despite of the fact that the inputs are almost the same

in all the models. In each calculation, the parameters are determined from the

physical quantities, e.g., the pion mass and the decay constant, at T = µq = 01.

Nevertheless, the extrapolation to finite µq is not unique. It is then highly non-

trivial whether the models predict properly physical quantities at finite µq. This

should be tested directly from QCD. Fortunately, this is possible at imaginary

µq, since LQCD is feasible there. Furthermore as shown in (5.2), in principle

the partition function at imaginary µq includes all dynamics at real µq through

the Fourier transformation. If an effective model is successful in reproducing

LQCD results at imaginary µq, this implies not only that the model is reliable

for both the real and imaginary µq regions but also that the LQCD results can

be reasonably extrapolated to the real µq region by using the model. In order

to proceed this strategy, we have to construct an effective model that reproduces

1In the PNJL model, the LQCD data in the pure gauge at T ̸= 0 is also used as the input
parameters. However the input includes no µq-information.
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LQCD results at imaginary µq. The PNJL model is a good candidate. We review

properties of QCD at imaginary µq and show that the PNJL model reproduces

them qualitatively.
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Figure 5.2: Predictions for location of the critical endpoint [40]. Red points are
predictions of the NJL [41], the PNJL [25], the linear sigma (LS) [43], the random
matrix (RM) models [42] and the Schwinger-Dyson calculation (SD) [44]. Green
points are LQCD predictions based on the Taylor expansion (T) [45] and the
reweighting (R) [46] methods.

5.3 Roberge-Weiss periodicity

Symmetries are essential to understand QCD. Here we show an important sym-

metry at imaginary µq [33], which governs the µq dependence of the quantities

there. We start with the QCD partition function Z at imaginary µq = iθq/β for

real θq,

Z(θq) = Tr
(
e−βĤ+iθqN̂q

)
=

∫
DX exp

(
−

∫
d4x

[
q̄(γD − iθq

β
γ4)q +

1

4g2
F 2

])
, (5.3)

where Ĥ and N̂q are the Hamiltonian and the quark-number operator, respec-

tively, and DX = Dq̄DqDA. It is clear from (5.3) that Z(θq) has a periodicity
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2π for quarks and 2π/3 for color-singlet hadrons where Nq = 0 mod 3. The

periodicity of Z(θq) is thus related to the confinement of quarks. In other words,

since the effect of the imaginary µq is the same as a temporal Abelian gauge

field coupled to the quark-number, a baryon with the quark-number 3 picks up

a phase exp (−3iθq) when it runs around the temporal cylinder τ ∈ [0, β]. Thus

the physics is unchanged when θq → θq + 2π/3 and Z(θq) has periodicity 2π/3.

Similarly, we can consider that the system with quarks has periodicity 2π. This

statement is, however, too naive. The point is that the Z3 symmetry of the action

implies that Z(θq) must have a periodicity 2π/3. To see this we note that the

θq dependence of the partition function can be eliminated from the action and

transferred to the boundary conditions via the change of variables, q → eiτθ/βq:

Z (θq) =

∫
DX exp

(
−

∫
d4x

[
q̄γDq +

1

4g2
F 2

])
, (5.4)

with the boundary condition, q(β) = −eiθqq(0). The periodicity of Z(θq) is proven

by performing the Z3 transformation,

q → Uq, Aν → U [Aν + i∂ν ]U
−1, (5.5)

where U(x, τ) are center elements of SU(3) with the boundary condition U(x, β) =

e2πik/3U(x, 0) for integer k. Under this transformation, the partition function

Z(θq) is invariant, but the boundary condition is changed into q(β) = −ei(θq−2πk/3)q(0).

We thus conclude that

Z(θq) = Z(θq + 2πk/3), k ∈ Z. (5.6)

This periodicity is called the Roberge-Weiss (RW) periodicity [33]. This means

that QCD is invariant under a combination of the Z3 transformation and θq →
θq + 2πk/3. This combination is called the extended Z3 transformation. Thus,

the QCD partition function has the extended Z3 symmetry. The extended Z3

symmetry appears as the RW periodicity at imaginary µq, and the periodicity

governs the dynamics there as shown later.
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5.4 Roberge-Weiss transition

Although the QCD partition function has the periodicity 2π/3 in both the con-

finement and the deconfinement phases, there is the difference between the two

phases in its θq dependence. This was studied by evaluating the thermodynamic

potential Ω(θq) = − T
V

ln [Z(θq)] for the two phases [33]. In the confinement phase,

the potential is described only by hadrons, thus it seems to be an analytic func-

tion of 3θq. This is ensured by evaluating the potential in the strong-coupling

limit. In the deconfinement phase, the potential is evaluated perturbatively. The

one-loop potential for Nf massless flavors at imaginary µq = iθq/β is obtained as

Ω(1)(θq) = −2Nf
1

β

∑
j

∫
d3p

(2π)3

[
ln(1 − e−βp+i(θq−ϕ̄j)) + ln(1 − e−βp−i(θq−ϕ̄j))

]
(5.7)

in the Polyakov gauge. The temporal gauge field ϕ̄j satisfies the condition∑
j ϕ̄j = 0 mod 2π. After integrating the momentum out, we can arrive at

the one-loop potential with θq:

Ω(1)(θq) = −π
2

12
NfT

4
∑

j

[
1 −

{(
θq − ϕ̄j

π
− 1

)
mod 2

− 1

}2
]2

. (5.8)

In addition of this quark potential, there is a gluonic potential with the Z3 sym-

metry. The gluonic potential has equivalent minima whenever all the ϕj are equal

to each other and ϕ̄j = 2πk/3 for integer k. In the presence of quarks, the Z3

symmetry is explicitly broken, thus only one state in the Z3 symmetric ones is

chosen as a global minimum. For θq = 0, the potential has a global minimum at

ϕ̄j = 0 and local minima at the Z3 images. The location of this global minimum

is unchanged for small θq. For θq = 2πk/3, the global minimum is no longer at

ϕ̄j = 0, thus it has moved to ϕ̄j = −2πk/3 since the quark potential Ω(1)(θq)

depends only on the sum, ϕ̄j + θq. Figure 5.3 shows θq dependence of Ωf (θ) for

ϕj = 2πk/3. The θq dependence of the thermodynamic potential at vacuum is

chosen as the curve with the smallest value of Ω(1)(θ) at each θq. The potential

is discontinuous as a function of θq with a cusp at θq = (2k+1)π/3. This implies

that a first-order phase transition occurs there in the deconfinement phase. This
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phase transition is called the Roberge-Weiss (RW) transition [33]. Each phase is

classified by the expectation value of the gauge field ϕ.

0  2  4  6
θ/(π/3)

φ =+2π/3 φ = 0 φ =-2π/3

Figure 5.3: θq dependence of the one-loop potential Ω(1) with ϕ̄j = 2πk/3. The
red, green, and blue lines represent the k = 0, 1 and −1 cases, respectively. The
potential at vacuum shows the bold line.

5.5 The PNJL model at imaginary µq

The RW periodicity and the RW phase transition are important properties of

QCD at imaginary µq. These properties appear as a result of the fact that the

QCD partition function has the extended Z3 symmetry. In this section, we show

that the PNJL model has the extended Z3 symmetry and then reproduces both

the RW periodicity and the RW phase transition. The model reproduces the first-

principle LQCD results qualitatively. The model is thus suitable for investigating

the phase structure at imaginary µq.

5.5.1 Extended Z3 symmetry

First we show that the PNJL model has the extended Z3 symmetry. The ther-

modynamic potential ΩPNJL in the mean field (MF) approximation at imaginary
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µq = iθq/β is obtained as

ΩPNJL = −2Nf

∫
d3p

(2π)3

[
3Eq +

1

β
{ln Fq(θq) + ln Fq̄(θq)}

]
+Gsσ

2 + UΦ, (5.9)

with

Fq(θq) = 1 + 3Φe−βEq+iθq + 3Φ∗e−2βEq+2iθq + e−3βEq+3iθq , (5.10)

Fq̄(θq) = 1 + 3Φ∗e−βEq−iθq + 3Φe−2βEq−2iθq + e−3βEq−3iθq . (5.11)

For real µq, the expectation values of the Polyakov loop Φ and its conjugate Φ∗

are real and differ from each other as shown in Chapter 4. For imaginary µq,

however, the expectation values are complex conjugate of each other since the

statistical weight is real there. Fq̄ is thus the complex conjugate of Fq. The

Polyakov potential UΦ is invariant under the Z3 transformation, Φ → e−2πi/3Φ,

Φ∗ → e2πi/3Φ∗, but the thermodynamic potential ΩPNJL is not invariant due to

presence of the quark parts, Fq and Fq̄. Instead of the Z3 symmetry, however,

ΩPNJL is invariant under the extended Z3 transformation,

θq → θq + 2π/3, Φ → e−2πi/3Φ, Φ∗ → e2πi/3Φ∗. (5.12)

It is convenient to introduce the modified Polyakov loop Ψ = eiθqΦ and Ψ∗ =

e−iθqΦ∗ which is invariant under the transformation (5.12). Using this quantities,

Fq is rewritten into

Fq(θq) = 1 + 3Ψe−βEq + 3Ψ∗e−2βEq+3iθq + e−3βEq+3iθq . (5.13)

Obviously Fq and the complex conjugate Fq̄ are invariant under the extended Z3

transformation. Therefore Ω is also invariant under the transformation.

5.5.2 θq reflection symmetry

In addition of the extended Z3 symmetry, charge-conjugation symmetry charac-

terizes θq dependence of physical quantities. Under charge-conjugation, θq →
−θq, the thermodynamic potential ΩPNJL is invariant, but the Polyakov loop and
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its conjugate change as Φ → Φ∗, Φ∗ → Φ. This indicates that Ψ(−θq) = Ψ∗(θq)

and Ψ∗(−θq) = Ψ(θq). Therefore the real part, Re (Ψ) = (Ψ + Ψ∗) /2, and the

imaginary part, Im (Ψ) = (Ψ − Ψ∗) /2, of the modified Polyakov loop are θq-even

and -odd, respectively. Similarly, the absolute value |Ψ| and the phase ψ are θq-

even and -odd, respectively. Furthermore the chiral condensate σ = ∂ΩPNJL/∂m0

and the quark-number density ρq = −∂ΩPNJL/∂µq = iβ(∂ΩPNJL/∂θq), which is

pure imaginary, are θq-even and -odd, respectively. The θq-even X(θq) and the

θq-odd quantities Y (θq) satisfy,

X(π/3 + θq) = X(π/3 − θq), Y (π/3 + θq) = −Y (π/3 − θq). (5.14)

These relations indicate that the θq-even (odd) quantities have cusps (jumps) at

θq = π/3 when ∂X/∂θq (Y ) are finite there. Such a singularity comes out in

the high temperature region, as shown in Sec. IV with numerical calculations.

This means that the RW phase transition at θq = π/3 is second-order for θq-even

quantities and first-order for the θq-odd ones.

5.5.3 The potential at high or low T limit

Before proceeding to the numerical results, it is useful to explore properties of

the thermodynamic potential in some limits. The modified Polyakov loops Ψ and

Ψ∗ are also invariant under a continuous transformation,

θq → θq + α, Φ → e−iαΦ, Φ∗ → eiαΦ∗, (5.15)

for any real parameter α. However, the thermodynamic potential ΩPNJL is not

invariant owing to the existence of the factor e±3iθq . If ΩPNJL was invariant

under the transformation (5.15), the continuous symmetry would lead to a simple

relation Ψ(θq +α) = Ψ(θq), that is, Φ(θq +α) = e−iαΦ(θq). For low temperature:

βEq ≪ 1, the thermodynamic potential is reduced to

ΩPNJL ∼ Ω0 − 2Nf
1

β

∫
d3p

(2π)3
ln

(
1 + 3Ψe−βEq

) (
1 + 3Ψ∗e−βEq

)
, (5.16)
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where Ω0 is the potential at T = θq = 0. This has no explicit θq dependence1.

Therefore, at low temperature, ΩPNJL is approximately invariant under the trans-

formation (5.15) and Φ can rotate smoothly as θq varies. At high temperature,

however, effects of the explicit θq dependence are not negligible and hence ΩPNJL

has no the approximate symmetry. It is thus obvious that the RW phase transi-

tion at high T originates in the factor e±3iθq of the potential. At high temperature,

the continuous symmetry under the transformation (5.15) is broken into a dis-

crete symmetry, i.e., the extended Z3 symmetry, through the factor e±3iθq . In the

limit of Φ = Φ∗ = 1, that realizes high T , the quark part Ωq
PNJL of the potential

(5.9) without the Polyakov potential UΦ coincides with the potential ΩNJL of the

NJL model,

Ωq
PNJL(Φ = Φ∗ = 1) = ΩNJL. (5.17)

In the limit of Φ = Φ∗ = 0, that realizes low T , meanwhile,

ΩPNJL(Φ = Φ∗ = 0) =
ΩNJL(θq) + ΩNJL(θq + 2π/3) + ΩNJL(θq − 2π/3)

3
. (5.18)

In this limit, the thermodynamic potential of the PNJL model coincides with the

Z3 symmetrized potential of that of the NJL model. In the zero temperature

limit, particularly, the potential of the PNJL model is reduced to that of the

NJL model. Therefore, in both the high and the low temperature region, the

PNJL and NJL models give similar results for the chiral symmetry. However, the

difference between the two models is significant in the intermediate-temperature

region. Actually, the PNJL model shifts the critical endpoint to higher T and

lower µq at real µq.

1 The partition function ZGC(θq) with a finite value of θq is equivalent to ZGC(0) with the
boundary condition q(β) = −eiθqq(0) for the quark field q. In the low-T limit where a period β
of the imaginary time becomes infinite, the value of ZGC(θq) does not depend on how to take
the boundary condition and then has no θq dependence.
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5.5.4 Comparison of the PNJL model to others

Many effective models have been proposed so far. The models have predicted

different phase diagrams at real µq as discussed in Sec. 5.2. Among the models,

the PNJL model is only a effective model that describes the RW periodicity and

the RW phase transition at imaginary µq. This implies that the PNJL model is

most reliable at finite µq. The NJL model respects the chiral symmetry but it does

not preserve the extended Z3 symmetry. On the contrary, the three-dimensional

three-state Potts model respects the extended Z3 symmetry and then has the

RW periodicity, but it does not possess the chiral symmetry since the model is a

paradigm of QCD in the large quark-mass limit. In LQCD, the quark chemical

potential µq is introduced just like the fourth component of imaginary constant

vector field, i.e., eaµqU4 or e−aµqU †
4 , where a and U4(= e−iaA4) are the lattice

spacing and the fourth component of the gauge field on the lattice, respectively.

In this case, the RW periodicity is naturally satisfied. Thus the PNJL model has

both the chiral and the extended Z3 symmetry, just as QCD.

5.6 θq dependence of some quantities

In this section, we show that the PNJL model reproduces the LQCD results

qualitatively. Most LQCD calculations have been done so far in the degenerated

4 flavor staggered fermions, but it does not matter for the qualitative comparison

of the PNJL model with LQCD data, particularly for θq or T dependences.

5.6.1 Thermodynamic potential

The thermodynamic potential is a most fundamental quantity to describe the

thermodynamics. As shown in the previous section, the potential has the RW

periodicity and it is θq-even. Figure 5.4 (a) shows the thermodynamic potential

ΩPNJL of the PNJL model as a function of θq in two cases of T = Tc and 1.1Tc

where Tc = 173 MeV is the critical temperature of the deconfinement transition

at θq = 0. The potential ΩPNJL is RW periodic and θq-even as expected. ΩPNJL

is smooth everywhere for low temperature of T = Tc, but it has a cusp at θq =

(2k + 1)π/3 for high temperature of T = 1.1Tc. This means that the first-order
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RW phase transition occurs there. The critical temperature TRW of the endpoint

of the RW transition exists in Tc < TRW < 1.1Tc. Figure 5.4 (b) shows the

corresponding LQCD result [34] for the same temperatures. The PNJL results are

consistent with the LQCD ones for θq and T dependences of the thermodynamic

potential.
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Figure 5.4: θq dependence of the thermodynamic potential δΩ = Ω(θq)−Ω(θq =
0) in (a) the PNJL model and (b) LQCD [34]. The red (blue) line corresponds
to the case of T = Tc (1.1Tc).

5.6.2 Polyakov loop

The RW transition is a phase transition from one phase of the Z3 vacua to another.

These phases are classified by the expectation value of the temporal gauge field,

that is, the phase of the Polyakov loop. Figure 5.5 (a) and (b) show results of

the PNJL model for the absolute value |Φ| and the phase ϕ of the Polyakov loop

Φ at T = Tc and 1.1Tc, respectively. The Polyakov loop does not have the RW

periodicity and it is changed as Φ → e−2πi/3Φ and Φ∗ → e2πi/3Φ∗ under the Z3

transformation, i.e., θq → θq + 2π/3. The modified Polyakov loop Ψ = eiθqΦ

and its conjugate Ψ∗ are introduced as the extended Z3 invariant quantities. The

absolute value and the phase of Ψ are θq-even and -odd, respectively. The absolute

value of the Polyakov loop is the same as that of the modified one, so that it is

RW-periodic and θq-even as shown in panel (a). The phase ϕ of the Polyakov

loop is related to that ψ of the modified Polyakov loop as ψ = ϕ + θq. When θq
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is changed as θq → θq +2π/3, the phase ϕ is changed as ϕ→ ϕ−2π/3 because of

the RW periodicity of ψ. The absolute value and the phase of the Polyakov loop

are smooth everywhere for low temperature of T = Tc, but the former (latter)

has a cusp (discontinuity) at θq = (2k+1)π/3 for high temperature of T = 1.1Tc.

These θq dependence is a consequence of the relation (5.14). The corresponding

LQCD results [37] are shown in the panel (c) and (d). The PNJL results well

reproduce the LQCD ones for θq and T dependences of the Polyakov loop.
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Figure 5.5: θq dependence of the Polyakov loop Φ. The panel (a) and (b) show
the PNJL results for the absolute value |Φ| and the phase ϕ, respectively. The
panel (c) and (d) does the LQCD results [37] for |Φ| and ϕ, respectively. The red
(blue) line corresponds to the case of T = Tc (1.1Tc).

5.6.3 Chiral condensate

The chiral condensate is an order parameter of the chiral phase transition. It is

important to see how the chiral transition is affected by imaginary µq. Figure 5.6
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shows the chiral condensate σ = ∂ΩPNJL/∂m0 as a function of θq at T = Tc and

1.1Tc. Panels (a) and (b) correspond to results of the PNJL model and LQCD [35],

respectively. The chiral condensate has the RW periodicity and it is θq-even. The

chiral condensate is smooth everywhere for low temperature of T = Tc, but it

has a cusp at θq = (2k + 1)π/3 for high temperature of T = 1.1Tc. The chiral

condensate increases with θq. This means that the chiral phase transition moves

to higher temperature as θq increases. The PNJL results are consistent with

LQCD ones for θq and T dependences of the chiral condensate.
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Figure 5.6: θq dependence of the chiral condensate σ in (a) the PNJL model and
(b) LQCD [35]. The red (blue) line corresponds to the case of T = Tc (1.1Tc).

5.6.4 Quark-number density

Figure 5.7 shows the quark-number density, ρq = −∂ΩPNJL/∂µq = iβ(∂ΩPNJL/∂θq)

, which is purely imaginary, as a function of θq at T = Tc and 1.1Tc. Panels (a)

and (b) correspond to results of the PNJL model and LQCD [35], respectively.

The quark-number density has the RW periodicity and it is θq-odd. The num-

ber density is smooth everywhere for low temperature of T = Tc, but it has a

discontinuity at θq = (2k + 1)π/3 for high temperature of T = 1.1Tc. The θq

dependence of the quark-number density is similar to that of the imaginary part

of the modified Polyakov loop. This is natural because the quark-number density

⟨q̄γ4q⟩ is the fourth component of the vector current, while the latter is related

to the fourth component of the vector field. Particularly in the limit of βEq ≫ 1,
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the quark-number density is reduced to

ρq = −∂ΩPNJL

∂µq

= 6Nf

∫
d3p

(2π)3
(Ψ − Ψ∗)e−βEq ∝ iIm(Ψ). (5.19)

The quark-number density is thus proportional to the imaginary part of the mod-

ified Polyakov loop. The PNJL results are consistent with LQCD ones for θq and

T dependences of the quark-number density.
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Figure 5.7: θq dependence of the quark-number density ρq in (a) the PNJL model
and (b) LQCD [35]. The red (blue) line corresponds to the case of T = Tc (1.1Tc).

5.6.5 Meson masses

In the PNJL model, the model parameters of the quark sector are normally fitted

to the meson properties. The parameters are quite sensitive to the meson masses.

Furthermore the meson masses do not have an ambiguity of the renormalization,

so that the meson masses are suitable for qualitative comparison of the model

to LQCD. However the meson masses have not been calculated by LQCD yet.

The pi and sigma meson masses, Mπ and Mσ, are obtained as the zeros of the

two-point mesonic correlation functions Γij in the momentum space,

Γjj(q
2 = M2

ϕj
) =

δ2Ω(θq)

δϕj(q)δϕj(−q)
= 0 for ϕ = (π, σ), (5.20)
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where the σ and π mesons do not couple to each other because of the parity

conservation. The meson fields have no explicit θq dependence since they do not

carry the quark-number, so that the two-point function and the meson masses

have the RW periodicity and they are θq-even just as the thermodynamic potential

Ω(θq). Figure 5.8 (a) and (b) show the σ and π meson masses as a function θq at

T = Tc and 1.1Tc. The meson masses are smooth everywhere for low temperature

of T = Tc, but they have cusps at θq = (2k + 1)π/3 for high temperature of

T = 1.1Tc. The mass difference between σ and π mesons as the chiral partner

is a reflection of the chiral symmetry; namely the symmetry is restored (broken)

when the difference is small (large). Panel (c) shows θq dependence of the meson

 0.5

 0.55

 0.6

 0.65

 0.7

-2 -1  0  1  2

M
σ(

G
eV

)

θq/(π/3)

(a) T=Tc
T=1.1Tc

 0.14

 0.16

 0.18

 0.2

-2 -1  0  1  2

M
π(

G
eV

)

θq/(π/3)

(b) T=Tc
T=1.1Tc

 0.2

 0.4

 0.6

-2 -1  0  1  2

M
as

s 
(G

eV
)

θq/(π/3)

(c) Mπ
Mσ

2Mq

Figure 5.8: θq dependence of (a) the sigma meson mass Mσ and (b) the pi meson
mass Mπ calculated with the PNJL model. The red (blue) line corresponds to
the case of T = Tc (1.1Tc). Panel (c) represents Mσ (red), Mπ (blue) and twice
the dynamical quark mass 2Mq (gray) at T = 1.3Tc.

masses and twice the dynamical quark mass Mq at T = 1.3Tc. As shown in Fig.
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5.6, the chiral symmetry is broken as θq increases. The mass difference between

σ and π mesons is large in the chiral symmetry broken phase of Mπ ≤ 2Mq, but

small in the restored phase of Mπ > 2Mq. The meson masses thus have different

θq-dependence between the two phases.

5.7 Phase diagram

When the RW phase transition occurs, θq-odd quantities such as the quark-

number density ρq have discontinuities at θq = (2k+ 1)π/3 as shown in Fig. 5.7.

This is because θq-odd quantities have the relation (5.14). For θq = (2k + 1)π/3,

such a quantity is zero below the critical temperature TRW of the RW phase

transition, but it is finite above TRW. The θq-odd quantity is regarded as an

order parameter of charge-conjugation. Figure 5.9 (a) and (b) show T depen-
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Figure 5.9: T dependence of (a) the phase |ψ| and (b) the absolute value |Ψ| of
the modified Polyakov loop at θq = π/3.

dences of the phase ψ and the absolute value |Ψ| of the modified Polyakov loop

at θq = π/3, respectively. The phase (absolute value) is a θq-odd (θq-even) quan-

tity. The phase ψ is zero at T ≤ TRW, while it is finite at T > TRW. Thus,

charge-conjugation symmetry is spontaneously broken above TRW, although it is

preserved below TRW. The phase is discontinuous at T = TRW, indicating that

the RW transition is first-order at the endpoint. The absolute value |Ψ| is also

discontinuous there. This is induced by the discontinuity of the phase ψ. The
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absolute value is not zero at T < TRW since it is not an exact order parameter of

the RW phase transition. Figure 5.10 shows the absolute value |Ψ| in the θq-T

 0

 0.4

 

 0.8

 0.1
 0.15

 0.2
 0.25

 0

 0.5

 1

 0

 0.5

 1

T(GeV)
θq/(π/3)

|Ψ|

Figure 5.10: The absolute value of the modified Polyakov loop in the θq-T plane.

plane. The first-order RW phase transition at θq = π/3 becomes crossover as

θq decreases from π/3 to 0. The crossover deconfinement transition at θq = 0,

shown by a rapid change of |Ψ| with an increase of T , is thus a remnant of the

first-order RW phase transition at θq = π/3. Figure 5.11 shows the phase dia-

gram in the θq-T plane. The phase diagram is symmetric with respect to each of

lines θq = kπ/3. The red and green curves represent the deconfinement and chiral

phase transitions of crossover, respectively. The pseudocritical temperatures for

the chiral and deconfinement transitions are determined by the peak positions

of the susceptibilities of σ and |Ψ|1, respectively. The blue vertical line repre-

sents the RW phase transition. Point E is the endpoint of the RW transitions.

The deconfinement transition line starting from the RW endpoint decreases as

θqdecreases from π/3 to 0. The critical temperature of the chiral phase transition

1The susceptibilities χϕiϕj for ϕ = (σ, |Ψ|, ψ) are the inverse curvatures that are the
derivatives with respect to ϕi and ϕj . The precise definition is shown in (3.29).
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Figure 5.11: The phase diagram at imaginary µq. The red, green and blue lines
represent the crossover deconfinement, the crossover chiral and the first-order
RW phase transitions, respectively. Point E is the endpoint of the RW phase
transition.

is higher by about 20 MeV than that of the deconfinement transition, and the

difference is getting larger gradually as θq increases from 0 to π/3. Meanwhile,

the LQCD simulation suggests that the two critical temperatures are identical

for all θq [34; 35; 36; 37]. The inconsistency of the PNJL model to LQCD is

addressed in Chapter 7.

5.8 Analytic continuation to real µq

Finally, we investigate the phase diagram in both the real and imaginary µq

regions. In the PNJL model, physical quantities are calculable directly in the

regions. Figure 5.12 shows the phase diagram in the µ2
q-T plane. The µ2

q < 0 and

µ2
q > 0 regions correspond to the imaginary and real µq regions, respectively. The

solid (dashed) curve represents the first-order (crossover) chiral phase transition,

while the dotted curve does the crossover deconfinement phase transition. The

dot-dashed curve does the first-order RW transition. The chiral and deconfine-

ment transition curves differ from each other. The two transition curves continue

smoothly from imaginary µq to real µq, as expected. In LQCD [34; 35; 36; 37], the
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Figure 5.12: The phase diagram in the µ2
q-T plane. The red (green) and blue

lines represent the first-order (crossover) chiral and the crossover deconfinement
phase transitions, respectively, while the right-blue line does the first-order RW
phase transition.

extrapolation from imaginary µq to real µq has been made for the chiral transition

curve by assuming some fitting functions where the coefficients are determined

so as to reproduce the LQCD data at imaginary µq [34; 35; 36; 37]. We test the

validity of the extrapolations for the chiral transition curve in the PNJL model.

The extrapolation is made by a simple function

Tc =
nmax∑
n=0

anµ
2n
q , (5.21)

where the coefficients are adjusted to the PNJL result at imaginary µq. In Fig.

5.13, four dashed curves labeled by 1-4 represent results of the simple extrap-

olation with nmax = 1-4, respectively. The dashed curve with nmax = 4 still

deviates from the PNJL curve in the real µq region. Thus, the PNJL curve in-

cludes higher-order terms with nmax ≥ 5 that the simple extrapolation cannot

follow accurately. Furthermore, the simple extrapolation cannot predict the po-

sition of the critical endpoint. In general, for θq-even quantities O with the RW

periodicity, the analytic continuation from imaginary µq to real µq is made by
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Figure 5.13: Extrapolation of the chiral phase transition curve from imaginary µq

to real µq. Dashed curves labeled 1-4 correspond to four cases with the truncations
nmax = 1-4 in (5.21), respectively.

the Fourier expansion:

Oim =
∑

k

ak(T ) cos(3kθq) → Ore =
∑

k

ak(T ) cosh(3kµq/T ). (5.22)

Note that the trigonometric functions at imaginary µq become the hyperbolic

ones at real µq. For real µq, the terms with higher order k more contribute in

the series. It is very difficult to estimate the coefficients with higher order terms

from the LQCD data because such a coefficient is extremely small. The same

situation is true for the θq-odd quantities. This is why such an extrapolation is

difficult.

5.9 Remarks

We remark some topics related with imaginary µq. One is an analogy of the

mechanism of the RW phase transition to the Dashen mechanism in the so-called

θt vacuum. Another is a problem in predicting the phase diagram at real µq.

The vector-type interaction strongly affects the location of the critical endpoint

at real µq, but the strength of the interaction was unknown so far. It is possible
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to determine the strength by comparing the PNJL result with the LQCD data

at imaginary µq.

5.9.1 Analogy to the Dashen mechanism

When the RW phase transition occurs, θq-odd quantities are finite at θq = (2k +

1)π/3, so that charge-conjugation symmetry is spontaneously broken there. This

RW mechanism is analogous to the Dashen mechanism [47] in the so-called θt

vacuum. The QCD action is allowed to have a topological term

iθt

∫
d4x

1

64π2
ϵµνρσF a

µνF
a
ρσ = iθtNt (5.23)

of the topological charge Nt, where F a
µν is the field strength of gluon. This

topological term is odd under parity P . For imaginary µq = iθq/β, the QCD

action has a term

µq

∫
d4x q̄γ4q = iθqNq, (5.24)

where Nq is the quark-number. The term, which is odd under charge-conjugation

C, has a mathematical structure similar to the topological term Lt. For both

the terms, the parameters, θi (i = t, q), can vary between −π and π, where

θi = −π is identical with θi = π. Since the term with θt (θq) is P -odd (C-odd),

P (C) is an exact symmetry when θt (θq) is equal to 0 and ±π. For θt = π,

P is spontaneously broken, as Dashen [47] and Witten [48] pointed out. This is

the so-called Dashen phenomenon. Thus, the spontaneous C breaking at θq = π

is analogous to the P breaking at θt = π. Note that θq = (2k + 1)π/3 has the

same property as θq = π because of the RW periodicity. As discussed in Sec. 5.4,

there exist three Z3 vacua for higher temperature. As θq increases from −π to π,

the three vacua emerge one by one. As a consequence of this mechanism, three

first-order phase transitions appear at θq = ±π/3 and π. At θq = ±π/3 and π,

thus, a mechanism similar to the Dashen phenomena at θt = π takes place. The

transitions at θq = ±π/3 and π are called the RW transition. The C breaking

at θq = π/3 occurs when T is high, while the P breaking at θt = π takes place

when T is small. The PNJL model can describe both the RW and the Dashen
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mechanism.

5.9.2 Vector-type interaction

The PNJL model is allowed to have a vector-type interaction

Gv(q̄γνq)
2, (5.25)

since it does not break the chiral symmetry. We assume the homogeneous vacuum,

so that only the temporal condensate, which corresponds to the quark-number

density ρq = ⟨q̄γ4q⟩, can occur. When the vector-type interaction is added to the

PNJL Lagrangian, the meson potential UM and the quark chemical potential µq

in the thermodynamic potential are modified as

UM = Gsσ
2 → ŨM = Gsσ

2 +Gvρ
2
q, µq → µ̃q = µq − 2Gvρq, (5.26)

in the mean field approximation. Figure 5.14 shows the location of the critical
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Figure 5.14: Dependence of the location of the critical endpoint on the strength
Gv of the vector-type interaction. The strength Gv is normalized by the strength
Gs of the scalar-type interaction.

endpoint of the first-order chiral phase transition at real µq for several values

of the strength Gv of the vector-type interaction. The location is quite sensi-
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tive to the values of Gv. The vector-type interaction moves largely the critical

endpoint toward smaller T and larger µq. The vector-type interaction is impor-

tant to account for the saturation property of nuclear matter, since the repulsive

force mediated by vector mesons is necessary for the saturation. Thus, it is

phenomenologically essential to determine the strength of Gv in particularly at

the finite quark-number density region corresponding to the nuclear saturation

density. The strength cannot be determined from physical quantities at zero

µq because the interaction affects physical quantities only at finite µq. We pro-

pose a possibility to determine the strength of vector-type interaction from the

imaginary µq region. Figure 5.15 represents (a) the chiral condensate σ, (b) the
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Figure 5.15: Impact of the vector-type interaction on (a) the chiral condensate,
(b) the quark-number density, (c) the real and (d) the imaginary part of the
modified Polyakov loop at T = 1.5Tc. The red, green, blue and pink curves are
results for Gv/Gs = 0, 0.25, 0.5 and 1, respectively. In the panel (c) and (d), the
four cases yield the same result.
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quark-number density ρq, (c) the real and (d) the imaginary part of the modified

Polyakov loop Ψ for various values of Gv. Here we consider the case of T = 1.5Tc,

since the effect of the vector-type interaction is more conspicuous at higher tem-

peratures. The vector-type interaction suppresses the effective chemical potential

µ̃q as shown in (5.26). The suppression yields significant effects on the quark con-

densates, σ and ρq. In contrast, such an effect is not seen for the Polyakov loop

because it is mainly determined by the Polyakov potential. If precise LQCD data

on σ and ρq becomes available in future, we can determine the strength Gv from

the data by using the PNJL model.

5.10 Summary

We have investigated the imaginary quark chemical potential µq region by us-

ing the PNJL model. Lattice QCD (LQCD) is free from the sign problem at

imaginary µq so that LQCD calculations have been done in this region. The

QCD partition function is a function of µ2
q and the physical quantities can be

analytically continued from imaginary µq to real µq. When the LQCD quantities

are available at imaginary µq, we can extrapolate them to real µq. So far the

extrapolation was done directly by assuming some analytic function, but there

are many ambiguities in the assumption. Here we propose the extrapolation by

using an effective model that can evaluate the partition function at both real and

imaginary µq and reproduce results of LQCD at imaginary µq. Many effective

models have been proposed so far and each model has predicted each phase dia-

gram at real µq. It is then highly nontrivial whether the models predict properly

dynamics of QCD at finite µq. Fortunately, the model reliability can be tested

directly from QCD at imaginary µq, since LQCD is feasible there. We show that

the PNJL model reproduces the LQCD results qualitatively. The success of the

PNJL model comes from the fact that the model has the extended Z3 symmetry.

As a consequence of the extended Z3 symmetry, the partition functions of QCD

and the PNJL model have the Roberge-Weiss (RW) periodicity, which character-

izes observables at imaginary µq. Furthermore the PNJL model reproduces the

RW phase transition at high temperature. Above the critical temperature TRW

of the RW phase transition, three Z3 vacua emerge alternatively in variation of
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θq and a phase transition occurs at the boundary, that is at θq = (2k+ 1)π/3 for

integer k. For θq = (2k+1)π/3, θq-odd quantities, which are order parameters of

charge-conjugation, have finite values and charge-conjugation symmetry is spon-

taneously broken above TRW. This is the mechanism of the RW phase transition

and the mechanism is analogous to the Dashen mechanism in the θt vacuum. The

RW phase transition is of first-order at the endpoint TRW. As a consequence of

the transition, the absolute value of the Polyakov loop has a singular behavior at

the endpoint TRW. The singular behavior induces a rapid change of the Polyakov

loop even at θq = 0. Thus, the crossover deconfinement transition at θq = 0

is a remnant of the first-order RW phase transition at θq = π/3. As another

important result, the strength of the vector-type interaction can be determined

by comparing the PNJL model results with LQCD data at imaginary µq, if the

precise data becomes available in future. The determination is quite important

since the location of the critical endpoint of the chiral phase transition at real µq

is quite sensitive to the strength. In this chapter, we have compared the PNJL

model results with LQCD ones only qualitatively. In the chapter 7, we improve

the present model in order to reproduce the LQCD results quantitatively.
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Chapter 6

Isospin Chemical Potential

In the previous chapter, we proposed an analytic continuation from imaginary

chemical potential to real one by using an effective model such as the PNJL

model. The validity of the method is confirmable in the isospin chemical potential

µiso. Lattice QCD (LQCD) does not have the sign problem at real and imaginary

µiso so that it is possible to check the validity by comparing the model results

with LQCD data directly. Furthermore the isospin chemical potential region is

also relevant to the real world such as neutron stars and relativistic heavy-ion

collisions. This chapter is mainly based on our papers [49].

6.1 Purpose

The study of QCD at finite temperature and quark-number density has many

phenomenological interests related to the physics of heavy-ion experiments and

compact astrophysical objects. One of the aims of the study QCD is how the tran-

sition between hadronic and quark-gluon degrees of freedom occurs as a function

of conserved charge. In QCD, isospin is such a conserved charge like the baryon

number, and it is natural to inquire what happens in QCD as a function of

isospin density or isospin chemical potential µiso. The isospin chemical potential

is also relevant to the real world. Nature provides us with nonzero µiso systems

in the form of isospin-asymmetric matter such as neutron stars. The relativis-

tic heavy-ion collisions produce hadronic matter at high temperature and finite
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baryon-number density. In the collisions, the isospin density is nonzero generally.

Hence it is interesting to study QCD with finite isospin density. As discussed in

Chapter 4, the first-principle lattice QCD (LQCD) has the sign problem when

the quark chemical potential µq is real. The integrand of the partition function

with real µq becomes complex because of the property of the Dirac operator

D = γνDν +m− µqγ4 in the integrand,

det D†(µq) = det(γ5D(−µ∗
q)γ5) = det D(−µ∗

q), (6.1)

and hence the importance sampling in the Monte Carlo calculation breaks down.

For real isospin chemical potential µiso, the chemical potential µu for u-quark is

opposite to that µd for d-quark, µu = −µd = µiso, so that the Dirac determinant of

u-quark is the complex conjugate of that of d-quark and consequently the product

is positive [50]. As discussed in Chapter 4, the theory with real µiso corresponds to

the phase-quenched one with real µq where the phase of the Dirac determinant is

eliminated [51]. For imaginary µiso, the Dirac determinant is positive in the same

reason as imaginary µq as shown in the relation (6.1). Therefore LQCD does not

have the sign problem in both real and imaginary µiso. As shown in Chapter 5,

one approach to the real µq region is the analytic continuation from imaginary

µq to real µq. The same analytic continuation can be done from imaginary µiso

to real µiso. LQCD calculation can be done in both the real and imaginary

µiso regions [52], and we can check the validity of the analytic continuation by

comparing with LQCD data directly. In Chapter 5, we propose the analytic

continuation by using an effective model that can evaluate the partition function

at both real and imaginary µq and reproduce LQCD results at imaginary µq. The

PNJL model is a realistic effective model that can do this. The model reproduces

LQCD data at imaginary µq as shown in Chapter 5. For the purpose to check

the validity, we explore the isospin chemical potential region by using the PNJL

model. First we consider the case that both µiso and µq are purely imaginary

where there is no sign problem. In this region, LQCD has calculated µq and µiso

dependences of the thermodynamic potential and its first derivatives with respect

to µq and µiso, that is the quark-number and isospin densities [31]. We show that

the PNJL model reproduces LQCD results qualitatively in the region. We proceed
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some quantitative comparison of the PNJL model with LQCD. Second we explore

the real µiso region. We review properties of QCD at real µiso and show that the

PNJL model reproduces them qualitatively.

6.2 Pion at isospin chemical potential

The isospin chemical potential causes asymmetry between u- and d-quarks, so

that the isovector mesons, i.e., the charged pions π±, are affected by the chemical

potential. Here we discuss the pion properties at isospin chemical potential µiso

following Ref. [50].

6.2.1 QCD inequalities

When the Dirac determinant is positive, some rigorous results on its low-energy

behavior can be obtained from QCD inequalities [53]. At vacuum, the inequalities

rely on the following property of the Dirac operator D = γνDν +m:

γ5Dγ5 = D†. (6.2)

which, in particular, implies the positivity det D ≥ 0. For the correlator of a

generic meson M = q̄Γq, we can write, using (6.2) and the Schwartz inequality:

⟨
M(x)M †(0)

⟩
= −

⟨
TrS(x, 0)ΓS(0, x)Γ̄

⟩
=

⟨
TrS(x, 0)Γiγ5S

†(x, 0)iγ5Γ̄
⟩
≤

⟨
TrS(x, 0)S†(x, 0)

⟩
(6.3)

where S = D−1 and Γ̄ = γ4Γ
†γ4. The inequality is saturated for mesons with

Γ = iγ5τi, since D commutes with isospin τi. The pseudoscalar correlators are

thus larger than others. The meson correlator
⟨
M(x)M †(0)

⟩
has a relation to

the meson mass MΓ,
⟨
M(x)M †(0)

⟩
∝ e−MΓx, so that the pseudoscalar mesons

are lighter than others. At finite isospin chemical potential, µiso ̸= 0, the Dirac

determinant is modified as D = γνDν +m − µisoγ4τ3. For the degenerated two-

flavor of mu = md, the determinant is still positivity, where the u- and d-quarks

play the role of mutually conjugate quarks as shown in (4.2). The Dirac operator
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does not satisfy the relation (6.2), but it does a similar relation,

τ1γ5Dγ5τ1 = τ2γ5Dγ5τ2 = D†. (6.4)

which ensures that det D ≥ 0. Repeating the derivation of the QCD inequalities,

and using (6.4), we obtain that the lightest meson, or the condensate, must be

in channels q̄iγ5τ1,2q, that is a linear combination of π+ = ūγ5d and π− = d̄γ5u

states.

6.2.2 Chiral perturbation theory

When µiso is small compared to the chiral scale (the ρ meson mass), we can

use the chiral perturbation theory. For zero quark mass and zero µiso, pions are

massless Nambu-Goldstone bosons of the spontaneously broken SU(2)L×SU(2)R

chiral symmetry. If the quarks have small equal masses, the symmetry is only

SU(2)V. The isospin chemical potential further breaks SU(2)V down to U(1)I3 ,

where U(1)I3 is the isospin subgroup and quark is transformed under the subgroup

as q → e−iατ3q. Its effect can be included in µiso by promoting SU(2)L × SU(2)R

to a local gauge symmetry and viewing µiso as the temporal component of gauge

field. The chiral Lagrangian for pion field Σ ∈ SU(2) with finite µiso is [50]

Leff =
f 2

π

4
Tr∇νΣ∇νΣ

† − M2
πf

2
π

2
ReTrΣ (6.5)

with flavor covariant derivatives

∇4Σ = ∂4Σ − µiso (τ3Σ − Στ3) , ∇iΣ = ∂iΣ, i = 1, 2, 3 (6.6)

where Mπ and fπ are the pion mass and its decay constant at vacuum, respec-

tively. It is straightforward to determine vacuum alignment of Σ as a function of

µiso. From (6.5), we find the potential energy for Σ,

Veff(Σ) =
(fπµiso)

2

2
Tr(τ3Στ3Σ

† − 1) − (fπMπ)2

2
ReTrΣ. (6.7)
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The first term in (6.7) favors directions of τ1 and τ2, while the second term prefers

the vacuum direction τ0. The vacuum expectation value Σ is described by

Σ = τ0 cosα+ i(τ1 cosϕ+ τ2 sinϕ) sinα. (6.8)

The tilt angle α is determined by minimizing the potential Veff

Veff = 2(fπµiso)
2
[
(cosα− a)2 − 1 − a2

]
(6.9)

with a = (Mπ/2µiso)
2. The energy is degenerated with respect to angle ϕ, re-

specting the U(1)I3 symmetry in the Lagrangian (6.5). When µiso < Mπ/2, the

potential has a minimum at α = 0, and the U(1)I3 symmetry is not broken. When

µiso > Mπ/2, while the potential has a minimum at cosα = (Mπ/2µiso)
2, so that

the charged pion condensation occurs and the U(1)I3 symmetry is spontaneously

broken there. This result is easy to understand. The lowest lying pion state π+

costs a positive energy Mπ − 2µiso to excite, thus at zero temperature no pion is

excited. For µiso > Mπ/2, the energy to excite a π+ meson, Mπ − 2µiso, is neg-

ative, thus it is energetically favorable to excite a large number of them. Since

pions are bosons, the result is a Bose-Einstein condensate of π+. For imaginary

µiso = iν [49], the potential is obtained as

Veff = −2(fπν)
2
[
(cosα+ b)2 − 1 − b2

]
(6.10)

with b = (Mπ/2ν)
2, which always has a minimum at α = 0. The charged pion

condensation thus does not occur at imaginary µiso. This result is also easy to

understand. For real µiso, the Bose-Einstein distribution function of pion has

an infrared divergence at µiso ≥ Mπ/2. This induces the pion condensate as a

Bose-Einstein condensate. For imaginary µiso, such a divergence never happens

and then no pion condensation occurs.

6.3 Imaginary isospin chemical potential

LQCD does not have the sign problem in the case that both µiso and µq are purely

imaginary, i.e., µq = iθq/β and µiso = iθiso/β for real θq and θiso. In the imaginary
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µq region, the QCD partition function has the Roberge-Weiss (RW) periodicity

in θq and its phase transition as discussed in Chapter 5. The properties are pre-

served even for finite µiso. The partition function also has a periodicity of 2π in

θiso because the isospin is good quantum whenever the charged pion condensate

does not occur. Therefore the partition function has higher discrete symmetries

at imaginary µiso and µq. The PNJL model possesses all the symmetries, and

then the model reproduces LQCD data [31] qualitatively. Furthermore the PNJL

model reproduces LQCD data quantitatively by including the hadronic excita-

tions.

6.3.1 Properties of the partition function

When QCD vacuum keeps the U(1)V and U(1)I3 symmetries, the quark-number

Nq = V ⟨q̄γ4q⟩ and the isospin Niso = V ⟨q̄γ4τ3q⟩ are both integer. The partition

function Z depends on θq and θiso only through the form, exp(iθqNq + iθisoNiso).

The partition function Z(θq, θiso) has thus the periodicity

Z(θq, θiso) = Z(θq + 2π, θiso) = Z(θq, θiso + 2π). (6.11)

The partition function also preserves the RW periodicity

Z(θq, θiso) = Z(θq + 2πk/3, θiso) for k ∈ Z, (6.12)

which has been shown by repeating the derivation of the RW periodicity in Sec.

5.3. The relation (6.11) is not satisfied when there is the charged pion condensate

⟨q̄iγ5τ1,2q⟩ that breaks the U(1)I3 symmetry, i.e., Niso is no longer integer there.

The pion condensate however does not occur at imaginary µiso as shown in (6.10),

so that u- and d-quarks are decoupled to each other. The partition function Zu(θu)

for u-quark and that Zd(θd) for d-quark have the periodicity of 2π respectively,

and the total partition function Z(θq, θiso) satisfies

Z(θq + π, θiso) = Zu(θq + θiso + π) + Zd(θq − θiso + π)

= Zu(θq + θiso + π) + Zd(θq − θiso − π) = Z(θq, θiso + π). (6.13)
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Combining the relation (6.13) and the RW periodicity (6.12), we can thus obtain

Z(θq, θiso + π) = Z(θq + π/3, θiso). (6.14)

Furthermore, in the isospin symmetric case, mu = md, the partition function is

invariant under the interchange u↔ d, which means

Z(θq, θiso) = Z(θq,−θiso). (6.15)

The partition function is also invariant under charge conjugation,

Z(θq, θiso) = Z(−θq,−θiso). (6.16)

Combining with the relation (6.15) and (6.16), we can obtain

Z(θq, θiso) = Z(−θq, θiso). (6.17)

The partition function is thus θq-even and θiso-even. Particularly for θiso = π/2,

the partition function Z has a periodicity of π/3 in θq, because taking θiso = π/2

in (6.14) combined with the θiso-evenness leads to

Z(θq, π/2) = Z(θq + π/3, π/2). (6.18)

Similarly for θq = π/6, Z has a periodicity of π in θiso, because taking θq = π/6

in (6.14) combined with θq-evenness leads to

Z(π/6, θiso) = Z(π/6, θiso + π). (6.19)

6.3.2 PNJL model

The two-flavor PNJL Lagrangian with the quark chemical potential µq and the

isospin chemical potential µiso is

L = q̄(γνDν − γ4(µq + µisoτ3) +m0)q −Gs[(q̄q)
2 + (q̄iγ5τ⃗ q)

2] + UΦ, (6.20)
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where Dν = ∂ν + iA4δ4ν and A4 = ϕ3λ3 + ϕ8λ8 under the Polyakov gauge.

For m0 = µiso = 0, the PNJL Lagrangian has the SU(2)L × SU(2)R × U(1)V

symmetry. For m0 ̸= 0 and µiso ̸= 0, it is reduced to U(1)I3 × U(1)V. The

spontaneous breakings of the chiral and the U(1)I3 symmetry are described by

the chiral condensate σ = ⟨q̄q⟩ and the charged pion condensate π = ⟨q̄iγ5τ1q⟩,
respectively, where the τ1 direction is taken as the U(1)I3 symmetry breaking. In

the mean field approximation, the thermodynamic potential ΩPNJL is obtained as

ΩPNJL = −2
∑
f=±

∫
d3p

(2π)3

[
3Ef +

1

β
(ln Ff + ln Ff̄)

]
+ UM + UΦ, (6.21)

with

Ff = 1 + 3Φe−β(Ef−µq) + 3Φ∗e−2β(Ef−µq) + e−3β(Ef−µq), (6.22)

Ff̄ = 1 + 3Φ∗e−β(Ef+µq) + 3Φe−2β(Ef+µq) + e−3β(Ef+µq), (6.23)

where UM = Gs(σ
2 + π2) and E± =

√
(Eq ± µiso)2 +N2 with Eq =

√
p2 +M2

q ,

Mq = m0 − 2Gsσ, N = −2Gsπ. The terms with f = +(−) represent the potential

of u-quark (d-quark). If the pion condensate occurred π ̸= 0, the potential

ΩPNJL would not have periodicities in (6.11)-(6.19) at imaginary µiso. However

for imaginary µq = iθq/β and µiso = iθiso/β, since the pion condensate does not

occur, the potential is reduced to a simpler form

ΩPNJL = −2
∑
f=±

∫
d3p

(2π)3

[
3Eq +

1

β
(ln Ff + ln Ff̄)

]
+Gsσ

2 + UΦ, (6.24)

with

Ff = 1 + 3Φe−βEq+iθf + 3Φ∗e−2βEq+2iθf + e−3βEq+3iθf , (6.25)

and θ± = θq ± θiso. For imaginary µq, the expectation values of the Polyakov

loop Φ and its conjugate Φ∗ are complex conjugate to each other as shown in

Sec. 5.5.1, so that Ff̄ is complex conjugate to Ff . Following the discussion in Sec.

5.5.1, we show that the thermodynamic potential ΩPNJL is invariant under the
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extended Z3 transformation

θq → θq + 2π/3, Φ → e−2πi/3Φ, Φ∗ → e2πi/3Φ∗. (6.26)

Using the modified Polyakov loop Ψ = eiθqΦ, which is invariant under the trans-

formation (6.26), we can rewritten Ff into

Ff = 1 + 3Ψe−βEq+iθiso + 3Ψ∗e−2βEq+3iθq+2iθiso + e−3βEq+3iθq+3iθiso . (6.27)

Thus, the potential ΩPNJL is invariant under the extended Z3 transformation.

Furthermore the potential is θiso-even and θq-even. Therefore the thermodynamic

potential of the PNJL model has the same properties as that of QCD in (6.11)-

(6.19). Particularly for θiso = π/2, T dependence of the potential is quite weak

because the u-quark loop contribution to the thermal part of the potential is

nearly canceled by the d-quark loop contribution. For θiso = π/2, the thermal

part Ωth
PNJL of ΩPNJL is rewritten into

Ωth
PNJL = − 2

β

∫
d3p

(2π)3

[
trc ln

(
1 + Le−βEq+iθq+iπ/2

) (
1 + Le−βEq+iθq−iπ/2

)
+ h.c.

]
= − 2

β

∫
d3p

(2π)3

[
trc ln

(
1 + L2e−2βEq+2iθq

)
+ h.c.

]
, (6.28)

where L = e−iβA4 is the Polyakov line and h.c. represents the Hermitian conjugate

of the first term. The potential at θiso = π/2 thus becomes that at θiso = 0 under

a transformation,

ln
(
1 + L2e−2βEq+2iθq

) T→2T, 2θq→θq−−−−−−−−−→ ln
(
1 + Le−βEq+iθq

)
. (6.29)

This means that ΩPNJL has weak T and θq dependences, and then the period in

θq is reduced from 2π/3 to π/3.

6.3.3 θq dependence

As discussed in Chapter 5, for θiso = 0 the RW phase transition occurs at θq =

(2k+ 1)π/3 and T ≥ TRW, where TRW is the critical temperature of the endpoint
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of the RW phase transition. θq-odd quantities such as the quark-number density

ρq = −∂ΩPNJL/∂µq = iβ(∂ΩPNJL/∂θq) have finite values at θq = (2k+ 1)π/3 and

T ≥ TRW, so that they have a discontinuity there. It is important to show how

the RW phase transition is affected by θiso. Figure 6.1 presents θq dependence of

the thermodynamic potential ΩPNJL, the quark-number density ρq and the isospin

density ρiso = −∂ΩPNJL/∂µiso = iβ(∂ΩPNJL/∂θiso) for three cases of θiso = 0, π/2

and π. Here temperature is taken to T = 175 and 250MeV that are below and

above TRW, respectively. The potential ΩPNJL is real, θq-even and θiso-even, so

that ρq and ρiso are purely imaginary. ρq is θq-odd and θiso-even, while ρiso is

θq-even and θiso-odd. All the quantities have the RW periodicity. In the case of

θiso = 0, for T < TRW, ΩPNJL and ρq are smooth everywhere, but not for T ≥ TRW;

the former (latter) has a cusp (discontinuity) at θq = (2k + 1)π/3. This means

that the RW phase transition occurs at T ≥ TRW. Meanwhile, ρiso is zero for the

two temperatures. It is found from (6.14) that the dot-dashed curves for θiso = π

are obtained by shifting the corresponding solid curves for θiso = 0 by π/3 in

the θq direction. For θiso = π/2, ΩPNJL is almost constant and ρq is then nearly

zero, as expected from (6.28); precisely, they have a periodicity of π/3, but the

θq dependence is quite weak. In the insets of panels (a-2) and (b-2) where ΩPNJL

and ρq are magnified for θiso = π/2. The quantities have a periodicity of π/3 in

θq. The RW phase transition thus occurs at θq = kπ/3. In contrast, the θiso-odd

quantities such as ρiso have an anti-periodicity of π in θq,

ρiso(θq, π/2) = −ρiso(θq, π/2). (6.30)

Figure 6.2 (a) presents θq dependence of ΩPNJL for several cases of θiso ∈ [0, π/2].

The result shows that the RW phase transition occurs at θq = (2k + 1)π/3 for

0 ≤ θiso ≤ π/2. Figure 6.2 (b) represents the location of the RW phase transition

in θq-θiso plane for T > TRW. The RW phase transition occurs at θq = (2k+1)π/3

for −π/2 ≤ θiso ≤ π/2 because of the θiso-evenness of ΩPNJL. Meanwhile the

transition occurs at θq = 2kπ/3 for π/2 ≤ θiso ≤ 3π/2 because of the relation

(6.14).
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Figure 6.1: θq dependence of (a-1) the thermodynamic potential ΩPNJL, (b-1)
the quark-number density ρq and (c-1) the isospin density ρiso at T = 175 MeV.
Panels (a-2), (b-2) and (c-2) represent the same quantities as panels (a-1), (b-1)
and (c-1) but for T = 250MeV. The solid, dashed and dotted curves correspond
to three cases of θiso = 0, π/2 and π, respectively. In panels (c-1) and (c-2), the
solid and dotted lines agree with the x axis. In the insets of panel (a-2) and (b-2),
the y axis is magnified only for θiso = π/2.
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Figure 6.2: (a) θq dependence of ΩPNJL for θiso/π = 0 (solid), 0.2 (dashed), 0.4
(dotted), and 0.5 (dot-dashed). (b) Phase diagram in θq-θiso plane. The solid
lines represent the RW phase transition. For both the panels, T = 250 MeV is
taken.

6.3.4 θiso dependence

Next, θiso dependence of ΩPNJL, ρq and ρiso is investigated. Since ΩPNJL is θiso-even

with a periodicity of 2π,

ΩPNJL(θq, π − θiso) = ΩPNJL(θq, θiso − π) = ΩPNJL(θq, π + θiso). (6.31)

This means that θiso dependence of ΩPNJL is symmetric with respect to the axis

θiso = π. The quark-number density ρq is also θiso-even and hence has the same

symmetry. In contrast, θiso-odd quantities such as ρiso are asymmetric with re-

spect to the axis θiso = π:

ρiso(θq, π − θiso) = −ρiso(θq, π + θiso). (6.32)

For θq = π/6, ΩPNJL has a periodicity of π in θiso, as expected from (6.19). The

quark-number density ρq has then the same symmetry as ΩPNJL since it is θiso-

even. In contrast, θiso-odd quantities such as ρiso have an anti-periodicity of π in

θiso:

ρiso(π/6, θiso) = −ρiso(π/6, θiso + π). (6.33)
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Figure 6.3: θiso dependence of (a-1) the thermodynamic potential ΩPNJL, (b-1)
the quark-number density ρq and (c-1) the isospin density ρiso at T = 175MeV.
Panels (a-2), (b-2) and (c-2) represent the same quantities as panels (a-1), (b-1)
and (c-1) but for T = 250MeV. Three cases of θq = 0, π/6 and π/3 are taken. In
panel (b), the solid for θq = 0 and the dotted line for θq = π/3 agree with the x
axis.
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Figure 6.3 presents θiso dependence of ΩPNJL, ρq and ρiso at θq = 0, π/6 and π/3

for the same temperature as Fig. 6.1. The quantities ΩPNJL and ρq are symmetric

with respect to the axis θiso = π, while ρiso is asymmetric with respect to the axis.

All the quantities have a periodicity of 2π in θiso for all θq. For θq = π/6, ΩPNJL

and ρq have a periodicity of π in θiso, while ρiso has an anti-periodicity of π in

θiso. For θiso-even quantities, ΩPNJL and ρq, all curves almost meet at θiso = π/2

and 3π/2. In all the panels, the dotted curve for the case of θq = π/3 is obtained

by shifting the solid one for the case of θq = 0 by π in the θiso direction. For

T < TRW, they are smooth everywhere in θiso. For T ≥ TRW, however the θiso-even

quantities such as ΩPNJL and ρq have cusps at θq = (2k + 1)π/2, while the θiso-

odd quantities such as ρiso have discontinuities there. These singular behaviors

represent the boundary of the RW phase transition. For θq = π/3, ρq has a

finite value at −π/2 < θiso < π/2. This means that the RW phase transition

occurs there and ρq has a discontinuity there in the θq direction. The RW phase

transition also occurs at π/2 < θiso < 3π/2 for θq = 0 because of the relation

(6.14).

6.3.5 Thermodynamics in the θq-θiso plane

Figure 6.4 presents ΩPNJL, ρq and ρiso in the θq-θiso plane at T = 175 (left panel)

and 250 MeV (right panel). The symmetries (6.11)-(6.19) are seen as a bird’s eye

view. This result is consistent with LQCD ones [31] as shown in Fig. 6.5. If the

pion condensate were nonzero, the symmetries would break down as discussed in

Sec. 6.4.1. Hence, the fact that LQCD has the symmetries means that the pion

condensation does not occur also in the LQCD simulation.

6.3.6 Comparison of PNJL model with LQCD

LQCD has calculated the quark-number density ρq and the isospin density ρiso in

the θq-θiso plane, where the lattice size is 163 × 4 and the forth-rooted staggered

fermion is taken [31]. Figure 6.5 shows LQCD results for the quark-number

density ρq at (a) T = 0.9Tc and (b) 1.25Tc, and also for the isospin density ρiso

at (c) T = 0.9Tc and (d) 1.25Tc, respectively. Note that the LQCD data at

T = 1.25Tc is plotted in the region of θq/π < 0.3 and θiso/π < 0.3 and hence

84



6. Isospin Chemical Potential

 0

 0.5

 1

 0
 0.5

 1
 1.5

 2
-26.7

-26.6

(a-1)

θiso/πθq/(π/3)

Ω/T4

 0

 0.5

 1

 0
 0.5

 1
 1.5

 2

-8

-7

(a-2)

θiso/πθq/(π/3)

Ω/T4

 0

 0.5

 1

 0
 0.5

 1
 1.5

 2

-0.1

 0

 0.1

(b-1)

θiso/πθq/(π/3)

ρq/T3

 0

 0.5

 1

 0
 0.5

 1
 1.5

 2

-1

 0

 1

(b-2)

θiso/πθq/(π/3)

ρq/T3

 0

 0.5

 1

 0
 0.5

 1
 1.5

 2

-0.1

 0

 0.1

(c-1)

θiso/πθq/(π/3)

ρiso/T3

 0

 0.5

 1

 0
 0.5

 1
 1.5

 2

-1

 0

 1

(c-2)

θiso/πθq/(π/3)

ρiso/T3

Figure 6.4: (a-1) the thermodynamic potential ΩPNJL, the quark-number
densityρq and the isospin density ρiso in the θq-θiso plane at T = 175 MeV. Panels
(a-2), (b-2) and (c-2) are the same quantities as (a-1), (b-1) and (c-1) at T = 250
MeV, respectively.
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the RW phase transition is not seen. Figure 6.4 shows the PNJL results that are

qualitatively consistent with the LQCD results. For T ≤ Tc, the LQCD data in

(a)

(c)

(b)

(d)

Figure 6.5: LQCD results for the quark-number density ρq at (a) T = 0.9Tc

and (b) 1.25Tc, for the isospin density ρiso at (a) T = 0.9Tc and (b) 1.25Tc,
respectively. The LQCD data is taken from Ref. [31].

Ref. [31] are fitted by a trigonometric function of the thermodynamic potential

Ω:

Ω/T 4 = −
∑

Nq,Niso

CNq,Niso
(T ) cos(3Nqθq) cos(Nisoθiso) × 10−3 (6.34)

with the quark-number Nq and the isospin-number Niso. The resultant values are

summarized in Table 6.1. The quark-number density ρq and the isospin density

ρiso are obtained by differentiating Ω with respect to θq and θiso, respectively.

The parameters CNq,Niso
are fitted to the LQCD data on ρq and ρiso in the θq-θiso

plane. Figure 6.6 presents ρq/T
3 and ρiso/T

3 at T = Tc. The solid (dashed)

lines stand for the PNJL (LQCD) results. In panels (a) and (b) where ρq/T
3 is
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Figure 6.6: Comparison of the PNJL model with LQCD for ρq and ρiso at T = Tc;
(a) θq dependence of ρq/T

3 at θiso = 0, (b) θiso dependence of ρq/T
3 at θq = π/6,

(c) θq dependence of ρiso/T
3 at θiso = π/5 and (d) θiso dependence of ρiso/T

3 at
θq = 0. The solid (dotted) lines denote the PNJL (LQCD) results. The PNJL
result is multiplied by 2.1 to fit the LQCD one at (θq, θiso) = (π/6, 0) in panels
(a) and (b) and by 3.8 to fit the HRG result at (θq, θiso) = (0, π/5) in panels (c)
and (d).
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C0,2 C0,4 C1,1 C1,3 C1,5 C1,7 C2,2 C2,4

160.7 11 34.4 39.3 4.2 1.5 3.1 10

Table 6.1: Summary of the parameter set CNq,Niso
in fitting function (6.34) to

LQCD data at T = Tc [31]. Note that the parameter has the constraint Nq ≡
Niso mod 2.

plotted, the PNJL result is adjusted to the LQCD one at (θq, θiso) = (π/6, 0) by

multiplying the PNJL result by 2.1. In panels (c) and (d) where ρiso/T
3 is drawn,

the PNJL result is fitted to the LQCD one at (θq, θiso) = (0, π/5) by multiplying

the PNJL result by 3.8. Oscillatory patterns of the LQCD results are reasonably

reproduced by the PNJL model for T ≤ Tc. The success of the PNJL model

for the oscillatory pattern may indicate that the pattern is essentially controlled

by discrete symmetries (6.11)-(6.19). For the magnitudes, meanwhile, the PNJL

model underestimates the LQCD results. Here we consider a possible origin of

the discrepancy. In Fig. 6.7(a), ρq is plotted as a function of T for θq = π/6

and θiso = 0. At T = 1.25Tc, LQCD data (open-circle symbol) is larger than the

Stefan-Boltzmann high-T limit (thin-dotted curve), while the PNJL result (solid

curve) is smaller than the limit at the same T . The PNJL model is considered to

be reliable above Tc since quarks and gluons are dominant in the deconfinement

phase. For real µq, actually the PNJL prediction on ρq is consistent with LQCD

data evaluated by the Taylor expansion at T > Tc
1. We then normalize the

LQCD data so that the data at T = 1.25Tc can agree with the PNJL result

at T = 1.25Tc. The normalized data are shown by filled-circle symbols. At

T = 0.951Tc and Tc, the PNJL result is smaller than the normalized data by a

factor of about 2. This discrepancy is understandable as shown follow. Below Tc,

in general, hadronic excitations are important, but such an effect is not included

in the mean field calculation of the PNJL model. The hadronic excitations are

considered as free gas. This approximation is good for T < Tc where hadrons

have no decay modes. In this approximation, the thermodynamic potential Ωq+h

1We address this point in Sec. 7.3.

88



6. Isospin Chemical Potential

with hadronic excitations is

Ωq+h = Ωq + Ωm + Ωb. (6.35)

The potential Ωq for quark is the same as ΩPNJL of the PNJL model in (6.24).

The potential Ωb for baryons and that Ωm for the mesons are

Ωb = − 4

β

∫
d3p

(2π)3
ln

(
1 + e−β(Eb−µb)

) (
1 + e−β(Eb−µb)

)
, (6.36)

Ωm = −
∑

m=π±,π0

1

β

∫
d3p

(2π)3
ln

(
1 − e−β(Em−µm)

)
, (6.37)

where Eb =
√

p2 +M2
b , Em =

√
p2 +M2

m and µb = 3µq. The meson chemical

potentials µm are taken to 2µiso, −2µiso and 0 for π+, π− and π0, respectively.

Here we consider nucleons with the physical massesMb = 940MeV as baryons and

pions with the massMπ = 280MeV (the same value as the LQCD calculation [31])

as mesons. ρq and ρiso are obtained by differentiating Ωq+h with respect to µq

and µiso, respectively. The new ρq is plotted by the dashed line up to Tc. This

line agrees with the normalized LQCD data at T = 0.951Tc and Tc. The same
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Figure 6.7: T dependence of (a) ρq at (θq, θiso) = (π/6, 0) and (b) ρiso at (θq, θiso) =
(0, π/5). LQCD data are taken from [31]. The original values of LQCD data
are plotted by open-circle symbols. The LQCD data are normalized so as to
reproduce the PNJL result at T = 1.25Tc. The normalized LQCD (n-LQCD)
data are shown by filled-circle symbols. The dashed line is the result of the PNJL
model with the hadronic excitations. The dot-dashed line represents ρq in the
Stefan-Boltzmann limit.
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analysis is possible for ρiso. Figure 6.7(b) presents ρiso as a function of T for

θq = 0 and θiso = π/5. At T = 1.25Tc, LQCD data (open-circle symbol) is

larger than the PNJL result by a factor of 1.5. Hence the data are normalized

so that the data at T = 1.25Tc can reproduce the corresponding PNJL result as

shown by filled-circle symbols. At T = 0.951Tc and Tc, the PNJL result (solid

curve) underestimates the normalized LQCD data. By considering the hadronic

excitations, the new PNJL result (dashed curve) agrees with LQCD data.

6.3.7 Phase diagram in θiso-T plane

Figure 6.8 presents T dependence of the absolute value |Φ| of the Polyakov loop

(dashed curve) and the chiral condensate σ (solid curve) at θq = 0. The bold

(thin) curve shows the case of µiso = π/2 (0). For θiso = 0, both the chiral and

the deconfinement transition are crossover. The pseudo-critical temperatures are

T σ
c = 216MeV for the chiral transition and TΦ

c = 173MeV for the deconfinement

transition in the PNJL model, while T σ
c ≈ TΦ

c = 173 ± 8MeV in LQCD [52].

Thus, the correlation between the two transitions is weaker in the PNJL model

than in LQCD. For θiso = π/2, the deconfinement phase transition becomes first

 0
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 0.5  1  1.5  2

σ/
σ 0

, |
Φ

|

T/Tc

σ
Φ

Figure 6.8: T dependence of |Φ| (dashed) and σ (solid) normalized by that σ0 at
vacuum. The bold (thin) curves correspond to the case of θiso = π/2 (0).

order, while the chiral condensate hardly depends on T . As shown in (6.28),

the u-quark loop contribution to Ω is nearly canceled out by the d-quark one

for θiso = π/2. As a consequence of this cancellation in Ω, σ has a weak T

dependence, while T dependence of Φ is controlled by the pure gauge part, that
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is the Polyakov potential UΦ in (6.20). Eventually, TΦ
c is much smaller than T σ

c .

Since 2-flavor LQCD data are not available at θiso = π/2, it is not clear whether

the large difference is realistic. However, it should be noted that, in the 8-flavor

case, LQCD data [52] shows that the chiral and deconfinement transitions occur

the same temperature T σ
c ≈ TΦ

c and they are first order. This inconsistency of the

PNJL results with the LQCD data is originated in the fact that the correlation

between the two order parameters, σ and Φ, is weak in the PNJL model. This

problem of the PNJL model is addressed in the next chapter. Figure 6.9 shows
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Figure 6.9: Phase diagram of the deconfinement phase transition in θiso-T plane.
Panels (a), (b) and (c) are the cases of θq = 0, π/6 and π/3 respectively. The
first-order (crossover) transition is denoted by the solid (dashed) curves. The
area labeled by “RW” between the two dot-dashed lines represents the region
in which the RW phase transition occurs. Point A is located at (TA, θA) =
(212MeV, 0.494π).

the phase diagram of the deconfinement phase transition in the θiso-T plane,

where panels (a), (b) and (c) correspond to three cases of θq = 0, π/6 and π/3,

respectively. The solid curves denote the first-order phase transition, while the

dashed lines stand for the crossover transition. Near θiso = (2k + 1)π/2, the
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deconfinement phase transition are first-order in all the cases. Near θiso = kπ, the

deconfinement phase transition is first-order at θq = 0, but crossover at θq = π/6

and π/3. The critical endpoint of the first-order transition represented by the

red-circle symbol moves to θiso = 0 when θq increases from 0 to π/3. The RW

phase transition occurs in the area labeled by “RW” between the two dot-dashed

lines. The dot-dashed line is a boundary of the area. It is a nearly-vertical line

starting from point A and is expressed as θiso = π/2−∆(T ) where ∆(T ) slightly

depends on T as ∆(T ) = 0.16(T/Tc) − 0.23 for T ≥ 1.23Tc. Point A is located

at (TA, θA) = (1.23Tc, 0.494π) in the 2-flavor PNJL model, while 8-flavor LQCD

data [31] show (TA, θA) = (1.2Tc, 0.48π). The PNJL result is thus consistent with

the LQCD data.

6.4 Real isospin chemical potential

In this section, we investigate the real isospin chemical potential µiso region.

The physical motivation to study QCD in this region is related to the physics

of compact stars, isospin asymmetric nuclear matter and heavy-ion collisions at

intermediate energies. For real µiso, the charged pion condensate occurs at high

µiso as shown in Sec. 6.3.2 by using the chiral perturbation theory. LQCD

calculation shows that there is a phase transition from the normal phase to the

pion superfluidity at a critical isospin chemical potential which is about half

the pion mass at vacuum [51]. The QCD phase structure at real µiso is also

investigated in many low energy effective models such as the chiral perturbation

theory [54], the NJL model [55] and the PNJL model [56]. Here we review

properties of the phase transition at real µiso by using the PNJL model.

6.4.1 Chiral and Pion Condensates

The thermodynamic potential ΩPNJL of the PNJL model is obtained in (6.21) in

the mean field approximation. First we analytically show in the PNJL model

that the critical isospin chemical potential for pion superfluidity is exactly half

the pion mass at vacuum, i.e., µiso > Mπ/2. The PNJL model is reduced to the

NJL model at T = 0 and the gap equations for the chiral and pion condensates
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6. Isospin Chemical Potential

are obtained as

∂ΩPNJL

∂σ
= 2Gs

[
σ + 6Mq

∫
d3p

(2π)3

1

E

(
E − µiso

E−
+
E + µiso

E+

)]
= 0, (6.38)

∂ΩPNJL

∂π
= 2Gsπ

[
1 − 12Gs

∫
d3p

(2π)3

(
1

E−
+

1

E+

)]
= 0. (6.39)

where E± =
√

(Eq ± µiso)2 +N2 with N = 2Gsπ. It is clear that π = 0 is always

a solution of the gap equation (6.39) and σ is µq- and µiso-independent for π = 0.

At the critical isospin chemical potential µc
iso where the pion condensate occurs,

the solution π = 0 should satisfies the equation

1 − 24Gs

∫
d3p

(2π)3

1

E2
q − (µc

iso)
2

= 0. (6.40)

Meanwhile the pion mass at vacuum satisfies the condition

∂2ΩPNJL

∂π(q)∂π(−q)

∣∣∣∣
q=Mπ

= 1 − 24Gs

∫
d3p

(2π)3

1

E2
q −M2

π/4
= 0. (6.41)

Therefore when the isospin chemical potential µiso exceeds half the pion mass

Mπ at vacuum, the pion condensate occurs and the phase transition is second

order. Figure 6.10 (a) shows the chiral σ (solid curve) and the pion condensates

π (dashed curve) as a function of µiso at T = µq = 0. The pion condensate

occurs at µiso > Mπ/2 and the phase transition is second order as expected. The

chiral and pion condensates do not change at µiso < Mπ/2. The former (latter)

decreases (increases) as µiso increases at µiso > Mπ/2. Figure 6.10 (b) shows the

isospin density ρiso as a function of µiso at T = µq = 0. The isospin density is

scaled by the normal nuclear density ρ0 = 0.17 fm−3. The isospin density ρiso at

T = µq = 0 is

ρiso = −∂ΩPNJL

∂µiso

= 3

∫
d3p

(2π)3

[
Eq + µiso

E+

− Eq − µiso

E−

]
(6.42)

At µiso < Mπ/2, the ground state does not change and the isospin density is zero.

At µiso > Mπ/2, ρiso increases monotonously with µiso. This nonzero net isospin

density is due to the Bose-Einstein condensation of the charged pion. Figure 6.11
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Figure 6.10: (a) The chiral σ (solid) and pion condensates π (dashed), normalized
by the chiral condensate σ0 at vacuum, as function of µiso at T = µq = 0. (b) The
isospin density ρiso, normalized by the normal nuclear density ρ0, as a function
of µiso at T = µq = 0.

 0

 0.5

 1

 0.5  1  1.5  2
T/Tc

(a) average
σ
π
Φ

 0

 0.5

 1

 1.5

 0  2  4  6

T
/T

c

2µiso/Mπ

(b)

T

σ-cross
Φ-cross

π-2nd
π-1st

Figure 6.11: (a) The chiral σ (dashed) and pion condensates π (solid), normal-
ized by the chiral condensate σ0 at vacuum, as functions of T at µiso=100 MeV
and µq = 0. The thin-solid and dotted lines represent the averaged conden-
sate

√
σ2 + π2/σ0 and the Polyakov loop Φ. (b) Phase diagram in the µiso-T

plane at µq = 0. The solid (dotted) curve represents a first-order (second-order)
pion-superfluidity phase transition. Point T is the tricritical point. The dashed
(dot-dashed) line means a deconfinement (chiral) crossover transition.
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6. Isospin Chemical Potential

(a) shows the chiral and pion condensates as a function of T at µiso = 100MeV. For

µiso > Mπ/2, the pion condensate occurs at low temperature, then drops down due

to the temperature effect, and finally disappears at a critical temperature Tc(µiso).

As the case for the BCS theory of superconductivity, the critical temperature

Tc(µiso) and the pseudo-gap |N | = |2Gsπ| for the pion condensate at T = 0

satisfy the linear relation

Tc(µiso) ∼
√

3

π
|N |(T = 0, µiso). (6.43)

For low temperature, the relative strength of the two condensates, σ and π,

depends on µiso, σ > π at small µiso and σ < π at large µiso. The averaged

condensate
√
σ2 + π2 (the thin-solid curve), however, has a weak dependence on

µiso for µiso < 2Mπ.

6.4.2 Phase diagram

Figure 6.11 (b) shows the phase diagram at real µiso. The solid (dotted) curve

shows the first-order (second-order) pion-superfluidity phase transition. Point T

located at (µiso, T ) = (0.32 GeV, 0.169 GeV) is the tricritical point. The dashed

(dot-dashed) line stands for a deconfinement (chiral) crossover transition. There

is a sizable difference between the two crossover transitions in the PNJL model,

whereas they agree with each other in LQCD. Thus, the correlation between the

two transitions is weaker in the PNJL model than in LQCD also for real µiso.

6.5 Summary

We have investigated the isospin chemical potential µiso region by using the PNJL

model. Lattice QCD (LQCD) is free from the sign problem at real and imagi-

nary µiso and hence LQCD data are available there. So the PNJL model can be

tested at real and imaginary µiso by comparing of the model with LQCD results.

First we have considered the case that both µiso and µq are purely imaginary. At

imaginary µiso, the charged pion condensate does not occurs and hence QCD has

the isospin symmetry. This situation is true even if the imaginary µq is added.
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At imaginary µq, QCD has the extended Z3 symmetry, i.e., the Roberge-Weiss

periodicity. As a consequence, at imaginary µiso = iθiso/β and µq = iθq/β, the

QCD partition function has higher symmetries as (6.11)-(6.19). The PNJL model

possesses all the symmetries. As a consequence of this property, the PNJL results

are qualitatively consistent with LQCD results. Furthermore we made quantita-

tive comparison of the PNJL model with LQCD data. As for the quark-number

and isospin densities, the PNJL result in the mean field approximation underes-

timates the LQCD result because the hadronic excitations are neglected in the

approximation. By considering the hadronic excitations as a free-gas approxima-

tion, the PNJL result with the hadronic excitations reproduces the LQCD results

at low temperature. Thus the PNJL model is useful at imaginary µiso and µq.

The PNJL model predicts the phase diagram in the θq-θiso-T space. The RW

phase transition occurs at θq = (2k + 1)π/3 when −π/2 < θiso < π/2, while at

θq = 2πk/3 when π/2 < θiso < 3π/2. The chiral and deconfinement transitions

occur at different temperatures in the PNJL model, while the two transitions

occur at the same temperature in LQCD. Thus the correlation between the two

transitions is weaker in the PNJL model than in LQCD. Second we have consid-

ered the real µiso region. At real µiso, the charged pion condensate occurs when

µiso is larger than half the pion mass Mπ at vacuum. The phase transition is seen

in LQCD. The PNJL model reproduces the pion-superfluidity phase transition

at µiso > Mπ/2. The chiral and deconfinement transitions also occur at different

temperatures in the PNJL model, whereas the two transitions take place at the

same temperature in LQCD. Throughout all the analyses in the regions of imag-

inary µq, imaginary µiso and real µiso, the PNJL model reproduces LQCD results

qualitatively. However, there is a sizable difference between the PNJL results and

the LQCD data for the coincidence of the chiral and deconfinement transitions.

Two transitions coincide with each other in LQCD, but in the PNJL model. In

the next chapter, we address this problem.
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Chapter 7

Entanglement PNJL model

We extend the PNJL model by introducing an effective four-quark vertex de-

pending on the Polyakov loop. The effective vertex generates entanglement in-

teractions between the Polyakov loop and the chiral condensate. The new model

is consistent with lattice QCD data at imaginary quark chemical potential and

real and imaginary isospin chemical potentials, particularly on strong correlation

between the chiral and deconfinement transitions. We investigate the influence

of the entanglement interactions on the location of the critical endpoint at real

quark chemical potential. This chapter is based on our papers [57].

7.1 Purpose

An important query on the thermodynamics of quantum chromodynamics (QCD)

is whether the chiral-symmetry restoration and the confinement-to-deconfinement

transition take place simultaneously or not. If the two transitions do not coincide,

phases such as the constituent quark phase [58] or the quarkyonic phase [59] may

appear. If the chiral and deconfinement transitions are first-order, discontinuities

appear simultaneously in their order parameters, that is, the chiral condensate

σ and the Polyakov loop Φ [60]. Furthermore, if a nontrivial critical endpoint

(CEP) exists at finite temperature (T ) and quark chemical potential µq, suscep-

tibilities of σ, Φ and other quantities diverge simultaneously [61]. This indicates

a coincidence of second-order phase transitions. At zero µq, the chiral and de-
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confinement transitions are found to be crossover [38; 39; 62]. Hence, there is

no a priori reason why the two transitions coincide exactly. Actually, in lattice

QCD (LQCD) simulations at zero µq, there is a debate as to whether the tran-

sitions really coincide or not [63]. LQCD simulations are far from perfection at

real µq because of the sign problem. Fortunately, LQCD data are available at

imaginary µq and real and imaginary isospin chemical potential µiso, since LQCD

has no sign problem there. The LQCD data show that chiral and deconfinement

crossover transitions coincide within the numerical accuracy [38; 39]. Since there

is no general reason for coincidence between crossover transitions, it is natural to

think that the chiral and deconfinement crossover transitions nearly coincide as a

result of strong correlation (entanglement) between σ and Φ. An approach com-

plementary to first-principle LQCD with the sign problem is to build an effective

model consistent with LQCD data and apply the model to the real µq region. The

PNJL model is designed to treat both the chiral-symmetry restoration and the

deconfinement transition [64]. The model well reproduces LQCD results qualita-

tively at imaginary µq, real and imaginary µiso as shown in Chapters 5 and 6. In

the PNJL model, however the correlation between σ and Φ is weak, so that the

chiral and deconfinement crossover transitions do not coincide. This fact indicates

that a true correlation between σ and Φ is stronger than that in the PNJL model

appearing through the covariant derivative between quark and gauge fields. Actu-

ally, recent analyses [65] based on the exact renormalization-group equation [66]

indicate that entanglement interactions between σ and Φ appear in addition to

the original entanglement through the covariant derivative. In this chapter, we

extend the PNJL model by introducing an effective four-quark vertex depending

on Φ. The effective vertex generates entanglement interactions between σ and Φ.

The new model is consistent with all LQCD data at imaginary µq and real and

imaginary µiso. Furthermore the model is consistent with LQCD data evaluated

by the Taylor expansion at small real µq. We also analyze the influence of the

entanglement interactions on the location of the critical endpoint (CEP) in the

real µq region.
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7.2 Entanglement PNJL model

We start with the standard two-flavor PNJL Lagrangian

L = q̄(γνDν +m0)q −Gs[(q̄q)
2 + (q̄iγ5τ⃗ q)

2] + UΦ, (7.1)

where q denotes the quark field, m0 denotes the current quark mass, and Dν =

∂ν + iA4δ4ν . In the NJL sector, Gs denotes the coupling constant of the scalar-

type four-quark interaction. The PNJL model succeeds to reproduce LQCD data

qualitatively in the regions with no sign problem, i.e., imaginary µq, real and

imaginary µiso regions as shown in Chapters 5 and 6. Particularly, for imagi-

nary µq = iθq/β, the success comes from the fact that the PNJL model has the

extended Z3 symmetry,

θq → θq + 2π/3, Φ → e−2πi/3Φ, Φ∗ → e2πi/3Φ∗. (7.2)

The partition function Z(θq) has the extended Z3 symmetry, and hence quan-

tities invariant under the extended Z3 transformation have the Roberge-Weiss

(RW) periodicity. At the present stage, the PNJL model is only a realistic ef-

fective model that possesses both extended Z3 symmetry and chiral symmetry.

Furthermore, the PNJL model can reproduce the RW phase transition that oc-

curs at θq = π/3 mod 2π/3 when T is larger than some critical temperature

TRW. This property makes it possible to compare PNJL results with LQCD data

quantitatively at imaginary µq. However, the PNJL model is inconsistent with

LQCD in which the chiral and deconfinement crossover transitions do not coin-

cide with each other in all the regions with no sign problem. For example, at

µq = µiso = 0, the critical temperature TΦ (Tσ) of the deconfinement (chiral)

transition is 173 (216) MeV. The relative difference ∆ = |Tσ − TΦ|/Tσ is about

20 %, while LQCD simulations [67] show that Tσ ≃ TΦ ≃ 173±8 MeV there. The

sizable difference indicates that the entanglement between the chiral and decon-

finement transitions is weak in the PNJL model. In order to solve this problem,

we propose an effective coupling depending on the Polyakov loop, Gs(Φ). The

origin of the four-quark vertex Gs is the one-gluon exchange between two quarks

and its higher-order interactions. If the gluon field Aν has a vacuum expectation
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value ⟨A4⟩ in its temporal component, Aν is coupled to ⟨A4⟩ which is related to

the Polyakov loop Φ[A4]; see Fig. 7.1 for the diagrammatic description. Hence,

Gs is changed into an effective vertex Gs(Φ) depending on Φ [65]. It is expected

that the Φ dependence of Gs(Φ) is determined in the future by an exact method

such as the exact renormalization-group equation [66]. In this chapter, however,

we simply assume the following Gs(Φ) that preserves the extended Z3 symmetry

and charge-conjugation symmetry:

Gs(Φ) = Gs[1 − α1ΦΦ∗ − α2(Φ
3 + Φ∗3)]. (7.3)

This model thus has entanglement interactions between σ and Φ in addition to

the covariant derivative in the original PNJL model. The PNJL model with the

entanglement vertex Gs(Φ) is referred to as entanglement-PNJL (EPNJL) model.

The strengths, α1 and α2, of the entangle vertex are determined from LQCD data

= + Φ + ...

Figure 7.1: The diagrammatic description of the effective vertex Gs(Φ).

at imaginary µq, and the validity of the model setting is confirmed for real and

imaginary µiso, small real µq by comparing the model results with LQCD data.

The EPNJL model is consistent with LQCD data in all the regions with no sign

problem.

7.3 Comparison with LQCD

In this section, we consider the three regions where LQCD data are available,

i.e., the imaginary µq, real and imaginary µiso regions. In the EPNJL model,

we take the parameter (α1, α2) = (0.2, 0.2) in the entangle vertex and rescale

T0 from 212 MeV to 190 MeV so as to reproduce LQCD data at imaginary µq,

while the other parameters keep the same values as the original PNJL model. The
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model can reproduce two phenomena simultaneously; one is the strong correlation

between the deconfinement and chiral transitions and the other is the quark-

mass dependence of the order of the Roberge-Weiss endpoint predicted by LQCD

very recently [68]. The coincidence and the m0 dependence are preserved in the

parameter region α1, α2 ≈ 0.20 ± 0.05.

7.3.1 Imaginary quark chemical potential

First, we consider the thermal system with no chemical potential. Figure 7.2

shows the chiral condensate normalized by the value σ0 at vacuum and the

Polyakov loop Φ as a function of T . The dotted curves represent the PNJL

results. LQCD data [67] are also plotted by plus (+) and cross (×) symbols for

σ and Φ, respectively. The LQCD data has 10% error since LQCD calculations

have the error in determining Tc [67]. For Φ the PNJL result reasonably agrees

with the LQCD data. For σ, however, the PNJL result considerably overshoots

the LQCD data. The EPNJL model is consistent with the LQCD data for both

the chiral condensate and the Polyakov loop. Figure 7.3 represents chiral and

Polyakov-loop susceptibilities, χσ and χΦ, as a function of T . For the PNJL

model presented in Panel (a), the peak position of χσ, i.e., the critical temper-

ature Tσ of the chiral transition, is much larger than the peak position of χΦ,

that is, the critical temperature TΦ of the deconfinement transition: Tσ ≫ TΦ.

For the EPNJL model presented in Panel (b), the two transitions coincide with

each other, Tσ = TΦ. The entanglement vertex Gs(Φ) thus makes the correla-

tion between the chiral restoration and the deconfinement transition stronger,

as expected. Next, we consider the thermal system with imaginary µq = iθq/β.

The formalism of the PNJL model at imaginary µq is shown in Chapter 5. The

thermodynamic potential of the EPNJL model is obtained with Gs replaced by

Gs(Φ) in the potential (5.9) of the PNJL model. Figure 7.4 presents T depen-

dence of σ and the absolute value of Φ at θq = π/3. In the PNJL model, the

deconfinement transition at T = 190 MeV is first-order, while the chiral tran-

sition is crossover at T = 265MeV; σ has a small jump at T = 190 MeV, but

it is just a discontinuity induced by the first-order deconfinement transition in

|Φ|. In the EPNJL model, the deconfinement transition at T = 185 MeV is very

101



7. Entanglement PNJL Model

 0

 0.5

 1

 0.1  0.2  0.3

σ/
σ 0

, Φ

T (GeV)

σ/σ0

Φ

PNJL
EPNJL
LQCD

Figure 7.2: T dependence of the chiral condensate and the Polyakov loop at
θq = 0. The curves that decrease (increase) as T increases represent the chiral
condensate (Polyakov loop). The solid (dashed) curves are the results of the
EPNJL (PNJL) model. Here, the chiral condensate is normalized by the value σ0

at vacuum. LQCD data (+) on σ and those (×) on Φ are taken from Ref. [67].
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Figure 7.3: T dependence of the susceptibilities of the chiral condensate (dashed
curve) and the Polyakov loop (solid curve) at θq = 0. Panels (a) and (b) corre-
spond to the PNJL and EPNJL models, respectively.
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weak first-order. |Φ| has a small jump there although it is not explicitly seen

in Fig. 7.4. Figure 7.5 represents χσ and χΦ as a function of T . Panel (a)
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Figure 7.4: T dependence of the chiral condensate and the Polyakov loop at
θq = π/3. The meaning of the curves is the same as in Fig. 7.2.
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Figure 7.5: T dependence of the susceptibilities of the chiral condensate (dashed
curve) and the Polyakov loop (solid curve) at θq = π/3. Panels (a) and (b)
correspond to the results of the PNJL and EPNJL models, respectively.

shows that Tσ ≫ TΦ in the PNJL model, while Panel (b) shows that Tσ ≈ TΦ in

the EPNJL model. Thus, the entanglement vertex yields a stronger correlation

between the chiral and deconfinement transitions also at θq = π/3. Figure 7.6(a)

shows θq dependence of the phase ϕ of the Polyakov loop Φ for four cases of

T/Tc = 0.97, 1.01, 1.04, and 1.10 where Tc = 173 MeV is the critical tempera-

ture at µq = 0. The EPNJL results (curves) well reproduce the LQCD data [36]
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Figure 7.6: Phase ϕ of the Polyakov loop as a function of (a) θq and (b) T .
LQCD data [34; 36] are plotted by symbols. Curves represent results of EPNJL
calculations. In panel (b), four cases (red, green, blue, pink and light-blue) from
top to bottom represent results of θq = 0, 0.8, π/3, and 1.2, respectively. The
pink line terminates at T = TRW, since ϕ is singular at T > TRW in the case of
θq = π/3.
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(symbols). It is found from both results that ϕ is continuous at θq = π/3 in the

low-T side T ≤ TRW = 1.07Tc, but it is discontinuous at θq = π/3 in the high-T

side T > TRW. Hence, the RW phase transition occurs at θq = π/3 for T > TRW.

Figure 7.6(b) shows T dependence of ϕ for four cases of θq = 0, 0.8, π/3, and 1.2.

The EPNJL results (curves) also well reproduce the LQCD data [34] (symbols).

For θq < π/3 the phase ϕ tends to zero as T increases, while for θq > π/3 it

does to −2π/3 as T increases. For θq = π/3, the RW phase transition occurs at

T > TRW and then the phase ϕ is singular there, so that the pink line terminates

at T = TRW. In the high-T limit, the region (I) −π/3 < θq < π/3 has ϕ = 0

and the region (II) π/3 < θq < π does ϕ = −2π/3. Thus, the region (II) is a

Z3 image of the region (I), and the region (III) π < θq < 5π/3 is another Z3

image of the region (I). Figure 7.7 shows the phase diagram in the θq-T plane. In

the PNJL model, Tσ is much higher than TΦ, while both are close to each other

in the EPNJL model. The vertical dot-dashed lines at θq = π/3 mod 2π/3 are

the RW transition line and the Z3 images. The endpoint of the RW transition

line is located at T = TRW = 190 MeV in the PNJL model and at 185 MeV in

the EPNJL model. On the RW transition line at T > TRW, charge-conjugation

symmetry is spontaneously broken, so that θq-odd quantities are discontinuous,

while θq-even quantities have a cusp there as shown in Sec. 5.7. Thus, the θq-odd

quantities such as the phase ψ of the modified Polyakov loop Ψ = eiθqΦ are order

parameters of the RW phase transition. A current topic at imaginary µq is what

the order of the RW transition is at the endpoint T = TRW. The recent LQCD

simulations show that it is first-order for small and larger quark masses, but the

order is weakened and could be second-order at intermediate masses [68]. In the

PNJL model, the transition is first-order as shown in Fig. 7.4. The deconfinement

phase transition is first-order near the RW endpoint; the endpoint of the first-

order deconfinement transition line is second-order, and susceptibilities of several

quantities diverge simultaneously there. In the EPNJL model, such a first-order

deconfinement transition line does not appear or very short even if it does emerge,

since the deconfinement transition at the RW endpoint seems to be a very weak

first-order transition. Figure 7.8 shows results of the EPNJL model for the RW

phase transition. Panel (a) presents T dependence of the phase ψ of the mod-

ified Polyakov loop Ψ at θq = π/3 for three cases m0 = 5, 150, and 400 MeV.
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Figure 7.7: Phase diagram in θq-T plane. Panel (a) is the result of the standard
PNJL model with no entanglement vertex, while panel (b) is the result of the
EPNJL model with (α1, α2) = (0.2, 0.2). The solid (dashed) curves represent the
deconfinement (chiral) transition. The vertical dot-dashed lines denote the RW
transition lines. Lattice data are taken from Ref. [34].
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Figure 7.8: The RW phase transition in the EPNJL model. In panel (a), the
phase of the modified Polyakov loop at θq = π/3 is plotted as a function of T
for three cases of light, intermediate, and heavy quark masses. Panel (b) shows
the phase diagram of the RW phase transition in the m0-T plane. The solid
(dotted) curve shows that the RW phase transition on the boundary is first-order
(second-order).

The RW transition at the endpoint is first-order for m0 = 5 and 400 MeV, but

second-order for m0 = 150 MeV. In the limit of large m0, the transition is obvi-

ously first-order, since the quark contribution to Ω is suppressed and hence the

deconfinement transition is controlled by the Polyakov potential UΦ. Meanwhile,

the RW endpoint is always first-order in the PNJL model. Panel (b) shows the

phase diagram of the RW phase transition in the m0-T plane; charge-conjugation

symmetry is spontaneously broken above the curve, while it is preserved below

the curve. The solid (dashed) curve shows that the RW phase transition is first-

order (second-order) on the boundary. The critical mass m0(1 → 2) [m0(2 → 1)]

from the first-order (second-order) to the second-order (first-order) transition is

rather sensitive to the numerical accuracy. In the present numerical accuracy,

the critical masses are m0(1 → 2) = 50± 5 MeV and m0(2 → 1) = 180± 5 MeV.

This m0 dependence of the order of the RW endpoint is consistent with the recent

LQCD result [68]. Figure 7.9 shows the phase diagram of the EPNJL model in

the whole µ2
q-T . The solid, dotted, dashed and dot-dashed curves represent the

first-order chiral phase transition, the crossover chiral transition, the crossover

deconfinement transition and the RW transition, respectively. The transition line

(dashed and solid curves) in the region −0.0375 < µ2
q < 0.08 [GeV2] is expressed
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Figure 7.9: Phase diagram in the µ2
q-T plane in the EPNJL model. The left (right)

half-plane corresponds to imaginary (real) µq. The solid, dotted, dashed and
dot-dashed curves represent the first-order chiral phase transition, the crossover
chiral transition, the crossover deconfinement transition and the RW transition,
respectively. Point C (E) is an endpoint of the first-order chiral (RW) transition.
Lattice data are taken from Ref. [34].
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as

T = c0 + c1µ
2
q + c2µ

4
q, (7.4)

where c0 = 0.173 [GeV], c1 = −0.377 [GeV−1], and c2 = −2.71 [GeV−3]. Point

E is an endpoint of the RW transition, while point C is a CEP of the first-order

chiral phase transition. The CEP is located at (µq, T ) = (160MeV, 161MeV) in

the EPNJL model which is smaller µq and larger T than the PNJL model result

at (327MeV, 124MeV). Thus the entanglement vertex yields a drastic effect on

the phase diagram at real µq.

7.3.2 Isospin chemical potential

The parameter set in the EPNJL model was determined in the previous sub-

section so as to reproduce LQCD data at zero and imaginary µq. The validity

of the parameter set is confirmed in this subsection for real and imaginary µiso

where LQCD data are available. The formalism of the PNJL model at finite µiso

is shown in Chapter 6. The thermodynamic potential of the EPNJL model is

obtained with Gs replaced by Gs(Φ) in the potential (6.21) of the PNJL model.

First, we consider the thermal system with imaginary µiso = iθiso/β. In Fig. 7.10,

 0

 0.5

 1

 0  0.2  0.4  0.6

σ/
σ 0

, |
Φ

|

T(GeV)

PNJL
EPNJL

Figure 7.10: T dependence of the chiral condensate and the Polyakov loop at
θiso = π/2 and µq = 0. See Fig. 7.2 for the meaning of lines.
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we show T dependence of σ and Φ at θiso = π/2. For θiso = π/2, the u-quark

loop contribution to the potential is nearly canceled by the d-quark loop contri-

bution, so that the temperature dependence of the quark part of the potential

becomes quite weak. In the PNJL model with no entanglement vertex, T de-

pendence of σ is controlled by the quark part of the potential, while that of Φ

is controlled by the Polyakov potential UΦ. Therefore, the critical temperature

Tσ of the chiral crossover transition is about twice the critical one TΦ of the de-

confinement first-order transition, i.e., Tσ ≈ 2TΦ in the PNJL model. LQCD

data shows that the two transition are first-order and coincide with each other

at θiso = π/2 [52]1 This indicates strong entanglement between the chiral restora-

tion and the deconfinement transition. In the EPNJL model, the entanglement

vertex induces a strong correlation between the chiral restoration and the decon-

finement transition. Actually, as shown by the solid curves in Fig. 7.10, both

the transitions are first-order and Tσ ≈ TΦ. The EPNJL result is then consis-

tent with the LQCD data. Next, we consider the thermal system with real µiso.

Figure 7.11 shows T dependence of the Polyakov loop Φ at (a) µiso = 0.96µc
iso

and (b) 1.4µc
iso, and that of the charged pion condensate π at (c) µiso = 1.4µc,

where π is normalized by the value π0 at T = 0 and µc
iso is the critical µiso of the

pion-superfluidity phase transition, that is µc
iso = Mπ/2 as shown in Secs. 6.2 and

6.4. LQCD data [51] are plotted by plus (+) symbols with 10% error bar coming

from determining Tc. The EPNJL model well reproduces all the LQCD data with

no free parameter. Figure 7.12 shows the phase diagram in the µiso-T plane at

µq = 0. The solid and dotted lines stand for the first-order and second-order pion-

superfluidity transitions, respectively. The meeting point between the first-order

and second-order transition lines is a tricritical point (TCP). The crossover chiral

and deconfinement transitions agree with each other, as shown by the dashed line.

The EPNJL result reproduces LQCD results [51] on the chiral and deconfinement

transitions and also on the pion-superfluidity transition. The TCP is located at

(µiso, T ) = (95MeV, 170MeV) in the EPNJL model which is smaller µiso than

the PNJL result at (401MeV, 171MeV). The entanglement vertex largely thus

affects the location of the TCP.

1The LQCD data is the eight-flavor case since the two-flavor case is not available.

110



7. Entanglement PNJL Model

 0

 0.5

 1

 0.1  0.2  0.3

Φ

T (GeV)

(a)

PNJL 
EPNJL
LQCD

 0

 0.5

 1

 0.1  0.2  0.3

Φ

T (GeV)

(b)

PNJL 
EPNJL
LQCD

 0

 0.5

 1

 0.1  0.2  0.3

π/
π 0

T (GeV)

(c) PNJL 
EPNJL
LQCD

Figure 7.11: T dependence of the Polyakov loop Φ at (a) µiso = 0.96µc
iso and (b)

1.4µc
iso, and that of the charged pion condensate π at (c) µiso = 1.4µc

iso. The solid
(dotted) curve represents the EPNJL (PNJL) result. LQCD data are taken from
Ref. [51].
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Figure 7.12: Phase diagram in the µiso-T plane at µq = 0 in the EPNJL model.
The solid (dotted) line represents the first-order (second-order) pion-superfluidity
transition, while the dashed line does the chiral and deconfinement crossover
transition. Point T is a tricritical point (TCP). LQCD data are taken from
Ref. [51].
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7.3.3 Small real quark chemical potential

Finally, we test the reliability of the EPNJL model by comparing the model

results with LQCD data on the equation of state (EOS) at real µq. For small real

µq, LQCD data evaluated by the Taylor expansion [70] is available. Figure 7.13

shows (a) the pressure p, (b) the energy density ε at µq = 0 and (c) the quark-

number density ρq at µq = 0.8Tc. For p and ε, LQCD data [69] provide only the

deviations, p − p0 and ε − ε0, from T0 = 0.9Tc. Hence, p0 and ε0 at T = T0 are

evaluated in the free-gas model of hadrons with vacuum masses. This procedure

is reliable at T = 0.9Tc, because p and ε are dominated by the hadron components

there. The p and ε thus estimated from the LQCD data [69] are shown by the

dots in panels (a) and (b); note that in these panels p and ε are normalized by

the values in the Stefan-Boltzmann limit. In panel (c), ρq is nondimensionalized

by T 3. For all the quantities, the EPNJL results (solid lines) are more consistent

with LQCD data [69; 70] than the PNJL results (dashed lines) as shown in

Fig. 7.13. The entanglement interaction makes the chiral symmetry restoration

faster, so that the EPNJL model has rapid change in the quantities with T . Hence

the model reproduces the sharp change of LQCD result better than the PNJL

model. For ρq, however, the EPNJL model underestimates LQCD results [70] at

T < Tc, because the model has no hadronic excitation effects in the mean field

calculation. The hadronic excitations are considered as free gas for T < Tc where

hadrons have no decay modes. This approximation is discussed in Sec. 6.3.6

and the thermodynamic potential Ωq+h with hadronic excitations is expressed

in (6.34)-(6.36). Here we consider the nucleons with the physical mass and the

pions with the same mass Mπ = 280MeV as the LQCD calculation. The new ρq is

plotted by the dotted line up to Tc in panel (c). This line agrees with the LQCD

data at T < Tc. By considering the hadronic excitations, the EPNJL result is

consistent with LQCD data in all the regions.

7.4 Summary

We have extended the PNJL model by introducing an entanglement vertex de-

pending on the Polyakov loop phenomenologically. The effective vertex generates
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Figure 7.13: T dependence of (a) the pressure p and (b) the energy density ε at
µq = 0 and (c) the quark-number density ρq at µq/Tc = 0.8. The pressure and
the energy density are divided by the values in the Stefan-Boltzmann limit, while
the net quark-number density is divided by T 3. The solid (dashed) lines show
the EPNJL (PNJL) result. The LQCD data, shown by points with error bars,
are taken from Ref. [69] in panels (a) and (b) and from Ref. [70] in panel (c).
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entanglement interactions between the chiral condensate σ and the Polyakov loop

Φ. As a result of the strong entanglement, the chiral and deconfinement tran-

sitions occur simultaneously. The functional form of the entanglement vertex

is determined by respecting the extended Z3 symmetry and charge-conjugation

symmetry. The strength of the entanglement vertex is determined by LQCD data

at imaginary quark chemical potential µq, and the validity of this model building

is confirmed by LQCD data at real and imaginary isospin chemical potentials µiso.

The EPNJL model can reproduce the LQCD data in all the regions. Furthermore

the model reproduces the LQCD data evaluated by the Taylor expansion at small

real µq. The entanglement vertex yields a drastic effect on the location of the

critical endpoint of the chiral transition at real µq. It is reported in Ref. [71]

that the EPNJL model is also consistent with LQCD data in the case with the

strong magnet field, which is relevant to magnetars of the neutron stars and

non-central heavy-ion collisions. The present phenomenological approach seems

to be complementary to the exact renormalization-group approach. It is highly

expected that the functional form and the strength of the entanglement vertex

will be determined in future by the theoretical approach.
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Chapter 8

Conclusions

In this thesis, we have proposed a new strategy to investigate the QCD phase dia-

gram at finite quark chemical potential µq. Study of the phase diagram is relevant

for the early universe, compact stars and heavy-ion collisions. The first-principle

lattice QCD (LQCD) suffers from the sign problem at real µq where the integrand

of the partition function is complex and LQCD techniques break down. Therefore

the QCD phase diagram at finite µq is unclear. There are some regions with no

sign problem, imaginary µq and real and imaginary isospin chemical potentials

µiso. We then propose an analytic continuation from the regions with no sign

problem to the real µq region by using an effective model that can evaluate the

QCD partition function in all the regions. The Polyakov-loop extended Nambu–

Jona-Lasinio (PNJL) model is an effective model that can do this. We showed

that the PNJL model reproduces LQCD data qualitatively in all the regions with

no sign problem, but not quantitatively. We then extended the PNJL model in

order to reproduce the LQCD data quantitatively. First, we investigated the sign

problem by using the PNJL model. We evaluated the average phase factor as an

indicator of the sign problem. The severe region where the factor is small or zero

spreads widely over the phase diagram. It is thus difficult to investigate the phase

diagram by LQCD directly. In order to circumvent this difficulty, we proposed

the strategy of the analytic continuation from the regions with no sign problem

to the real µq region. For imaginary µq, the QCD partition function is a function

of µ2
q and the physical quantities can be analytically continued from imaginary

µq to real µq. The partition function with real µq is obtained mathematically
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from that with imaginary µq through the Fourier transformation. For real and

imaginary µiso, the validity of the strategy is confirmable by comparing LQCD

data in both the regions. The real µiso region is also relevant to neutron stars

and relativistic heavy-ion collisions. Therefore all the regions are relevant to the

phase diagram at real µq. We investigated the imaginary µq region and the real

and imaginary µiso regions by using the PNJL model. For all the regions, the

PNJL model reproduces LQCD data qualitatively. However, there is a sizable

difference between the PNJL results and the LQCD data for the coincidence of

the chiral and deconfinement transitions. The two transitions coincide with each

other in LQCD, but in the PNJL model. Thus the correlation between the two

transitions is weaker in the PNJL model than in LQCD. In order to solve this

problem, we extended the PNJL model by introducing an entanglement vertex

depending on the Polyakov loop. The effective vertex generates entanglement

interactions between the chiral condensate and the Polyakov loop. As a result

of the strong entanglement, the chiral and deconfinement transitions occur si-

multaneously. The new model reproduces the LQCD data quantitatively in all

the regions with no sign problem. Furthermore the model reproduces the LQCD

data evaluated by the Taylor expansion at small real µq. Finally we predicted

the QCD phase diagram with the new model. The entanglement vertex yields a

drastic effect on the location of the critical endpoint of the chiral transition at

real µq.
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