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Abstract

In the last decade important relations between the Laplacian eigenvalues and the eigenvectors of
graphs and several other graph parameters were discovered. Spectral clustering uses eigenvalues and
eigenvectors of matrices associated with graphs to �nd clusters in the graphs and is widely used to
analysis the social networks, web graphs, communication networks etc. In this thesis, we present
some of the results and discuss their consequences in spectral clustering and graph energy. We mainly
consider normalized Laplacian matrix to �nd the bipartitions of graphs. Normalized cut introduced by
Shi and Malik in 2000 also play a vital role in graph partitioning problems. There is a close relationship
between the second smallest eigenvalue of normalized Laplacian matrix and the normalized cut. We
compare these two clustering methods and discuss their performances. Besides that we also consider
the Laplacian energy of directed graphs, which is also an application of the Laplacian matrices.

First we review the basic terminologies and key results related to Laplacian matrices, which will
be used throughout this thesis.

Next we discuss the properties of minimum normalized cut introduced by Shi and Malik for image
segmentations. Several authors considered the applications of normalized cut for graph partitioning
and less attention is paid for theoretical explanation of this measure compare with isoperimetric and
Cheeger constant. Here we use the notation Mcut(G) to represent the minimum normalized cut and
derive formula for Mcut(G) of some basic classes of graphs such as paths, cycles, complete graphs,
double trees and cycle cross paths and some complex graphs such as lollipop type graphs LPn;m and
LP 0

n;2, roach type graphs Rn;k, weighted paths Pn;k and double tree cross paths.
Next we discuss three matrices associated with graphs called di�erence Laplacian matrix, nor-

malized Laplacian matrix and signless Laplacian matrix and review some known results. Specially
we discuss the boundary values of the second smallest eigenvalue of the di�erence and normalized
Laplacian matrices using isoperimetric number and Cheeger constant. Then we derive eigenvalues
and eigenvectors of di�erence, normalized and signless Laplacian matrices of paths and cycles using
circulant matrices and give an alternative proof for the eigenvalues of an adjacency matrix of paths
and cycles using Chebyshev polynomials. Even most of these results are well known results, we try
to summarize them, providing uniform proofs in a simple way.

Next we address the problem of �nding graphs which perform poorly on spectral methods. In 1973,
Fiedler discussed the possibility of graph partitioning using the sign patterns of second eigenvector of
di�erence Laplacian matrix. Fiedler’s investigation was extended by Davies et al. in 2001 using nodal
domain theorem. We use the term Lcut(G) to represent the minimum normalized cut of partitions
produced by the second eigenvector of normalized Laplacian matrix. Final goal of studying Mcut(G)
and Lcut(G) is to investigate the cases, where spectral method perform poorly. More precisely, we give
counter examples of graphs and conditions, where Mcut(G) and Lcut(G) produce di�erent clusters
on graphs. Especially, we investigate the graphs Rn;k; LPn;m; LP 0

n;2 and �nd conditions, where these
two measures make di�erent clusters. We also noticed that the second eigenvector of double tree is
an odd vector and therefore we always have Mcut(DTn) = Lcut(DTn). This is an exception for the
counter examples we discussed under this chapter.

Next we address the problem of �nding directed graphs with minimum Laplacian energy. First, we
de�ne Laplacian energy of a directed graph as the sum of squares of eigenvalues of a Laplacian matrix
de�ned by using outdegrees of vertices. Then we derive a formula for Laplacian energy of a simple
directed graph and show that Laplacian energy of directed graphs can be represented as a sum of
squares of outdegrees. Then we consider the class P (�) which consists of non isomorphic graphs with
energy less than some positive value � and �nd 47 non isomorphic directed graphs for class P (10).
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Since we can represent the Laplacian energy as a sum of squares of outdegrees of vertices, it motivates
us to consider the problem of minimizing sum of squares of degrees in order to �nd the graph with
minimum Laplacian energy. Especially, we studied MMO algorithm introduced by Asahiro 2006, to
minimize the maximum outdegree of a directed graph and discuss how far it is applicable to solve our
problem and give counter examples, where it is failed. Since the Laplacian energy formula, which we
derived is a strict convex function, our problem can be solved by �nding optimal semi matching in
the bipartite graph.

Finally, we demonstrate the experimental results about spectral clustering on directed graphs.
Most real world networks such as network communications, web graphs, social networks etc. are
directed and it is worth to analyze the clustering problem in directed graphs. Since a graph con-
structed by hyper links in web-pages is a directed graph, its adjacency matrix A is asymmetric and
does not always have real eigenvalues. Therefore we analyzed the appropriateness of the spectral
clustering algorithms on directed graphs. We extend the undirected spectral clustering algorithms to
directed graphs using the directed Laplacian matrix introduced by Fan Chung in 2005 and k-means
algorithms. Then we compare clustering algorithms based on random walk models and symmetrized
transformations. Further we propose an algorithm based on merging techniques. First we apply the
directed clustering algorithm and �nd initial k0 number of clusters and then we merge clusters by
minimizing normalized cut introduced by Zhou et al. in 2005 for directed graphs until we receive
required number of clusters.
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1 Introduction

1.1 Introduction

Clustering is a common technique in multivariate data analysis, data mining, machine learning etc.
The goal of clustering or partitioning problem is to �nd groups such that entities within the same group
are similar and di�erent groups are dissimilar. In the graph partitioning problem much attention is
given to seek the precise criteria to obtain a good partition. Clustering methods, which use eigenvalues
and eigenvectors of matrices associated with graphs are called spectral clustering and widely used for
graph partitioning problems. Specially, eigenvalues and eigenvectors of Laplacian matrices play a
vital role in graph partitioning problems. In 1973, Fiedler named the second smallest eigenvalue �2

of di�erence Laplacian matrix as the algebraic connectivity of a graph [16]. In 1975, Fiedler showed
that we can decompose a connected graph G into two connected components using only the sign
structure of an eigenvector related to the second smallest eigenvalue [17]. Fiedler’s investigation was
extended by Davies in 2001 using discrete nodal domain theorem [14]. Laplacian matrix, normalized
Laplacian matrix and adjacency matrix with negative non diagonal entries can be used with the nodal
domain theorem. Nodal domain theorem is useful to identify the number of connected sign graphs
of a given graph based on their eigenvectors and eigenvalues. In 1984, Buser investigated the graph

invariant quantity i(G) = min
U

cut(U; V n U)
jU j

, which considered the relation between the size of the

cut and the size of the separated subset U [8]. He called it the isoperimetric number i(G) and the
optimal bisection was given by the minimum i(G). Later in 1991, Mohar surveyed the spectrum
of di�erence Laplacian matrix of graphs with special emphasis on the second smallest di�erence
Laplacian eigenvalues �2(G) and its relation to numerous graph invariants, including connectivity,
expanding properties, isoperimetric number, maximum cut, independent number, genus, diameter,
mean distance, and bandwidth-type parameters of a graph [35]. Clustering techniques discussed by
Wu and Leahy was based on the network ow theory [47]. Minimum cuts in an undirected adjacency
graphs are used for partitioning data on large graphs. However this method can be extended to �nd
the partitions in directed network graphs and it is beyond this papers work.

In 1995, Guattery and Miller considered two spectral separation algorithms that partition the
vertices based on the values of their corresponding entries in second eigenvector and provide some
counter examples for which each of these algorithms produces poor separators [18, 19]. They used
eigenvector based on the second smallest eigenvalue of the di�erence Laplacian matrix as well as a
speci�ed number of eigenvector corresponding to the smallest eigenvalues. Finally they used general-
ized version of spectral methods that allow to use more than a constant number of eigenvector and
showed that there are some graphs for which any of the above spectral algorithms perform poorly.
We follow their method especially about graph automorphism and even-odd eigenvector theorem for
concrete classes of graphs such as roach graphs, double-trees and double tree cross paths. We also
describe these properties using formal notations of graphs.

In 1997, Fan Chung discussed most important theories and properties regarding the eigenvalues
of normalized Laplacian matrices of graphs and its applications to graph separator problems[10]. She
considered partitioning problem using Cheeger constant and derived fundamental relations between
eigenvalues and the Cheeger constant. In 2000, Shi and Malik proposed a measure of disassociation
called normalized cut for image segmentations [42]. This measure computed the cut cost as a fraction
of total edge connections. The normalized cut is used to minimize the disassociation between groups
and maximize the association within groups. However minimization of normalized cut criteria is NP
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hard. Therefore approximate discrete solutions were given. Solution to the minimization problem of
normalized cut was given by the second smallest eigenvector of the generalized eigensystem, (D �
W )y = �Dy, where D is the diagonal matrix with vertex degrees and W is the weighted adjacency
matrix. They used minimum normalized cut value as a splitting point and �nd bisection using second
smallest eigenvector. They also noted that eigenvectors are well separated and this kind of splitting
point is very reliable. Normalized cut introduced by Shi and Malik is useful for several areas [42].
This measure become interested not only for image segmentation but also for other authors who are
interested in network theories and statistics. In 2001, Andrew et al. analyzed the clustering algorithms
introduced by Shi and Malik and provided some conditions under which the algorithms work well
using matrix perturbation theory [4]. Normalized cut problems were analyzed by Ying Du et al. and
provided an approximation algorithm for the minimum normalized cut problem [15]. The theoretical
and empirical insight into the nature of the three partitioning measures called minimum, average
and normalized cut in terms of the underlying image statistics has been studied by Soundararajan
and Sarkar in 2003 [44]. They showed that the normalized cut can be expressed as a sum of two
beta distributed random variables, whose parameters are functions of the partition classes. Recently
Saralees Nadarajah [37, 36] studied normalized cut from the statistical point of view and derived
expressions for mode of the normalized cut. In this thesis, we review several properties of normalized
cut and �nd concrete formula for minimum normalized cut (Mcut(G)) of some classes of graphs
even this is a NP-hard problem. We also �nd counter example graphs, where clustering based on
normalized Laplacian and normalized cut perform di�erently.

Eigenvalues of Laplacian matrices play a vital role in mathematical chemistry. Especially in the
area of graph energy. Energy has been studied in mathematical perspective as well as physical per-
spective for several years ago by several authors ([32, 13, 20, 27, 26, 7, 22]). Research on the energy
concept dated back to 1940. Coulson evaluated the total energy of � electrons in an unsaturated
hydrocarbon molecule [12]. Later, this energy is represented by the sum of absolute values of eigen-
values of adjacency matrices of molecular structure by Ivan Gutman. At the beginning, attention
is paid to adjacency matrices and later eigenvalues of several kinds of matrices have been studied,
of which Laplacian matrix attracted the greatest attention. Several criteria related to the energy of
graphs such as energy change due to edge addition, maximal energy, equal energy has been considered
by [3],[27] and [7]. Since molecular graphs have undirected structure, energy and Laplacian energy
concept originally developed for undirected graphs. Recently, few authors considered the energy of
directed graphs. In 2009, Adiga et al. considered Laplacian energy of directed graphs using skew
Laplacian matrix, in which degree of a vertex is the sum of its outdegree and indegree [2, 1]. They
extended undirected Laplacian energy to directed graphs by using energy de�nitions given by [22] and
[28]. Further Song et al. use Laplacian energy to �nd the semantic structures of the image hierarchies
of graph, which is an di�erent approach to arranging communities in directed graphs [43]. Most
algorithms are developed to minimize the maximum outdegree or maximize the minimum outdegree
of an oriented graph. Here we �nd oriented graph with minimum sum of squares of outdegrees and
our approach is based on the Laplacian energy of directed graphs, which is di�erent from the existing
approaches.

Extension of undirected clustering algorithms to directed graphs has been considered by several
authors. Most real world networks are directed and it is still an unsolved problem for �nding e�cient
clustering algorithms for the directed graphs. In 1999, Kleinberg introduce the framework called
’authority’ and ’hub’, which separates web page into 2 categories using ranking algorithms, which
converges to spectral methods that uses principal eigenvectors of AAT and ATA [25]. Di�erent
approach called page rank algorithm is used by the Google search engine introduced by Page et al.
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with eigenvectors of A itself [40]. In 2005, Zhou et al. used directed spectral clustering method to
separate the university web pages into student pages and non-student pages [50]. They extended the
normalized cut introduced by Shi and Malik for image segmentation to directed clustering [42]. They
used directed Laplacian to �nd the 2 clusters by using second eigenvector and then they extend the
algorithm up to k clusters by minimizing normalized cut values. Leicht and Newman also introduced
a modularity function for directed graphs [29]. They �rst divide the network into two groups using
the second eigenvector of the modularity matrix and then divide those groups further by repeated
bisection while maximizing the modularity function. The process stops when they reach a point at
which further division does not increase the total modularity of the network. This method always use
the second eigenvector of modularity matrix for computation and remaining eigenvectors are useless.
We extend undirected spectral clustering algorithms to directed graphs by using directed Laplacian
matrices. In our method, we �rst apply directed clustering algorithms to �nd the initial number of
clusters and then merge clusters by minimizing directed normalized cut.

In this thesis, we review the known results about di�erence Laplacian, normalized Laplacian and
signless Laplacian matrices and discuss their applications in the area of graph partitioning and graph
energy. We use the term Mcut(G) to represent minimum normalized cut and Lcut(G) to represent
normalized cut of the bipartition created by the second eigenvector of normalized Laplacian matrix.
This thesis is organized as follows.

Chapter 1 presents basic terminologies and key results related to di�erence Laplacian, normalized
Laplacian and signless Laplacian matrices. We also de�ne graphs using formal notations, which will
be used throughout this thesis.

In Chapter 2, we review the properties of Mcut(G) of graphs and derive formula for Mcut(G)
of some basic classes of graphs such as paths, cycles, complete graphs, double trees and cycle cross
paths and some complex graphs such as lollipop type graphs LPn;m, LP 0

n;2, roach type graphs Rn;k,
weighted paths Pn;k and double tree cross paths.

In Chapter 3, we survey the known results about di�erence Laplacian, normalized Laplacian and
signless Laplacian matrices. Then we derive eigenvalues and eigenvectors of paths and cycles using
three kinds of Laplacian matrices introduced above by using circulant matrices and also give an
alternative proof for eigenvalues of adjacency matrices of paths and cycles using Chebyshev formulas.

In Chapter 4, we provide counter examples of graphs on which spectral techniques perform poorly
compare with the normalized cut. Especially, we �nd the conditions for Mcut(G) and Lcut(G) to have
di�erent values on the graph Rn;k; LPn;m and LP 0

n;2. We also noticed that the second eigenvector of
the double tree is odd and Mcut(DTn) = Lcut(DTn).

In Chapter 5, we de�ne Laplacian energy of directed graphs using sum of squares of eigenvalues of
Laplacian matrices de�ned by using outdegrees of vertices. Then we obtain a formula for Laplacian
energy of simple directed graphs. Next we address the problem of �nding oriented graphs with
minimum Laplacian energy. We review the existing algorithms for minimizing maximum outdegree
of directed graphs such as MMO algorithm and investigate the appropriateness to our problem. We
also study bipartite semi matching problems and by joining these two methods, we �nd the solutions
to our problem.

In Chapter 6, we demonstrate experimental results on undirected spectral clustering and directed
clustering methods. We extend undirected clustering methods to directed graphs and compare resulted
clusters. We also apply the directed clustering methods with merging techniques by minimizing
normalized cut.
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1.2 Preliminaries

An undirected graph is an ordered pair G = (V (G); E(G)), where V (G) is a �nite set, elements of
which are called vertices, and E(G) is a �nite set of unordered pairs of distinct vertices, called edges.
We represent V (G) as V (G) = fv1; v2; : : : ; vng and an edge set E(G) as E(G) = f(vi; vj)jvi; vj 2
V (G) and vi; vj are adjacentg. For simplicity, sometimes we use V instead of V (G) and E instead of
E(G). For a given subset S � V (G), jSj represent the size of the set S. For a subset A � V (G), we
represent the set of vertices not belongs to A as V n A = fvi j vi =2 Ag. A graph G = (V (G); E(G)),
which has directed edges or arcs is called a directed graph.

De�nition 1.1 (Adjacency matrix of an undirected graph)
The adjacency matrix A(G) = (aij) of an undirected graph G is the n � n matrix whose entries are
given by

aij =
�

1 if vi and vj are adjacent,
0 otherwise.

De�nition 1.2 (Adjacency matrix of a directed graph)
The adjacency matrix A(G) = (aij) of a directed graph G is the n�n matrix whose entries are given
by

aij =
�

1 if there exists an arc from vi to vj ,
0 otherwise.

De�nition 1.3 (Simple directed graph)
A directed graph having no multiple edges or self loops is called a simple directed graph. That is
aij 2 f0; 1g and aij = 1 ) aji = 0.

De�nition 1.4 (Symmetric directed graph)
A graph in which each edge is bidirected is called a symmetric directed graph. That is aij = 1 )
aji = 1.

De�nition 1.5 (Degree)
The degree of a vertex vi is de�ned as di =

nX
j=1

aij . Minimum and maximum degree of a graph G is

denoted by �(G) and 4(G).

De�nition 1.6 (Degree Matrix)
The diagonal matrix of G is denoted by D(G) = diag(d1; d2; : : : ; dn), where di is the degree of a vertex
vi.

Note. For simplicity, sometimes we use D instead of D(G).

De�nition 1.7 (Volume)
The volume of a graph G = (V (G); E(G)) is denoted by vol(G) =

jV (G)jX
i=1

di, is the sum of the degrees

of vertices in V (G). Volume of a subset A � V (G) is denoted by vol(A) =
X
i2A

di.
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De�nition 1.8 (Edge Connectivity)
The edge connectivity of a graph G is denoted by �0(G), is the minimum number of edges needed to
remove in order to disconnect the graph. A graph is called k-edge connected if every disconnecting
set has at least k edges.

De�nition 1.9 (Cartesian product)
The Cartesian product of graphs G and H is denoted by G2H = (V (G2H); E(G2H)), where
V (G2H) = V (G) � V (H) and E(G2H) = f(u1; v1); (u2; v2) j u1 = u2 and (v1; v2) 2 E(H) or v1 =
v2 and (u1; u2) 2 E(G)g.

Example 1.1 (Cartesian product)
Let C3 be a cycle graph with V = fv1; v2; v3g and P2 be a path graph with V = fx1; x2g. Then the
Cartesian product C32P2 is shown in the Figure 1.

v1
,x1

v3
,x1

v1
,x2

v2
,x2

v3
,x2

v2
,x1

Figure 1: Cartesian product of cycle and path (C32P2).

Lemma 1.1 (Xu and Yang 2006 [48])
Let G1 and G2 be graphs and �(G1) and �(G2) be minimum degrees of G1 and G2. Then G12G2

�=
G22G1 and �(G12G2) = �(G1) + �(G2).

Theorem 1.1 (Xu and Yang 2006 [48])
If G and H are nontrivial graphs, then �0(G2H) = minf�0(G)jV (H)j; �0(H)jV (G)j; �(G) + �(H)g.

Example 1.2 (Possibility of �0(G2H) < �(G) + �(H).)
The graph G shown in the Figure 2(a) has �0(G) = 1; �(G) = 2 and the graph H shown in the
Figure 2(b) has �0(H) = 1; �(H) = 1. Then �(G) + �(H) = 3. The graph G2H shown in the
Figure 2(c) has �0(G2H) = 2. For this graph, we have �(G) + �(H) > �0(G2H).

De�nition 1.10 (Diameter)
Let G = (V (G); E(G)) be a graph. The distance between two vertices vi; vj 2 V (G) of the graph G
is denoted by dist(i; j) is the length of a shortest path between vertex vi and vj . Maximum distance
between any pair of vertices of the graph is called diameter and denoted by diam(G).
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(a) G (b) H (c) G2H

Figure 2: Edge connectivity for G2H.

De�nition 1.11 (Permutation matrix)
Let G = (V (G); E(G)) be a graph. The permutation � de�ned on V (G) can be represented by a
permutation matrix P = (pij), where

pij =
�

1 if vi = �(vj),
0 otherwise.

De�nition 1.12 (Automorphism)
Let G = (V (G); E(G)) be a graph. Then a bijection � : V (G) ! V (G) is an automorphism of G if it
preserves the adjacency relation of G. In other words automorphisms of G are the permutations of a
vertex set V (G) that maps edges onto edges.

Proposition 1.1 (Biggs [6])
Let A(G) be the adjacency matrix of a graph G, and P be the permutation matrix of permutation �
de�ned on V (G). Then � is an automorphism of G if and only if PA = AP .

(Proof) Let vh = �(vi) and vk = �(vj). Then we have (PA)hj =
nX
l=1

phlalj = aij and (AP )hj =

nX
l=1

ahlplj = ahk. Consequently, AP = PA if and only if vi and vj are adjacent, whenever vh and vk

are adjacent. That is if and only if � is an automorphism of V (G).
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De�nition 1.13 (Weighted graph)
A weighted undirected graph G = (V (G); E(G); w), where w is a function from the edge set to the
real numbers.

De�nition 1.14 (Weighted adjacency matrix)
The weighted adjacency matrix W = (wij) is de�ned as

wij =
�
w(i; j) if (i; j) 2 E(G),
0 otherwise.

The degree di of a vertex vi of a weighted graph is de�ned by di =
nX
j=1

wij . Unweighted graphs are

special cases, where all edge weights are 0 or 1.

De�nition 1.15 (Graph cut)
A subset of edges which disconnects the graph is called a graph cut. Let G = (V (G); E(G); w) be a
weighted graph and W = (wij) the weighted adjacency matrix. Then for A;B � V and A \ B = ;,

the graph cut is denoted by cut(A;B) =
X

i2A;j2B
wij .

De�nition 1.16 (Isoperimetric number)
The isoperimetric number i(G) of a graph G of order n � 2 is de�ned as

i(G) = minfcut(S; V n S)
jSj

; S � V (G); 0 < jSj � n

2
g:

De�nition 1.17 (Cheeger constant-edge expansion)
Let G = (V (G); E(G)) be a graph. For a non empty subset S � V (G), de�ne

hG(S) =
cut(S; V n S)

min(vol(S); vol(V n S))
. Then the Cheeger constant(edge expansion) hG is de�ned as

hG = min
S
hG(S).

De�nition 1.18 (Cheeger constant-vertex expansion)
Let G = (V (G); E(G)) be a graph. For a non empty subset S � V (G), de�ne

gG(S) =
vol(�S)

min(vol(S); vol(V n S))
, where �S = fv =2 S : (u; v) 2 E(G); u 2 Sg. Then the Cheeger

constant(vertex expansion) gG is de�ned as gG = min
S
gG(S).

Remarks. Here we use notation �S to represent the vertices belong to the set V n S, where each
vertex is an endpoint of the edge cut set. This notation is di�erent from the �(G), which we use to
represent the minimum degree of a graph.

De�nition 1.19 (Weighted di�erence Laplacian)
The weighted di�erence Laplacian L(G) = (lij) is de�ned as

lij =

8<: di � wii if vi = vj ,
�wij if vi and vj are adjacent and vi 6= vj ,
0 otherwise.
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This can be written as L(G) = D(G) �W (G). For an unweighted graph, L(G) = D(G) �A(G).

De�nition 1.20 (Weighted normalized Laplacian)
The weighted normalized Laplacian L(G) = (‘ij) is de�ned as

‘ij =

8><>:
1 � wjj

dj
if vi = vj ,

� wijp
didj

if vi and vj are adjacent and vi 6= vj ,

0 otherwise.

Theorem 1.2
Let G be a graph. Then L(G) = D�1=2L(G)D�1=2.

(Proof) Let T = (tij)nn, L(G) = (luv)nn and L(G) = (‘uv)nn. Then de�ne

tij =
� 1p

di
vi = vj ,

0 otherwise,

and

lij =

8<: di if vi = vj ,
�1 (vi; vj) 2 E(G),
0 otherwise.

Let mij =
nX
k=1

tik:lkj , where i = 1; : : : ; n and j = 1; : : : ; n. If i 6= k then tik = 0 and mij = 0. If i = k

then mij = tii:lij . Now let ‘ij =
nX
k=1

mik:tkj . If k 6= j then tkj = 0. If k = j, then ‘ij = mij :tjj . Now

we can write ‘ij as ‘ij = (tii:lij):tjj =
1p
di
:lij

1p
dj

.

Now consider the following cases.

1. If i = j then ‘ii =
1p
di
:lii:

1p
di

= 1,

2. if (i; j) 2 E(G) then ‘ij =
1p
di
:(�1):

1p
dj

=
�1p
didj

,

3. Otherwise lij = 0 and ‘ij = 0.

By substituting T = D�1=2, we get L(G) = (‘ij) = D�1=2LD�1=2. Further we can deduce L(G) as
L(G) = D�1=2LD�1=2 = D�1=2(D �W )D�1=2 = I �D�1=2WD�1=2.

De�nition 1.21 (Signless Laplacian)
The weighted signless Laplacian SL(G) = (slij) is de�ned as

slij =

8<: di + wii if vi = vj ,
wij if vi and vj are adjacent and vi 6= vj ,
0 otherwise.

We write this as SL(G) = D +W .
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Matrix M M(P4)

Adjacency

0BB@
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

1CCA
Di�erence Laplacian

0BB@
1 �1 0 0

�1 2 �1 0
0 �1 2 �1
0 0 �1 1

1CCA

Normalized Laplacian

0BBB@
1 � 1p

2
0 0

� 1p
2

1 � 1
2 0

0 � 1
2 1 � 1p

2

0 0 � 1p
2

1

1CCCA
Signless Laplacian

0BB@
1 1 0 0
1 2 1 0
0 1 2 1
0 0 1 1

1CCA
Table 1: Matrices associated with graphs.

Example 1.3
The Table 1 shows adjacency matrix and three Laplacian matrices discussed in the above for path
graph P4.

Lemma 1.2
Let G = (V (G); E(G); w) be a weighted graph. Then the spectrum of L(G) and D�1L(G) are equal.

(Proof) D�1L = D�1(D � W ) = I � D�1W = D�1=2DD�1=2 � D�1=2D�1=2W = D�1=2(D �
W )D�1=2. Therefore D�1L(G) = L(G) and has the same spectrum.

Lemma 1.3
Let �i(i = 1; : : : ; n) be the eigenvalues of di�erence Laplacian matrix L(G) = D(G) � A(G). Then

for any regular graph of degree r, normalized Laplacian eigenvalues are �i =
�i
r
; (1 � i � n).

(Proof) L = (D � A) = rI � A. Then L(G) = D�1=2LD�1=2 =
I

r1=2
(rI � A)

I

r1=2
= I � A

r
. Then

rL(G) = L(G). If �i is an eigenvalue of L then it is an eigenvalue of rL(G). This implies that
�(L(G)) =

�i
r

(i = 1; : : : ; n).

Proposition 1.2
Let L(G) be the normalized Laplacian matrix of a graph G and P be the permutation matrix corre-
sponding to the automorphism � de�ned on V (G). If U is an eigenvector of L(G) with an eigenvalue
�, then PU is also an eigenvector of L(G) with the same eigenvalue.
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(Proof) From the de�nition of automorphism, PTL(G)P = L(G). Then L(G)U = �U implies that
(PTL(G)P )U = �U . Since PPT = I, we get L(G)PU = �(PU). If U is an eigenvector of L(G) with
an eigenvalue � then PU is also an eigenvector with the same eigenvalue.
Remarks.This result holds for any matrix associated with a graph under the automorphism de�ned
on a vertex set.

De�nition 1.22 (Odd-even vectors)
Let G = (V (G); E(G)) be a graph and � : V ! V be an automorphism of order 2. A vector x is called
an even vector if xi = x�(i) for all 1 � i � n and a vector y is called an odd vector if yi = �y�(i) for
all 1 � i � n, where n = jV (G)j.

Proposition 1.3
Let G be a graph, � be an automorphism of G with order 2 and P a permutation matrix of �. If an
eigenvalue of L(G) is simple then the corresponding eigenvector is odd or even with respect to �.

(Proof) Let � be an eigenvalue, U an eigenvector of L(G). If � is simple then PU and U are linearly
dependent. Then there exists a constant c such that PU = cU . Since P 2 = I for an automorphism of
order 2, IU = cPU = c2U and c = �1. Then PU = U or PU = �U . Hence an eigenvector U is odd
or even with respect to �.

De�nition 1.23
Let G = (V (G); E(G)) be a graph, jV (G)j = n and U = (u1; u2; : : : ; un) an eigenvector of L(G). We
de�ne

V +(U) = fi 2 V j ui > 0g;
V �(U) = fi 2 V j ui < 0g and
V 0(U) = fi 2 V j ui = 0g:

Lemma 1.4
Let L(G) be the normalized Laplacian of graph G and U = (ui); (i = 1; : : : ; n) the second eigenvector.
If U 6= 0 then V +(U) 6= ; and V �(U) 6= ;.

(Proof) The vector D1=2~1 is an eigenvector corresponding to the zero eigenvalue. Since the second
eigenvector U is orthogonal to D

1
2~1, (D

1
2~1)TU = 0 and

P
i

p
diui = 0. Since di > 0; U 6= 0, there

exist at least two values such that ui > 0 and uj < 0 for i 6= j. Hence V +(U) 6= ; and V �(U) 6= ;.

Lemma 1.5
Let G be a graph with an automorphism � of order 2. Let U = (u1; u2; : : : ; un) be an eigenvector and
�(U) = (u�(1); u�(2); : : : ; u�(n)). If U 6= 0 and �(U) = �U then V +(U) 6= ; and V �(U) 6= ;.

(Proof) Assume V +(U) = ;. If ui � 0; (i = 1; : : : ; n), �(U) = �U implies that u�(i) > 0. This
contradicts that V +(U) = ;. Similarly, if we assume that V �(U) = ; and ui � 0 for (i = 1; : : : ; n),
then �(U) = �U implies that u�(i) < 0. Then this contradicts that V �(U) = ;. If ui = 0; (i =
1; : : : ; n), then U = 0 and contradicts that U 6= 0.

Proposition 1.4 (Guattery [18])
Let Pn be a weighted path graph and L(Pn) be its normalized Laplacian matrix. For any eigenvector
X = (x1; x2; : : : ; xn) of L(Pn),
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1. x1 = 0 implies X = 0,

2. xn = 0 implies X = 0 and

3. xi = xi+1 = 0 implies that X = 0.

(Proof)

1. We will give the proof by induction. Let n = 2. Then L(P2)X = �X can be written as�
‘11 ‘12

‘21 ‘22

��
x1

x2

�
= �

�
x1

x2

�
:

Then we have ‘11x1 + ‘12x2 = �x1 = 0. If x1 = 0 then ‘12 6= 0 implies that x2 = 0, which
implies that X = 0. For the induction step, assume that the result holds for L(Pk). Next
consider the normalized Laplacian of Pk+1. The �rst entry of the equation of L(Pk+1)X = �X
is, ‘11x1+‘12x2 = �x1. Assume that x1 = 0. Then x2 = 0. Let Y = (y1; y2; : : : ; yk) be the vector
containing all entries of X except the �rst entry x1. Then x1 = 0 implies that x2 = y1 = 0. Y
is an eigenvector of a normalized Laplacian matrix which obtained by deleting �rst vertex and
edge of Pk+1. That is this represent the L(Pk) and satisfy the equation L(Pk)Y = �Y . Since
the result holds for all L(Pk) by induction step, x1 = 0 implies that Y = 0 and hence X = 0.

2. Same arguments implies the result for xn = 0.

3. Assume that X has two consecutive zeros xi = 0 and xi+1 = 0. If i = 1 or i+ 1 = n then X = 0
by above part 1 and 2 of the proposition. Otherwise, xi+1 = 0 implies that �rst i entries of X
are zero by the proof of the part 1 of the proposition. Similarly by a symmetric argument, last
n� i entries must also be zero, which gives X = 0.

Lemma 1.6 (Guattery [18])
For a path graph Pn, L(Pn) has n simple eigenvalues.

(Proof) Let U = (u1; u2; : : : ; un) and �U = (�u1; �u2; : : : ; �un) be the two eigenvectors of L(Pn) with the

eigenvalue �. From the Proposition 1.4, we have un 6= 0 and �un 6= 0. Let � =
�un
un

, where � 6= 0.

Consider L(Pn)(�U � �U) = �(�U � �U). The n-th element of (�U � �U) is (�unun � �unun) = 0. Then
�U = �U . Thus U and �U are linearly dependent, and hence � is simple.

Proposition 1.5
Let Pn = (Vn; En) be a path graph with a vertex set Vn = fv1; : : : ; vng. Let � be an automorphism
of order 2 de�ned on Vn. Then any second eigenvector U2 of L(Pn) is an odd-vector.

(Proof) Let �2 be the second smallest eigenvalue of L(Pn). Then �2 > 0 and U2 ? D1=2~1. Since
�2 is simple, any eigenvector U2 must be even or odd by the Proposition 1.3. Assume U2 is even.
Then PU2 = U2, where P is the permutation matrix of an automorphism �. From Rayleigh quotient,

�2 = min
U2?D1=2~1

UT2 L(G)U2

UT2 U2
. If n is even, then there exist two center vertices vn

2
and vn

2 +1. If (U2) n
2

=
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(U2) n
2 +1 = 0 then U2 = 0 by the Proposition 1.4. Hence (U2) n

2
� (U2) n

2 +1 6= 0. If n is odd, then there
exists a single center vertex vd n

2 e. If n is odd and U2 is even then the eigenvector entry corresponding
to the center vertex may be zero or non-zero. If this is zero, then we can change the signs of all entries
with index less than center vertex and form an odd vector such that PU2 = �U2. Thus it contradicts
the simplicity of the eigenvalues. Hence we assume that eigenvector entry corresponding to the center
vertex is non zero and its value is c. Now consider the vector X = (�c)~1 + U2, where c 6= 0. Then
the eigenvector entry corresponding to the center vertex of X is zero. Now consider

XTL(G)X
XTX

=
((�c)~1 + U2)TL(G)((�c)~1 + U2)

((�c)~1 + U2)T ((�c)~1 + U2)

=
c2:(~1TL(G)~1) + UT2 L(G)U2 + (L(G)U2)T (�c)~1 + (�c)~1L(G)U2

c2n+ UT2 U2

=
c2:(~1TL(G)~1) + UT2 L(G)U2

c2n+ UT2 U2

<
UT2 L(G)U2

UT2 U2
:

We can create an odd vector Y , by changing the signs of the eigenvector entries above or below the

center vertex, such that
Y TL(G)Y T

Y TY
=

XTL(G)XT

XTX
as follows. (Y )i = (X)i; i <

n

2
and (Y )i =

�(X)i; i >
n

2
. Then Y ? D1=2~1 and has the same eigenvalue �2. Since �2 is simple, we have a

contradiction. Therefore U2 is an odd eigenvector.

Example 1.4
Let

M =

0BBBBBB@
1 �1 0 0 0 0

�1 2 �1 0 0 0
0 �1 2 �1 0 0
0 0 �1 2 �1 0
0 0 0 �1 2 �1
0 0 0 0 �1 1

1CCCCCCA
and

P =

0BBBBBB@
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

1CCCCCCA :

If UM is a second eigenvector of M then by Proposition 1.2, PUM is also a second eigenvector.
By Proposition 1.3, PUM = UM or PUM = �UM . By Proposition 1.5, UM is an odd vector and
PUM = �UM .
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De�nition 1.24 (Weighted Path)
Let Pn;k = (Pij) be the (n+ k) � (n+ k) matrix such that

Pij =
�

0 (i = j and i � n) or (i 6= j + 1 and j 6= i+ 1),
1 (i = j and n+ 1 � i) or (i = j + 1 or j = i+ 1).

Proposition 1.6
Let

P3;4 =

0BBBBBBBB@

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1

1CCCCCCCCA
and

D =

0BBBBBBBB@

1 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 2

1CCCCCCCCA
:

If UM be the second eigenvector of M = D�1=2(D�P3;4)D�1=2 then V +(UM ) 6= ; and V �(UM ) 6= ;.

(Proof) Let UM be the second eigenvector of L(M). Then by Lemma 1.4, V +(UM ) 6= ; and V �(UM ) 6=
;.

De�nition 1.25 (Spectral radius)
Let �1; �2; : : : ; �n be the (real or complex) eigenvalues of a matrix A. Then the spectral radius �(A)
is de�ned as �(A) = max

i
(j�ij); (i = 1; : : : ; n).

De�nition 1.26 (Positive-de�nite)
A symmetric matrix A is called positive-de�nite, if for all nonzero vectors x 2 <n the associated

quadratic form given by A(x) = xTAx takes only positive values.

De�nition 1.27 (Semide�nite)
If the quadratic form A(x) = xTAx takes only non-negative values, then the symmetric matrix A is
called positive-semide�nite.

De�nition 1.28 (Inde�nite)
The matrix is inde�nite, when it is neither positive-semide�nite nor negative-semide�nite.

De�nition 1.29 (Girth)
The girth of a graph is the length of a shortest cycle contained in the graph. If the graph does not
contain any cycles (acyclic graph), then the girth is de�ned to be in�nity.
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1.3 Formal notations for graphs

Let � is an alphabet and �� is a set of strings over � including the empty string �. We denote the
length of w 2 �� by jwj. Let ��n = fw 2 ��jjwj < ng and ��n

1 = fw 2 ��j1 � jwj < ng. In this
paper, we assume � = f0; 1g.

De�nition 1.30 (Complete binary tree)
A complete binary tree Tn = (V;E) of depth n is de�ned as follows.

V = ��n;

E = E1 [ E2;

E1 = f(�; w) j w 2 ��n
1 ; jwj = 1g;

E2 = f(w;wu) j w; u 2 ��n
1 ; jwuj < n; jwuj = jwj + 1g:

De�nition 1.31 (Double tree)
A double tree DTn = (V;E), where n is the depth of the tree, consists of two complete binary trees
connected by their root. We de�ne double tree as follows.

V = fx(w)jw 2 ��ng [ fy(w)jw 2 ��ng;
E1 = f(x(w); x(wu)) j w; u 2 ��n

1 ; jwuj < n; jwuj = jwj + 1g;
E2 = f(y(w); y(wu)) j w; u 2 ��n

1 ; jwuj < n; jwuj = jwj + 1g;
E3 = (x(�); y(�));

E4 = f(x(�); x(w)) j w 2 ��n
1 ; jwj = 1g;

E5 = f(y(�); y(w)) j w 2 ��n
1 ; jwj = 1g;

E =
5[
i=1

Ei:

De�nition 1.32 (Cycle)
A cycle Cn = (Vn; En) consists of a vertex set Vn = fvl j l 2 Z+; l � ng and an edge set En =
f(vl; vl+1) j 1 � l < ng [ f(v1; vn)g.

De�nition 1.33 (Path)
A path Pn = (Vn; En) consists of a vertex set Vn = fvl j l 2 Z+; l � ng and an edge set En =
f(vl; vl+1) j 1 � l < ng.

De�nition 1.34 (Regular graph)
A graph G = (V (G); E(G)) is called r-regular, if degree of each vertex is r.

De�nition 1.35 (Complete graph)
A complete graph Kn = (Vn; En) consists of a vertex set Vn = fvi j 1 � i � ng and an edge set
En = f(vi; vj) j i 6= j and 1 � i � n; 1 � j � ng.
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De�nition 1.36 (Bipartite graph)
A bipartite graph G = (U; V;E) consists of a vertex set U = fui j 1 � i � mg and V = fvi j 1 � i � ng
and an edge set E = f(ui; vj) j ui 2 U and vj 2 V g, where jU j = m and jV j = n. For simplicity
sometimes we use the notation Km;n, where m and n are the size of the set U and V .

De�nition 1.37 (Double tree cross path)
Let DTn be a double tree and Pm be a path. Then double tree cross path (DTn2Pm) = (V;E) is a
graph, where

V = f(x(w); p(i)) j w 2 ��n; 1 � i � mg [ f(y(w); p(i)) j w 2 ��n; 1 � i � mg;
E1 = f((x(w); p(i)); (x(wu); p(i))) j w 2 ��n

1 ; 1 � i � m; jwuj = jwj + 1; jwuj < ng;
E2 = f((y(w); p(i)); (y(wu); p(i))) j w 2 ��n

1 ; 1 � i � m; jwuj = jwj + 1; jwuj < ng;
E3 = f((x(w); p(i)); (x(w); p(i+ 1))) j w 2 ��n; 1 � i < mg;
E4 = f((y(w); p(i)); (y(w); p(i+ 1))) j w 2 ��n; 1 � i < mg;
E5 = f(x(�); p(i)); (x(w); p(i)) j w 2 f0; 1g; 1 � i � mg;
E6 = f(x(�); p(i)); (y(�); p(i)) j 1 � i � mg;
E7 = f(y(�); p(i)); (y(w); p(i)) j w 2 f0; 1g; 1 � i � mg;
E = E1 [ E2 [ E3 [E4 [ E5 [ E6 [E7:

De�nition 1.38 (Graph Rn;k)
The graph Rn;k(n � 1; k � 2) is a bounded degree planer graph with a vertex set V = V1 [ V2 and
an edge set E = E1 [ E2 [E3.

V1 = fxi j 1 � i � n+ kg;
V2 = fyi j 1 � i � n+ kg;
E1 = f(xi; xi+1) j 1 � i � n+ k � 1g;
E2 = f(yi; yi+1) j n+ k + 1 � i � 2(n+ k) � 1g;
E3 = f(xi; yi) j n+ 1 � i � n+ kg:

De�nition 1.39 (Cycle cross paths Cm2Pn)
Let Cm be a cycle with V = fci j 1 � i � mg and E = f(ci; ci+1) j 1 � i < mg [ f(c1; cm)g. Let Pn
be a path with V = fpi j 1 � i � ng and E = f(pi; pi+1) j 1 � i < ng. Graph Cm2Pn has n copies of
cycles Cm, each corresponding to the one vertex of the path graph. A vertex set V and an edge set
E = E1 [ E2 [E3 of Cm2Pn is de�ned as follows.

V = f(ci; pj) j 1 � i � m; 1 � j � ng;

E1 =
m[
i=1

f((ci; pj); (ci; pj+1)) j 1 � j � n� 1g;

E2 =
n[
j=1

f((ci; pj); (ci+1; pj)) j 1 � i � m� 1g;

E3 = f((ci; pi); (cm; pi)) j 1 � i � ng;
E = E1 [ E2 [E3:
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Example 1.5
LetDT3 = (V;E) be a double tree with V = fx(�); x(0); x(1); y(�); y(0); y(1); x(00); x(01); x(10); x(11);
y(00); y(01); y(10); y(11)g and E = f(x(�); y(�)); (x(�); x(0)); (x(�); x(1)); (y(�); y(0)); (y(�); y(1));
(x(0); x(00)); (x(0); x(01)); (x(1); x(10)); (x(1); x(11)); (y(0); y(00)); (y(0); y(01)); (y(1); y(10)); (y(1); y(11)).
Then the double tree cross path DT32P2 is a graph as shown in the Figure 3(b). Graph R5;5

is shown in the Figure 3(c) has a vertex set V = fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10; y1; y2;
y3; y4; y5; y6; y7; y8; y9; y10g and an edge set E = f(x6; y6); (x7; y7); (x8; y8); (x9; y9); (x10; y10)g.

xHΕL

xH0L xH1L

xH00L xH01L xH10L xH11L

yHΕL

yH0L yH1L

yH00L yH01L yH10L yH11L

(a) Double Tree DT3 (b) DT32P2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8 y9

y10

(c) R5;5

Figure 3: Double tree DT3, double tree cross path DT32P2, graph Rn;k(n = 5; k = 5).

De�nition 1.40 (Lollipop graph LPn;m)
The lollipop graph LPn;m; (n � 3;m � 1) is obtained by connecting one vertex of Kn to the end
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vertex of Pm as shown in the Figure 4(a). We start vertex numbering from the end vertex of the path.
De�ne LPn;m = (V;E) as follows.

V = fx1; x2; : : : ; xm; y1; : : : ; yng;
E = f(xi; xi+1) j 1 � i � m� 1g [ f(yi; yj) j i 6= j; 1 � i � n; 1 � j � ng [ f(xm; y1)g:

De�nition 1.41 (Graph LP 0
n;2)

LP 0
n;2; (n � 3) is a graph obtained by connecting both end vertices of P2 to two adjacent vertices of

Kn as shown in the Figure 4(b). The graph LP 0
n;2 = (V;E) is de�ned as follows.

V = fx1; x2; y1; : : : ; yng;
E = f(yi; yj) j i 6= j; 1 � i � n; 1 � j � ng [ f(x1; yn); (x2; y1); (x1; x2)g:

y10

y9y8

y7

y6

y5

y4 y3

y2

y1

x2 x1

(a) LP10;2

y6y5

y4

y3 y2

y1

x2 x1

(b) LP 0
5;2

Figure 4: Graph LPn;m(n = 10;m = 2) and LP 0
n;2(n = 6).
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2 Minimum normalized cut of some graph classes

We use the term Mcut(G) to represent the minimum normalized cut. In this chapter, we review the
basic properties of Mcut(G) and its relation to the connectivity and the second smallest eigenvalue of
normalized Laplacian. We also derive Mcut(G) of basic classes of graphs and more complex graphs
such as Rn;k, Pn;k, LPn;m, LP 0

n;2 and (DTn2Pm).

2.1 Properties of Mcut(G)

De�nition 2.1 (Normalized cut)
Let G = (V (G); E(G)) be a graph. Let A;B � V (G) and A \ B = ;. Then the nor-

malized cut Ncut(A;B) of G can be written as Ncut(A;B) =
cut(A;B)
vol(A)

+
cut(B;A)
vol(B)

=

cut(A;B)
�

1
vol(A)

+
1

vol(B)

�
.

De�nition 2.2 (Mcut(G))
Let G = (V (G); E(G)) be a graph and A is a non empty subset of V (G). Then Mcut(G) of a graph
G is de�ned as Mcut(G) = min

A�V
Ncut(A; V nA).

Example 2.1
The graphG = (V;E) shown in the Figure 5 has a vertex set V = f1; 2; 3; 4; 5; 6; 7g and an edge set E =
f(1; 2); (2; 3); (3; 1); (3; 4); (1; 4); (1; 5); (3; 6); (6; 5); (7; 5); (7; 6)g. A volume of G is 20. We compute
normalized cut for the subsets taken from G and listed in the Table 2. Considering Case(1),Case(2)
and Case(3), we obtain Mcut(G) for the Case(1).

Case A V nA vol(A) vol(V nA) cut(A; V nA) Ncut(A; V nA)
(1) f1; 2; 3; 4g f5; 6; 7g 12 8 2 0.417
(2) f1; 2; 3g f4; 5; 6; 7g 10 10 4 0.8
(3) f1; 3; 4; 5; 6; 7g f2g 2 18 2 1.1111

Table 2: Normalized cut.

Lemma 2.1
Let G = (V (G); E(G)) be a graph. Then

�
1

vol(A)
+

1
vol(V nA)

�
gives the minimum value, when

vol(A) = vol(V nA) =
vol(G)

2
.

Proposition 2.1
Let G = (V (G); E(G)) be a graph, A � V (G) and 4(G) the maximum degree of G. Then

(i) cut(A; V nA) � �0(G).
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1

2

3

4

5

6

7

(a) G = (V; E)

1

2

3

4

5

6

7

(b) Case(1)

1

2

3

4

5

6

7

(c) Case(2)

1

2

3

4

5

6

7

(d) Case(3)

Figure 5: Normalized cut- example.

(ii) Mcut(G) � 4�0(G)
4(G)jV (G)j

.

(iii) If cut(A; V nA) = �0(G) and 2vol(A) = vol(G) then Mcut(G) =
4�0(G)
vol(G)

.

(Proof)

(i) Since �0(G) is the edge connectivity, cut(A; V nA) � �0(G) holds for any A � V .

(ii) From Lemma 2.1,
�

1
vol(A)

+
1

vol(V nA)

�
gives the minimum value, when vol(A) = vol(V nA).

That is
�

1
vol(A)

+
1

vol(V nA)

�
� 2
vol(A)

=
4

vol(G)
. Since vol(G) =

jV jX
i=1

di � jV (G)j4(G),

Ncut(A; V nA) = cut(A; V nA)
�

1
vol(A)

+
1

vol(V nA)

�
� 4�0(G)

4(G)jV (G)j
.

(iii) If cut(A; V nA) = �0(G) and 2vol(A) = vol(G) then it is clear that, Mcut(G) =
4�0(G)
vol(G)

.

Proposition 2.2 (Luxburg [46])
Let G = (V (G); E(G)) be a graph and �1 � �2 � � � � � �n be the eigenvalues of L(G). Then
Mcut(G) � �2(L(G)).
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(Proof) Let V (G) = f1; 2; : : : ; ng. Let A � V (G), g = (g1; : : : ; gn) 2 <n be an eigenvector and
g = D1=2f . De�ne fi as

fi =
�
a if i 2 A,
�b if i =2 A.

Then Pn
i=1

Pn
j=1(fi � fj)2wij

2
Pn
i=1 f

2
i di

=
2cut(A; V nA)(a+ b)2

2(a2vol(A) + b2vol(V nA))
:

Choosing a = vol(V nA) and b = vol(A) gives

2cut(A; V nA)(a+ b)2

2(a2vol(A) + b2vol(V nA))
=

cut(A; V nA)(vol(G))2

vol(V nA)2vol(A) + vol(A)2vol(V nA)

=
cut(A; V nA)(vol(G))2

vol(V nA)vol(A)(vol(A) + vol(V nA))

=
cut(A; V nA)(vol(G))
vol(V nA)vol(A)

= cut(A; V nA)
�

1
vol(V nA)

+
1

vol(A)

�
= Ncut(A; V nA):

With the choice of f; a; b we have (D~1)T f =
nX
i=1

difi =
X
i2A

dia �
X
i=2A

dib = 0. So f ? D~1. Since

�2 = inf
f?D~1

Pn
i=1

Pn
j=1(fi � fj)2wij

2
Pn
i=1 f

2
i di

, we have �2 �
Pn
i=1

Pn
j=1(fi � fj)2wij

2
Pn
i=1 f

2
i di

= min
A
Ncut(A; V nA) =

Mcut(G).

2.2 General properties of Mcut(G)

Lemma 2.2
Let G = (V (G); E(G)) be a graph with vol(G) � 9. Suppose there exists a subset A � V (G) such
that cut(A; V n A) = 1 and jvol(A) � vol(G)=2j � 3. Then there is no subset B � V (G) such that
cut(B; V n B) � 2 and Ncut(B; V n B) < Ncut(A; V n A). In particular, the minimum Mcut(G) is
attained by some A with cut(A; V nA) = 1.

(Proof) Let s = vol(G). Then 2
�

1
(s=2)

+
1

(s=2)

�
>

�
1

(s=2 + 3)
+

1
(s=2 � 3)

�
, if s > 6

p
2 = 8:48.

Lemma 2.3
Let G = (V (G); E(G)) be a graph and vol(G) � 11. Suppose there exists a set A � V (G) such
that cut(A; V n A) = 2 and jvol(A) � vol(G)=2j � 3. Then there is no subset B � V (G) such that
cut(B; V n B) � 3 and Ncut(B; V n B) < Ncut(A; V n A). In particular, the minimum Mcut(G) is
attained by some A with cut(A; V nA) = 2.

20



(Proof) Let s = vol(G). Then 3
�

1
(s=2)

+
1

(s=2)

�
> 2

�
1

(s=2 + 3)
+

1
(s=2 � 3)

�
, if s > 6

p
3 = 10:4.

Lemma 2.4
Let G = (V (G); E(G)) be a graph with vol(G) � 6. Suppose there exists a subset A � V (G) such
that cut(A; V n A) = 2 and jvol(A) � vol(G)=2j � 3. Suppose there exists no subset B � V (G)

such that cut(B; V n B) = 1 and jvol(B) � vol(G)=2j �
p

36 + (vol(G))2

2
p

2
. Then there is no subset

C � V (G) such that cut(C; V n C) 6= 2 and Ncut(C; V n C) < Ncut(A; V n A). In particular, the
minimum Mcut(G) is attained by some A with cut(A; V nA) = 2.

(Proof) Let s = vol(G). Consider a subset B � V (G) with cut(B; V n B) = 1. By the assump-

tion, we have jvol(B) � vol(G)=2j > k, where k =

p
36 + (vol(G))2

2
p

2
. Then Ncut(B; V n B) =�

1
vol(B)

+
1

(vol(G) � vol(B))

�
� 2

�
1

s=2 + k
+

1
s=2 � k

�
� Ncut(A; V n A). Consider C � V (G)

with cut(C; V n C) � 3. Then Ncut(C; V n C) � 4cut(C; V n C)
vol(G)

� 12
s

� 2
�

1
s=2 + 3

+
1

s=2 � 3

�
=

Ncut(A; V nA). This shows the required property.

Next we derive a formula for the minimum normalized cut Mcut(G) of some elementary classes of
graphs.

2.3 Mcut(G) of elementary classes of graphs

Proposition 2.3
Let G = (V (G); E(G)) be a graph.

1. If G is a disconnected graph then Mcut(G) = 0.

2. If G is a regular graph of degree d and jV (G)j = n, then

Mcut(G) �
� 4

n if n is even,
4n

(n2�1) if n is odd.

3. For the cycle Cn,

Mcut(Cn) =
� 4

n if n is even,
4n

(n2�1) if n is odd.

This can be written as Mcut(Cn) =
n

bn2 cdn2 e
.

4. For the complete graph Kn,

Mcut(Kn) =
n

n� 1
= �2:
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5. For the path graph Pn,

Mcut(Pn) =

(
2

n�1 if n is even,
2(n�1)
n(n�2) if n is odd.

This can be written as Mcut(Pn) =
2n� 2

4bn2 cdn2 e � 2n+ 1
.

6. For the cycle cross paths Cm2Pn,

Mcut(Cm2Pn) =

(
2(2n�1)

16b n
2 cd n

2 e�4n+1 2n > m,
nm

(2n�1)b m
2 cd m

2 e 2n � m.

7. For the double tree DTn with depth n, Mcut(DTn) =
2

2n+1 � 3
.

(Proof)

1. Let G1; G2 be connected components of G such that G = G1 [ G2. Then
cut(V (G1); V (G2)) = 0 and Ncut(V (G1); V (G2)) = 0. Since Mcut(G) �

cut(V (G1); V (G2))
�

1
vol(V (G1))

+
1

vol(V (G2))

�
= 0, we have Mcut(G) = 0.

2. For a regular graph of degree d, �0(G) = 4(G) = �(G) = d. For A � V (G), Ncut(A; V n

A) � �0(G)
�

1
djAj

+
1

(djV (G) nAj)

�
=

jV (G)j
jAjjV nAj

. If cut(A; V n A) = �0(G) then we have

Ncut(A; V nA) =
jV (G)j

jAjjV nAj
. Ncut(A; V nA) is minimum, when jAj = jV nAj by the Lemma 2.1.

If V (G) is even then Mcut(G) � 4
jV (G)j

=
4
n

by Lemma 2.1.

If jV (G)j is odd then, we can write jV (G)j as jV (G)j =
jV (G)j � 1

2
+

jV (G)j + 1
2

, where �1 �

jAj � jV (G) n Aj � 1. Then Ncut(A; V n A) � �0(G)
�

2
d(jV (G)j � 1)

+
2

d(jV (G)j + 1)

�
=

4jV (G)j
(jV (G)j + 1)(jV (G)j � 1)

. Hence Mcut(G) � 4jV (G)j
(jV (G)j + 1)(jV (G)j � 1)

=
4n

n2 � 1
.

3. Since a cycle graph is a 2-regular graph, �(Cn) = 2 = �0(Cn). Let A � V (G) and cut(A; V nA) �
2. Since Cn is a regular graph and min cut(A; V n A) = 2, Mcut(Cn) = 4=n for even n and

Mcut(Cn) =
4n

n2 � 1
for odd n by above part 2. Further, For even n, n = bn

2
c = dn

2
e and for

odd n,
(n� 1)

2
= bn

2
c and

(n+ 1)
2

= dn
2

e. Combining odd and even cases together we can write

Mcut(Cn) as Mcut(Cn) =
n

bn2 cdn2 e
.

4. For a complete graph Kn, jV j = n, �0(Kn) = n�1 and vol(Kn) = n(n�1). For any subset A �
V (Kn), we have vol(A) = jAj(jV j�1) and cut(A; V nA) = jAj(jV j�jAj). Then Ncut(A; V nA) =
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jAj(jV j � jAj)
�

1
jAj(jV j � 1)

+
1

(jV j � jAj)(jV j � 1)

�
=

jV j
jV j � 1

=
n

n� 1
. Hence Mcut(Kn) =

n

n� 1
.

5. For a path graph Pn, �0(Pn) = 1, cut(A; V nA) � 1 and vol(Pn) = 2n� 2.
Consider the following cases.
Case(i) Let A1 � V such that A1 = fvi j 1 � i � bn

2
cg and V n A1 = fvi j bn

2
c + 1 � i � ng.

A volume of A1 is vol(A1) = 2(bn
2

c) � 1 and a volume of V n A1 is vol(V n A1) = 2(dn
2

e) � 1.

Ncut(A1; V n A1) =
2n� 2

4(bn2 cdn2 e) + 1 � 2n
. For even n, Ncut(A1; V n A1) =

2
n� 1

. For odd

n, bn
2

c =
n� 1

2
; dn

2
e =

n+ 1
2

. Then we have Ncut(A1; V n A1) =
2(n� 1)
n(n� 2)

. We notice that

�0(Pn) = 1 and vol(A1) � vol(V nA1).
Case(ii)Let A21 = fvi j 1 � i � lg and A22 = fvi j k � i � ng. Then consider a set
A2 = A21 [ A22 and V n A2 such that jA2j � jV n A2j. Then cut(A2; V n A2) = cut(A21; V n
(A21 [A22)) + cut(A22; V n (A21 [A22)) = 2 and vol(A2) = 2jA21j � 1 + 2jA22j � 1 = 2(jA2j � 1).

Therefore Ncut(A2; V n A2) =
2(2jV j � 2)

(2jA2j � 2)(2jV nA2j)
. Since cut(A2; V n A2) = 2 > �0(Pn) and

vol(A2) > vol(V n A2), using Lemma 2.1, Ncut(A2; V n A2) > Ncut(A1; V n A1). Therefore

Mcut(Pn) =
2n� 2

4(bn2 cdn2 e) + 1 � 2n
.

6. Let G = Cm2Pn; (n � 2;m � 3) be a graph which has n copies of cycles Cm, each corresponding
to one vertex of Pn. �0(Cm2Pn) = minf�0(Cm)jV (Pn)j; �0(Pn)jV (Cm)j; �(Cm) + �(Pn)g =
�(Cm) + �(Pn) = 3.
Case(i) Let A1 = f(ci; pj)j1 � j � bn

2
c; 1 � i � mg and V nA1 = f(ci; pj)jb

n

2
c+1 � j � n; 1 �

i � mg. The volume of A1 is vol(A1) = bn
2

c(vol(Cm) + 2m) �m, vol(V nA1) = dn
2

e(vol(Cm) +

2m) � m and cut(A1; V n A1) = m. Then Ncut(A1; V n A1) =
m(4mn� 2m)

(bn2 c4m�m)(dn2 e4m�m)
=

2(2n� 1)
16bn2 cdn2 e � 4n+ 1

. When n is even, Ncut(A1; V nA1) =
2

2n� 1
. When n is odd, Ncut(A1; V n

A1) =
2(2n� 1)

(2n� 3)(2n+ 1)
.

Case(ii) Let A2 = f(ci; pj) j 1 � i � bm
2

c; 1 � j � ng and V n A2 = f(ci; pj) j bm
2

c + 1 �

i � m; 1 � j � ng. The volume of A2 is vol(A2) = n � vol(Cb m
2 c) + 2bm

2
c(n � 1) = 2(2n �

1)bm
2

c and vol(V n A2) = 2(2n � 1)dm
2

e. The graph cut horizontally through the cycles and

we have cut(A2; V n A2) = 2n. Hence Ncut(A2; V n A2) =
nm

(2n� 1)bm2 cdm2 e
. When m is odd,

4nm
(2n� 1)(m2 � 1)

and when m is even,
4n

(2n� 1)m
.

Now compare the Case(i) with Case(ii).
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� If n is even and m is even then, Ncut(A1; V n A1) � Ncut(A2; V n A2) =
2

2n� 1
�

4n
(2n� 1)m

=
2(m� 2n)
(2n� 1)m

. If m � 2n then Ncut(A1; V nA1) �Ncut(A2; V nA2) � 0.

� If n is even and m is odd then, Ncut(A1; V n A1) � Ncut(A2; V n A2) =
2

2n� 1
�

4nm
(2n� 1)(m2 � 1)

=
2(m2 � 1) � 4nm
(2n� 1)(m2 � 1)

. If m > 2n then Ncut(A1; V n A1) �Ncut(A2; V n

A2) > 0. If m = 2n then m should be even for any n 2 Z and the equality does not holds.

� If n is odd and m is odd then, Ncut(A1; V nA1) �Ncut(A2; V nA2) =
2(2n� 1)

(2n� 3)(2n+ 1)
�

4nm
(2n� 1)(m2 � 1)

=
2(2n� 1)2(m2 � 1) � 4nm(2n� 3)(2n+ 1)

(2n� 3)(2n+ 1)(2n� 1)(m2 � 1)
. Then the numerator

2(2n� 1)2(m2 � 1) � 4nm(2n� 3)(2n+ 1) > 0, if m > 2n.

� If n is odd and m is even then, Ncut(A1; V nA1)�Ncut(A2; V nA2) =
2(2n� 1)

(2n� 3)(2n+ 1)
�

4n
(2n� 1)m

=
2m(2n� 1)2 � 4n(2n� 3)(2n+ 1)

(2n� 3)(2n+ 1)(2n� 1)m
. Then the numerator 2m(2n � 1)2 �

4n(2n� 3)(2n+ 1) � 0, if m � 2n.

If m � 2n then Case(ii) < Case(i), and partition the graph by cutting through cycles. If m < 2n
then Case(i) < Case(ii), and partition the graph by cutting through paths.

7. The size of a tree is jTnj = 1 + 2 + � � � + 2n = 2n � 1 and the size of a double tree is jDTnj =
2jTnj = 2n+1 � 2. The volume of a tree is vol(Tn) = 2vol(Tn�1) + 4, which can be written as
vol(Tn)+4 = 2(vol(Tn�1)+4) = 22(vol(Tn�2)+4) = � � � = 2n�1(vol(T1)+4) = 2n+1. Therefore
the volume of a tree is vol(Tn) = 2n+1 � 4 and the volume of a double tree is vol(DTn) =
2vol(Tn) + 2 = 2n+2 � 6.

Let A1 = fx(w) j w 2 ��ng and V nA1 = fy(w) j w 2 ��ng. Then

vol(A1) = vol(Tn) + 1
= 2n+1 � 3;

vol(V nA1) = 2n+1 � 3;
cut(A1; V nA1) = 1:

Therefore

Ncut(A1; V nA1) =
2

(vol(Tn) + 1)

=
2

2n+1 � 3
=

4
vol(DTn)

:

Here �0(DTn) = 1 and 2vol(A1) = vol(DTn). Then from the Proposition 2.1, Mcut(DTn) =
2

2n+1 � 3
.
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Next, we consider the graph Rn;k and derive a formula for Mcut(Rn;k) based on n; k.

Proposition 2.4
For Rn;k (n � 1; k > 1), Mcut(Rn;k) is given by8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

2
3 (n = 1; k = 2),

4
�2+3k+2n (�1 ^ (k � 4) ^ (n < K1)),

4(�2+3k+2n)
(�5+3k+2n)(1+3k+2n) (�4 ^ (k � 4) ^ (n < K4)),

4(�2+3k+2n)
(�4+3k+2n)(3k+2n) (�3 ^ (k � 4) ^ (n < K3)),

4(�2+3k+2n)
(�3+3k+2n)(�1+3k+2n) (�2 ^ (k � 4) ^ (n < K2));_(n = 1; k = 3) _ (n = 2; k = 3),

6k+4n�4
(2n�1)(6k+2n�3) ((k � 4) ^ ((�1 ^ (K1 � n)) _ (�4 ^ (K4 � n))_

(�3 ^ (K3 � n)) _ (�2 ^ (K2 � n))))_
(k = 2 ^ (n � 2)) _ (k = 3 ^ (n � 3));

where

�1 = ((2 j k) ^ (3 j n));
�2 = ((2 - k) ^ (3 - n));
�3 = ((2 j k) ^ (3 - n));
�4 = ((2 - k) ^ (3 j n));

K1 = 1 � 1p
2

� 3k
2

+
3kp

2
;

K2 = 1 � 3k
2

+
p

1 � 12k + 18k2

2
;

K3 = 1 � 3k
2

+
p

�1 � 6k + 9k2

p
2

;

K4 = 1 � 3k
2

+
p

�7 � 12k + 18k2

2
:

(Proof) Let V (Rn;k) = fxi j 1 � i � n + kg [ fyi j 1 � i � n + kg. Volume of Rn;k is vol(Rn;k) =
2(2n� 1 + 3k � 1) = 6k + 4n� 4.
We consider the following cases in order to �nd the Mcut(Rn;k).
Case(i) Let A1 � V (Rn;k), where A1 = fxi j 1 � i � n + kg and V n A1 = fyi j 1 � i � n + kg.

Then the volume vol(A1) is
vol(Rn;k)

2
= 2n+ 3k � 2 and cut(A1; V nA1) = k. So we have

Ncut(A1; V nA1) = k

�
1

2n+ 3k � 2
+

1
3k + 2n� 2

�
=

2k
3k + 2n� 2

:
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Let this value as c1.
Case(ii) Let A2 � V (Rn;k) such that A2 = fxi j 1 � i � ng and V nA2 = fxi j n+ 1 � i � n+ kg [
fyi j 1 � i � n+kg. Then the volume vol(A2) = 2n�1, vol(V nA2) = vol(Rn;k)�vol(A2) = 2n+6k�3
and cut(A2; (V nA2)) = 1. So we have

Ncut(A2; V nA2) =
(6k + 4n� 4)

(2n� 1)(6k + 2n� 3)
:

Let this value as c2.
Case(iii) Suppose there exists jA3j < n such that cut(A3; (V n A3)) = 1. Let vol(A3) = 2n � 1 � 2x
where x = jA2j � jA3j where jA2j = n. Then vol(V n A3) = 6k + 2n � 3 + 2x. Ncut(A3; V n A3) =

1
2n� 1 � 2x

+
1

6k + 2n� 3 + 2x
=

6k + 4n� 4
(2n� 1)(6k + 2n� 3) + 4x(1 � (3k + x))

. Since 4x(1�(3k+x)) <

0, Ncut(A3; V n A3) > Ncut(A2; V n A2)(Case(ii) < Case(iii)). Since c2 is smaller than Case(iii)
we can ignore this case.
Case(iv)Let A4 = fxi j 1 � i � n + �g [ fyi j 1 � i � n + �g, where 1 � � < k and V n A4 =
fxi j n+�+1 � i � n+kg[fyi j n+�+1 � i � n+kg. Then vol(A4) = 2(2n�1+3�) = 4n+6��2,
vol(V nA4) = 6k � 2 � 6� and cut(A4; V nA4) = 2. Then we have,

Ncut(A4; V nA4) =
(3k + 2n� 2)

(2n� 1 + 3�)(3k � 3�� 1)
:

Let this value as c4(�).
Minimum of c4(�) can be obtained by di�erentiating with respect to �.

dc4(�)
d�

= 0 gives minimum value of c4(�) at �0 =
3k � 2n

6
. But �0 is not an integer for all n; k.

If 3k�2n
6 < 1 that is 1 � k <

6 + 2n
3

then the minimum value is c4(1). Then we have

c4(1) =
2 � 3k � 2n

8 � 6k + 8n� 6kn
:

If 1 � 3k � 2n
6

< k that is k � 6+2n
3 then the minimum value is c4(

3k � 2n
6

) whenever
3k � 2n

6
2

Z.
c4(

3k � 2n
6

) =
4

�2 + 3k + 2n
:

If k � 6+2n
3 and 2 - k and 3 j n then the minimum value is c4(

3k � 2n
6

+
1
2

) = c4(
3k � 2n

6
� 1

2
).

c4(
3k � 2n

6
+

1
2

) =
4(�2 + 3k + 2n)

(�5 + 3k + 2n)(1 + 3k + 2n)
:

If k � 6+2n
3 and 3 - n and 2 j k then the minimum value is c4(

3k � 2n
6

+
1
3

) = c4(
3k � 2n

6
� 1

3
).

c4(
3k � 2n

6
� 1

3
) =

4(�2 + 3k + 2n)
(�4 + 3k + 2n)(3k + 2n)

:
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If k � 6+2n
3 and 3 - n and 2 - k then the minimum value is c4(

3k � 2n
6

+
1
6

) = c4(
3k � 2n

6
� 1

6
).

c4(
3k � 2n

6
� 1

6
) =

4(�2 + 3k + 2n)
(�3 + 3k + 2n)(�1 + 3k + 2n)

:

Case(v) Let A5 = fxi j 1 � i � n + 1g and V n A5 = fxi j n + 2 � i � n + kg [ fyi j 1 � i �
n + kg. Then vol(A5) = 2n + 2 and vol(V n A5) = 2n + 6k � 6. Then we have Ncut(A5; V n A5) =

2
�

1
2n+ 2

+
1

2n+ 6k � 6

�
=

2n+ 3k � 2
(n+ 1)(n+ 3k � 3)

.

Figure 6 shows the partitions appeared in Case(i) to Case(v).

(a) Case(i) (b) Case(ii)

(c) Case(iii) (d) Case(iv) (e) Case(v)

Figure 6: Partitions of Rn;k.

Now we can compare all cases considered above.
If k = 2 and n = 1 then it is easy show that c1 is the minimum. If k = 2 and n � 2 then it is easy to
show that c2 is the minimum. If k = 3 and n = 1 then c4( 3k�2n

6 � 1
6 ) is the minimum. If k = 3 and

n = 2 then c4( 3k�2n
6 + 1

6 ) is the minimum. If k = 3 and n � 3 then we can easily show that c2 is the
minimum. If k � 4 and n = 1 then c4 is the minimum. Next we assume that k � 4 and n � 2. It is
easy to check that c2 is smaller than c1, c3 and c5. So we compare c2 with c4 for k � 4. Then we have
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the following results. If (�1 and (n < K1)) then c4( 3k�2n
6 ) is smaller than c2. If (�2 and (n < K2))

then c4( 3k�2n
6 � 1

6 ) is smaller than c2. If (�3 and (n < K3)) then c4( 3k�2n
6 � 1

3 ) is smaller than c2. If
(�4 and (n < K4)) then c4( 3k�2n

6 + 1
2 ) is smaller than c2. We can summarize the results as follows.8>>>>>>>>>><>>>>>>>>>>:

c1 n = 1; k = 2,
c4( 3k�2n

6 ) (�1 ^ (k � 4) ^ (n < K1)),
c4( 3k�2n

6 + 1=2) (�4 ^ (k � 4) ^ (n < K4)),
c4( 3k�2n

6 � 1=3) (�3 ^ (k � 4) ^ (n < K3)),
c4( 3k�2n

6 � 1=6) (�2 ^ (k � 4) ^ (n < K2)) _ (n = 1; k = 3) _ (n = 2; k = 3),
c2 ((k � 4) ^ ((�1 ^ (K1 � n)) _ (�2 ^ (K2 � n))))

_(�3 ^ (K3 � n)) _ (�4 ^ (K4 � n))
_(k = 2 ^ (n � 2)) _ (k = 3 ^ (n � 3)).

Finally, we want to show that for any arbitrary subset A, cut(A; V nA) = 1 or cut(A; V nA) = 2 gives
the minimum normalized cut. We notice that every subset A with cut(A; V nA) = 1 is A2 or A3 and
every subset A with cut(A; V n A) = 2 are A1; A5; A4. We consider all cases with cut(A; V n A) = 1
and the minimum occurs at A2. There may be several partitions with cut(A; V n A) � 2. Let k � 4.
Then we note that vol(Rn;k) � 24 and there exists a subset A4 in Case(iv), which minimize the�

1
vol(A)

+
1

vol(G) � vol(A)

�
with cut(A; V n A) = 2. We note that jvol(A4) � vol(G)

2
j � 3. From

Lemma 2.3, 3
�

1
vol(G)=2

+
1

vol(G)=2

�
> 2

�
1

vol(G)=2 + 3
+

1
vol(G)=2 � 3

�
for vol(G) � 11. Then

we can show that there is no subset A with cut(A; V nA) � 3 and Mcut(A; V nA) � Mcut(A4; V nA4).
This conclude that minimum Ncut always have cut value 2 for all cases which has cut size more than
1.
The Figure 7 shows the above regions for n; k. For a given n and k, we can �nd Mcut(Rn;k).

k=4

K1,K2,K3,K4
c2c2

c4(3 k-2 n

6
)c4(3 k-2 n

6
±1/6)

c4(3 k-2 n

6
±1/3) c4(3 k-2 n

6
±1/2)

k

n

c1
c4(3 k-2 n

6
±1/6)

2 4 6 8 10

1

2

3

4

5

6

Figure 7: Mcut(Rn;k).
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2.4 Mcut of weighted paths Pn;k

In this section, we consider a weighted path graph Pn;k and �nd a formula for Mcut(Pn;k) based on
n; k.

Proposition 2.5
For Pn;k; (n; k � 1), Mcut(Pn;k) is given by8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

4
�2+3k+2n ((o1 ^ (k � R3)) _ ((k < R1) ^ (o4 2 Z)) _ (n = 1; k = 1)),

4(�2+3k+2n)
(�5+3k+2n)(1+3k+2n) (o2 ^ (k � R3)),

4(�2+3k+2n)
(�4+3k+2n)(3k+2n) (o3 ^ (k � R3)) _ (((k < R1) ^ (o4 =2 Z)) ^ (2 j k)),

4(�2+3k+2n)
(�3+3k+2n)(�1+3k+2n) (2 - k) ^ ((k < R1) _ (k � R3)),

3k+2n�2
(3k�4)(2n+2) ((n > 2) ^ (R2 � k < R3)) _ (n = 1; k = 2) _ (n = 2; k = 3),

3k+2n�2
(3k�1)(2n�1) (n � 2 ^ (R1 � k � R2)),

where

o1 = ((3 j n) ^ (2 j k));
o2 = ((3 j n) ^ (2 - k));
o3 = ((3 - n) ^ (2 j k));

o4 =
3k + 2n

4
;

R1 =
2n
3
;

R2 =
2n
3

+ 1;

R3 =
2n
3

+ 2:

(Proof) Let Pn;k be a weighted graph such that E(Pn;k) = f(xi; xi+1) j 1 � i � n + k � 1g and
V (Pn;k) = fxi j 1 � i � n+ kg.
We consider the following cases to �nd the Mcut(Pn;k).

Case(i) Let A1 � V (Pn;k), where A1 = fxi j 1 � i � ng and V n A1 = fxi j n + 1 � i � kg. Then
the volume vol(A1) is 2n� 1 and cut(A1; V nA1) = 1. So we have

Ncut(A1; V nA1) =
1

2n� 1
+

1
3k � 1

=
3k + 2n� 2

(2n� 1)(3k � 1)
;

and let this value as c1.
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Case(ii)Let A2 = fxi j 1 � i � �g(1 � � < n) and V nA2 = fxi j �+ 1 � i � n+ kg. Then

Ncut(A2; V nA2) =
1

2�� 1
+

1
3k � 1 + 2(n� �)

;

and let this value as c2(�).

Minimum of c2(�) can be obtained by di�erentiating with respect to �.
dc2(�)
d�

= 0 gives the minimum

value for � and let this value as �0 =
3k + 2n

4
. But �0 is not an integer value for all n; k. So we

consider several cases here.
If

3k + 2n
4

< n that is k < 2n
3 , the minimum value is c2(

3k + 2n
4

), whenever
3k + 2n

4
is an

integer.

c2(
3k + 2n

4
) =

4
�2 + 3k + 2n

:

If k <
2n
3

and
3k + 2n

4
=2 Z and 2 j k then the minimum value is c2(

3k + 2n
4

� 1
2

). We note that

c2(
3k + 2n

4
+

1
2

) = c2(
3k + 2n

4
� 1

2
). Then we have,

c2(
3k + 2n

4
+

1
2

) =
4(�2 + 3k + 2n)

(�4 + 3k + 2n)(3k + 2n)
:

If k <
2n
3

and
3k + 2n

4
=2 Z and 2 - k then the minimum value is c2(

3k + 2n
4

� 1
4

). We note that

c2(
3k + 2n

4
+

1
4

) = c2(
3k + 2n

4
� 1

4
). Then we have,

c2(
3k + 2n

4
+

1
4

) =
4(�2 + 3k + 2n)

(�3 + 3k + 2n)(�1 + 3k + 2n)
:

If
3k + 2n

4
� n that is k � 2n

3 , the minimum value is c2(n). This is equal to the Case(i).

c2(n) =
3k + 2n� 2

(3k � 1)(2n� 1)
:

Case(iii) Let A3 = fxi j 1 � i � �g, where n+ 1 � � < n+ k and V nA3 = fxi j �+ 1 � i � n+ kg.
Then vol(A3) = 2n� 1 + 3(�� n) and vol(V nA3) = 3k � 1 � 3(�� n). Since cut(A3; V nA3) = 1,

Ncut(A3; V nA3) =
3k + 3n� 2

(�1 + 3�� n)(3k � 1 � 3�+ 3n)
;

and let this value as c3(�).

Minimum of Case(iii) can be obtained by di�erentiating with respect to �.
dc3(�)
d�

= 0 gives the

minimum value at �1 =
3k + 4n

6
. But this value is not an integer for all n; k. So we consider several

cases here.
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If n + 1 � 3k + 4n
6

< n + k that is k � 6 + 2n
3

, the minimum value is c3(
3k + 4n

6
) whenever

3k + 4n
6

is an integer. Then we have

c3(
3k + 4n

6
) =

4
�2 + 3k + 2n

:

If k � 6 + 2n
3

and 2 - k and 3 j n then the minimum value is c3(
3k + 4n

6
+

1
2

) = c3(
3k + 4n

6
� 1

2
).

Then we have

c3(
3k + 4n

6
+

1
2

) =
4(�2 + 3k + 2n)

(�5 + 3k + 2n)(1 + 3k + 2n)
:

If k � 6 + 2n
3

and 3 - n and 2 j k, then the minimum value is c3(
3k + 4n

6
+

1
3

) = c3(
3k + 4n

6
� 1

3
).

Then we have,

c3(
3k + 4n

6
� 1

3
) =

4(�2 + 3k + 2n)
(�4 + 3k + 2n)(3k + 2n)

:

If k � 6 + 2n
3

, and 2 - k, then the minimum value is c3(
3k + 4n

6
+

1
6

) = c3(
3k + 4n

6
� 1

6
). Then we

have,

c3(
3k + 4n

6
+

1
6

) =
4(�2 + 3k + 2n)

(�3 + 3k + 2n)(�1 + 3k + 2n)
:

Similarly, for
3k + 4n

6
< n+ 1 that is for k <

6 + 2n
4

, the minimum value is c3(n+ 1).

c3(n+ 1) =
3k + 2n� 2

(3k � 4)(2n+ 2)
:

Now we can compare all cases considered above.
Compare c3( 3k+4n

6 ), c3( 3k+4n
6 + 1

2 ), c3( 3k+4n
6 � 1

3 ) and c3( 3k+4n
6 + 1

6 ) with c2(n), for k � R3. c3( 3k+4n
6 ),

c3( 3k+4n
6 + 1

2 ), c3( 3k+4n
6 � 1

3 ) and c3( 3k+4n
6 + 1

6 ) are smaller than c2(n) for k � R3. Now compare

c2( 3k+2n
4 ), c2( 3k+2n

4 + 1
2 ) and c2( 3k+2n

4 + 1
4 ) with c3(n+ 1) for k < R1. This case holds when n >

3
2

and 1 � k < R1. That is for n > 1 and 1 � k < R1. In this region, c2(
3k + 2n

4
), c2(

3k + 2n
4

+
1
2

)

and c2(
3k + 2n

4
+

1
4

) is smaller than c3(n + 1). Finally compare c2(n) with c3(n + 1) for k < R3

and k � R1. Then c3(n + 1) is smaller than c2(n) when (n = 1; k = 2) and (n = 2; k = 3) and
((n > 2) ^ (R2 � k < R3)). c2(n) is smaller than c3(n+ 1) when (n = 2; k = 2) and ((n > 2) ^ (R1 �
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k � R2)). So we obtain the following results for Mcut(Pn;k).8>>>>>>>>>>>><>>>>>>>>>>>>:

c3( 3k+4n
6 ) ((k � R3) ^ o1) _ (n = 1; k = 1),

c3( 3k+4n
6 + 1

2 ) ((k � R3) ^ o2),
c3( 3k+4n

6 � 1
3 ) ((k � R3) ^ o3),

c3( 3k+4n
6 + 1

6 ) ((k � R3) ^ (2 - k)),
c3(n+ 1) ((n > 2) ^ (R2 � k < R3)) _ (n = 1; k = 2) _ (n = 2; k = 3),
c2(n) ((n > 2) ^ (R1 � k � R2)) _ (n = 2; k = 2),

c2( 3k+2n
4 ) (k < R1) ^ (o4 2 Z),

c2( 3k+2n
4 + 1

2 ) ((k < R1) ^ (o4 =2 Z) ^ (2 j k)),
c2( 3k+2n

4 + 1
4 ) ((k < R1) ^ (o4 =2 Z) ^ (2 - k)).

The Figure 8 shows the minimum Mcut(Pn;k) for each n; k.
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Figure 8: Mcut(Pn;k).

Corollary 2.1
For P2k;k(k � 1),

Mcut(P2k;k) =

8>>>>><>>>>>:

4
�2+7k (4 j k),

4(�2+7k)
(�4+7k)(7k) (4 - k) ^ (2 j k),

4(�2+7k)
(�3+7k)(�1+7k) (2 - k).

(Proof) By substituting n = 2k to the formula given for Mcut(Pn;k), we can directly obtain the result.

According to the Proposition 2.5, for n = 2k, k � 2n
3

+ 2 implies that k � �6. Since k � 1, this does
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not holds. For n = 2k,
2n
3

� k <
2n
3

+ 2 implies that �2 < k < 0. Since k � 1, this does not holds.

Therefore the only case, which holds for n = 2k is, k <
4k
3

. That is k � R2 in the Proposition 2.5.
This implies that k > 0. Substituting n = 2k in the Proposition 2.5, we have,

Mcut(P2k;k) =

8><>:
4

�2+7k (4 j k),
4(�2+7k)

(�4+7k)(7k) (4 - k) ^ (2 j k),
4(�2+7k)

(�3+7k)(�1+7k) (2 - k).

2.5 Mcut of graph LPn;m

Here, we consider the lollipop graph LPn;m and derive a formula for Mcut(LPn;m). As de�ned in the
preliminary section, lollipop graph LPn;m is constructed by joining the end vertex of a path graph Pm
to the vertex of a complete graph Kn.

Proposition 2.6
For the graph LPn;m; (n � 3 and m � 1),

Mcut(LPn;m) =

8>>>><>>>>:
n2�n+2m

(n2�n+1)(2m�1) 2 � m � n2�n+4
2 ,

4
(n2�n+2m)

n2�n+2m+2
4 2 Z ^m > n2�n+4

2 ,
4(2m+(�1+n)n)

�4+4m2+4m(�1+n)n+n2�2n3+n4
n2�n+2m+2

4 =2 Z ^m > n2�n+4
2 ,

n2�n+2
(n2�1) m = 1.

(Proof) Let V (LPn;m) = fx1; x2; : : : ; xm; y1; y2; : : : ; yng, where the set of vertices fx1; x2; : : : ; xmg =
V (Pm) and fy1; y2; : : : ; yng = V (Kn). Let E(LPn;m) = f(xi; xi+1) j 1 � i � m� 1g [ f(yi; yj) j 1 �
i; j � n and i 6= jg [ f(y1; xm)g. We consider the following cases by taking subsets from the graph.
Case(i) Let A1 � V (LPn;m) such that A1 = fxi j 1 � i � mg and V n A1 = fyi j 1 � i � ng. Then
cut(A1; V n A1) = 1. vol(A1) = vol(Pm) + 1 = 2m � 1. vol(V n A1) = vol(Kn) + 1 = n(n � 1) + 1.

Then Ncut(A1; V nA1) =
1

2m� 1
+

1
n2 � n+ 1

=
n2 � n+ 2m

(n2 � n+ 1)(2m� 1)
: Let this value as c1.

Case(ii) Let A2 � V (LPn;m) such that A2 = fxi j 1 � i � mg [ fy1g and V nA2 = fyi j 2 � i � ng.
Then cut(A2; V nA2) = n�1, vol(A2) = vol(Pm)+1+n = 2m�1+n and vol(V nA2) = n(n�1)+1�n =

(n�1)2. Then Ncut(A2; V nA2) = (n�1)
�

1
2m� 1 + n

+
1

(n� 1)2

�
=

n2 � n+ 2m
(n� 1)(2m� 1 + n)

(n 6= 1):

Let this value as c2.

Case(iii) Let A3 � V (LPn;m) such that A3 = fxi j 1 � i � kg and V n A3 = fyi j 1 � i �
ng [ fxi j k + 1 � i � mg. Then cut(A3; V n A3) = 1, vol(A3) = vol(Pk) + 1 = 2k � 1 and
vol(V nA3) = vol(Kn) + 1 + vol(Pm) � vol(Pk) = n(n� 1) + 1 + 2(m� k). Then Ncut(A3; V nA3) =

1
2k � 1

+
1

n(n� 1) + 1 + 2(m� k)
=

n2 � n+ 2m
(n(n� 1) + 1 + 2(m� k))(2k � 1)

. Let this value as c3(k).

We can �nd the minimum value of c3 by di�erentiating c3(k) with respect to k.
dc3(k)
dk

= 0 gives
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k0 =
n2 � n+ 2m+ 2

4
. If 1 � n2 � n+ 2m+ 2

4
< m for m � 1; n � 3, that is m >

2 � n+ n2

2
then

the minimum of c3(k) is c3(k0) whenever k0 =
n2 � n+ 2m+ 2

4
2 Z. Then we have,

c3(k0) =
4

2m+ n2 � n
:

If k0 =2 Z then let k0 as k0 =
n2 � n+ 2m+ 2

4
� 1

2
. If k =

n2 � n+ 2m+ 2
4

+
1
2

then the minimum

of c3(k) is given by

c3(k0 +
1
2

) =
4(2m� n+ n2)

(�2 + 2m� n+ n2) (2 + 2m� n+ n2)
:

If we let k0 as k0 =
n2 � n+ 2m+ 2

4
� 1

2
then the minimum of c3 is

c3(k0 � 1
2

) =
4(2m� n+ n2)

(�2 + 2m� n+ n2) (2 + 2m� n+ n2)
:

So we have c3(k0 � 1
2

) = c3(k0 +
1
2

) =
4(2m� n+ n2)

(�2 + 2m� n+ n2) (2 + 2m� n+ n2)
.

If
n2 � n+ 2m+ 2

4
� m that is m � 2 � n+ n2

2
then the minimum of c3(k) is c3(m). This is

equal to the Case(i) considered above. Hence for m � 2 � n+ n2

2
, we have

c3(m) =
n2 � n+ 2m

(n2 � n+ 1)(2m� 1)
:

Case(iv) Let A4 � V (LPn;m) such that A4 = fxi j 1 � i � mg [ fyi j 1 � i � k and j + 1 � i � ng
and V n A4 = fyi j k + 1 � i � jg, where jV n A4j = bn

2
c. Then cut(A4; V n A4) = bn

2
cdn

2
e.

Volume of vol(A4) = 2m � 1 + dn
2

e(n � 1) + 1. Volume of vol(V n A4) = bn
2

c(n � 1). Then

Ncut(A4; V nA4) =
dn2 ebn2 c(n(n� 1) + 2m)

2m(n� 1)bn2 c + dn2 ebn2 c(n� 1)2
. This can be written as,

(
n2(n(n�1)+2m)

(4m+n2�1)(n(n�1)) if n is even,
n2(n(n�1)+2m)

(4m+n2�1)(n�1)2 if n is odd.

Let this value as c4. Now we can compare all cases considered above. Comparing c4 with c1, c1 is
the minimum for n � 3 and m � 1. Next we compare value of c3(k0); c3(k0 + 1

2 ) with c2 in the

region m >
2 � n+ n2

2
. c3(k0) and c3(k0 + 1

2 ) are smaller than c2. Next compare c3(m) with c2 for

m � 2 � n+ n2

2
. Then for 2 � m � 2 � n+ n2

2
, c3(m) is smaller than c2.

When m = 1,

c2 =
n2 � n+ 2
(n2 � 1)

:

34



In this case, c2 is smaller than c3(m).

Hence we can summarize the results as follows.

Mcut(LPn;m) =

8>>><>>>:
c3(m) 2 � m � n2�n+2

2 ,
c3(k0) k0 2 Z and m > n2�n+2

2 ,
c3(k0 + 1

2 ) k0 =2 Z and m > n2�n+2
2 ,

c2 m = 1.

The Figure 9 shows the values of Mcut(LPn;m) for each n;m.

4 5 6 7 8 9 10
n

-10

-5

5

10
m

m=2

m=1

m=
n ^ 2-n+2

2
c3(m)

c2(1)

c3(k0) and c3(k0+1/2)

Figure 9: Mcut(LPn;m).

2.6 Mcut of graph LP 0
n;2

In this section, we explain another graph, which we call LP 0
n;2. As explained in the preliminary

section, we construct LP 0
n;2 by joining both end vertices of path graph P2 to the two adjacent vertices

of complete graph Kn.

Proposition 2.7
For the graph LP 0

n;2, Mcut(LP 0
n;2) =

n2 � n+ 6
2(n2 � n+ 2)

for n � 3.

(Proof) Let V (LP 0
n;2) = fx1; x2; y1; y2; : : : ; yng, where fx1; x2g = V (P2) and fy1; y2; : : : ; yng =

V (Kn). Let E(G) = f(x1; x2)g [ f(yi; yj) j 1 � i � n; 1 � j � n and i 6= jg [ f(y1; x2)g [ f(yn; x1)g.
Now consider the following cases.
Case(i) Let A1 � V (LP 0

n;2) such that A1 = fxi j 1 � i � 2g and V n A1 = fyi j 1 � i � ng. Then
cut(A1; V n A1) = 2; vol(A1) = 4 and vol(V n A1) = n(n � 1) + 2. So we have Ncut(A1; V n A1) =

2
�

1
4

+
1

n(n� 1) + 2

�
=

n2 � n+ 6
2(n2 � n+ 2)

.
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Case(ii)Let A2 � V (LP 0
n;2) such that A2 = fx2g [ fyi j 1 � i � bn2 cg and V n A2 =

fx1g [ fyi j bn2 c + 1 � i � ng. Then cut(A2; V n A2) = bn2 cdn2 e + 1 and Ncut(A2; V n A2) =

(bn
2

cdn
2

e + 1)
�

1
((n� 1)bn2 c + 3)

+
1

((n� 1)dn2 e + 3)

�
=

(bn2 cdn2 e + 1)((n� 1)n+ 6)
(n� 1)2bn2 cdn2 e + 3(n� 1)n+ 9

.

We can deduce this as (
4+n2

6�n+n2 n even,
(3+n2)(6�n+n2)

(5+n2)(7�2n+n2) n odd.

For even n, Case(ii) � Case(i) is
(n4 � n2 + 4n� 20)

2(n2 � n+ 2)(n2 � n+ 6)
> 0 for n � 3. For odd n, Case(ii) �

Case(i) =
(n2 � n+ 6)(n4 � 2n2 + 4n� 23)

2(5 + n2)(n2 � 2n+ 7)(n2 � n+ 2)
> 0 for n � 3. Hence Case(i) < Case(ii).

Case(iii) Let A3 � V (LP 0
n;2) such that A3 = fx1; x2; y1; yng and V n A3 = fy2; : : : ; yn�1g. Then

cut(A3; V nA3) = 2(n�2) and Ncut(A3; V nA3) = 2(n�2)(
1

4 + 2n
+

1
(n� 2)(n� 1)

) =
n2 � n+ 6

(n+ 2)(n� 1)
.

Now compare Case(iii) with Case(i). Case(iii) � Case(i) =
(n2 � 3n+ 6)(n2 � n+ 6)

2(n+ 2)(n� 1)(n2 � n+ 2)
> 0. Then

Case(i) is the minimum.
Case(iv) Further we can consider a cut through the complete graph such that half of the complete
graph belongs to one partition. Let A4 = fyi j k � i � jg such that jA4j = bn

2
c and (V n A4) =

fy1; yng [ fx1; x2g [ fyi j 1 � i � k � 1g [ fyi j j + 1 � i � ng. Then cut(A4; V nA4) = bn
2

cdn
2

e and

Ncut(A4; V nA4) = bn
2

cdn
2

e
�

1
(n� 1)bn2 c

+
1

(n� 1)dn2 e + 6

�
=

dn2 e(n2 � n+ 6)
(n� 1)2dn2 e + 6(n� 1)

.

We can deduce this as,

=

(
n(n2�n+6)

(n�1)(n2�n+12) n even,
(n2�n+6)(n+1)
(n�1)(n2+11) n odd.

Comparing Case(i) with Case(iv) for even n we have, Case(i) � Case(iv) =
(n2 � n+ 6)(�n3 + 9n� 12)

2(n2 � n+ 2)(n� 1)(n2 � n+ 12)
< 0 for n � 3. Similarly, for odd n, Case(i) � Case(iv) =

(n2 � n+ 6)(�n3 � n2 + 9n� 15)
2(n2 � 2n+ 2)(n� 1)(n2 + 11)

< 0 for n � 3. Hence Case(i) is the minimum.

Considering all cases, Case(i) has the minimum cut size and also the minimum normalized cut.

Therefore Mcut(LP 0
n;2) =

n2 � n+ 6
2(n2 � n+ 2)

for n � 3.

The Figure 10 shows Mcut(LP 0
n;2) for n = 4; 6.

2.7 Double tree cross path

In this section, we consider double tree cross path. Double tree cross path is a graph constructed by
taking the Cartesian product of double tree with path. We derive a formula for Mcut(DTn2Pm)(n �
2;m � 2).
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(a) LP 0
4;2 (b) LP 0

6;2

Figure 10: Mcut(LP 0
n;2) for n = 4; 6.

Proposition 2.8
Let DTn(n � 2) be a double tree of size 2n+1 � 2, where n denotes the depth of the tree. Then

Mcut(DTn2Pm) =

(
2m

(2m�1)2n+1�5m+2 for 2 � m < 2n+1 � 2,
(2n+1�2)((2m�1)2n+2�10m+4)

(2n+3�10)2b m
2 cd m

2 e�(2n+1�2)(2n+3�10)m+(2n+1�2)2 for m � 2n+1 � 2.

(Proof) The size of a tree is jTnj = 1 + 2 + � � � + 2n = 2n � 1 and the size of a double tree is
jDTnj = 2jTnj = 2n+1 � 2. The volume of a tree is vol(Tn) = 2n+1 � 4 and the volume of a double
tree is vol(DTn) = 2vol(Tn) + 2 = 2n+2 � 6. DTn � (DTn2Pm). Let Y = 2n+1 � 2. Then

jDTnj = Y; and

vol(DTn2Pm) = vol(DTn)m+ jDTnj(2m� 2)
= (2n+2 � 6)m+ 2(2n � 1)(2m� 2)
= (2m� 1)2n+2 � 10m+ 4
= 2Y (2m� 1) � 2m:

Case(i) Let A1 = f(x(w); p(i)) j 1 � i � m;w 2 ��ng and V n A1 = f(y(w); p(i)) j 1 � i � m;w 2
��ng. Then A1 = (Tn2Pm) and

vol(A1) = (vol(Tn) + 1)m+ jTnj(2m� 2)
= (2m� 1)2n+1 � 5m+ 2
= Y (2m� 1) �m;

vol(V nA1) = (2m� 1)2n+1 � 5m+ 2
= Y (2m� 1) �m;

cut(A1; V nA1) = m:

Therefore Ncut(A1; V nA1) =
2m

Y (2m� 1) �m
.

Case(ii) Let A2 = f(x(w); p(i)) j 1 � i � bm2 c; w 2 ��ng [ fy(w); p(i)) j 1 � i � bm2 c; w 2 ��ng and
V n A2 = f(x(w); p(i)) j 1 + bm2 c � i � m;w 2 ��ng [ f(y(w); p(i)) j 1 + bm2 c � i � m;w 2 ��ng.
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Then

vol(A2) = vol(DTn)bm
2

c + jDTnj(2bm
2

c � 1)

= (2n+2 � 6)bm
2

c + 2(2n � 1)(2bm
2

c � 1)

= (2:2n+2 � 10)bm
2

c � 2n+1 + 2

= (4Y � 2)bm
2

c � Y;

vol(V nA2) = (2:2n+2 � 10)dm
2

e � 2n+1 + 2;

= (4Y � 2)dm
2

e � Y:

Then Ncut(A2; V nA2) can be written as

=
jDTnjvol(DTn2Pm)

(4Y � 2)2bm2 cdm2 e � (4Y � 2)Y m+ Y 2

=
Y (4mY � 2m� 2Y )

(4Y � 2)2bm2 cdm2 e � Y (4Y � 2)m+ Y 2
:

Case(iii)Let A3 = f(x(w); p(i)) j 1 � i � bm
2

c; w 2 ��ng [ f(y(w); p(i)) j 1 � i � bm
2

c; w 2

��ng [ f(x(w); p(1 + bm
2

c)) j w 2 ��ng and V n A3 = f(x(w); p(i)) j bm
2

c + 2 � i � m;w 2

��ng [ f(y(w); p(i)) j bm
2

c + 2 � i � m;w 2 ��ng [ f(x(w); p(1 + bm
2

c)) j w 2 ��ng. Then

vol(A3) = vol(DTn)bm
2

c + jDTnj(2bm
2

c � 1) + vol(Tn) + 2jTnj + 1

= (2n+3 � 10)bm
2

c + 2n+1 � 3;

= (4Y � 2)bm
2

c + Y � 1; and

vol(V nA3) = vol(DTn)(dm
2

e � 1) + vol(Tn)jDTnj(2(dm
2

e � 1) � 1) + 2jTnj + 1

= (2n+3 � 10)dm
2

e � 3:2n+1 + 7;

= (4Y � 2)dm
2

e � (3Y � 1):

Then

Ncut(A3; V nA3) =
(jDTnj + 1)vol(DTn2Pm)

(4Y � 2)2bm2 cdm2 e � (4Y � 2)(3Y � 1)bm2 c + (Y � 1)(4Y � 2)dm2 e � (Y � 1)(3Y � 1)

=
2(Y + 1)(2mY �m� Y )

(4Y � 2)2bm2 cdm2 e � (4Y � 2)(3Y � 1)bm2 c + (Y � 1)(4Y � 2)dm2 e � (Y � 1)(3Y � 1)
:
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Case(iv)Let A4 = f(x(w); p(i)) j 1 � i � bm
2

c; w 2 ��ng and V n A4 = f(y(w); p(i)) j 1 � i �

bm
2

c; w 2 ��ng [ f(x(w); p(j)) j 1 + bm
2

c � j � m;w 2 ��ng [ f(y(w); p(j)) j 1 + bm
2

c � j � m;w 2
��ng. Then

vol(A4) = (1 + vol(Tn))bm
2

c + jTnj(2bm
2

c � 1)

= (2n+2 � 5)bm
2

c � 2n + 1;

= (2Y � 1)bm
2

c � Y

2
; and

vol(V nA4) = vol(DTn)dm
2

e + jDTnj(2dm
2

e � 1) + vol(A4)

= (2n+2 � 5)(2m� bm
2

c) � 3:2n + 3;

= (2Y � 1)(2m� bm
2

c) � 3Y
2
:

cut(A4; V nA4) = (jTnj + 1 + bm
2

c)

=
Y

2
+ 1 + bm

2
c and

Ncut(A4; V nA4) =
Y
2 + 1 + bm2 c

(2Y � 1)2(2m� bm2 c)bm2 c � (2Y � 1)bm2 c 3Y
2 � Y

2 (2Y � 1)(2m� bm2 c) + 3Y 2

4

:

Now we can compare all cases considered above.
Case(ii) can be written as(

2Y (2Ym�m�Y )
((2Y�1)m�(3Y�1))((2Y�1)m+(Y�1)) m is odd,

2Y
�Y+2Ym�m m is even.

If m is even then, Case(i)=Case(ii) =
m

Y
and

m

Y
< 1, if m < Y . That is for all even

m, if m < 2n+1 � 2 then Case(i) is the minimum. If m is odd then, Case(i)=Case(ii) =
m(1 � 3Y +m(�1 + 2Y ))(�1 + Y +m(�1 + 2Y ))

Y (m+ Y � 2mY )2
. Case(i)=Case(ii) < 1, if 2 � m < Y . That

is for odd m, if m < 2n+1 � 2 then Case(i) is the minimum.
Case(iii) can be written as(

2(Y+1)
((2Y�1)m�Y ) m is odd,

2(Y+1)((2Y�1)m�Y )
(Y�1+m(2Y�1))(�3(Y+1)+m(2Y�1)) m is even.

Now compare Case(i) with Case(iii). If m is odd then, Case(i)=Case(iii) =
m

1 + Y
< 1,

if m < (1 + Y ). That is m < 2n+1 � 1. Similarly, for even m, Case(i)=Case(iii) =
m(�1 + Y +m(�1 + 2Y ))(�3(1 + Y ) +m(�1 + 2Y ))

(1 + Y )(m+ Y � 2mY )2
< 1, if 2 � m < Y . That is Case(i) is the
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minimum for m < 2n+1 � 2.
Next compare Case(i) with Case(iv). Case(iv) can be written as(

4(2+m+Y )
�3Y+m(�3+6Y ) m is even,

4(Y+1+m)(�Y+m(2Y�1))
(m(2Y�1)�3Y+1)(�5Y+1+m(6Y�3)) m is odd.

If m is even then Case(i)=Case(iv) =
3m

2(2 +m+ Y )
. Case(i)=Case(iv) < 1, if

m < 4 + 2Y . That is for m < 2n+2. If m is odd then Case(i)=Case(iv) =
m(1 � 3Y +m(�1 + 2Y ))(1 � 5Y +m(�3 + 6Y ))

2(1 +m+ Y )(m+ Y � 2mY )2
. Case(i)=Case(iv) < 1 if m < 2Y + 1. That

is for m < 2n+1 + 3, Case(i) is the minimum.

Claim 1 If m < 2n+1 � 2 then, Case(i) is the minimum.
Comparing Case(i) with Case(ii), Case(i) < Case(ii) for m < 2n+1 � 2. Comparing Case(i) with
Case(iii), Case(i) < Case(iii), for m < 2n+1 � 2.
Comparing Case(i) with Case(iv), Case(i) < Case(iv) for m < 2n+2. Hence the Case(i) is the
minimum for m < 2n+1 � 2.

Next compare Case(ii) with Case(iii). If m is odd then Case(ii)=Case(iii) =
Y (m+ Y � 2mY )2

(1 + Y )(1 � 3Y +m(�1 + 2Y ))(�1 + Y +m(�1 + 2Y ))
. Case(ii)=Case(iii) < 1, if m � Y + 1.

That is m � 2n+1 � 1. Since m is odd, Case(ii) is the minimum for odd m � 2n+1 � 2.

If m is even then Case(ii)=Case(iii) =
Y (�1 + Y +m(�1 + 2Y ))(�3(1 + Y ) +m(�1 + 2Y ))

(1 + Y )(m+ Y � 2mY )2
.

Case(ii)=Case(iii) < 1 for m � 2 and Y � 1. That is for m � 2 and n � 2. Therefore
Case(ii) is the minimum for m � 2n+1 � 2. Next we compare Case(ii) with Case(iv) for even m.

Case(ii)=Case(iv) =
3Y

2(2 +m+ Y )
. That is Case(ii)=Case(iv) < 1 for m � 2n�3. If m is odd then

Case(ii)=Case(iv) =
Y (1 � 5Y +m(�3 + 6Y ))

2(1 +m+ Y )(�1 + Y +m(�1 + 2Y ))
. Case(ii)=Case(iv) < 1 for m � Y .

That is for m � 2n+1 � 2.

Claim 2 If m � 2n+1 � 2 then Case(ii) is the minimum.
Comparing Case(i) with Case(ii), Case(ii) is the minimum for m � 2n+1 � 2. Comparing Case(ii)
with Case(iii), Case(ii) gives minimum for m � 2n+1 � 2 Comparing Case(ii) with Case(iv), Case(ii)
gives minimum for m � 2n�3, when m is even and m � 2n+1 �2 when m is odd. Hence the Case(ii)
is the minimum for m � 2n+1 � 2.

Therefore Claim 1 and Claim 2 gives the required result. The Figure 11 shows Case(i) and Case(ii),
where a green line indicates the bipartition.
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(a) DT22P3 (b) DT22P7

Figure 11: Double tree cross paths.

2.8 Conclusion

In this chapter, we discussed the properties of minimum normalized cut of some graph classes
and derive a formula for Mcut(G) of graphs. Finding a formula for Mcut(G) of graphs like
Rn;k,Pn;k,LPn;m,LP 0

n;2 and double tree cross paths takes lot of time and the computation is also
di�cult.
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3 Di�erence Laplacian, normalized Laplacian, signless Lapla-
cian and their eigenvalues

This chapter review the survey results of three Laplacian matrices called di�erence Laplacian, normal-
ized Laplacian and signless Laplacian. Even most of these results are known, we try to summarize them
by improving the readability. Specially we emphasize the second smallest eigenvalue of the normal-
ized and di�erence Laplacian matrices and their boundary values using isoperimetric number, Cheeger
constant, diameter etc. We give uniform proofs to �nd eigenvalues of paths and cycles of above three
Laplacian matrices using circulant matrices and also give an alternate proof to �nd eigenvalues of
an adjacency matrix of cycles and paths using Chebyshev polynomials. Our graphs are undirected but
they may have loops and we assume that all graphs have edge weight one.

3.1 Di�erence Laplacian and bounds for the eigenvalues

In this section, we discuss the di�erence Laplacian matrix and the isoperimetric number i(G) of a
graph G. We show that the bounds for the second smallest eigenvalue �2 of di�erence Laplacian is,

� �
p

�2 � i(G)2 � �2 � 2i(G):

Proposition 3.1
Let L(G) be the di�erence Laplacian matrix of a weighted graph G and f = (f1; : : : ; fn) 2 <n be an
eigenvector. Then hf; Lfi can be written as

hf; Lfi =

Pn
i=1

Pn
j=1 wij(fi � fj)2

2
:

(Proof)

fTLf = fT (D �W )f
= fTDf � fTWf

=
nX
i=1

f2
i di �

nX
i=1

nX
j=1

fifjwij

=

�Pn
i=1 f

2
i

Pn
j=1 wij +

Pn
j=1 f

2
j

Pn
i=1 wij

�
2

�
nX
i=1

nX
j=1

fifjwij

=

Pn
i=1

Pn
j=1

�
f2
i + f2

j � 2fifj
�
wij

2

=

Pn
i=1

Pn
j=1(fi � fj)2wij

2
:

Basic properties of di�erence Laplacian L(G) are listed as follows.

� L(G) is a real symmetric matrix.

� L(G) is positive semi-de�nite (fTLf � 0).
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� �i � 0; (i = 1; : : : ; n).

� �2(L(G)) = minfhLf; fi jf 2 <n; jjf jj = 1g.

Lemma 3.1
Let G = (V;E) be a graph and �1 � �2 � � � � � �n be the eigenvalues of di�erence Laplacian matrix.
Then �2 > 0 if and only if G is a connected graph.

(Proof) First assume that the graph is disconnected and has k connected components such that G =
[ki=1Gi. Then we can write the di�erence Laplacian matrix as

L(G) =

0BBBBB@
L(G1) 0 � � � 0

0 L(G2)
...

...
. . .

...
... � � � � � � L(Gk)

1CCCCCA :

This is a block diagonal matrix and the characteristic polynomial of PL(G) =
Qk
i=1 PL(Gi). For each

connected component, zero is an eigenvalue. Since G has k connected components it has eigenvalue
zero with multiplicity at least k and �2 = 0.
Now suppose that the graph is connected. Let x = (x1; : : : ; xn) be an eigenvector. Then

� =
hL(G)x; xi

hx; xi
=
xTL(G)x
xTx

:

Then xTL(G)x =

Pn
i=1

Pn
j=1 wij(xi � xj)2

2
implies that xTL(G)x = 0, if xi = xj for all pair of

vertices i; j. Since the graph is connected xi = xj implies that there exists a constant vector x. Hence
the eigenvalue zero has an eigenvector (1; : : : ; 1)T . Hence all other eigenvalues are greater than zero
and therefore �2 > 0.

The smallest non-zero eigenvalue of the di�erence Laplacian is called Fiedler value or algebraic
connectivity. It tells how well a graph can be separated using the sign patterns of the second eigenvector.
If �2 is too small then it is possible to cut the graph into 2 without cutting too many edges. If �2 is
large then it needed to cut several edges. If �2 of a graph is large then the graph is called an expander
graph.

Example 3.1
For a complete graph Kn with large n, eigenvalues of a di�erence Laplacian matrix are 0 and n with
multiplicity n � 1. We need to cut lot of edges in order to bipartition the graph. For a graph like
path Pn, the second smallest eigenvalue of a di�erence Laplacian matrix is less than 1 and we need
to cut only one edge to separate the graph.

Corollary 3.1
Let G be a graph, and L(G) be its di�erence Laplacian. Then, the multiplicity of eigenvalue 0 is equal
to the number of connected components of G.
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Proposition 3.2
L(Kn) has eigenvalue 0 with multiplicity 1 and n with multiplicity n� 1.

(Proof) Let x be any vector orthogonal to the all ones vector. Consider the �rst row expansion of
L(Kn)x = �x.

�x1 = (n� 1)x1 �
nX
i=2

xi

= (n� 1)x1 � (
nX
i=1

xi � x1)

� = n:

Thus, x is an eigenvector with an eigenvalue n.

Lemma 3.2
Let G = (V (G); E(G)) and H = (V (H); V (H)) be graphs with di�erence Laplacian eigenvalues
�1; : : : ; �n and �1; : : : ; �n and the eigenvectors x1; : : : ; xn and y1; : : : ; ym respectively. Then, for each
1 � i � n, and 1 � j � m, G2H has an eigenvector z with an eigenvalue �i + �j such that
z(v; w) = xi(v)yj(w).

(Proof) Let L denote the di�erence Laplacian of G2H, dv the degree of the node v in G, and dw
the degree of the node w in H. Consider a vertex (v; w) in the graph G2H. We test whether an
eigenvector z(v; w) = xi(v)yj(w) has an eigenvalue �i + �j.

(Lz)(v; w) = (dv + dw)(xi(v)yj(w)) �
X

(v;v2)2E(G)

(xi(v2)yj(w)) �
X

(w;w2)2E(H)

(xi(v)yj(w2))

= dv(xi(v)yj(w)) �
X

(v;v2)2E(G)

(xi(v2)yj(w)) + dw(xi(v)yj(w)) �
X

(w;w2)2E(H)

(xi(v)yj(w2))

= yj(w)

0@dvxi(v) �
X

(v;v2)2E(G)

xi(v2)

1A+ xi(v)

0@dwyj(w) �
X

(w;w2)2E(H)

yj(w2)

1A
= yj(w)�ixi(v) + xi(v)�jyj(w)
= (�i + �j)xi(v)yj(w):

Thus, the eigenvalues and the eigenvectors of the grid graph are completely determined by the eigen-
values and eigenvectors of the path graph.

Example 3.2 (The eigenvalues and the eigenvectors of the grid graphs)
Consider the grid graph shown in the Figure 12. Eigenvalues of di�erence Laplacian ma-
trix of P3 are f3; 1; 0g and those of P2 are f2; 0g. Then the eigenvalues of (P32P2) are
f5; 3; 3; 2; 1; 0g. Eigenvectors of di�erence Laplacian of P3 are f(1;�2; 1); (�1; 0; 1); (1; 1; 1)g and
P2 are f(�1; 1); (1; 1)g. Then the eigenvectors of grid graph (P32P2) are f(�1; 2;�1; 1;�2; 1);
(1;�2; 1; 1;�2; 1); (1;�2; 1; 1;�2; 1); (�1;�1;�1; 1; 1; 1); (�1; 0; 1;�1; 0; 1); (1; 1; 1; 1; 1; 1)g.
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Figure 12: Grid graph P32P2.

Lemma 3.3
Let G = (V (G); E(G)) be a graph and a; b 2 V (G) be nonadjacent vertices. Then �2(G) � 1

2 (da+db).

(Proof) Let f 2 <jV j be de�ned by

fi =

8<: 1 i = a,
�1 i = b,
0 otherwise.

Since

�2(G) � hLf; fi
hf; fi

=

Pn
i=1

Pn
j=1 wij(fi � fj)2

2
P
i f

2
i

=

Pn
i=1

Pn
j=1 wij(f

2
i + f2

j � 2fifj)
2(f2

a + f2
b )

=

Pn
i=1 wi;af

2
a +

Pn
j=1 wa;jf

2
a +

Pn
i=1 wi;bf

2
b +

Pn
j=1 wb;jf

2
b

4

=
2(da + db)

4

=
da + db

2
:

Theorem 3.1
Let G be a graph with n vertices and f be an eigenvector of L(G) with an eigenvalue � 6= 0. Let Gc

is a complement of G and its di�erence Laplacian is denoted by L(Gc). Then f is an eigenvector of
L(Gc) with an eigenvalue n� �.

(Proof) Let J be a n�n matrix with all entries equal to 1. L(G) +L(Gc) = nI � J and Jf = 0 since
f ? ~1. Then nf = (nI � J)f = (L(G) + L(Gc))f = �f + L(Gc)f . Hence L(Gc)f = (n� �)f .

Proposition 3.3
Isoperimetric numbers of the following graphs are discussed by Bojan Mohar 1989[34].
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1. The complete graph Kn, has i(Kn) = dn2 e.

2. The cycle Cn, has i(Cn) = 2=bn=2c.

3. The path Pn, has i(Pn) = 1=bn=2c.

4. The complete bipartite graph Km;n has its isoperimetric number equal to

i(Km;n) =

8<: mn=(m+ n) if m and n are even,
(mn+ 1)=(m+ n) if m and n are odd,
mn=(m+ n� 1) if m+ n is odd,

which can be shortened to i(Km;n) =
dmn=2e

b(m+ n)=2c
.

5. Petersen’s graph has an isoperimetric number equal to 1.

6. The n-dimensional cube graph Qn = Kn
2 has i(Qn) = 1.

Proposition 3.4
Let G = (V (G); E(G)) be a regular graph of degree r and S � V (G). Then r:hG = i(G).

(Proof) By de�nition, i(G) = min
S�V

cut(S; V n S)
min(jSj; jV n Sj)

and hG = min
S�V

cut(S; V n S)
min(vol(S); vol(V n S))

. Then

hG = min
S�V

cut(S; V n S)
min(rjSj; rjV n Sj)

=
1
r
i(G). Hence we have r:hG = i(G).

Proposition 3.5 (Mohar [35])
Let G be a weighted graph of order n. Then �2(L(G)) = 2n � minf

Pn
i=1

Pn
j=1 wij(fi � fj)2

2
Pn
i=1

Pn
j=1(fi � fj)2

j f 6=

c~1 for c 2 <g and �n(L(G)) = 2n � maxf
Pn
i=1

Pn
j=1 wij(fi � fj)2

2
Pn
i=1

Pn
j=1(fi � fj)2

j f 6= c~1 for c 2 <g.

Lemma 3.4 (Mohar [35])
Let G be a weighted graph of order n and S � V (G). Then �2(G)

jSj(n� jSj)
n

� cut(S; V n S) �

�n(G)
jSj(n� jSj)

n
.

(Proof) Let f 2 <jV j be a function de�ned on V (G) such that

fi =
�

1 if i 2 S,
0 otherwise.
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Then
nX
i=1

nX
j=1

(fi � fj)2 =
X
i2S

X
j =2S

(fi � fj)2 +
X
i=2S

X
j2S

(fi � fj)2 = 2jSj(n� jSj) and

Pn
i=1

Pn
j=1 wij(fi � fj)2

2
=

P
i2S;j =2S wij(fi � 0)2 +

P
i=2S;j2S wij(0 � fj)2

2

=

P
i2S;j =2S wij +

P
i=2S;j2S wij

2
= cut(S; V n S):

If S 6= ; and S 6= V (G), then �2(L(G)) � n � cut(S; V n S)
jSj(n� jSj)

by the Proposition 3.5. Similarly,

�n(L(G)) � n � cut(S; V n S)
jSj(n� jSj)

by the Proposition 3.5. This shows the required result.

Theorem 3.2 (Mohar [35])
Let G be a graph on n vertices and let �2 be the second smallest eigenvalue of its di�erence Laplacian

matrix. Then for every k (1 � k � n� 1), ik(G) � (n� k)�2

n
and, consequently, i(G) � �2

2
.

(Proof) Let X � V (G). From the Lemma 3.4,

�2 � cut(X;V nX)
�

1
jXj

+
1

jV nXj

�
= cut(X;V nX)

�
n

(n� k)k

�
(k = jXj):

Since ik(G) � cut(X;V nX)
jXj

, we have ik(G) � �2(n� k)
n

. Further, if k � n

2
then

(n� n
2 )

n
� 1

2
and

we have i(G) � �2

2
.

Theorem 3.3 (Mohar [35])
Let G = (V (G); E(G); w) be a weighted graph of order n, G 6= Kn, and let 4 = 4(G) and �2 =
�2(L(G)). Then i(G) �

p
(24 � �2)�2.

(Proof) Assume G is a connected graph. Otherwise �2 = i(G) = 0. Let f = ffi j i 2 V (G)g be an
eigenvector of �2 such that S = fi 2 V (G) j fi > 0g. Assume that jSj � n

2
. Let g = (g1; : : : ; gn) 2 <jV j

be de�ned by

gi =
�
fi if i 2 S,
0 otherwise.
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Then

�2

X
i2S

f2
i =

X
i2S

(Lf)ifi

=
X
i2S

(difi �
nX
j=1

wijfj)fi (L = D �W )

=
X
i2S

nX
j=1

wij(fi � fj)fi (since di =
nX
j=1

wij)

=
X
i2S

X
j2S

wij(fi � fj)fi +
X
i2S

X
j =2S

wij (fi � fj)fi

�
X
i2S

X
j2S

wij(fi � fj)fi +
X
i2S

X
j =2S

wijf
2
i (fi > 0 and fj < 0)

=

P
i2S
P
j2S wij((fi � fj)fi + (fj � fi)fj)

2
+
X
i2S

X
j =2S

wij(gi � gj)2

=

P
i2S
P
j2S wij(gi � gj)2 +

Pn
i=1

Pn
j=1 wij(gi � gj)2

2

=

Pn
i=1

Pn
j=1 wij(gi � gj)2

2
= hLg; gi:

Since
X
i2S

f2
i =

nX
i=1

g2
i = hg; gi, we have �2 � hLg; gi

hg; gi
and let this as K. Then

Pn
i=1

Pn
j=1 wij(gi + gj)2

2
=

nX
i=1

nX
j=1

wij(g2
i + g2

j ) �
Pn
i=1

Pn
j=1 w(i; j)(gi � gj)2

2

=
nX
i=1

nX
j=1

wij(g2
i + g2

j ) � hLg; gi

= 2
nX
i=1

g2
i di � hLg; gi(substitute di = 4)

� 2 4
nX
i=1

g2
i � hLg; gi

= (2 4 �K)hg; gi:

K =
hLg; gi
hg; gi

=

Pn
i=1

Pn
j=1 wij(gi � gj)2

Pn
i=1

Pn
j=1 wij(gi + gj)2

2hg; gi
Pn
i=1

Pn
j=1 wij(gi + gj)2

�
(
Pn
i=1

Pn
j=1 wij jg2

i � g2
j j)2

4(2 4 �K)hg; gi2
(numerator by Cauchy Schwarz):
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Let us assign M =
nX
i=1

nX
j=1

wij jg2
i � g2

j j. Let 0 = t0 < t1 < � � � < tm be all distinct values of

gi(i 2 V (G)). For k = 0; 1; : : : ;m; let Vk := fi 2 V j gi � tkg. Note that jVkj � jSj � n
2 if k > 0.

Then

M =
nX
i=1

nX
j=1

wij jg2
i � g2

j j

=
nX
i=1

nX
j=1

fwij jg2
i � g2

j j gi = tk; j =2 Vkg

= 2
mX
k=1

X
i2Vk

X
j

fwij(t2k � t2k�1) j j =2 Vkg

= 2
mX
k=1

cut(Vk; V n Vk)(t2k � t2k�1)

� 2i(G)
mX
k=1

jVkj(t2k � t2k�1)

= 2i(G)
mX
k=1

t2k(jVkj � jVk+1j)(Taking Vm+1 = 0 and by counting)

= 2i(G)
X
i2S

g2
i :

Then we have, K � i(G)2

2 4 �K
. By expanding we have, K =

� 4 �
p

4 42 �4i(G)2

�2
� 0. �2 � K,

implies �2 � 4 �
p

42 � i(G)2. Rearranging the terms, we have i(G)2 � �2(2 4 ��2).

3.2 Normalized Laplacian

In this section, we analyze the basic properties of normalized Laplacian matrix and derive an upper
bound and a lower bound for the second smallest eigenvalue of normalized Laplacian of a graph G,
using Cheeger constant. The second smallest eigenvalue �2 of normalized Laplacian of any graph G
satis�es the following equation.

1 �
q

1 � h2
G � �2 � 2hG:

3.2.1 Properties of normalized Laplacian

Lemma 3.5 ([10])
Let G = (V;E;w) be a weighted graph, where jV j = n and W = (wij) be the weighted adjacency

matrix. Let g = (g1; : : : ; gn) 2 <n be an eigenvector and f = D�1=2g, where D = D(G). Then we
have

gTLg
gtg

=
fTLf

fTDf
=

Pn
i=1

Pn
j=1 wij(fi � fj)2

2
Pn
i=1 f

2
i di

;
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where di =
Pn
j=1 wij , L = D �W and L = D�1=2LD�1=2.

(Proof)
gTLg
gT g

=
fTD1=2LD1=2f

(D1=2f)(D1=2f)
=
fTLf

fTDf
:

fTLf = fT (D �W )f
= fTDf � fTWf

=

Pn
i=1 f

2
i di �

Pn
i=1

Pn
j=1 fifjwij

2

=
nX
i=1

f2
i

nX
j=1

wij �
nX
i=1

nX
j=1

fifjwij

=

Pn
i=1

Pn
j=1(fi � fj)2wij

2
fTDf =

X
i

f2
i di

fTLf

fTDf
=

Pn
i=1

Pn
j=1 wij(fi � fj)2

2
Pn
i=1 f

2
i di

:

Note.Pn
i=1

Pn
j=1 wij(fi � fj)2

2
=

Pn
i=1

Pn
j=1 wij(f

2
i + f2

j � 2fifj)
2

=

Pn
i=1

Pn
j=1 wijf

2
i

2
+

Pn
j=1

Pn
i=1 wijf

2
j

2
�

nX
i=1

nX
j=1

wijfifj

=
nX
i=1

nX
j=1

f2
i wij � fifjwij :

If g is an eigenvector then g 6= 0 and L(G)g = �g. Hence hg;L(G)gi = hg; �gi = �hg; gi, and

� =
hg;L(G)gi

hg; gi
. If � is a zero eigenvalue then

fTLf

fTDf
= 0 implies that

Pn
i=1

Pn
j=1 wij(fi �

fj)2 = 0. This happened when fi = fj for all i; j. Hence the eigenvalue zero has a con-
stant eigenvector which is D1=2~1. The second eigenvector is orthogonal to the �rst eigenvector
and we have hD1=2~1; gi = hD1=2~1; D1=2fi = Dh1; fi = 0. Hence the second smallest eigenvalue

�2 = inf
f?D~1

Pn
i=1

Pn
j=1 wij(fi � fj)2

2
Pn
i=1 f

2
i di

.

Example 3.3
Let g be the second smallest eigenvector of P2;3. Then g = (�0:810313;�0:894013;�0:304918;

0:686214; 1). Then we can �nd f = D�1=2g. Hence �2 =
fTLf

fTDf
= 0:219854.
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Proposition 3.6
Let g = (gi) be an eigenvector of G such that f = D�1=2g. Then the second smallest eigenvalue of
the normalized Laplacian can be written as

�2 =

Pn
i=1 fi

Pn
j=1(fi � fj)wijPn
i=1 f

2
i di

:

(Proof) We can write (Lf)i =
nX
i=1

nX
j=1

(fi � fj)wij. This follows from the fact that, (Lf)i = ((D �

W )f)i =
nX
i=1

difi �
nX
i=1

nX
j=1

wijfj =
nX
i=1

fi

nX
j=1

wij �
nX
i=1

nX
j=1

wijfj =
nX
i=1

nX
j=1

wij(fi � fj). By using this,

we can write �2 as

�2 = inf
g?D1=2~1

hg;Lgi
hg; gi

= inf
f?D~1

fTLf

fTDf

=
Pn
i=1 fi(Lf)iPn
i=1 f

2
i di

=

Pn
i=1 fi

Pn
j=1(fi � fj)wijPn
i=1 f

2
i di

:

Proposition 3.7
Let g : V (G) ! <. Then (Lg)i can be written as (Lg)i =

1p
di

nX
j=1

(
gip
di

� gjp
dj

).

(Proof)

(Lg)i = gi �
nX

j=1;i 6=j

gjp
didj

=
nX
j=1

(
gi
di

� gjp
didj

)

=
1p
di

nX
j=1

(
gip
di

� gjp
dj

)

Proposition 3.8
Let G be a k-regular graph G. Then L(G) = I � 1

k
�A.

(Proof) Let L = D�1=2LD�1=2 = D�1=2(D �A)D�1=2 = I �D�1=2AD�1=2 = I � A

k
.

51



Lemma 3.6
For a graph G on n vertices we have,

(i)
nX
i=1

�i � n with equality holds i� G has no isolated vertices.

(ii) For n � 2, we have �2 � n

n� 1
with equality holds i� G is a complete graph on n vertices. Also

for a graph G without isolated vertices, we have �n�1 � n

n� 1
.

(iii) For a graph G, which is not a complete graph, we have �2 � 1.

(iv) If G is connected then �2 > 0. If �i = 0 and �i+1 6= 0 then G has exactly i connected
components.

(v) For all i � n, we have �i � 2 with �n = 2 i� a connected component of G is bipartite and
nontrivial.

(Proof)

(i) If G is a connected graph without isolated vertices, we have Trace(L) =
P
i �i = n, where n is

the total number of vertices. If there exists an isolated vertex then for each isolated vertex we
have a zero row in the normalized Laplacian matrix. Hence Trace(L) < n.

(ii) Consider above part (i) with �1 = 0. Then

�2 + � � � + �n = n

(n� 1)�2 � n;

where �2 is the smallest non zero eigenvalue. Therefore �2 � n

n� 1
Similarly,

�2 + � � � + �n � (n� 1)�n

�n � n

n� 1
;

where �n is the largest eigenvalue.

(iii) Suppose G contains two non adjacent vertices a, b. Let

fi =

8<: db i = a,
�da i = b,
0 i 6= a; b.

�2 = inf
f

Pn
i=1

Pn
j=1(fi � fj)2wij

2
Pn
i=1 f

2
i di

= inf
f

Pn
j=1(fa � fj)2waj +

Pn
j=1(fb � fj)2wbj +

Pn
i=1(fi � fa)2wia +

Pn
i=1(fi � fb)2wib

2(f2
ada + f2

b db)

= inf
f

f2
ada + f2

b db
f2
ada + f2

b db
= inf

f
1:
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Hence �2 � 1.

(iv) If G is connected then the eigenvalue 0 has multiplicity 1 since any eigenvector with the eigen-
value 0 assumes the same value at each vertex. Therefore �2 > 0. If G is a disconnected graph
with i components then the eigenvalues of G are �(G) = [i�(Gi). For each connected graph, zero
is an eigenvalue with multiplicity 1. If �i = 0 and �i+1 6= 0 then G has exactly i components.

(v) The largest eigenvalue �n satisfy the equation �n = sup
f

Pn
i=1

Pn
j=1(fi � fj)2

2
P
i f

2
i di

. By using the

fact that (fi � fj)2 � 2(f2
i + f2

j ), for all 1 � i � n, we have �i � sup
f

Pn
i=1

Pn
j=1(fi � fj)2

2
P
i f

2
i di

�

2
Pn
i=1

Pn
j=1(f2

i + f2
j )wij

2
P
i f

2
i di

=

Pn
i=1 f

2
i di +

Pn
j=1 f

2
j djP

i f
2
i di

=
2
Pn
i=1 f

2
i diP

i f
2
i di

. Therefore �i � 2.

Equality holds for i = n, when fi = �fj(i = 1; : : : ; n) for every edge (i; j) 2 E(G). Since
f 6= 0, G has a bipartite connected component. On the other hand if G has a bipartite connected
component, we can choose the function f so as to make �n = 2.

Lemma 3.7
The following statements are equivalent:

(i) G = (A;B;E) is a bipartite graph, where A;B are vertex sets and E is an edge set.

(ii) G has i connected components and �n�j = 2 for 0 � j � i� 1.

(iii) For each �i the value 2 � �i is also an eigenvalue of G.

(Proof)

1. (i) ! (ii): If G is a bipartite graph then �n = 2. If G is a disconnected graph with i bipartite
connected components then �(G) = [i�(Gi). For each i, �n(Gi) = 2 from the Lemma 3.6-(v).
That is �n�j = 2 for 0 � j � i� 1.

2. (i) ! (iii): Let G is a bipartite graph with a vertex set A and B such that m = jAj and n = jBj.
Let g = D�1=2f . Then de�ne g as

gi =
�
fi if i 2 A,
�fi if i 2 B.

Then

�2 = inf
f

Pm+n
i=1

Pm+n
j=1 (fi � fj)2wij

2
Pm+n
i=1 f2

i di
:
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Let �f be an eigenvalue. Then

�f =

Pm+n
i=1

Pm+n
j=1 (fi � fj)2wij

2
Pm+n
i=1 f2

i di

�f =

Pm+n
i=1 f2

i

Pm+n
j=1 wij +

Pm+n
j=1 f2

j

Pm+n
i=1 wij � 2

Pm+n
i=1

Pm+n
j=1 fifjwij

2(
Pm+n
i=1 f2

i di +
Pm+n
j=1 f2

j dj)

�f =
2
Pn+m
i=1 f2

i di � 2
Pm+n
i=1

Pm+n
j=1 fifjwij

2
Pn+m
i=1 f2

i di

= 1 �
Pn
i=1

Pm+n
j=1 fifjwijPn+m

i=1 f2
i di

:

If g is an eigenvector then

�g = 1 �
Pm+n
i=1

Pm+n
j=1 gigjwijPn+m

i=1 g2
i di

�g = 1 +

Pm+n
i=1

Pm+n
j=1 fifjwijPn+m

i=1 f2
i di

�g = 2 � �f :

Whenever �f is an eigenvalue then 2 � �f is also an eigenvalue.

3.2.2 Cheeger constant of graphs

Proposition 3.9 (Fan Chung [10])
Let G be a connected graph. Then hG >

2
vol(G)

.

Lemma 3.8 (Fan Chung[10])
Let G be a connected graph with diameter diam(G). Then we have �2 � 1

diam(G)vol(G)
.

(Proof) Let g = (g1; g2; : : : ; gn) be the second eigenvector such that g = D1=2f . Let fi0 = maxi jfij.

Then �2 =

Pn
i=1

Pn
j=1(fi � fj)2wij

2
P
i f

2
i di

. Since the second eigenvector is orthogonal to D1=2~1,
X
i

fidi =X
i

gip
di
di = 0 and there exists a vertex j0 such that fi0fj0 < 0. Let P denote the shortest path from
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i0 to j0. Then
X
i

f2
i di � f2

i0

X
i

di = f2
i0vol(G).

�2 = inf
f?D~1

Pn
i=1

Pn
j=1(fi � fj)2wij

2
P
i f

2
i di

�
Pn
i=1

Pn
j=1(fi � fj)2wij

2f2
i0
vol(G)

�
2
P

(i;j)2P (fi � fj)2wij

2f2
i0
vol(G)

By Cauchy Schwarz inequality

(
X

(i;j)2P

(fi � fj)wij)2 �
X

(i;j)2P

1
X

(i;j)2P

(fi � fj)2wij

= diam(G)
X

(i;j)2P

(fi � fj)2wij

�
1

diam(G) (fi0 � fj0)2

vol(G)f2
i0

(fi0fj0 < 0)

� 1
diam(G)vol(G)

:

Lemma 3.9 (Fan Chung 1997 [10])
Let G be a connected graph. Then we have

h2
G

2
< �2 � 2hG.

(Proof) (Right hand side) Let A and V n A be two partitions of G such that Cheeger constant hG is
optimal. Let C = f(vi; vj) 2 E(G) j i 2 A; j 2 V nAg. Let g = (g1; g2; : : : ; gn) 2 <n be an eigenvector
and f = D�1=2g.
De�ne f as ,

fi =

(
1

vol(A) if i is in A,
� 1
vol(V nA) if i is in V nA.

By substituting f in �2 = inf
f?D~1

Pn
i=1

Pn
j=1(fi � fj)2wij

2
Pn
i=1 f

2
i di

we have,

�2 �
2( 1
vol(A) + 1

vol(V nA) )2
P
i2A;j2V nA wij

2(( 1
vol(A) )2vol(A) + ( 1

vol(V nA) )2vol(V nA))

� jCj
�

1
vol(A)

+
1

vol(V nA)

�
� 2jCj

min(vol(A); vol(V nA))
= 2hG:
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Next we prove the left hand side of the equation.
(Left hand side) Relabel the vertices such that fi � fi+1 for 1 � i � n� 1. Assume thatX

fi<0

di �
X
fj�0

dj

For each i, 1 � i � jV j, consider the cut

Ci = f(vj ; vk) 2 E(G) j 1 � j � i < k � ng:

De�ne � by

� = min
1�i�n

jCij
min(

P
j�i dj ;

P
j>i dj)

Then it is clear that � � hG
De�ne the set of vertices V+ and V� such that V+ = fi 2 V (G) j fi � 0g, V� = fi 2 V (G) j fi < 0g
and the set of edges E+; E� such that E+ = f(i; j) 2 E(G) j i 2 V+ or j 2 V+g and E� = f(i; j) 2
E(G) j i 2 V� or j 2 V�g.

De�ne g as

gi =
�
fi i 2 V+,
0 otherwise.

By de�nition,

�2 = inf
f?D~1

Pn
i=1 fi

Pn
j=1(fi � fj)Pn

i=1 f
2
i di

By using vertex arrangement we can write this as,

�2 =

P
i2V+

fi
P

(i;j)2E+
(fi � fj) +

P
i2V�

fi
P

(i;j)2E�
(fi � fj)P

i2V+
f2
i di +

P
i2V�

f2
i di

Since
a+ b

c+ d
� minfa

c
;
b

d
g for a; b; c; d 2 <, we have,

�2 � minf
P
i2V+

fi
P

(i;j)2E+
(fi � fj)P

i2V+
f2
i di

;

P
i2V�

fi
P

(i;j)2E�
(fi � fj)P

i2V�
f2
i di

g

Lets write this as �2 � minf�+
2 ; �

�
2 g Assume that �+

2 � ��
2 . Then we have

�2 �
P
i2V+

fi
P

(i;j)2E+
(fi � fj)P

i2V+
f2
i di

:

56



Now we have,

�2 �
P
i2V+

fi
P

(i;j)2E+
(fi � fj)P

i2V+
f2
i di

=

P
(i;j)2E+

(gi � gj)2P
i2V+

g2
i di

=

P
(i;j)2E+

(gi � gj)2
P

(i;j)2E+
(gi + gj)2P

i2V+
g2
i di
P

(i;j)2E+
(gi + gj)2

(Multiply the denominator and the numerator by
X

(i;j)2E+

(gi + gj)2)

�
(
P

(i;j)2E+
(gi � gj)(gi + gj))2P

i2V+
g2
i di
P

(i;j)2E+
(gi + gj)2

(By Cauchy Schwarz)

�
(
P

(i;j)2E+
(gi � gj)(gi + gj))2

2(
P
i2V+

g2
i di)2

=
(
P

(i;j)2E+
jg2
i � g2

j j)2

2(
P
i2V+

g2
i di)2

�
(
Pn
i=1 jg2

i � g2
i+1jjCij)2

2(
P
i2V+

g2
i di)2

�
(
Pn
i=1 jg2

i � g2
i+1j�

P
j�i dj)

2

2(
P
i2V+

g2
i di)2

� �2

2

� h2
G

2
:

Further by using the Theorem 3.4, �2 > 1 �
q

1 � h2
G >

h2
G

2
and thus the �2 >

h2
G

2
holds. Note thatX

i2V +

g2
i di(

X
(i;j)2E+

(gi + gj)2) =
X
i2V +

g2
i di(

X
(i;j)2E+

2(g2
i + g2

j ) � (gi � gj))2)

=
X
i2V +

g2
i di(

X
(i;j)2E+

2(g2
i di) � (gi � gj)2)

= 2(
X
i2V +

g2
i di)

2 �
X
i2V +

g2
i di

X
(i;j)2E+

(gi � gj)2

� 2(
X
i2V +

g2
i di)

2:

Theorem 3.4
Let G be a connected graph. Then we have �2 > 1 �

q
1 � h2

G.
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From the proof of Lemma 3.9 we have, �2 �
P

(i;j)2E+
(gi � gj)2P

i2V+
g2
i di

= W . Then we have,
X

(i;j)2E+

(gi �

gj)2 = W
X
i2V+

g2
i di and

X
(i;j)2E+

(gi + gj)2 =
X

(i;j)2E+

2(g2
i + g2

j ) � (gi � gj)2 =
X
i2V+

2g2
i di �

X
(i;j)2E+

(gi �

gj)2 = 2
X
i2V+

g2
i di �W

X
i2V+

g2
i di. Now we have,

W =

P
(i;j)2E+

(gi � gj)2
P

(i;j)2E+
(gi + gj)2P

i2V+
g2
i di
P

(i;j)2E+
(gi + gj)2

�
(
P

(i;j)2E+
jg2
i � g2

j j)2

(
P
i2V+

g2
i di)(2

P
i2V+

g2
i di �W

P
i2V+

g2
i di)

(Cauchy Schwarz)

�
(
P
i2V+

jg2
i � g2

i+1jjCij)2

(2 �W )(
P
i g

2
i di)2

� �2

(2 �W )

(
P
i2V+

jg2
i � g2

i+1j
P
j�i dj)

2

(
P
i g

2
i di)2

� �2

(2 �W )
:

This implies that W 2 � 2W + �2 � 0 and we have �2 � W � 1 �
q

1 � h2
G.

Proposition 3.10 (Fan Chung[10])
For a connected graph G, �2 >

g2
G

44 + 24gG
, where 4 is the maximum degree.

Proposition 3.11 (Fan Chung [10])
Let G be a graph with diameter diam(G) � 4 and 4 be the maximum degree. Then

�2 � 1 � 2
p

4 � 1
4

�
1 � 2

diam(G)

�
+

2
diam(G)

.

3.2.3 Bounds for the normalized eigenvalues of paths

Proposition 3.12
Cheeger constant of a path Pn is

1
2bn2 c � 1

. This can be written as

hPn =
� 1

n�1 n even,
1

n�2 n odd.
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(Proof) Consider the set A and V n A with the number of edges between them equal to 1. Suppose
jAj � jV nAj. In this case jV nAj � dn2 e and

hG = min
cut(A; V nA)

min(vol(A); vol(V nA))

=
1

min(2bn2 c � 1; 2dn2 e � 1)

=
1

2bn2 c � 1
:

Further we can write this as

hPn =
� 1

n�1 n even,
1

n�2 n odd.

Proposition 3.13
Vertex expansion of Cheeger constant of a path Pn is

2
2bn2 c � 1

. This can be written as

gPn =
� 2

n�1 n even,
2

n�2 n odd.

Corollary 3.2
Second smallest eigen value �2 of L(P4k) is 1�cos(

�

4k � 1
) � �2

2(4k � 1)2
(small angle approximation).

Then we have
1

2(4k � 1)2
� �2 � 2

4k � 1
by Lemma 3.9.

Corollary 3.3
For a path graph P4k, �2 >

4
(4k � 1)2(4 � 2 + 2 � 2 � 2

4k�1 )
=

1
8k(4k � 1)

by the Proposition 3.10.

Corollary 3.4
For a path graph P4k, �2 � 4

4k � 1
by the Proposition 3.11.

Corollary 3.5
For a path graph P4k, �2 � 1

(4k � 1)(8k � 2)
by the Lemma 3.8.
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3.2.4 Bounds for the normalized eigenvalues of weighted paths

Proposition 3.14
Cheeger constant of a weighted path G = P2k;k is given by hP2k;k

� 2
7k � 2

.

(Proof) Case(i) Let A � V (P2k;k) such that A = fxi j 1 � i � 2kg and V nA = fxi j 2k+1 � i � 3kg.

hG(A) =
1

min(4k � 1; 3k � 1)
=

1
3k � 1

.

Case(ii) Let A1 = fxi j 1 � i � �g, where 2k < � < 3k and V n A1 = fxi j � + 1 � i � 3kg.

hG(A1) =
1

min(4k � 2 + 3(�� 2k); 3(3k � �) � 1)
=

1
9k � 1 � 3�

; (2k < � < 3k). Now compare the

Case(i) with Case(ii). (3k � 1) � (9k � 1 � 3�) > 0 and the Case(i) is minimum among two.
Case(iii)Consider the set such that A2 = fxi j 1 � i � �g, where 1 � � < 2k and V nA2 = fxi j �+

1 � i � 3kg. hG(A2) =
1

min(2�� 1; 3k � 1 + 2(2k � �))
. Then we have 2��1� (3k�1+4k�2�) =

4�� 7k. If k � 4�
7

then hG(A2) =
1

7k � 1 � 2�
.

minf2�� 1; 7k � 1 � 2�g =
� 1

7k�1�2� k � 4�
7 ,

1
2��1 k � 4�

7 .

For k � 4�
7

, we have a minimum at
2

7k � 2
. For k � 4�

7
, we have a minimum at

2
7k � 2

. Comparing

this value with
1

3k � 1
in the Case(i), minf 1

3k � 1
;

2
7k � 2

g =
2

7k � 2
. Then hP2k;k

� 2
7k � 2

.

Corollary 3.6
For a connected graph P2k;k, we have

1
2(7k � 2)2

� �2 <
4

(7k � 2)
.

Corollary 3.7
For a connected graph P2k;k with diameter diam(P2k;k) = (3k � 1), we have �2 � 1

(3k � 1)(7k � 2)
.

Corollary 3.8
For a connected graph P2k;k with diameter diam(P2k;k) = (3k � 1), we have �2 � 1 �

2
3k � 1

�p
2(k � 1) � 1

�
.

3.2.5 Bounds for the normalized eigenvalues of R2k;k

Proposition 3.15 (Cheeger constant of R2k;k)
The Cheeger constant of R2k;k is

1
4k � 1

.

(Proof) Case(i)A1 = fxi j 1 � i � 2kg and V n A1 = fyi j 1 � i � 3kg [ fxi j 2k + 1 � i � 3kg.
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hG(A1) =
1

min(4k � 1; 10k � 3)
=

1
4k � 1

.

Case(ii) A2 = fxi j 1 � i � 2k + �g [ fyi j 1 � i � 2k + �g, where 0 � � < k and V n A2 =

fxi j 2k + �+ 1 � i � 3kg [ fyi j 2k + �+ 1 � i � 3kg. hG(A2) =
2

min(8k � 2 + 6�; 6k � 6�� 2)
=

2
6k � 6�� 2

. considering Case(i), Case(ii), hG = minf 1
4k � 1

;
1

3k � 3�� 1
g =

1
4k � 1

, since
1

4k � 1
�

1
3k � 3�� 1

=
�(k + 3�)

(4k � 1)(3(k � �) � 1
< 0.

Case(iii) A3 = fxi j 1 � i � 2kg[fyi j 1 � i � 2kg and V nA3 = fxi j 2k+1 � i � 3kg[fyi j 2k+1 �
i � 3kg. hG(A3) =

2
min(2(4k � 1); 2(3k � 1))

=
2

6k � 2
. Comparing Case(iii) with Case(i), Case(i) is

the minimum.
Case(iv) Let A4 = fxi j 1 � i � 3kg and V nA4 = fyi j 1 � i � 3kg. Then vol(A4) = vol(V nA4) =

7k � 2 and hG(A4) =
k

7k � 2
. Comparing with Case(i), Case(i) is the minimum.

Case(v) Let A5 = fxi j 1 � i � �g [ fyi j 1 � i � �g, where 1 � � < 2k and V nA5 = fxi j �+ 1 �
i � 3kg [ fyi j �+ 1 � i � 3kg. hG(A5) =

2
min(4�� 2; 14k � 4�� 2)

min(4�� 2; 14k � 4�� 2) =
�

14k � 4�� 2 7k
4 � � � 2k,

4�� 2 otherwise.

and

hG(A5) =
�

2
14k�4��2

7k
4 � � � 2k,

2
4��2 otherwise.

Now compare Case(v) with Case(i).

min(
1

2�� 1
;

1
4k � 1

) =
1

4k � 1
and min(

1
7k � 2�� 1

;
1

4k � 1
) =

1
4k � 1

implies that the Case(i) is

the minimum. Considering all cases above, Cheeger constant of R2k;k is
1

4k � 1
.

Corollary 3.9
For the graph R2k;k,

1
2(4k � 1)2

� �2(L(R2k;k)) � 2
4k � 1

.

Corollary 3.10
For the graph R2k;k, �2(L(R2k;k)) � 1

diam(R2k;k)vol(R2k;k)
=

1
2(4k + 1)(7k � 2)

.

Corollary 3.11
For the graph R2k;k, �2(L(R2k;k)) > 1 �

s
1 � 1

(4k � 1)2
= 1 �

2
p

(4k � 2)k
4k � 1

by the Theorem 3.4.

61



Corollary 3.12
For the graph R2k;k, �2(L(R2k;k)) � 1 � 2

p
3 � 1
3

�
1 � 2

4k + 1

�
+

2
4k + 1

= 1 �

2
4k + 1

 
4
p

2k �
p

2 � 3
3

!
.

Lemma 3.10 ([24])
Let A be a real symmetric matrix and Ar denote any r� r principal sub matrix of A. For any integer
k such that 1 � k � r, we have �k(A) � �k(Ar) � �k+n�r(A).

Corollary 3.13
Let Rn;k be a graph with n + k vertices. Then �2(L(Rn�1;k+1)) < �2(L(Rn;k)) for n < k and
�2(L(Rn+1;k�1)) < �2(L(Rn;k)) for n � k.

Example 3.4
Eigenvalues of L(R3;4) are f2:; 1:89602; 1:89412; 1:64606; 1:30283; 1:26594; 1:11107; 0:888932; 0:734061;
0:697172; 0:353942; 0:105883; 0:103984; 0:g and �2(L(R3;4)) is 0:103984. Eigenvalues of L(R2;5) are
f2:; 1:90145; 1:7937; 1:64746; 1:32451; 1:24638; 1:; 1:; 0:753623; 0:67549; 0:352543; 0:206297; 0:0985536; 0:g
and its �2(L(R2;5)) is 0:0985536. That is �2(L(R2;5)) < �2(L(R3;4)). Similarly, eigenvalues of L(R3;3)
is f2:; 1:89416; 1:85239; 1:5; 1:29156; 1:; 1:; 0:708438; 0:5; 0:147607; 0:105836; 0:g and �2(L(R3;3)) is
0:105836. Eigenvalues of L(R4;2) is f2:; 1:93653; 1:85221; 1:5; 1:41765; 1:; 1:; 0:582351; 0:5; 0:147788;
0:0634731; 0:g and �2(L(R4;2)) is 0:0634731. That is �2(L(R4;2)) < �2(L(R3;3)).

Proposition 3.16 ([9])
If G = (V (G); E(G) be a graph with jV (G)j = n and more than n=2 of the vertices are connected to
every other vertex then n=(n� 1) is an eigenvalue of L(G).

Example 3.5
The Figure 13 shows a graph with 6 vertices. 4 vertices are connected to every other and the eigen-

values are f1:4; 1:2; 1:2; 1:2; 1:; 0:g. Hence
n

n� 1
= 1:2 is an eigenvalue by the Proposition 3.16.

1

2

3

4

5

6

Figure 13: Graph which has more than half of vertices connected to each other.
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Lemma 3.11
The normalized Laplacian of Kn has an eigenvalue 0 with multiplicity 1 and

n

n� 1
with multiplicity

n� 1.

(Proof) Let x be any vector orthogonal to the D1=2~1. Consider the �rst row expansion of L(G)x = �x.

x1 �
nX
i=2

xi
n� 1

= �x1

x1 � 1
n� 1

(
nX
i=1

xi � x1) = �x1

x1 � 1
n� 1

nX
i=1

xi +
x1

n� 1
= �x1

n

n� 1
= �

Thus, x is an eigenvector with an eigenvalue
n

n� 1
.

3.2.6 Normalized eigenvalues of elementary graphs

Here are some examples of special graphs and their eigenvalues [10].

1. Eigenvalues of L(Pn) are 1 � cos
�k

n� 1
for k = 0; : : : ; n� 1.

2. Eigenvalues of L(Cn) are 1 � cos
2�k
n

for k = 0; : : : ; n� 1.

3. Eigenvalues of L(Kn) are 0 and
n

n� 1
with multiplicity n� 1.

4. Eigenvalues of complete bipartite graph L(Km;n) are 0,1( with multiplicity m+ n� 2), and 2.

5. Eigenvalues of Star graph L(Sn) are 0, 1(with multiplicity n� 2), and 2.

6. For the n- cube Qn on 2n vertices, the eigenvalues are
2k
n

( with multiplicity
�
n
k

�
)for k = 0; : : : ; n.

3.2.7 Sign patterns of di�erence and normalized Laplacian eigenvectors

Sign patterns of the second eigenvector of di�erence Laplacian and normalized Laplacian are not
always same. The Figure 14 shows some examples, where these two produce di�erent clusters. In the
Figure 14(b), vertices f1; 2; 3; 4; 8; 9; 10; 11g are belong to one group and f5; 6; 7; 12; 13; 14g are belong
to other. This makes the second eigenvector of Laplacian even under the automorphism �(vi) = vi+n+k

for i = 1; : : : ; n + k. But the second eigenvector of di�erence Laplacian is odd under the same
automorphism as shown in the Figure 14(a). When we look at the clustering on the Figure 14(c),
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vertices f1; 2; 3; 8; 9; 10g are belong to the �rst group and f4; 5; 6; 7; 11; 12; 13; 14g are belong to the
second group. In the Figure 14(d), vertices f1; 2; 3; 4; 8; 9; 10; 11g are belong to the �rst group and
remaining vertices are belong to the second group. We can �nd many counter examples, where the
second eigenvector of Laplacian and normalized Laplacian have di�erent sign patterns.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

(a) The second eigenvector of
L(R3;4)

1 2 3 4 5 6 7

8 9 10 11 12 13 14

(b) The second eigenvector of
L(R3;4)

1 2 3 4 5 6 7

8 9 10 11 12 13 14

(c) The second eigenvector of
L(R2;5)

1 2 3 4 5 6 7

8 9 10 11 12 13 14

(d) The second eigenvector of
L(R2;5)

Figure 14: Sign patterns of the second eigenvector of Laplacian and normalized Laplacian of Rn;k.

In this section we analyze the signless Laplacian and derive some upper bounds.

3.3 Signless Laplacian

Signless Laplacian matrix of unweighted graph G is denoted by SL(G) = D + A. The eigenvalues of
SL(G) will be called the signless eigenvalues. For a connected graph G, it is well known that SL(G) is
a positive semide�nite matrix, that is, all its eigenvalues are nonnegative. Furthermore, by the Perron-
Frobenius theorem, the largest eigenvalue �(G) of SL(G) is simple and there is a unique positive unit
eigenvector X = (x1; : : : ; xn)T . This eigenvector is referred as the Perron vector of SL(G).

Example 3.6
Eigenvalues of signless Laplacian of cycle C6 are f4; 3; 3; 1; 1; 0g and it is clear
that its largest eigenvalue is simple. Eigenvectors of SL(C6) are f(1; 1; 1; 1; 1; 1);
(1; 0;�1;�1; 0; 1); (�1;�1; 0; 1; 1; 0); (�1; 0; 1;�1; 0; 1); (�1; 1; 0;�1; 1; 0); (�1; 1;�1; 1;�1; 1)g and
the largest eigenvector is a positive constant vector.

Remarks. Let G be a simple connected graph. Then SL(G) is an irreducible nonnegative matrix.
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Proposition 3.17
Let A be an irreducible non-negative n�n matrix with spectral radius �(A) = r, where r is a positive
real number and it is an eigenvalue of the matrix A called the Perron-Frobenius eigenvalue. Then
the following statements hold.

1. The Perron-Frobenius eigenvalue r is simple.

2. Both right and left eigenspaces associated with r are one-dimensional.

3. The matrix A has a left eigenvector v with an eigenvalue r whose components are all positive.

4. Likewise, matrix A has a right eigenvector w with an eigenvalue r whose components are all
positive.

5. The only eigenvectors whose components are all positive are those associated with the eigenvalue
r.

3.3.1 Signless Laplacian eigenvalues of some graphs

Signless Laplacian eigenvalues of path and cycles can be easily derived from the di�erence Laplacian
eigenvalues.

Proposition 3.18
For cycles Cn, signless Laplacian eigenvalues are 2 + 2 cos(

2k�
n

); k = 0; : : : ; n� 1.

Proposition 3.19
For paths Pn, signless eigenvalues are 2 + 2 cos(

k�

n
); k = 1; : : : ; n.

Proposition 3.20
Let Kn be the complete graph. Then signless Laplacian eigenvalues are 2(n� 1) and n� 2 with the
multiplicity (n� 1) while di�erence Laplacian eigenvalues are 0 and n with multiplicity n� 1.
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(Proof) Let SL be the signless Laplacian matrix, k = (n � 1) be the degree of the graph and I the
identity matrix. Then

jSL� �Ij = det

26666664

k � � 1 � � � � � � 1
1 k � � 1
...

. . .
...

...
. . .

...
1 1 k � �

37777775 = 0

(k � �+ (n� 1)) det

26666664

1 1 : : : : : : 1
1 k � � : : : : : : 1
...

. . .
...

...
. . .

...
1 1 : : : : : : k � �

37777775 = 0

(k � �+ (n� 1)) det

26666664

1 1 : : : : : : 1
0 1 � k + � 0
...

. . .
...

...
. . .

...
0 0 : : : : : : 1 � k + �

37777775 = 0

(k � �+ (n� 1))(1 � k + �)(n� 1) = 0

This implies that � = k + n � 1 or � = k � 1 with multiplicity (n � 1). That is the eigenvalues are
2(n� 1) with multiplicity 1 and (n� 2) with multiplicity (n� 1).

3.3.2 Properties of signless Laplacian

Proposition 3.21
Quadratic form of signless Laplacian can be written as

(SL(G)f)i =
nX
i=1

nX
j=1

(fi + fj)wij

fTSL(G)f =
nX
i=1

nX
j=1

(fi + fj)2wij

�2 = min
fTSL(G)f

fT f
=

Pn
i=1

Pn
j=1(fi + fj)2wij

2
P
i f

2
i

:

Note. For each edge (i; j) 2 E(G), if we assign fi = �fj then �2(SL(G)) = 0 and this lead to the
following proposition.

Proposition 3.22
The least eigenvalue of the signless Laplacian of a connected graph is equal to 0 if and only if the
graph is bipartite and 0 is a simple eigenvalue.
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Corollary 3.14 ([51])
For any graph, the multiplicity of 0 as an eigenvalue of the signless Laplacian is equal to the number
of bipartite components.

Proposition 3.23 ([33])
The characteristic polynomial of the signless Laplacian matrix is equal to the characteristic polynomial
of the di�erence Laplacian if and only if the graph is bipartite.

Zhongxun Zhu 2011, [51] studied the spectral radius of signless Laplacian and determine the graph
with the largest signless Laplacian spectral radius in bicyclic graphs with girth n.

Lemma 3.12 ([49])
Let G = (V (G); E(G)) be a connected simple graph with (u; vi) 2 E(G) and (w; vi) =2 E(G) for
i = 1; : : : ; k. Let G0 = (V (G0); E(G0)) be a new graph from G by deleting edges (u; vi) and adding
edges (w; vi) for i = 1; : : : ; k. Let f be a Perron vector of SL(G). If fw � fu, then �(G) < �(G0).

(Proof) Let S be the set of all unit vectors in <n. By the Rayleigh quotient of SL(G) on vectors g on

V (G), �(G) = max
g2S

gTSL(G)g = max
g2S

Pn
i=1

Pn
j=1(gi + gj)2

2
=

Pn
i=1

Pn
j=1(fi + fj)2

2
.

Moreover �(G0) � �(G) =

Pn
i=1

Pn
j=1i;j2V (G0)

(fi + fj)2

2
�

Pn
i=1

Pn
j=1i;j2V (G)

(fi + fj)2

2
.

This is equal to
Pn
i=1(fvi

+ fw)2

2
�
Pn
i=1(fvi

+ fu)2

2
=

Pk
i=1(f2

w � f2
u + 2fvi

fw � 2fvi
fu)

2
=

(fw � fu)
Pk
i=1 fw + fu + 2fvi

2
� 0. Hence �(G0) � �(G).

If �(G) = �(G0) then f is the Perron vector of G0. Hence SL(G)f = �(G)f and SL(G0)f =
�(G0)f . By expanding the formula corresponding to the vertex u we have, �(G)fu = du(G)fu +Pk
i=1 fvi +

P
m6=vi;(m;u)2E(G) fm.

Similarly, �(G0)fu = du(G0)fu +
P
j 6=vi;(j;u)2E(G0) fj. Therefore �(G)fu � �(G0)fu = du(G)fu �

du(G0)fu +
Pk
i=1 fvi = 0. Then

Pk
i=1 fvi = 0 by du(G) > du(G0). That is impossible and hence

�(G0) 6= �(G) and we have �(G0) > �(G).

Lemma 3.13 (Zhang [49])
Let G = (V (G); E(G)) be a connected simple graph with (v1; u1); (v2; u2) 2 E(G) and
(v1; v2); (u1; u2) =2 E(G). Let G0 = (V (G0); E(G0)) be a new graph from G by deleting edges
(v1; u1); (v2; u2) and adding edges (v1; v2) and (u1; u2). Let f be a Perron vector of G. If fv1 � fu2

and fv2 � fu1 , then �G0 � �G. Moreover, if one of the two inequalities is strict then �(G0) > �(G).

(Proof) Since f is a Perron vector of G, �(G) = max
g2S

gTSL(G)g = max
g2S

Pn
i=1

Pn
j=1(gi + gj)2

2
=Pn

i=1

Pn
j=1(fi + fj)2

2
. Moreover, �(G0) � �(G) =

Pn
i=1

P2
j=1i;j2V (G0)

(fi + fj)2

2
�Pn

i=1

Pn
j=1i;j2V (G)(fi+fj)2

2
= (fv2 � fu1)(fv1 � fu2) � 0. Hence �(G0) � �(G).
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If �(G) = �(G0) then f is the Perron vector of G0 and we have SL(G)f = �(G)f and
SL(G0)f = �(G0)f . Expanding the equation corresponding to v1, We have �(G)fv1 =
dv1(G)fv1 + fu1 +

X
(v1;j)2fE(G)\E(G0)g

fj.

Similarly, �(G0)fv1 = dv1(G0)fv1 + fv2 +
X

(v1;j)2fE(G)\E(G0)g

fj. Hence fu1 = fv2 by dv1(G) = dv1(G0).

Similarly, we can show that fv1 = fu2 .

3.4 The eigenvalues and the eigenvectors of paths and cycles

In this section, we derive formula for the eigenvalues and eigenvectors of cycles and paths using
circulant matrices and give an alternate proof for the eigenvalues of adjacency matrix of cycles and
paths using Chebyshev polynomials.

3.4.1 Circulant matrices and eigenvalues of cycles and paths

Let !n = e� 2�
n i = cos 2�

n + i sin 2�
n be a primitive n-th root of unity.

De�nition 3.1
A circulant matrix C = (cij) is a matrix having a form cij = c(j�i) mod n.

C =

0BBBBBBBBB@

c0 c1 c2 � � � � � � cn�1

cn�1 c0 c1 c2 cn�2

... cn�1 c0 c1

...
...

. . .
. . .

. . .
...

...
. . .

. . . c1

c1 c2 � � � � � � cn�1 c0

1CCCCCCCCCA
:

Proposition 3.24
Let C = (cij) be a circulant matrix and cij = c(j�i) mod n. For k = 0; : : : ; n� 1, we have

Cuk = �kuk;

where �k =
n�1X
j=0

cj(!kn)j , uk = (uki) and uki = (!kn)i = cos 2k�i
n + i sin 2k�i

n .
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(Proof)

(Cuk)i =
n�1X
j=0

cijukj

=
n�1X
j=0

c(j�i) mod n(!kn)j

= (!kn)i
n�1X
j=0

c(j�i) mod n(!kn)j�i

= (!kn)i
n�1X
j=0

cj(!kn)j

= �kuki

= (�kuk)i:

Proposition 3.25
1. Eigenvalues of the adjacency matrix of Cn is given by �k = 2 cos(

2k�
n

),

2. Eigenvalues of the di�erence Laplacian matrix of Cn is given by �k = 2 � 2 cos(
2k�
n

),

3. Eigenvalues of the normalized Laplacian matrix of Cn is given by �k = 1 � cos(
2k
n
�), and

4. Eigenvalues of the signless Laplacian matrix of Cn is given by �k = 2 + 2 cos(
2k
n
�),

where k = (0; : : : ; n� 1).

(Proof)

1. Let A be an adjacency matrix of a cycle graph with n vertices. That is A = (cij) = c(j�i) mod n

and c0 = 0, c1 = cn�1 = 1 and ci = 0 for i = 2; : : : ; n� 2.

�k = (!kn)1 + (!kn)n�1

= (!kn)1 + (!kn)�1

= 2 cos(
2k�
n

):

2. Let L(Cn) be the Laplacian matrix of cycle graph with n vertices. That is L(Cn) = (cij) =
c(j�i) mod n and c0 = 2, c1 = cn�1 = �1 and ci = 0 for i = 2; : : : ; n� 2.

�k = 2 � (!kn)1 � (!kn)n�1

= 2 � ((!kn)1 + (!kn)�1)

= 2 � 2 cos(
2k�
n

):
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3. Let L(Cn) be the normalized Laplacian matrix of cycle graph with n vertices. That is L(Cn) =
(cij) = c(j�i) mod n and c0 = 1, c1 = cn�1 = � 1

2 and ci = 0 for i = 2; : : : ; n� 2.

�k = 1 � 1
2

(!kn)1 � 1
2

(!kn)n�1

= 1 � 1
2

((!kn)1 + (!kn)�1)

= 1 � cos(
2k�
n

):

4. Let SL(Cn) be the signless Laplacian matrix of cycle graph with n vertices. That is SL(Cn) =
(cij) = c(j�i) mod n and c0 = 2, c1 = cn�1 = 1 and ci = 0 for i = 2; : : : ; n� 2.

�k = 2 + (!kn)1 � (!kn)n�1

= 2 + ((!kn)1 + (!kn)�1)

= 2 + 2 cos(
2k�
n

):

Proposition 3.26
Let �k(0 � k � n� 1) be the kth eigenvalue of an adjacency matrix of Cn. Then �k = �n�k.

(Proof) Eigenvalues of the adjacency matrix of cycle is given by �k = 2 cos(
2k�
n

), where k = 0; : : : ; n�
1.

�0 = 2;

�1 = 2 cos(
2�
n

);

�2 = 2 cos(
4�
n

);

... (3.4.1)

�n�2 = 2 cos(
4�
n

);

�n�1 = 2 cos(
2�
n

):

This shows that �k = �n�k for k = 1; : : : ; n� 1.
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Proposition 3.27
1. The eigenvalues of an adjacency matrix of a path graph Pn are given by �k(A(Pn)) =

2 cos(
(k + 1)�
n+ 1

); (k = 0; : : : ; n � 1) and an eigenvector uk is given by (uki) =

sin
(i+ 1)(k + 1)�

n+ 1
; (i = 0; : : : ; n� 1) and (k = 0; : : : ; n� 1).

2. The eigenvalues of di�erence Laplacian matrix of Pn are given by �k(L(Pn)) = 2 � 2 cos(
k�

n
),

(k = 0; : : : ; n�1) and its eigenvector uk is given by (uki) = cos
�

(2i+ 1)k�
2n

�
(i = 0; : : : ; n�1).

3. The eigenvalues of normalized Laplacian matrix of a path Pn are given by �k(L(Pn)) = 1 �

cos(
k�

n� 1
) (k = 0; : : : ; n� 1) and its eigenvector uk is given by

uki =

( p
2 cos

�
2i�k
2n�2

�
i = 1; : : : ; n� 2,

cos( 2i�k
2n�2 ) i = 0 and i = n� 1.

4. The eigenvalues of signless Laplacian matrix of Pn are given by �k(SL(Pn)) = 2 +

2 cos(
(k + 1)�

n
), (k = 0; : : : ; n�1) and its eigenvector uk is given by (uki) = sin(

(2i+ 1)k�
2n

); (i =

0; : : : ; n� 1).

(Proof)

1. Let u = (ui); (i = 0; : : : ; n� 1) be an eigenvector for an eigenvalue � of path Pn. Then, we can
write

Pnu =

0BBBBBBBBBB@

0 1 0 � � � � � � 0

1 0 1 0
...

... 1 0 1
...

...
. . . . . . . . .

...
...

. . . . . . 1
0 0 � � � � � � 1 0

1CCCCCCCCCCA

0BBBBBBBB@

u0

u1

u2

...

...
un�1

1CCCCCCCCA
= �u:

Then we have the following equations:

u1 = �u0;

u0 + u2 = �u1;

u1 + u3 = �u2; (3.4.2)
...

un�2 = �un�1:

Let u0 = (u0
i); (i = 0; : : : ; 2n + 1) be an eigenvector of C2n+2, where (u0

i) =

sin(
2(i+ 1)(k + 1)�

2n+ 2
); (i = 0; : : : ; 2n + 1) and (k = 0; : : : ; 2n + 1). The eigenvalues of an ad-
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jacency matrix of a cycle C2n+2 are �k = 2 cos(
(k + 1)�
n+ 1

); (k = 0; : : : ; 2n + 1). We note that

u0
n = u0

2n+1 = 0. Hence we can write the equation C2n+2u0 = �ku0 as0BBBBBBBBBBBBBBB@

0 1 0 � � � � � � � � � � � � 1
1 0 1 � � � � � � � � � � � � 0
...

. . . . . . . . .
...

... 1 0 1
...

... 1 0 1
...

...
. . . . . . . . .

...
... 1 0 1
1 0 � � � � � � � � � � � � 1 0

1CCCCCCCCCCCCCCCA

0BBBBBBBBBBBB@

u0
0
...

u0
n�1

0
u0
n+1
...
u0

2n

0

1CCCCCCCCCCCCA
= �ku0:

Then we have the following equations:

u0
1 = �ku

0
0;

u0
0 + u0

2 = �ku
0
1;

...
u0
n�2 = �ku

0
n�1:

Comparing the Equation 3.4.1 and the Equation 3.4.2, we have Pnu = �ku, where u = (u0
i)(i =

0; : : : ; n� 1). That is �k; (k = 0; : : : ; n� 1) are eigenvalues of Pn and u is an eigenvector of �k.
Since �i 6= �j for (i 6= j and 0 � i; j � n � 1), we have n di�erent eigenvalues of Pn and that
is the complete set of eigenvalues of Pn.

2. Let u = (ui); (i = 0; : : : ; n � 1) be an eigenvector for an eigenvalue � of di�erence Laplacian
matrix L(Pn). Then we can write the equation L(Pn)u = �u as0BBBBBBBBB@

1 �1 0 � � � � � � 0
�1 2 �1 0 0
... �1 2 �1

...
...

. . . . . . . . .
...

... �1 2 �1
0 0 � � � � � � �1 2

1CCCCCCCCCA

0BBBBBBBB@

u0

u1

...

...
un�2

un�1

1CCCCCCCCA
= �u:

Then we have the following equations.

u0 � u1 = �u0;

�u0 + 2u1 � u2 = �u1;

... (3.4.3)
�un�2 + un�1 = �un�1:

72



Let u0 = (u0
i); (i = 0; : : : ; 2n� 1) be an eigenvector of di�erence Laplacian matrix of C2n, where

(u0
i) = cos

�
(2i+ 1)k�

2n

�
; (i = 0; : : : ; 2n�1) and (k = 0; : : : ; 2n�1). The eigenvalues of L(C2n)

are �k = 2 � 2 cos(
k�

n
); (k = 0; : : : ; 2n� 1). We note that u0

0 = u0
2n�1; u

0
1 = u0

2n�2; : : : ; u
0
n�1 =

u0
n.

Then we can write the equation L(C2n)u0 = �ku0 as0BBBBBBBBB@

2 �1 0 � � � � � � �1
�1 2 �1 0 0
... �1 2 �1

...
...

. . . . . . . . .
...

... �1 2 �1
�1 0 � � � � � � �1 2

1CCCCCCCCCA

0BBBBBBBB@

u0
0

u0
1
...
...

u0
2n�2

u0
2n�1

1CCCCCCCCA
= �ku0:

2u0
0 � u0

1 � u0
2n�1 = u0

0 � u0
1 = �ku

0
0;

�u0
0 + 2u0

1 � u0
2 = �ku

0
1;

... (3.4.4)
�u0

n�2 + 2u0
n�1 � u0

n = �u0
n�2 + u0

n�1 = �ku
0
n�1:

Comparing the Equation 3.4.3 and the Equation 3.4.4, we have Pnu = �ku, where u = (u0
i); (i =

0; : : : ; n� 1). That is �k; (k = 0; : : : ; n� 1) are eigenvalues of Pn and u is an eigenvector of �k.
Since �i 6= �j for (i 6= j and 0 � i; j � n � 1), we have n di�erent eigenvalues of Pn and that
is the complete set of eigenvalues of Pn.

3. Let u = (ui); (i = 0; : : : ; n � 1) be an eigenvector for an eigenvalue � of normalized Laplacian
matrix of path Pn. Then we can write the equation L(Pn)u = �u as0BBBBBBBBBBBB@

1 � 1p
2

0 � � � � � � 0

� 1p
2

1 � 1
2 0

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
... � 1

2 1 � 1p
2

... � � � � � � � � � � 1p
2

1

1CCCCCCCCCCCCA

0BBBBBBBB@

u0

u1

...

...
un�2

un�1

1CCCCCCCCA
= �u:
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By expanding this we have the following equations.

u0 � 1p
2
u1 = �u0;

� 1p
2
u0 + u1 � 1

2
u2 = �u1;

... (3.4.5)

�1
2
un�3 + un�2 � 1p

2
un�1 = �un�2;

� 1p
2
un�2 + un�1 = �un�1:

Let u0 = (u0
i); (i = 0; : : : ; 2n � 3) be an eigenvector of normalized Laplacian ma-

trix of C2n�2, where (u0
i) = cos( 2ik�

2n�2 ); (i = 0; : : : ; 2n � 3) and �k = 1 �
cos( 2k�

2n�2 ); (k = 0; : : : ; 2n � 3) be its eigenvalue. We note that u0
1 = u0

2n�3; u
0
2 =

u0
2n�4; : : : ; u

0
n�2 = u0

n. Then we multiply each of these values by 1p
2

and obtain the vector,
u0

0;
1p
2
u0

1;
1p
2
u0

2; : : : ;
1p
2
u0
n�2; u

0
n�1;

1p
2
u0
n; : : : ;

1p
2
u0

2n�3. We can write L(C2n�2)u0 = �ku0 as

0BBBBBBBBBB@

1 � 1
2 � � � � � � � � � �1

2

� 1
2 1 � 1

2

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
... � 1

2 1 � 1
2

� 1
2 � � � � � � � � � �1

2 1

1CCCCCCCCCCA

0BBBBBBBBBBB@

u0
0

1p
2
u0

1

...

u0
n�1
...

1p
2
u0

2n�3

1CCCCCCCCCCCA
= �ku0:

By expanding we have,

u0 � 1
2

1p
2
u0

1 � 1
2

1p
2
u0

1 = u0
0 � 1p

2
u0

1 = �ku
0
0;

�1
2
u0

0 +
1p
2
u0

1 � 1
2

1p
2
u0

2 =
1p
2

(� 1p
2
u0

0 + u0
1 � 1

2
u0

2) = �k(
1p
2
u0

1);

... (3.4.6)

�1
2

1p
2
u0
n�3 +

1p
2
u0
n�2 � 1

2
u0
n�1 = �k(

1p
2
u0
n�2);

�1
2

1p
2
u0
n�2 + u0

n�1 � 1
2

1p
2
u0
n�2 = � 1p

2
u0
n�2 + u0

n�1 = �ku
0
n�1:

Comparing the Equation 3.4.5 and the Equation 3.4.6, we have Pnu = �ku, where u =
(u0

0;
p

2u0
1; : : : ;

p
2u0

n�2; u
0
n�1). That is �k; (k = 0; : : : ; n � 1) are eigenvalues of Pn and u is

an eigenvector of �k. Since �i 6= �j for (i 6= j and 0 � i; j � n � 1), we have n di�erent
eigenvalues of Pn and that is the complete set of eigenvalues of Pn.
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4. Let u = (ui); (i = 0; : : : ; n�1) be an eigenvector for an eigenvalue � of signless Laplacian matrix
of path Pn. Then we can write the following equation.

SL(Pn)u =

0BBBBBBBBBB@

1 1 0 � � � � � � 0

1 2 1 0
...

... 1 2 1
...

...
. . . . . . . . .

...
...

. . . . . . 1
0 0 � � � � � � 1 1

1CCCCCCCCCCA

0BBBBBBBB@

u0

u1

...

...
un�2

un�1

1CCCCCCCCA
= �u:

u0 + u1 = �u0;

u0 + 2u1 + u2 = �u1;

... (3.4.7)
un�2 + 2un�1 = �un�1:

Let u0 = (u0
i); (i = 0; : : : ; 2n � 1) be an eigenvector of signless Laplacian matrix of C2n, where

(u0
i) = sin(

(2i+ 1)k�
2n

); (i = 0; : : : ; 2n� 1) and �k = 2 + 2 cos(
(k + 1)�

2n
); (k = 0; : : : ; 2n� 1) be

its eigenvalue. We note that u0
0 = �u0

2n�1; u
0
1 = �u0

2n�2; : : : ; u
0
n�1 = �u0

n. Then we can write
the equation SL(C2n)u0 = �ku0 as0BBBBBBBBB@

2 1 0 � � � � � � 1
1 2 1 0 0
... 1 2 1

...
...

. . . . . . . . .
...

... 1 2 1
1 0 � � � � � � 1 2

1CCCCCCCCCA

0BBBBBBBB@

u0
0

u0
1
...
...

u0
2n�2

u0
2n�1

1CCCCCCCCA
= �ku0:

2u0
0 + u0

1 � u0
0 = u0

0 + u0
1 = �ku

0
0;

u0
0 + 2u0

1 + u0
2 = �ku

0
1;

... (3.4.8)
u0
n�2 + 2u0

n�1 � u0
n�1 = u0

n�2 + u0
n�1 = �ku

0
n�1:

Comparing the Equation 3.4.7 and the Equation 3.4.8, we have Pnu = �ku, where u = (u0
i); (i =

0; : : : ; n� 1). That is �k; (k = 0; : : : ; n� 1) are eigenvalues of Pn and u is an eigenvector of �k.
Since �i 6= �j for (i 6= j and 0 � i; j � n � 1), we have n di�erent eigenvalues of Pn and that
is the complete set of signless eigenvalues of Pn.
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3.4.2 Chebyshev polynomials and eigenvalues of adjacency matrix of paths and cycles

De�nition 3.2
Let T0(x) = 1 and U0(x) = 0. For n 2 N, Tn(x) and Un(x) are de�ned by�

Tn+1(x)
Un+1(x)

�
=
�
x x2 � 1
1 x

��
Tn(x)
Un(x)

�
:

We call Tn(x), the Chebyshev polynomials of the �rst kind, and Un(x), the Chebyshev polynomials
of the second kind.

Example 3.7
By using the above de�nition we have,�

T1(x)
U1(x)

�
=

�
x x2 � 1
1 x

��
1
0

�
=
�
x
1

�
;�

T2(x)
U2(x)

�
=

�
x x2 � 1
1 x

��
x
1

�
=
�

2x2 � 1
2x

�
;�

T3(x)
U3(x)

�
=

�
x x2 � 1
1 x

��
2x2 � 1

2x

��
4x3 � 3x
4x2 � 1

�
:

Proposition 3.28

Tn+1(x) = 2xTn(x) � Tn�1(x); and

Un+1(x) = 2xUn(x) � Un�1(x):

(Proof) Let A =
�
x x2 � 1
1 x

�
. By the Cayler-Hamilton theorem, we have A2 �2xA+E = O, where

E is the identity matrix. By the de�nition of Chebyshev polynomial we have,
�
Tn(x)
Un(x)

�
= An

�
1
0

�
.

Then we have, �
0
0

�
= (A2 � 2xA+ E)

�
Tn�1(x)
Un�1(x)

�
= A2

�
Tn�1(x)
Un�1(x)

�
� 2xA

�
Tn�1(x)
Un�1(x)

�
+
�
Tn�1(x)
Un�1(x)

�
=

�
Tn+1(x) � 2xTn(x) + Tn�1(x)
Un+1(x) � 2xUn(x) + Un�1(x)

�
:
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Proposition 3.29

Tn(x) =
b n

2 cX
k=0

�
n
2k

�
(x2 � 1)kxn�2k;

Un(x) =
b n

2 cX
k=0

�
n+ 1
2k + 1

�
(x2 � 1)kxn�2k:

Proposition 3.30

cosn� = Tn(cos �):
sinn� = Un(cos �) sin �:

(Proof)

cos � = T1(cos �);
sin � = U1(cos �) sin �;

cos 2� = 2 cos2 � � 1 = T2(cos �);
sin 2� = 2 sin � cos � = U2(cos �) sin �:

Assume Tn�1(cos �) = cos((n� 1)�) and Un�1(cos �) sin � = sin((n� 1)�).

cosn� + i sinn� = (cos((n� 1)�) + i sin((n� 1)�))(cos � + i sin �)
= (Tn�1(cos �) + iUn�1(cos �) sin �)(cos � + i sin �)
= (cos � Tn�1(cos �) � sin2 � Un�1(cos �)) + i(cos � Un�1(cos �) sin � + Tn�1(cos �) sin �)
= (cos � Tn�1(cos �) + (cos2 � � 1)Un�1(cos �))

+i(cos � Un�1(cos �) + Tn�1(cos �)) sin �
= Tn(cos �) + iUn(cos �) sin �:

Proposition 3.31
Let x = cos �.

Tn(x) = 0 , x = cos(
(2k + 1)�

2n
) (k = 0; : : : ; n):

Un(x) = 0 , x = cos(
k�

n
) (k = 1; : : : ; n� 1):
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(Proof)

Tn(x) = 0 ) cosn� = 0

) n� =
2k + 1

2
�

) � =
2k + 1

2n
�:

Un(x) = 0 ) sinn� = 0
) n� = k�

) � =
k

n
�:

Since the degree of Tn(x) is n, cos(
(2k + 1)�

2n
) (k = 0; : : : ; n) are the all solutions of Tn(x) = 0.

Similarly, since the degree of Un(x) is n � 1, cos(
k�

n
) (k = 1; : : : ; n � 1) are the all solutions of

Un(x) = 0.

The determinant of tridiagonal matrices can be represented by using recurrence relations. We con-
sider the tridiagonal matrices with similar diagonal elements. Then we derive formula for eigenvalues
of tridiagonal matrices.

3.4.3 Determinant of tridiagonal Matrices

De�nition 3.3
A n� n tridiagonal matrix An = (aij) is a matrix which has the form

An =

0BBBBBBB@

�1 �1 0 � � � 0

1 �2 �2
. . .

...

0 2
. . .

. . . 0
...

. . .
. . . �n�1 �n�1

0 � � � 0 n�1 �n

1CCCCCCCA
:

Proposition 3.32
Let n � 2, jA0j = 1, and jA1j = �1. By expanding the tridiagonal matrix, We have

jAnj = �njAn�1j � �n�1n�1jAn�2j:

Proposition 3.33
Eigenvalues of adjacency matrix of path graph is given by �k(A(Pn)) = 2 cos(

k�

n+ 1
)(k = 1; : : : ; n).

(Proof) Let Pn be a path graph with n vertices. The matrix �I � Pn is a tridiagonal matrix with
�i = �, �i = i = �1. Let fn(�) = j�I � Pnj. By Proposition 3.32, fn(�) is de�ned by fn(�) =
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�fn�1(�) � fn�2(�), where f0(�) = 1 and f1(�) = �. Let gn(�) = Un+1(
�

2
). Since

g0(�) = U1(
�

2
) = 1;

g1(�) = U2(
�

2
) = 2(

�

2
) = �; and

gn(�) = Un+1(
�

2
)

= 2
�

2
Un(

�

2
) � Un�1(

�

2
)

= �gn�1(�) � gn�2(�);

we have fn(�) = gn(�) = Un+1(
�

2
). That is

fn(�) = 0 , Un+1(
�

2
) = 0

, �

2
= cos(

k�

n+ 1
) (k = 1; : : : ; n)

, � = 2 cos(
k�

n+ 1
) (k = 1; : : : ; n):

Proposition 3.34
Eigenvalues of adjacency matrix of cycle is given by �k(A(Cn)) = 2 cos( 2k�

n )(k = 1; : : : ; n).

(Proof) Let Cn be a cycle graph with n vertices. The matrix �I �Cn is not a tridiagonal matrix. But

we have j�I � Cnj = 2(Tn(
�

2
) � 1). Since Tn(x) = 1 , cosn� = 1 , � =

2k�
n

. We obtain

j�I � Cnj =
nY
k=1

(�� 2 cos(
2k�
n

)):

Proposition 3.35
Let Pn = (Vn; En) be a path graph. If G = (Vn; En [ f(v1; v1)g; f(vn; vn)g) then the eigenvalues of

di�erence Laplacian matrix of G is given by �k = a+ 2 cos(
k�

n+ 1
); (k = 1; : : : ; n).

(Proof) Let L(Pn) the Laplacian matrix of the path graph with vertex weight a on n vertices. The
matrix �I � L(Pn) is a tridiagonal matrix with �i = �� a, �i = i = �1. Let fn(�) = j�I � L(Pn)j.
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Figure 15: Path graph with equal vertex degrees

fn(�) is de�ned by fn(�) = (� � a)fn�1(�) � fn�2(�) where f0(�) = 1 and f1(�) = � � a. Let

gn(�) = Un+1(
�� a

2
). Since

g0(�) = U1(
�� a

2
) = 1;

g1(�) = U2(
�� a

2
) = 2(

�� a

2
) = �� a; and

gn(�) = Un+1(
�� a

2
)

= 2
�� a

2
Un(

�� a

2
) � Un�1(

�� a

2
)

= (�� a)gn�1(�) � gn�2(�);

we have fn(�) = gn(�) = Un+1(
�� a

2
). That is

fn(�) = 0 , Un+1(
�� a

2
) = 0

, �� a

2
= cos(

k�

n+ 1
) (k = 1; : : : ; n)

, � = a+ 2 cos(
k�

n+ 1
) (k = 1; : : : ; n):
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3.5 Conclusion

In this chapter, we discuss three matrices associated with graphs called di�erence Laplacian, nor-
malized Laplacian and signless Laplacian. We discuss their boundaries using Cheeger constant and
isoperimetric number. We also give uniform proofs for the eigenvalues of above 3 matrices of cy-
cles and paths using circulant matrices and give an alternate proof for the eigenvalues of adjacency
matrices of paths and cycles using Chebyshev polynomials.
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4 Counter examples for Mcut(G) 6= Lcut(G)

In this chapter, we give counter example graphs, where spectral clustering methods and minimum
normalized cut Mcut(G) produce di�erent clusters on graphs.

4.1 Properties of Lcut(G)

De�nition 4.1 (Lcut(G))
Let (U2)i; 1 � i � jV (G)j be an eigenvector of the second smallest eigenvalue �2 of L(G). We assume
that �2 is simple. Then Lcut(G) is de�ned as Lcut(G) = Ncut(A�2 ; B�2), where A�2 = fvi 2
V j(U2)i � 0g and B�2 = fvi 2 V j(U2)i < 0g.

Example 4.1 (Graphs with multiplicity of �2 > 1)
The eigenvalues of cycle C4 are f0; 1; 1; 2g and the eigenvectors corresponding to the second smallest
eigenvalue are f(0:6396; 0:3015;�0:6396;�0:3015); (0:6396;�0:3015;�0:6396; 0:3015)g. Then we have
Lcut(C4) = 1. But f(0; 1; 0;�1)g is also an eigenvector with the second smallest eigenvalue. Then
Ncut(A; V n A) = 3=4, where A = f1; 2; 3g and V n A = f4g. Then we have Lcut(C4) = 3=4. This
shows the choice of eigenvectors is rather delicate.

Example 4.2 (Mcut(G) and Lcut(G))
The Figure 16 shows some examples, where Mcut(G) = Lcut(G) and Mcut(G) 6= Lcut(G).
Mcut(G) = Lcut(G) for the Figure 16(a) and the Figure 16(b). Mcut(R6;4) 6= Lcut(R6;4) for the
graph R6;4 shown in the Figure 16(c) and the Figure 16(d).

Proposition 4.1 ( [46])
Let A � V . If vector y = (y1; : : : ; yn)T 2 <n is de�ned as

y =

8<:
q

vol(V nA)
vol(A) if i 2 A,

�
q

vol(A)
vol(V nA) if i 2 (V nA),

then

1. yTLy = vol(V ) �Ncut(A; V nA),

2. yTDy = vol(V ) and

3. (Dy)T~1 = 0.

(Proof)

82



1

2

3

4

-

-

-

-

5

6

7

+

+

+

(a) Lcut(G) = Mcut(G)

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

(b) Lcut(R4;7) =
Mcut(R4;7)

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

(c) Mcut(R6;4)

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

(d) Lcut(R6;4)

Figure 16: Mcut(G) = Lcut(G) and Mcut(G) 6= Lcut(G)

1.

yTLy = yTDy � yTWy

=
nX
i=1

diy
2
i �

X
i;j

yiwijyj

=
1
2

0@ nX
i=1

diy
2
i � 2

X
i;j

yiyjwij +
nX
j=1

djy
2
j

1A
=

1
2

nX
i;j=1

wij(yi � yj)2:
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This can be further reduced to,

=
1
2

X
i2A;j2(V nA)

wij

 s
vol(V nA)
vol(A)

+

s
vol(A)

vol(V nA)

!2

+

1
2

X
i2(V nA);j2A

wij

 
�

s
vol(A)

vol(V nA)
�

s
vol(V nA)
vol(A)

!2

= cut(A; V nA)
�

vol(A)
vol(V nA)

+
vol(V nA)
vol(A)

+ 2
�

= cut(A; V nA)
�
vol(A) + vol(V nA)

vol(V nA)
+
vol(A) + vol(V nA)

vol(A)

�
= vol(V ):Ncut(A; V nA):

2.

yTDy =
nX
i=1

diy
2
i

=
X
i2A

diy
2
i +

X
i2(V nA)

diy
2
i

=
X
i2A

di

�
vol(V nA)
vol(A)

�
+

X
i2(V nA)

di

�
vol(A)

vol(V nA)

�

= vol(A)
vol(V nA)
vol(A)

+ vol(V nA)
vol(A)

vol(V nA)
= vol(V ):

3.

(Dy)T~1 =
nX
i=1

diyi

=
X
i2A

di

s
vol(V nA)
vol(A)

�
X
i2V nA

di

s
vol(V nA)
vol(A)

= vol(A)

s
vol(V nA)
vol(A)

� vol(V nA)

s
vol(V nA)
vol(A)

= 0:
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Proposition 4.2 (Shi and Malik, 2000[42])
Let G = (V (G); E(G); w) be a graph, where jV (G)j = n and A is a non empty subset of V (G). Let x
be an n dimensional indicator vector such that,

xi =
�

1 if vi 2 A,
�1 otherwise.

Let D be a (n�n) diagonal matrix of vertex degrees in the diagonal and W be a weighted adjacency
matrix of size (n� n). Then minNcut(x) can be written as

min
x
Ncut(x) = min

y

yT (D �W )y
yTDy

with yTD~1 = 0.

(Proof) [Summary of the proof] If y 2 <n is an eigenvector then Ncut(x) can be minimized by solving
generalized eigenvalue system,

(D �W )y = �Dy: (4.1.1)

By substituting z = D
1
2 y, we can rewrite the Equation 4.1.1 as

D� 1
2 (D �W )D� 1

2 z = Lz = �z; (4.1.2)

where z is an eigenvector of L. Then z1 = D
1
2~1 is an eigenvector with an eigenvalue 0. L is a

symmetric positive semide�nite matrix. Hence z1 is the smallest eigenvector of the Equation 4.1.2
and all the eigenvectors are perpendicular to each other. In particular, the second smallest eigenvector
z2, is perpendicular to the �rst eigenvector z1. Then we have y1 = ~1 and 0 = zT2 z1 = yT2 D~1, where
y1 is the �rst eigenvector and y2 is the second smallest eigenvector of the Equation 4.1.2. Using the
property of Rayleigh quotient we obtain,

z2 = arg �minzT z1=0
zTD� 1

2 (D �W )D� 1
2 z

zT z
(4.1.3)

and consequently,

y2 = arg �minyTD~1=0

yT (D �W )y
yTDy

: (4.1.4)

Therefore the second smallest eigenvector of the generalized eigensystem (Equation 4.1.1) is a real
valued solution to the normalized cut problem[42]. Generalized eigensystem in the the Equation 4.1.1
can be transformed to D� 1

2 (D�W )D� 1
2x = �x by substituting y = D� 1

2x, where x is an eigenvector
of L(G) = D� 1

2 (D � W )D� 1
2 . If x is an eigenvector of L(G) then D� 1

2x is an eigenvector for the
eigensystem in the Equation 4.1.1.

4.2 The graph Rn;k

Proposition 4.3
Let U = (u1; u2; : : : ; u2(n+k)) is an eigenvector of L(Rn;k) with an eigenvalue �. If U is an even vector
then, �U is an eigenvector of L(Pn;k) with an eigenvalue �, where �U = (u1; u2; : : : ; un+k).

85



(Proof) Since U is an even vector then there exists an automorphism � such that �(ui) = un+k+i for
(i = 1; : : : ; n+ k). Then we can de�ne U as U = (u1; u2; : : : ; u(n+k); u1; u2; : : : ; u(n+k)), which can be
written as U = ( �U; �U).
Then L(Rn;k) can be written as

L(Rn;k) =
�

L1 C
CT L1

�
;

where L1 is the (n+k)� (n+k) principal sub matrix of L(Rn;k) and C = (cij) is the (n+k)� (n+k)
matrix such that

cij =
�

1 if n+ 1 � i � n+ k,
0 otherwise.

We noticed that L1 + C = L(Pn;k). If � is an eigenvalue of L(Rn;k) then L(Rn;k)U = �U can be
written as, �

L1 C
CT L1

�� �U
�U

�
= �

� �U
�U

�
This gives

L1
�U + C �U = � �U:

This can be written as, (L1 +C) �U = L(Pn;k) �U = � �U . Therefore � is an eigenvalue of L(Pn;k) and �U
is an eigenvector. Thus if U is an even vector of L(Rn;k) with eigenvalue �, then �U is an eigenvector
of L(Pn;k) with the same eigenvalue. Converse of this proposition also holds.

Proposition 4.4
Let U = (u1; u2; : : : ; u(n+k)) be an eigenvector of L(Pn;k) with a second smallest eigenvalue �2. Then
there exists some � 2 Z+ such that ui � 0 (1 � i � �) and ui < 0 (� + 1 � i � n + k) or
ui < 0 (1 � i � �) and ui > 0 (�+ 1 � i � n+ k).

(Proof) If U = (u1; u2; : : : ; un+k) is the second eigenvector of L(Pn;k), then U ? D1=2~1. Then by
Lemma 1.4, V +(U) 6= ; and V �(U) 6= ;. Since �2 is simple, there exists at most 2 sign graphs. Thus
there exists some � 2 Z+ as given in the proposition.

Corollary 4.1
Let U = (u1; u2; : : : ; u2(n+k)) be the �rst eigenvector of L(Rn;k) and � the automorphism of Rn;k. If
�(ui) = ui+n+k (i = 1; : : : ; n+ k) then �U = (u1; u2; : : : ; u(n+k)) is the �rst eigenvector of L(Pn;k).

(Proof) Let �1 be the �rst eigenvalue of L(Rn;k). Then �1 = 0 and U = D1=2(Rn;k)~1. Thus ui =
p
di

for (i = 1; : : : ; 2(n+ k)) and the value of ui is depend on the degree of a vertex i. Since Pn;k and �rst
n + k vertices of Rn;k has the same degree distribution, D1=2(Rn;k)~1 = (D1=2(Pn;k)~1; D1=2(Pn;k)~1)
and U = ( �U; �U), where �U is an eigenvector of Pn;k. Since �U = D1=2(Pn;k)~1, �U is the �rst eigenvector
of L(Pn;k).

Proposition 4.5
Let U = (u1; u2; : : : ; u2(n+k)) be an eigenvector of L(Rn;k) with the second smallest eigenvalue �2. If
U is an even vector then �U = (u1; u2; : : : ; un+k) is the second eigenvector of L(Pn;k) with the same
eigenvalue �2.
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(Proof) Since U is an even vector, we can de�ne an automorphism � such that �(ui) = ui+n+k for
(i = 1; : : : ; n + k) and U can be written as U = ( �U; �U). Then �U is an eigenvector of L(Pn;k) with
eigenvalue �2 by the Proposition 4.3. Since U is a second eigenvector of Rn;k, U ? D1=2(Rn;k)~1 and
�2 > 0. Then we have �U ? D1=2(Pn;k)~1. This shows that �U is an eigenvector with second smallest
eigenvalue �2.

Lemma 4.1
Let U = (u1; : : : ; u2(n+k)) be a second eigenvector of L(Rn;k). If U is an odd vector then

1. ui > 0 for 1 � i � n+ k and ui < 0 for n+ k + 1 � i � 2(n+ k) or

2. ui < 0 for 1 � i � n+ k and ui > 0 for n+ k + 1 � i � 2(n+ k).

(Proof) Let V1 = fi j 1 � i � �; ui > 0g and V2 = fi j � + 1 � i � n + k; ui < 0g, where
1 � � � n+k. Since U is an odd vector, there exists an automorphism � such that �(ui) = �u(n+k+i),
where 1 � i � n + k. Then we have V3 = fi j n + k + 1 � i � n + k + �; �(ui) < 0g and
V4 = fi j n+k+�+1 � i � 2(n+k); �(ui) > 0g. Now for any vertex i 2 V1 [V4, we have ui > 0 and
for any i 2 V2 [V3, we have ui < 0. For any i 2 V1 and j 2 V4, (i; j) =2 E(Rn;k), where 1 � i � � and
n+ k + �+ 1 � j � 2(n+ k). It is clear that V1 and V4 are disconnected sets and therefore we have
two positive sign graphs V1 and V4. Similarly, there exists two negative sign graphs V2 and V3. Since
the second eigenvector has no more than two sign graphs, this contradicts the nodal domain theorem
[14]. Therefore eigenvector entries of vertices belongs to V1 and V2 should have the same sign. This
implies the existence of two partitions such that fi j 1 � i � n+kg and fi j n+k+ 1 � i � 2(n+k)g.
Similarly, we can prove the part 2.

Lemma 4.2
Let U = (u1; : : : ; u2(n+k)) be a second eigenvector of L(Rn;k). If U is an even vector then we have,

1. ui > 0 for (1 � i � �)_(n+k+1 � i � n+k+�) and ui < 0 for (�+1 � i � n+k)_(n+k+�+1 �
i � 2(n+ k)) or

2. ui < 0 for (1 � i � �)_(n+k+1 � i � n+k+�) and ui > 0 for (�+1 � i � n+k)_(n+k+�+1 �
i � 2(n+ k)),

where n < � < n+ k and � 2 Z+.

(Proof) Let V1 = fi j 1 � i � �; ui > 0g and V2 = fi j � + 1 � i � n + k; ui < 0g, where
1 � � � n. Since U is an even vector, there exists an automorphism � such that �(ui) = u(n+k+i)

for 1 � i � n + k. Then there exist a set V3 = fi j n + k + 1 � i � n + k + �; �(ui) > 0g and
V4 = fi j n+ k + � + 1 � i � 2(n+ k); �(ui) < 0g. ui > 0 for i 2 V1 [ V3 and ui < 0 for any vertex
i 2 V2 [ V4. For any i 2 V1 and j 2 V3, (i; j) =2 E(Rn;k). Therefore V1 and V3 are disconnected
and have two positive sign graphs V1 and V3. Since the second eigenvector has no more than two
sign graphs this contradicts the nodal domain theorem [14]. Then � > n. For any vertex i 2 V2 and
j 2 V4, (i; j) 2 E(Rn;k). Hence we have one negative sign graph V2 [ V4 and one positive sign graph
V1 [ V3. Therefore we have two sets such that fi j 1 � i � �g [ fi j n+ k + 1 � i � n+ k + �g and
fi j �+ 1 � i � n+ kg [ fi j n+ k+�+ 1 � i � 2(n+ k)g. Similarly, we can prove the part 2 of the
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lemma.

Proposition 4.6
For the graph Rn;k(n � 1; k > 1), if n and k belong to the following region R then Mcut(Rn;k) <
Lcut(Rn;k).

R = f(n; k) j ((k � 4) ^ (2 j k) ^ (3 j n) ^ (1 � 1p
2

� 3k
2

+
3kp

2
� n)) _

(k = 2 ^ (n � 2)) _ (k = 3 ^ (n � 3))g:

(Proof) If n and k belong to the above region R then Mcut(Rn;k) =
(6k + 4n� 4)

(2n� 1)(6k + 2n� 3)
and denoted

by c2 in the Proposition 2.4. Let � be an automorphism de�ned on V (Rn;k) such that vi = �(vn+k+i)
for 1 � i � n+k. Let U = (u1; u2; : : : ; u2(n+k)) be an eigenvector corresponding to the second smallest
eigenvalue of L(Rn;k). Then �(ui) = un+k+i or ui = ��(un+k+i) for 1 � i � n+ k.

� If ui = ��(un+k+i) then the second eigenvector is odd. Then there exists a bipartition such that
A = fvi j 1 � i � n+ kg and V nA = fvi j n+ k + 1 � i � 2n+ 2kg by Lemma 4.1. This case
is denoted by c1 in the Proposition 2.4. It is clear that c2 is smaller than c1 for n > 1 by the
Proposition 2.4. If n; k is in the region R then Mcut(Rn;k) < Lcut(Rn;k) for n > 1.

� If ui = �(un+k+i) then the second eigenvector is even. Then there exists a bipartition such that
A = fvi j 1 � i � �g [ fvi j n + k + 1 � i � n + k + �g and V n A = fvi j � + 1 � i �
n+kg[fvi j n+k+�+1 � i � 2(n+k)g, where n+1 � � < (n+k) by Lemma 4.2. Minimum
normalized cut for this kind of bipartition is represented by c4 in the Proposition 2.4. It is clear
that c2 < c4 for region R by the Proposition 2.4 and hence we obtain Mcut(Rn;k) < Lcut(Rn;k).

4.3 The lollipop graph LPn;m

Proposition 4.7
The second smallest eigenvalue of L(LPn;2) is simple. That is multiplicity is equal to one.

(Proof) Laplacian matrix of LPn;2 is0BBBBBBBBBBB@

1 �1 0 � � � � � � � � � 0
�1 2 �1 0
0 �1 n �1 � � � � � � �1
... �1

. . . . . .
...

...
...

. . . . . . . . .
...

...
... �1 n� 1 �1

0 0 �1 � � � � � � �1 n� 1

1CCCCCCCCCCCA
:
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Since L(G) and L(G)D�1 has the same spectrum by the Lemma 1.2, Characteristic polynomial of
L(G) can be obtained by j�I � L(G)D�1j = 0, where L(G)D�1 is0BBBBBBBBBBB@

1 � 1
2 0 � � � � � � � � � 0

�1 1 � 1
n 0 � � � � � � 0

0 � 1
2 1 � 1

n�1 � � � � � � � 1
n�1

0 0 � 1
n 1

. . .
...

... � 1
n�1

. . . . . .
...

...
. . . . . . � 1

n�1

0 0 � 1
n � 1

n�1 � � � � 1
n�1 1

1CCCCCCCCCCCA
:

The determinant of �I � L(G)D�1 is,0BBBBBBBBBBB@

�� 1 1
2 0 � � � � � � � � � 0

1 �� 1 1
n 0 � � � � � � 0

0 1
2 �� 1 1

n�1 � � � � � � 1
n�1

0 0 1
n �� 1

. . .
...

...
. . . 1

n�1

. . . . . .
...

...
. . . . . . 1

n�1

0 0 1
n

1
n�1 � � � 1

n�1 �� 1

1CCCCCCCCCCCA
:

For simplicity let �I �D�1L(G) as M . By expanding through the �rst column we have,

jM j = (�� 1)

��������������

�� 1 1
n 0 � � � � � � 0

1
2 �� 1 1

n�1 � � � � � � 1
n�1

0 1
n �� 1 � � � � � � 1

n�1
... 1

n
1

n�1 �� 1 � � �
...

...
...

...
. . .

...
0 1

n
1

n�1 � � � � � � �� 1

��������������
� 1

��������������

1
2 0 0 � � � � � � � � � 0
1
2 �� 1 1

n�1 � � � 1
n�1

0 1
n �� 1 � � � 1

n�1
... 1

n
1

n�1 �� 1 � � � 1
n�1

...
...

...
. . .

...
0 � � � � � � � � � � � � �� 1

��������������
:

Then,
jM j = (�� 1)M11 � 1:M21; (4.3.1)

where,

M11 = (�� 1)

�����������

�� 1 1
n�1

1
n�1

1
n �� 1 1

n�1
1
n

1
n�1 �� 1 � � � 1

n�1
...

. . .
...

1
n

1
n�1 � � � � � � �� 1

�����������
� 1

2

�����������

1
n 0 0
1
n �� 1 1

n�1
1
n

1
n�1 �� 1 1

n�1
...

...
. . .

...
1
n

1
n�1 � � � � � � �� 1

�����������
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and

M21 =
1
2

�����������

�� 1 1
n�1 � � � � � � 1

n�1
1
n �� 1 1

n�1
1
n

1
n�1 �� 1 1

n�1
...

...
. . .

...
1
n

1
n�1 � � � � � � �� 1

�����������
:

Now the Equation 4.3.1 can be rewritten as

(�� 1)2P � (�� 1)
2n

�����������

1 0 � � � � � � 0
1 �� 1 1

n�1

1 1
n�1 �� 1 1

n�1
...

. . .
...

1 1
n�1 � � � � � � �� 1

�����������
� 1

2
P; (4.3.2)

where

P =

�����������

�� 1 1
n�1

1
n�1

1
n �� 1 1

n�1
1
n

1
n�1 �� 1 1

n�1
...

...
. . .

...
1
n

1
n�1 �� 1

�����������
:

Further we can deduce this to

(�2 � 2�+
1
2

)P � (�� 1)
2n

Q; (4.3.3)

where

Q =

�����������

1 0 0
1 �� 1 1

n�1

1 1
n�1 �� 1 1

n�1
...

...
. . .

...
1 1

n�1 � � � � � � �� 1

�����������
:

Deducing all rows from row 1 in P we get,������������

�� 1 1
n�1 � � � � � � 1

n�1
1
n � �+ 1 �� 1 � 1

n�1 � � � � � � 0

1
n � �+ 1 0

. . .
...

...
...

. . .
...

1
n � �+ 1 0 � � � � � � �� 1 � 1

n�1

������������
:
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Adding all columns to column 1 we get

������������

� 1
n�1 � � � � � � 1

n�1

� 1
(n�1)(n) �� n

n�1 0
� 1

(n�1)(n) 0 �� n
n�1 0

...
. . .

...
� 1

(n�1)(n) 0 � � � � � � �� n
n�1

������������
:

Now expanding the determinant through the column 2 P can be reduced to

(�� n

n� 1
)

���������
� 1

n�1 � � � 1
n�1

� 1
(n�1)(n) �� n

n�1 0
...

. . .
...

� 1
(n�1)(n) 0 � � � �� n

n�1

���������� 1
n� 1

����������
� 1
n(n�1) 0 � � � 0

� 1
(n�1)(n) �� n

n�1 0
...

. . .
...

� 1
(n�1)(n) 0 � � � �� n

n�1

����������
:

This can be written as
rk = �rk�1 +

1
n(n� 1)2

� �k�1; (4.3.4)

where � = (�� n

n� 1
) and k = n� 1. Consider the recurrence relation on 4.3.4.

rk
�k

=
rk�1

�k�1
+

1
n(n� 1)2�

;

rk�1

�k�1
=

rk�2

�k�2
+

1
n(n� 1)2�

;

...
r2

�2
=

r1

�
+

1
n(n� 1)2�

rk
�k

=
r1

�
+ (k � 1)

1
n(n� 1)2�

; (4.3.5)

where

r1 =
���� � 1

n�1

� 1
n(n�1) �� n

n�1

���� = �2 � n

n� 1
�+

1
n(n� 1)2

:

Now P can be written as

P = (�� n

n� 1
)n�2(�2 � n

n� 1
�+

1
n(n� 1)

): (4.3.6)

Expanding the Q in the Equation 4.3.3 through row 1, we can write,
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Q =

�����������

1 0 � � � � � � 0
1 �� 1 1

n�1

1 1
n�1 �� 1 1

n�1
...

. . .
...

1 1
n�1 � � � � � � �� 1

�����������
= 1:

���������
�� 1 � � � : : : 1

n�1
1

n�1 �� 1 � � � 1
n�1

...
...

. . .
...

1
n�1 � � � � � � �� 1

��������� :

Then adding rows to the �rst row

Q = (�� 1 +
n� 2
n� 1

)

������������

1 � � � � � � 1
1

n�1 �� 1 1
n�1

... �� 1 1
n�1

...
. . .

...
1

n�1 � � � � � � �� 1

������������
Deducing all columns from the �rst column becomes

Q = (�� 1 +
n� 2
n� 1

)

���������
1 0 � � � 0
1

n�1 �� 1 � 1
n�1 � � � 0

...
. . .

...
1

n�1 0 �� 1 1
n�1

��������� :
This can be written as

Q = (�� 1
n� 1

)(�� n

n� 1
)n�2: (4.3.7)

Substituting Equation 4.3.6 and 4.3.7 into the Equation 4.3.3 gives

j�I � L(G)D�1j =
1
2

(�� n

n� 1
)n�2

�
(2�2 � 4�+ 1)(�2 � n

n� 1
�+

1
n(n� 1)

) � �� 1
n

(�� 1
n� 1

)
�

(4.3.8)

=
1

2n(n� 1)
(�� n

n� 1
)n�2�(2n(n� 1)�3 � 2n(3n� 2)�2 + (5n2 � 2n+ 3)�

(4.3.9)

+ n� n2 � 4):

According to the Equation 4.3.9, eigenvalues of LPn;2 is � = 0; � =
n

n� 1
with multiplicity (n � 2)

and the remaining eigenvalues are the solution of the equation 2n(n� 1)�3 � 2n(3n� 2)�2 + (5n2 �
2n+ 3)�+ n� n2 � 4 = 0. Let

f(�) = 2n(n� 1)�3 � 2n(3n� 2)�2 + (5n2 � 2n+ 3)�+ n� n2 � 4:
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f(0) = �(n2 � n + 4) < 0 and f(1) = n � 1 > 0 if n � 2. f(
n

n� 1
) = �2(n� 2)

n� 1
< 0, if n > 2.

f(2) = (n�1)(n�2) > 0 if n > 2. This shows that there exists a solution for each interval 0 < � < 1,
1 < � <

n

n� 1
, and

n

n� 1
< � < 2. Considering the graph of f(�) as in the Figure 17, it is also

clear that 3 distinct roots exist and the smallest root is less than 1.

Proposition 4.8
Let �2 be the second smallest eigenvalue of L(LPn;2). If n � 5 then �2 < 1 � 1p

2
and if n � 4 then

�2 > 1 � 1p
2

.

(Proof) By the Proposition 4.7, we have 0 < �2 < 1. Considering the equation for f(�) in the

Proposition 4.7, we have f(1 � 1p
2

) =
n� 3 �

p
2p

2
, which is positive for n � 5, and negative for

n � 4.

-2 -1 1 2 3
Λ

-20

-10

10

20
f HΛL

(a) m = 2; n = 5

-2 -1 1 2 3
Λ

-10 000

-5000

5000

10 000

f HΛL

(b) m = 2; n = 100

Figure 17: Plot of f(�) vs � for n = 5 and n = 100.

Proposition 4.9
Let U be the second eigenvector of (LPn;m). Then V +(U) 6= ; and V �(U) 6= ;.

Proof follows by the Lemma 1.4.

Proposition 4.10
Let �2 be the second eigenvalue and U = (u1; : : : ; un+2) the second eigenvector of L(LPn;2). Then

1. �2 6= n

n� 1
and �2 6= 1

n� 1
.

2. ui = ui+1 for (i = 4; : : : ; n+ 1).

3. If n � 5 then �2 <
1
2

(2 �
p

2) and u1u2 > 0 and u1u3 > 0. That is u1; u2; u3 are all positive or

they are all negative values.
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4. If n � 5 then u1; u2; u3 are positive and ui(i = 4; : : : ; n+2) are negative or u1; u2; u3 are negative
and ui(i = 4; : : : ; n+ 2) are positive. That is u3 and u4 have opposite signs.

5. If n = 3 or n = 4 then �2 >
1
2

(2�
p

2) and u1u2 > 0 and u1u3 < 0. That is if u1; u2 are positive

then u3 is negative or if u1; u2 are negative then u3 is positive.

6. If n = 3; 4 then u1; u2 are positive and ui(i = 3; : : : ; n+ 2) are negative or vice versa.

(Proof)

1. From the Proposition 4.7, f(�) = 2n(n� 1)�3 � 2n(3n� 2)�2 +
�
5n2 � 2n+ 3

�
�+ n� n2 � 4.

If � =
1

n� 1
then f(�) = �7 + 6n� n2 6= 0 and if � =

n

n� 1
then �2(�2 + n)

�1 + n
6= 0.

2. According to the vertex numbering of LPn;2 the normalized Laplacian matrix of LPn;2 is,0BBBBBBBBBB@

1 � 1p
2

0 � � � � � � 0
� 1p

2
1 � 1p

2n
� � � 0

0 � 1p
2n

1 � 1p
n(n�1)

...
. . . . . . . . .

...
... 1 � 1

n�1

0 � � � � � � � � � � 1
n�1 1

1CCCCCCCCCCA
:

Since L(LPn;2)U = �2U , we have the following system of equations.

� 1p
2
u2 + u1 = �2u1; (4.3.10)

� 1p
2n
u3 + u2 � 1p

2
u1 = �2u2; (4.3.11)

� 1p
n(n� 1)

(un+2 + � � � + u4) + u3 � 1p
2n
u2 = �2u3; (4.3.12)

� 1p
n(n� 1)

u3 � 1
n� 1

(un+2 + � � � + u5) + u4 = �2u4; (4.3.13)

� 1p
n(n� 1)

u3 � 1
n� 1

(u4 + � � � + un+2) + u5 = �2u5; (4.3.14)

... (4.3.15)

� 1p
n(n� 1)

u3 � 1
n� 1

(u4 + � � � + un+1) + un+2 = �2un+2: (4.3.16)

By solving the system of equations from the Equation 4.3.13 to Equation 4.3.16, we have u4 =
u5 = � � � = un+2. That is ui = ui+1 for i = 4; : : : ; n+ 1.
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3. By simplifying the Equation 4.3.10,Equation 4.3.11 and the Equation 4.3.12, we have

u2 =
p

2(1 � �2)u1;

u3 =
p
n(2(1 � �2)2 � 1)u1;r

n� 1
n

u4 = (1 � �2)u3 � 1p
2n
u2:

If u1 > 0 then u2 > 0 and this implies that u1u2 > 0. If u1 < 0 then u2 < 0 and this
also implies that u1u2 > 0. If u1 > 0 then u3 > 0, whenever 2(1 � �2)2 � 1 > 0. That is

(�2 � (2 �
p

2)
2

)(�2 � (2 +
p

2)
2

) > 0. It is clear that (�2 � (2 +
p

2)
2

) < 0 since �2 < 1. For

n � 5, �2 <
(2 �

p
2)

2
by the Proposition 4.8. Hence u3 > 0 whenever u1 > 0 for n � 5.

Similarly, if u1 < 0 then u3 < 0 for n � 5. That is u1; u2; u3 are all positive or all negative.

4. Since U is the second eigenvector, U ? D1=2~1 and
n+2X
i=1

ui:
p
di = 0. Since d4 = � � � = dn+2 =

n � 1, we have, u1 +
p

2u2 +
p
nu3 + (n � 1)

p
n� 1u4 = 0. This implies that if u1; u2; u3 > 0

then u4; : : : ; un+2 < 0 and if u1; u2; u3 < 0 then u4; : : : ; un+2 > 0.

5. By the Equation 4.3.10, if u1 > 0 then u2 > 0 and u1u2 > 0. If u1 < 0 then u2 < 0 and again

u1u2 > 0. If n = 3 or n = 4 then �2 > (1 � 1p
2

) by the Proposition 4.8. That is if u1 > 0 then

u3 < 0 from the Equation 4.3.11.

6. From the part(1), we have ui = ui+1(i = 4; : : : ; n + 1). If n = 3; 4 and u1; u2 > 0 then u3 < 0
from the part (5). If ui(i = 4; : : : ; n + 2) > 0 then we have 3 connected sign graphs which
contradicts the nodal domain theorem [14]. Hence we have ui(i = 4; : : : ; n + 2) < 0. That is if
u3 < 0 then ui(i = 4; : : : ; n + 2) < 0 or if u3 > 0 then ui(i = 4; : : : ; n + 2) > 0. This implies
that if u1; u2 have a same sign then ui(i = 3; : : : ; n+ 2) have a opposite sign.

Corollary 4.2
Let U = (u1; : : : ; un+2) be the second eigenvector of L(LPn;2). Then for n � 5, ui > 0; (4 � i � n+2)
and ui < 0(i � 3) or ui < 0(4 � i � n + 2) and ui > 0(i � 3) and the graph LPn;2 can partition by
cutting edges between vertex y1 and vertices y2; : : : ; yn.

(Proof) Proofs follows by the Proposition 4.10. That is if n � 5 and u1; u2; u3 are positive then
ui(i = 4; : : : ; n+ 2) are negative. Hence graph can be separated by cutting all edges between vertex y1

and y2; : : : ; yn.

Proposition 4.11
Mcut(LPn;m) < Lcut(LPn;m) for n � 5 and m = 2.

(Proof) For m = 2 we have, Mcut(LPn;2) =
n2 � n+ 4

3(n2 � n+ 1)
by the Proposition 2.6. For n � 5,

there exists a subset A � V (LPn;2) such that A = fx1; x2; y1g and V n A = fyi j 2 � i � n + 2g
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by the Corollary 4.2. Then cut(A; V n A) = n � 1, vol(A) = n + 3 and vol(V n A) = (n � 1)2.

Thus Lcut(LPn;2) = (n � 1)
�

1
n+ 3

+
1

(n� 1)2

�
=

n2 � n+ 4
(n� 1)(n+ 3)

. Comparing Mcut(LPn;2) with

Lcut(LPn;2), we have Mcut(LPn;2) < Lcut(LPn;2).

We proved that Mcut(LPn;m) 6= Lcut(LPn;m) for n � 5;m = 2. There are some other cases,
which we can prove similar to the previous Proposition 4.11. We list some of them in the following
conjecture.

Conjecture 4.1
For the graph LPn;m, Lcut(LPn;m) 6= Mcut(LPn;m), when n > m and the following conditions hold.

1. m = 3; n � 9,

2. m = 4; n � 15, and

3. m = 5; n � 22.

Similarly, Lcut(LPn;m) 6= Mcut(LPn;m), when m > n and the following conditions hold:

1. m = 7; 3 � n � 5,

2. m = 10; 3 � n � 9,

3. m = 19; 3 � n � 15, and

4. m = 27; 3 � n � 22.

Example 4.3
The Figure 18 shows the second eigenvector of L(LPn;2) for n = 5; 6; 20. The Figure 19 shows the
bipartition enumerated by Mcut(LP6;2) and Lcut(LP6;2).
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(a) m = 2; n = 5

-0.2411-0.2411

-0.2411
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(b) m = 2; n = 6
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-0.03872
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(c) m = 2; n = 20

Figure 18: Second smallest eigenvector of LPn;m.
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(a) Lcut for LP6;2
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(b) Mcut of LP6;2

Figure 19: Lcut and Mcut of LP6;2.

4.4 The graph LP 0
n;2

Proposition 4.12
Let �2 be the second smallest eigenvalue and U = (u1; u2; : : : ; un+2) be the second eigenvector of
LP 0

n;2. Then the following conditions hold.

1. ui = ui+1 for (i = 4; : : : ; n).

2. u1 = u2 and u3 = un+2.

3. For n � 6, �2 <
1
2

.

4. For n � 6, u2u3 > 0. That is u1; u2; u3; u4 are all positive numbers or they are all negative
numbers.

5. For n = 5, u2u3 = 0. That is u1; u2 are all positive numbers or they are all negative numbers
and u2; u3 are zeros.

(Proof)

1. Normalized Laplacian of LP 0
n;2 can be written as,0BBBBBBBBBBBB@

1 � 1
2 0 � � � � � � � 1p

2n

� 1
2 1 � 1p

2n
� � � � � � 0

0 � 1p
2n

1
. . . � 1

n

...
. . . . . . . . .

...
... 1 � 1p

n(n�1)

� 1p
2n

0 � 1
n � � � � 1p

n(n�1)
1

1CCCCCCCCCCCCA
:
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Then �2U � L(LP 0
n;2)U = 0. Considering the �rst 3 rows of L(LP 0

n;2),

(�2 � 1)u1 +
1
2
u2 +

1p
2n
un+2 = 0; (4.4.1)

1p
2n
u3 + (�2 � 1)u2 +

1
2
u1 = 0; (4.4.2)

1p
n(n+ 1)

(un+1 + � � � + u4) + (�2 � 1)u3 +
1p
2n
u2 +

1
n
un+2 = 0: (4.4.3)

Since LP 0
n;2 n fu1; u2g is a complete graph, we can write n� 1 equations as follows.

1
(n� 1)

(un+1 + � � � + u5) + (�2 � 1)u4 +
1p

n(n� 1)
u3 +

1p
n(n� 1)

un+2 = 0; (4.4.4)

1
(n� 1)

(un+1 + � � � + u6 + u4) + (�2 � 1)u5 +
1p

n(n� 1)
u3 +

1p
n(n� 1)

un+2 = 0; (4.4.5)

...
1p

n(n� 1)
(u4 + � � � + un+1) +

1
n
u3 +

1p
2n
u1 + (�2 � 1)un+2 = 0: (4.4.6)

By solving the Equation 4.4.4, and the Equation 4.4.5 we have, u4 = u5. Similarly, we can
obtain, u4 = u5 = � � � = un+1 by solving system of equations from Equation 4.4.4 to Equa-
tion 4.4.6.

2. From the Equation 4.4.1, 4.4.2,

u2 = 2(1 � �2)u1 � 2
1p
2n
un+2;

u3 =
p

2n((1 � �2)u2 � 1
2
u1):

From the Equation 4.4.3, 4.4.5 we have

n� 2p
n(n� 1)

u4 + (�2 � 1)u3 +
1p
2n
u2 +

1
n
un+2 = 0; (4.4.7)

n� 2p
n(n� 1)

u4 +
1
n
u3 +

1p
2n
u1 + (�2 � 1)un+2 = 0: (4.4.8)

Solving the Equation 4.4.1 and 4.4.2, we have,

1p
2n

(un+2 � u3) = (
3
2

� �2)(u1 � u2): (4.4.9)

By solving the Equation 4.4.7 and 4.4.8 we have,

(
1
n

� �2 + 1)(un+2 � u3) =
1p
2n

(u1 � u2): (4.4.10)

By solving the Equation 4.4.9 and 4.4.10, we get the solution un+2 = u3 and u1 = u2.
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3. If n = 3 then �2 � Mcut(LP 0
3;2) = 0:75 and �2 = 2=3 by computations. If n = 4 then

�2 � 9=14 = 0:6428 and �2 = 0:54. If n = 5 then �2 � 13=22 = 0:59 and �2 = 0:5. If n � 6
then �2 < 0:5.

4. Let n � 6. If u1 > 0 then u2 > 0. Let u1 > 0. Then u3 = un+2 > 0 or u3 = un+2 < 0.
If u3 = un+2 > 0 then u4 = u5 = � � � = un+1 < 0. Otherwise it contradicts that the second
eigenvector is orthogonal to D1=2~1. If u3 = un+2 < 0 and u4 = u5 = � � � = un+1 > 0, then
we have 3 sign graphs and contradicts the nodal domain theorem [14]. Therefore u4 = u5 =

� � � = un+1 < 0. From the Equation 4.4.1, (�2 � 1
2

)u1 = � 1p
2n
un+2. Therefore if u1 > 0 then

un+2 > 0. Similarly when u1 < 0 we have un+2 = u3 < 0. That is u1; u2; u3; un+2 have the
same sign.

5. If n = 5 then �2 = 0:5. So we have un+2 = u3 = 0. If u1 > 0 then u2 > 0. Then we have
ui(i = 4; : : : ; n + 1) < 0. If u1 < 0 then u2 < 0 and we have ui(i = 4; : : : ; n + 1) > 0. That is
u1u3 = 0.

Proposition 4.13
Lcut(LP 0

n;2) < Mcut(LP 0
n;2) for n � 5.

(Proof) If n � 5 then �2 � 0:5 and the second eigenvector separate the graph into two groups such that
u1; u2; u3; un+2 belong to one group and u4; : : : ; un+1 belong to other group by the Proposition 4.12.

Then Lcut(LP 0
n;2) =

n2 � n+ 6
(n+ 2)(n� 1)

by the Proposition 2.7. But Mcut(LP 0
n;2) =

n2 � n+ 6
2(n2 � n+ 2)

by the

Proposition 2.7. Comparing Lcut and Mcut values, we have Lcut(LP 0
n;2) < Mcut(LP 0

n;2) for n � 5.

Example 4.4
The Figure 20 shows the bipartition produced by Lcut(LP 0

n;2) and Mcut(LP 0
n;2) for n = 6.

(a) Lcut for LP 0
6;2 (b) Mcut of LP 0

6;2

Figure 20: Lcut and Mcut of LP 0
6;2.
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4.5 Double tree

In this section, we show that the second eigenvector of double tree is odd and Lcut(DTn) = Mcut(DTn)
for any n 2 Z+.

Note. From the Proposition 2.3, we have, �2(DT2) � Mcut(DT2) =
2
5

. �2(DT3) � Mcut(DT3) =
2
13

. �2(DTn) � Mcut(DTn) =
2

2n+1 � 3
< 1.

Proposition 4.14
Let �2 be the second smallest eigenvalue of L(DTn) and U = (Ui); i 2 V (DTn) be the second smallest

eigenvector of L(DTn). Then the following relations hold for w 2 ��n.

1. If there exists x(w) 2 V (DTn) such that Ux(w) > 0 then Ux(w) > 0 for all w 2 ��n.

2. If there exists x(w) 2 V (DTn) such that Ux(w) > 0 then Uy(w) < 0.

(Proof) Let n = 2 and w 2 ��n; jwuj = jwj + 1 and u 2 f0; 1g. Then

L(DT2) =
�

A C
CT B

�
;

where A = (ax(w);x(wu)) is the matrix de�ned as8><>:
1 if x(w) = x(wu),

� 1p
dx(w)dx(wu)

if (x(w); x(wu)) 2 E(DT2),

0 otherwise,

B = (by(w);y(wu)) is the matrix de�ned as8><>:
1 if y(w) = y(wu),

� 1p
dy(w)dy(uw)

if (y(w); y(wu)) 2 E(DT2),

0 otherwise,

C = (cx(w);y(w)) is the matrix de�ned as(
� 1p

dx(w)dy(w)
if w = �,

0 otherwise.

Let U be the second eigenvector such that

U =
�
Ux(w)

Uy(w)

�
;

where Ux(w) = (Ux(�); Ux(0); Ux(1)) and Uy(w) = (Uy(�); Uy(0); Uy(1)). Each vertex of the bottom level
has degree 1 and vertices of the other levels has degree 3. Hence for simplicity, let � as dx(w), where
for w 2 ��n and jwj � n � 2. All other vertices x(w) such that jwj = n � 1 has d(x(w)) = 1. Since
DT2 has a symmetric structure, A = B. Then we can write the following equations.

AUx(w) + CUy(w) = �2Ux(w);

CTUx(w) +AUy(w) = �2Uy(w):
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Then

A =

0B@ 1 � 1p
�

� 1p
�

� 1p
�

1 0
� 1p

�
0 1

1CA ;

C =

0@ � 1
� 0 0

0 0 0
0 0 0

1A ;

Ux(w) =

0@ Ux(�)

Ux(0)

Ux(1)

1A ;

and

Uy(w) =

0@ Uy(�)

Uy(0)

Uy(1)

1A :

AUx(w) + CUy(w) = �2Ux(w) implies that,

Ux(�) � 1p
�
Ux(0) � 1p

�
Ux(1) � 1

�
Uy(�) = �2Ux(�); (4.5.1)

� 1p
�
Ux(�) + Ux(0) = �2Ux(0); (4.5.2)

� 1p
�
Ux(�) + Ux(1) = �2Ux(1): (4.5.3)

CTUx(w) +AUy(w) = �2Uy(w) implies that,

Uy(�) � 1p
�
Uy(0) � 1p

�
Uy(1) � 1

�
Ux(�) = �2Uy(�); (4.5.4)

� 1p
�
Uy(�) + Uy(0) = �2Uy(0); (4.5.5)

� 1p
�
Uy(�) + Uy(1) = �2Uy(1): (4.5.6)

From the Equation 4.5.1, 4.5.2, 4.5.3,

Ux(0) = Ux(1); (4.5.7)

Ux(�) � 2p
�
Ux(1) � 1

�
Uy(�) = �2Ux(�): (4.5.8)

From the Equation 4.5.4, 4.5.5, 4.5.6,

Uy(0) = Uy(1); (4.5.9)

Uy(�) � 2p
�
Uy(1) � 1

�
Ux(�) = �2Uy(�): (4.5.10)
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Then by solving the Equation 4.5.2, 4.5.8 and 4.5.5, 4.5.10, U2
x(�) = U2

y(�). This implies that Ux(�) =
Uy(�) or Ux(�) = �Uy(�). Above equations have non zero solutions for Ux(�); : : : ; Ux(1); Uy(�); : : : ; Uy(1)

if �2 6= 1. But �2 � Mcut(G) = 2
5 from the Proposition 4.5. If Ux(�) = Uy(�) then by the Equa-

tion 4.5.5, 4.5.2 Ux(0) = Uy(0) and by the Equation 4.5.3, 4.5.6 Ux(1) = Uy(1). If Ux(�) > 0 then from
the Equation 4.5.2, Ux(0) > 0 and hence Ux(1) > 0.

If we take Ux(�) = Uy(�) then Ux(�); Ux(0); Ux(1); Uy(�); Uy(0) and Uy(1) have same sign. It contra-
dicts that second eigenvector is orthogonal to D1=2~1. So we can exclude this case and consider the
case Ux(�) = �Uy(�). This implies that Ux(w) > 0 and Uy(w) < 0 for all w 2 ��n. Hence the eigen-
vector for U is Ux(�); Ux(0); Ux(1);�Ux(�);�Ux(0);�Ux(1). This implies that if Ux(w) > 0 then for all
x(w); Ux(w) > 0 and if Ux(w) > 0 then for all y(w), Uy(w) < 0. Hence the second eigenvector is odd
and partition the graph by cutting an edge between their roots.
Now let n = 3 and consider the graph DT3. Similar to the previous proof, we have the following
system of equations.

Ux(�) � 1
�
Ux(0) � 1

�
Ux(1) � 1

�
Uy(�) = �2Ux(�); (4.5.11)

� 1
�
Ux(�) + Ux(0) � 1p

�
Ux(00) � 1p

�
Ux(01) = �2Ux(0); (4.5.12)

� 1
�
Ux(�) + Ux(1) � 1p

�
Ux(10) � 1p

�
Ux(11) = �2Ux(1); (4.5.13)

� 1p
�
Ux(0) + Ux(00) = �2Ux(00); (4.5.14)

� 1p
�
Ux(0) + Ux(01) = �2Ux(01); (4.5.15)

� 1p
�
Ux(1) + Ux(10) = �2Ux(10); (4.5.16)

� 1p
�
Ux(1) + Ux(11) = �2Ux(11); (4.5.17)

Uy(�) � 1
�
Uy(0) � 1

�
Uy(1) � 1

�
Ux(�) = �2Uy(�); (4.5.18)

� 1
�
Uy(�) + Uy(0) � 1p

�
Uy(00) � 1p

�
Uy(01) = �2Uy(0); (4.5.19)

� 1
�
Uy(�) + Uy(1) � 1p

�
Uy(10) � 1p

�
Uy(11) = �2Uy(1); (4.5.20)

� 1p
�
Uy(0) + Uy(00) = �2Uy(00); (4.5.21)

� 1p
�
Uy(0) + Uy(01) = �2Uy(01); (4.5.22)

� 1p
�
Uy(1) + Uy(10) = �2Uy(10); (4.5.23)

� 1p
�
Uy(1) + Uy(11) = �2Uy(11): (4.5.24)
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Ux(00) = Ux(01); Ux(10) = Ux(11) by the Equation 4.5.14, 4.5.15 and 4.5.16, 4.5.17. Similarly
Uy(00) = Uy(01); Uy(10) = Uy(11) by the Equation 4.5.21, 4.5.22 and 4.5.23, 4.5.24. By solving
the equation set 4.5.12, 4.5.13, 4.5.14, 4.5.16 with the condition Ux(00) = Ux(01) and Ux(10) = Ux(11),
we have Ux(0) = Ux(1). Similarly we can obtained the result Uy(0) = Uy(1). By solving the Equa-
tion 4.5.11, 4.5.14, 4.5.16 and the Equation 4.5.19, 4.5.21 we have U2

x(�) = U2
y(�). If Uy(�) = Ux(�)

then all vectors are positive and contradicts that the second eigenvector is orthogonal to D1=2~1. There-

fore Ux(�) = �Uy(�). Since � <
2
13

, if Ux(�) > 0 then Ux(w) > 0 for all w 2 ��n
1 . Similarly, if Uy(�) < 0

then Uy(w) < 0 for all w 2 ��n
1 . That is if Ux(w) > 0 then for all x(w), Ux(w) > 0 and if Uy(w) > 0

then for all y(w), Uy(w) > 0. Further if Ux(w) > 0 then Uy(w) < 0 for x(w); y(w).
For the induction step, suppose the result holds for n = n � 1. Let vertices belong to level n � 1

is x(w1); x(w2); : : : ; x(w2n�2); y(w1); y(w2); : : : ; y(w2n�2), where wj 2 ��n
1 and jwj j = n � 2 and

j = 1; : : : ; 2n�2. Then we have, x(wj+k) = x(wj+k+1) and y(wj+k) = y(wj+k+1) for j = 1; : : : ; 2n�3

and k = 0; : : : ; 2n�3 � 1. Now consider the double tree with level n. Then the new vertices are added
to the bottom level and the degrees of vertices in the level n� 1 change to �.

Let vertices belong to the level n is fx(wju1) j 1 � j � 2n�2g [ fx(wju2) j 1 � j � 2n�2g [
fy(wju1) j 1 � j � 2n�2g [ fy(wju2) j 1 � j � 2n�2g, where u1; u2 2 f0; 1g, u1 6= u2, wj 2 ��n

1 and
jwj j = n� 1. Then the bottom level of the double tree satisfy the following system of equations.

� 1p
�
Ux(wj) + Ux(wju1) = �2Ux(wju1); (4.5.25)

� 1p
�
Ux(wj) + Ux(wju2) = �2Ux(wju2); (4.5.26)

� 1p
�
Uy(wj) + Uy(wju1) = �2Uy(wju1); (4.5.27)

� 1p
�
Uy(wj) + Uy(wju2) = �2Uy(wju2); (4.5.28)

where j = 1; : : : ; 2n�2. Let x(w�
i ); y(w�

i ); (i = 1; : : : ; 2n�3); w� 2 ��n
1 are the vertices belong to the

level n� 2. Then the vertex w1 satisfy the following equation.

� 1
�
Ux(w�

1 ) � 1p
�
Ux(w1u1) � 1p

�
Ux(w1u2) + Ux(w1) = �2Ux(w1): (4.5.29)

The vertex w2 satisfy the following equation.

� 1
�
Ux(w�

1 ) � 1p
�
Ux(w2u1) � 1p

�
Ux(w2u2)Ux(w2) = �2Ux(w2): (4.5.30)

We can extend this for all vertices in the level n � 1. By solving above system of Equations 4.5.25
and 4.5.26, we have x(wju1) = x(wju2) and y(wju1) = y(wju2) for j = 1; : : : ; 2n�1. By solving
Equation 4.5.29 and Equation 4.5.30 with Equation 4.5.25 and Equation 4.5.26, we have x(wj+k) =
x(wj+1+k) for j = 1; : : : ; 2n�3 and k = 0; : : : ; 2n�3 � 1. From the induction step, if x(�) > 0 then
x(wj) > 0 for j = 1; : : : ; 2n�3 and if x(wj) > 0 then y(wj) < 0. Now we have x(wj+k) = x(wj+1+k).
Since �2 � 2

2n+1�3 , we have x(wju1) > 0 and x(wju2) > 0 for j = 1; : : : ; 2n�2. Similar result holds
for y(wju1) and y(wju2). Hence the result is true for any n 2 Z+ by mathematical induction.
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Proposition 4.15
For a double tree DTn, Mcut(DTn) = Lcut(DTn).

(Proof) Mcut(DTn) bipartition the graph through their roots. By the Proposition 4.14, the sec-
ond eigenvector of DTn bipartition the graph by cutting through their roots. Hence Mcut(DTn) =
Lcut(DTn).

4.6 Conclusion

We compare spectral clustering with normalized cut and identify some graphs which perform poorly
on spectral methods. Specially we give counter example graphs, where Mcut(G) and Lcut(G) produce
di�erent clusters. Double tree is an exception for this since it always have Mcut(DTn) = Lcut(DTn).
We also noticed that the second eigenvector of R2k;k is an odd vector and it is remained for the future
to give a mathematical proof for this. Further we want to consider real world networks and apply the
clustering methods by eliminating the subgraphs, which have the same property as we identi�ed here.
This is an experimental work remained for the future.
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5 Laplacian energy of directed graphs

5.1 Introduction

In this chapter, we address the problem of �nding directed graphs with minimum Laplacian energy.
First we de�ne Laplacian energy of directed graphs using sum of squares of eigenvalues of directed
di�erence Laplacian matrices. Then we obtain a formula for Laplacian energy of simple directed
graphs. Next we enumerate the structure of directed graphs belongs to the class P (�), where � 2 Z+.
We analyze MMO algorithm introduced by Asahiro, 2006 for minimizing maximum outdegree and
investigate the appropriateness of MMO to our problem of minimizing Laplacian energy and give
counter examples, where this algorithm is failed. Then we consider the problem by using bipartite
semi-matching and �nd the optimal oriented graph with minimum Laplacian energy. In this chapter,
we use d(i) to represent the degree of a vertex i, instead of using di.

5.2 Laplacian energy of undirected graphs.

Gutman et al.[22] de�ned Laplacian energy of an undirected graph G = (V (G); E(G)) as

LEg(G) =
nX
i=1

j�i � 2m=nj, where jV (G)j = n; jE(G)j = m and �i are the eigenvalues of di�erence

Laplacian matrix.

De�nition 5.1
Let G = (V (G); E(G)) be an undirected graph with jV (G)j = n; jE(G)j = m. We de�ne M(G) =

m+
1
2

nX
i=1

(d(i) � 2m
n

)2, where d(i) is the degree of the vertex i.

Theorem 5.1 (Gutman et al.[22])
Let G = (V (G); E(G)) be an undirected graph with jV (G)j = n. Then

LEg(G) �
p

2M(G)n: (5.2.1)

Theorem 5.2 (Gutman et al.[22])
Let G = (V (G); E(G)) is an undirected graph with one component and jV (G)j = n; jE(G)j = m.
Then

LEg(G) � 2m
n

+

s
(n� 1)

�
2M(G) � (

2m
n

)2

�
: (5.2.2)

Theorem 5.3 (Gutman et al.[22])
Let G = (V (G); E(G)) is an undirected graph. Then

2
p
M(G) � LEg(G) � 2M(G): (5.2.3)
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Total �-electron energy and Laplacian energy was compared by Radenkovi�c and Gutman [41].
A similar problem for the usual Laplacian energy has been considered by Lazi�c [28] for undirected
graphs using the second spectral moment. According to Lazi�c [28], Laplacian energy was de�ned as

LEl(G) =
nX
i=1

�2
i , where �i are the eigenvalues of undirected di�erence Laplacian matrix. We list

some of their results.

Theorem 5.4 ([28])
For any undirected graph G on n vertices whose degrees are d(1); d(2); : : : ; d(n), LEl(G) =
nX
i=1

d(i)(d(i) + 1).

Theorem 5.5 (Lazi�c [28])
For any undirected connected graph G on n � 2 vertices,

LEl(G) � 6n� 8: (5.2.4)

Equality holds i� G is a path Pn on n vertices.

Theorem 5.6 (Lazi�c [28])
For any � > 4, the class P (�) of all non-isomorphic connected graphs with the property LEl(G) � �
is �nite.

By using eigenvalues of di�erence Laplacian matrix, Laplacian Estrada index was de�ned by Li et
al.[30] and derived some upper and lower boundaries. Further Gutman et al.[21], discussed various
properties of energy using incidence matrix. Adiga et al.[2] introduced skew Laplacian energy for

directed graphs as SLE(G) =
nX
i=1

�2
i , where �i are the eigenvalues of skew Laplacian matrix SL(G) =

D�S(G). S(G) is the adjacency matrix with sij = 1 and sji = �1, whenever there is a arc from i ! j
and 0 otherwise. D is a diagonal matrix with D(i; i) = d(i) = dout(i) + din(i), where dout(i) is the
outdegree and din(i) is the indegree of a vertex i. By using the de�nition of Gutman et al.[22], Adiga
et al.[2] obtained upper and lower bounds to the Laplacian energy of simple directed graphs similar
to the Equation 5.2.1, Equation 5.2.2 and the Equation 5.2.3. We list them in the Equation 5.2.7,
Equation 5.2.8 and the Equation 5.2.9. Skew Laplacian eigenvalues satisfy the following relations.

nX
i=1

�i = 2m; (5.2.5)

nX
i=1

�2
i =

nX
i=1

d(i)(d(i) � 1): (5.2.6)
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Theorem 5.7 (Adiga et al.[2])
Let G = (V (G); E(G)) be a directed graph with jV (G)j = n and jE(G)j = m. Let SLE(G) be the

skew Laplacian energy of G and M1 = M + 2m = m+
1
2

nX
i=1

(d(i) � 2m
n

)2. Then

SLE(G) �
p

2M1n: (5.2.7)

If G has k components then,

SLE(G) � k +
p

(n� 1)(2M1 � k2); and (5.2.8)

2
p
M � SLE(G) � 2M1: (5.2.9)

5.3 Laplacian energy of directed graphs

Let D = diag(dout(1); dout(2); dout(3); : : : ; dout(n)) be a diagonal matrix whose diagonal entries are
the outdegrees of the vertices v1; v2; : : : ; vn. Then we called L(G) = D(G) � A(G), the di�erence
Laplacian matrix of a directed graph and its eigenvalues are denoted by f�1; �2; : : : ; �ng. Since L(G)
is an asymmetric matrix it does not give always real eigenvalues.

De�nition 5.2 (Laplacian energy of directed graphs)
Let G = (V (G); E(G)) be a directed graph. Then Laplacian energy of G is de�ned as LE(G) =

nX
i=1

�2
i ,

where jV (G)j = n and �i; (i = 1; : : : ; n) are the eigenvalues of the di�erence Laplacian matrix.

The eigenvalues of Laplacian matrices of directed graphs are sometimes complex and appeared as
conjugate pairs. Sometimes our de�nition may be confused with other de�nitions. The following we
provide some examples to explain this di�erence. It shows that the sum of squares of absolute values
of Laplacian eigenvalues are di�erent from the sum of squares of eigenvalues, when eigenvalues are
complex values.

Example 5.1
The eigenvalues of the graph shown in the Figure 21(a) are f0; 0; 1;

(5 � i
p

3)
2

;
(5 + i

p
3)

2
g.

nX
i=1

j�ij2 =
nX
i=1

�i: ��i = 15;

LE(G) =
nX
i=1

�2
i = 12:

Example 5.2
The eigenvalues of the graph shown in the Figure 21(b) are f0; 0; 1; 1; 2; 2g.

nX
i=1

j�ij2 =
nX
i=1

�i: ��i = 10;

LE(G) =
nX
i=1

�2
i = 10:
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If G has complex eigenvalues then
nX
i=1

�2
i <

nX
i=1

j�ij2. If G has real eigenvalues then both quantities

are equal.

1

2

3 45

(a) G1

1

2 34 5

6

(b) G2

Figure 21: Graphs with real and complex eigenvalues.

Theorem 5.8
If G is a disconnected directed graph with components G1; G2; : : : ; Gn,

LE(G) =
nX
i=1

LE(Gi): (5.3.1)

Theorem 5.9
Let G = (V (G); E(G)) be a directed graph with vertex degrees (dout(1); dout(2); : : : ; dout(n)). If G is
a simple directed graph then

LE(G) =
nX
i=1

(dout(i))2

If G is a symmetric directed graph then

LE(G) =
nX
i=1

dout(i)(dout(i) + 1):

(Proof) Suppose G is a simple directed graph. Let D be a diagonal matrix with D(i; i) = dout(i),
where i 2 V (G). If i ! j is an arc then aij = 1 and aji = 0. From Vi�ete Rule, it is clear that
nX
i=1

�i = Trace(L(G)) =
nX
i=1

dout(i) and the sum of the determinant of all 2�2 principal sub matrices

are
P
i<j �i�j.

That is X
i<j

�i�j =
X
i<j

det
�
dout(i) �aij

0 dout(j)

�
=

X
i<j

dout(i)dout(j):
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For every i < j, X
i 6=j

�i�j = 2
X
i<j

�i�j

= 2
X
i<j

dout(i)dout(j)

=
X
i 6=j

dout(i)dout(j):

Therefore

LE(G) =
nX
i=1

�2
i = (

nX
i=1

�i)2 �
X
i 6=j

�i�j (5.3.2)

= (
nX
i=1

dout(i))2 � (
X
i 6=j

dout(i)dout(j)) (5.3.3)

=
nX
i=1

(dout(i))2: (5.3.4)

If G is a symmetric directed graph then dout(i) = din(i) = d(i) for each vertex i. Hence Laplacian
energy of G is similar to the Laplacian energy of undirected graph which is given as LE(Gl) =
nX
i=1

d(i)(d(i) + 1) in [28]. We can replace d(i) with dout(i) and obtained the required result.

Corollary 5.1
For any simple connected directed graph G, its Laplacian energy LE(G) is an integer.

(Proof) Since the degree of a vertex is an integer, their sum of squares is also an integer. Hence

LE(G) =
nX
i=1

(dout(i))2;

is an integer.

Corollary 5.2
The Laplacian energy of a simple directed path Pn with n � 2 is (n� 1).

(Proof) Since every simple directed path Pn has exactly (n � 1) vertices with outdegree 1 and one
vertex with degree 0, LE(Pn) = (n� 1) by the Theorem 5.9.

Corollary 5.3
The Laplacian energy of a simple directed cycle Cn with n � 3 is n.

(Proof) Since every vertex in Cn has outdegree one, this follows from the Theorem 5.9.
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Corollary 5.4
For any connected directed graph on n � 2 vertices, we have,

n� 1 � LE(G) � n2(n� 1) (5.3.5)

Moreover, LE(G) = n2(n� 1) if and only if G is a complete directed graph Kn and LE(G) = n� 1
if and only if G is a directed path Pn on n vertices.

(Proof) Let G be a connected directed graph with n � 2 vertices. Maximum degree of any vertex is

less than or equal to (n�1). If G is a simple connected graph then LE(G) =
nX
i=1

�2
i =

nX
i=1

(dout(i))2 <

nX
i=1

dout(i)(dout(i) + 1).

If G is a symmetric directed graph then LE(G) =
nX
i=1

dout(i)(dout(i) + 1) � n2(n � 1). This implies

that for any directed graph G, LE(G) � n2(n� 1). Since each vertex of a complete directed graph has
degree n�1, it is clear that the complete directed graph Kn has the maximum Laplacian energy among
directed graphs of n vertices. We prove left side of the inequality 5.3.5 by induction. As we know, to
form a directed graph, we need at least two vertices. Only connected graph which has two vertices is a
simple or a bidirected path. Since eigenvalues of L(P2) =

�
1 �1
0 0

�
is 1 and 0 and L(K2) =

�
1 �1

�1 1

�
is

2 and 0, the result is true for n = 2. Suppose the result is true for any connected directed graph with
n� 1 vertices. That is LE(G) � n� 2. Then we need to prove the result for any arbitrary connected
directed graph with n vertices. Let G be a connected directed graph with n vertices. Then, there is an
induced subgraph H � G on n � 1 vertices which is also connected. Let V (H) = fv1; v2; : : : ; vn�1g,
V (G) = V (H) [ fvng and LE(H) � n� 2. It is easy to show that LE(G) � LE(H) + 1. So we have
LE(G) � n � 1. We can also prove that if G is a simple, connected directed graph with n vertices
such that LE(G) = n � 1, then G must be a directed path Pn. Suppose LE(G) = n � 1. Let n = 2.

Then LE(G) = 1. Since LE(G) =
2X
i=1

(dout(i))2, we have dout(1) + dout(2) = 1. This happened when

we have a one vertex with outdegree 1. That is there exists a one directed edge between two vertices.
Therefore G should be a directed path.

5.4 Relationship between undirected graphs and directed graphs

This section explains the relationship between undirected and directed graphs. Every undirected graph
can be converted to a directed graph by assigning directions. If each edge is replaced by two way
directions then it is similar to the undirected graph.

De�nition 5.3
For a given directed graph Gd = (Vd; Ed), we de�ne an undirected graph U(Gd) = (U(Vd); U(Ed)) by
U(Vd) = Vu and U(Ed) = f(v1; v2) j (v1; v2) 2 Ed or (v2; v1) 2 Edg.

Let A(U(G)) = (aij) be the adjacency matrix of U(G) and let A0(G) = (a0
ij) be the adjacency matrix

of G. Then

aij =
�

1 if a0
ij = 1 or a0

ji = 1,
0 otherwise.

110



Example 5.3
The Figure 22 shows four directed graphs Gd1 ; Gd2 ; Gd3 ; Gd4 with U(Gdi) = Gu. The LE(Gdi) have
di�erent Laplacian energies.
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(a) Gd1
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(b) Gd2
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(c) Gd3
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6

7
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(d) Gd4

Figure 22: Directed graphs for a given undirected graph.

Theorem 5.10
For any directed graph Gd, LE(Gd) � LEl(U(Gd))

(Proof) Let Gd = (Vd; Ed) and U(Gd) = (Vu; Eu). For any vertex v 2 Vd, dout(v) � d(v).

LEl(U(Gd)) =
nX
i=1

d(i)(d(i) + 1)

=
nX
i=1

d(i)2 +
nX
i=1

d(i)

�
nX
i=1

(dout(i))2 +
nX
i=1

dout(i)

� LE(Gd):

Equality occur if and only if Gd is a symmetric directed graph.

Theorem 5.11
Let G be a directed graph and G0 = G � e be a directed graph obtained by deleting arc e. Then
LE(G0) < LE(G).

(Proof) Let G = (Vd; Ed) be a directed graph with jVdj = n. Let H = (Vh; Eh) be an edge induced sub
graph with jVhj = n1 and Eh = e. De�ne G0 as H�(n�n1)K1. Then the directed di�erence Laplacian
matrix L(G) of G is the L(G � Eh) + L(G0). L(G0) is a square matrix with maximum eigenvalue 1
and all other 0. This implies that there exists at least one vertex i such that �i(G) � �i(G0) and then

we have
nX
i=1

�2
i (G) >

nX
i=1

�2
i (G

0). Thus the theorem holds.
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Proposition 5.1
Let Gd be a non-symmetric directed graph with U(Gd) = Gu. Then there exists a directed graph G0

d

such that U(G0
d) = Gu and LE(Gd) < LE(G0

d).

(Proof) Let Gd be a non-symmetric directed graph. Then there exists (vi; vj) 2 E(Gu) and (vi; vj) =2
E(Gd) or (vj ; vi) =2 E(Gd). Suppose (vi; vj) =2 E(Gd). Let G0

d be a connected directed graph with
V (G0

d) = V (Gd), E(G0
d) = E(Gd) [ (vi; vj). Then U(G0

d) = Gu and by the Theorem 5.11, LE(G0
d) >

LE(Gd). By adding arcs for each vertex we can transform given non-symmetric graph to the symmetric
graph, which is identical to the undirected graph.

Proposition 5.2
Let Gd be a non-simple directed graph with U(Gd) = Gu. Then there exists a directed graph G0

d such
that U(G0

d) = Gu and LE(Gd) > LE(G0
d).

(Proof) Suppose Gd be a non-simple directed graph. Then there exists (vi; vj) 2 E(Gu) and (vi; vj) 2
E(Gd) and (vj ; vi) 2 E(Gd). Suppose (vi; vj) 2 E(Gd). Let G0

d be a connected directed graph with
V (G0

d) = V (Gd) and E(G0
d) = E(Gd) � (vi; vj). Then U(G0

d) = Gu and by the Theorem 5.11,
LE(G0

d) < LE(Gd). By deleting arcs from each vertex we can transform given non-simple directed
graph to a simple directed graph.

Theorem 5.12
Let P (�) = fG j LE(G) � �; G : a simple connected directed graphg. For any � � 1, the class
P (�) of all non-isomorphic connected directed graphs with the property LE(G) � � is �nite.

(Proof) Let G be a directed graph with n vertices and m arcs such that LE(G) � �. By the Corol-
lary 5.4, n� 1 � LE(G) � �. Hence we obtain n� 1 � �. Since n is �nite, class P (�) is also �nite.

Corollary 5.5
The class P (10) contains exactly 47 directed graphs. More exactly 29 directed graphs with n � 10 ,
8 directed cycles with n � 10 and 10 directed paths with n � 11. Some of the graphs are listed in the
Figure 23 and the Figure 24.

(Proof) Let � = 10. Every simple connected directed graph with n vertices has at least (n � 1) arcs.
Notice that for n = 12, LE(G) � (n� 1) = 11 > 10. For n = 11, LE(G) � 10. Therefore all directed
graphs of the class P (10) have at most 11 vertices. Since LE(Pn) = n� 1 it has 10 directed paths Pn
with n � 11 and since LE(Cn) = n it has 8 directed cycles with n � 10.

Theorem 5.13
Let G = (Vd; Ed) be a simple connected directed graph with jVdj = n and jEdj = m. If 4 =
maxfdout(v) j v 2 Vdg and � = minfdout(v) j v 2 Vdg then

m2

n
� LE(G) � m(4 + �) � n�4:

(Proof) First we will prove the left hand side of the inequality. By Cauchy Schwarz inequality,

LE(G) =
nX
i=1

�2
i =

nX
i=1

(dout(i))2 � 1
n

 
nX
i=1

dout(i)

!2

=
m2

n
. Next consider the right hand side of
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(j)
LE =
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(k) LE = 9

Figure 23: Directed graphs with n � 4.

the inequality. Consider (dout(i) � �)(dout(i) � 4). For any i, (dout(i) � �) � 0 and (dout(i) � 4) � 0.

Therefore (dout(i) � 4)(dout(i) � �) � 0, for i 2 Vd. Further
nX
i=1

(dout(i) � 4)(dout(i) � �) =

nX
i=1

(dout(i))2 � (4 + �)
X
i

dout(i) + n�4 � 0. This shows that
nX
i=1

(dout(i))2 � m(4 + �) � n�4 � 0.

Hence LE(G) � m(4 + �) � n�4.

Remarks. If 4 = � then m =
nX
i=1

dout(i) = n4 and m(4 + �) � n�4 =2n42 �n42 = n42 =
m2

n
.

In the next few sections, we consider the existing algorithms for minimizing maximum outdegree of an
oriented graph. Similar kind of problems studied in literature are scheduling problems, load balancing
problems and network ow problems. First we summarized the exiting results and discuss how far
those algorithms can be used to solve our problem.

5.5 Minimizing maximum outdegree algorithms and Laplacian energy

Since Laplacian energy can be represented using the sum of squares of outdegrees, we consider the way
of minimizing the sum of squares of outdegrees. In this section, we describe the relationship between
minimum Laplacian energy of directed graphs and minimizing maximum outdegree algorithms(MMO).
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Figure 24: Directed graphs with 5 � n < 10.

114



De�nition 5.4 (Optimal Laplacian energy)
Let Gu be an undirected graph. The optimal directed Laplacian energy LEopt(Gu) of Gu is de�ned
by, LEopt(Gu) = minfLE(Gd) j Gd is a directed graph and U(Gd) = Gug.

De�nition 5.5 (Maximum outdegree)
For a directed graph Gd = (Vd; Ed), the maximum outdegree 4(Gd) of Gd is de�ned by 4(Gd) =
maxfdout(v) j v 2 Vdg.

De�nition 5.6 (Optimum maximum degree)
Let Gu be an undirected graph. The optimal maximum outdegree 4opt(Gu) of Gu is de�ned by
4opt(Gu) = minf4(Gd) j Gd is a directed graph and U(Gd) = Gug.

De�nition 5.7
Let Gd = (Vd; Ed) be a directed graph. We denote v ! w if (v; w) 2 Ed. We also denote v ) w if
there exists v1; v2; : : : ; vk 2 Vd; (k � 1) such that v = v1; v1 ! v2; : : : ; vk�1 ! vk and vk = w.

Proposition 5.3
Let Gu = (Vu; Eu) be an undirected graph and Gd = (Vd; Ed) be a directed graph satisfying U(Gd) =
Gu. If 4(Gd) = p and fdout(v) j v 2 Vdg = fp; p� 1g then LE(Gd) = LEopt(Gu).

(Proof) Let k = jfv 2 Vd j dout(v) = pgj and l = jfv 2 Vd j dout(v) = p� 1gj. Since
X

fdout(v) j v 2
Vdg = jEuj, we have pk + (p � 1)l = jEuj. Since k + l = jVuj, k and l can be uniquely determined.

jEuj = kp + l(p � 1) = jVujp + (k � jVuj) and jVujp = jEuj + jVuj � k. Hence p =
jEuj
jVuj

+ 1 � k

jVuj
.

Since 1 � k � jVuj then 0 � 1 � k

jVuj
< 1. So we have p = d jEuj

jVuj
e.

Let h(x1; x2; : : : ; xn; �) =
nX
i=1

x2
i+2�(

nX
i=1

xi�jEuj). Since
@h

@xi
= 2xi+2� = 0 and

@h

@�
=

nX
i=1

xi�jEuj =

0, the function h is minimize at xi = ��; (i = 1; : : : ; n) and
nX
i=1

xi = jEuj. Since
nX
i=1

xi = �jVuj� =

jEuj, we have � = �jEuj
jVuj

and xi = jEuj
jVuj ; (i = 1; : : : ; n). If all xi are integer, the function h have

minimum value for xi 2 fd jEuj
jVuj

e; d jEuj
jVuj

� 1eg for (i = 1; : : : ; n). Taking xi = dout(vi), we have

h(x1; x2; : : : ; xn; �) = LE(Gd). So LE(Gd) = kp2 + l(p� 1)2 gives the optimal solution.
Finding the orientation of a simple directed graph by minimizing maximum outdegree of a vertex is

studied in literature by [45] and [5] and is called MMO (minimizing maximum outdegree) algorithms.
In order to minimize the maximum outdegree and �nd a optimal solution to MMO problems, [5] use
simple algorithm called reverse algorithm as in the Table 3.

Reverse path cause to decrease the maximum outdegree by one and increase the outdegree of the
terminal vertex of path by one. It is proved by [5] that if Gd = MMO(Gu) then 4opt(Gu) = 4(Gd).

Example 5.4
In the Figure 25, we have two directed graphs Gd1 and Gd2 with U(Gd1) = U(Gd2) = Gu. The
maximum outdegree of Gd1 and Gd2 are same. But fdout(v) j v 2 Vd1g = f1; 2g and fdout(v) j v 2
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Input An undirected graph Gu = (Vu; Eu).
Output Oriented graph MMO(Gu) = Gd = (Vd; Ed).
Step 1: Set Ed = ;.
Step 2: Assign an arbitrary orientation and update Ed.
Step 3: Compute outdegree dout(v) for each v 2 Vd.

Let u be maxfdout(v)jv 2 Vdg.
Step 4: Find a directed path P = u ! v1 ! � � � ! vk

of length k(k � 1) which satisfy
dout(vi) � dout(u), for 1 � i � k � 1 and
dout(vk) � dout(u) � 2.
If such P exists then set Ed = Ed n fP [ �Pg,
where �P = vk ! � � � ! v1 ! u
and goto Step 3. Otherwise halt.

Table 3: MMO Algorithm.
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(a) Gu

1
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(b) LE(Gd1 ) = 9

2
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6

(c) LE(Gd2 ) = 11

Figure 25: Equal maximum degree and di�erent Laplacian energy.

Vd2g = f0; 1; 2g. It is clear that LE(Gd1) 6= LE(Gd2). In the Figure 26, we have four directed
graphs Gd1 ; Gd2 ; Gd3 ; Gd4 with U(Gdi) = Gu and LE(Gdi) = LEopt(Gu); (i = 1; 2; 3; 4). We can
see fdout(v) j v 2 Vdig = f1; 2g and jfv 2 Vdi j dout(v) = 1gj = jfv 2 Vdj j dout(v) = 1gj and
jfv 2 Vdi j dout(v) = 2gj = jfv 2 Vdj j dout(v) = 2gj for (i; j = 1; 2; 3; 4) and i 6= j, which follows the
Proposition 5.3.

Proposition 5.4
Let Gu = (Vu; Eu) be an undirected graph and Gd = (Vd; Ed) = MMO(Gu). Let v0 2 Vd be a
vertex with dout(v0) = 4(Gd). De�ne V 0 = fw 2 Vd j v0 ) wg. G0

u = (V 0; E0
u) be an induced

undirected graph, where E0
u = f(u; v) 2 Eu j u; v 2 V 0g and G0

d = (V 0; E0
d) be a directed graph, where

E0
d = f(u; v) 2 Ed j u; v 2 V 0g. Then the following relations hold.

1. dout(v0) � dout(v0) � dout(v0) � 1 for v0 2 V 0.

2. LE(G0
d) = LEopt(G0

u)

(Proof)
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Figure 26: Oriented graphs with minimum Laplacian energy.

1. Let v0 2 V 0. Then we have a path P = v0 ! � � � ! v0 from v0 to v
0. Since dout(v0) = 4(Gd),

we have dout(v0) � dout(v0). Further Gd = MMO(Gu) implies that dout(v0) > dout(v0) � 2.
Therefore dout(v0) � dout(v0) � 1.

2. From the part 1, we have fdout(v) j v 2 V 0g = fdout(v0); dout(v0) � 1g.

By the Proposition 5.3, we have LE(G0
d) = LEopt(G0

u).

Theorem 5.14
Let Gu = (Vu; Eu) be an undirected graph and Gd = (Vd; Ed) = MMO(Gu). Let p = 4(Gd); Vp =
fv 2 Vd j dout(v) = pg and V1 = fw 2 Vd j vp 2 Vp; vp ) wg. If Vu = V1 then LE(Gd) = LEopt(Gu).

(Proof) Since Gd = MMO(Gu) then fdout(v) j v 2 V1g = fp; p � 1g. If Vu = V1 then we have
LE(Gd) = LEopt(Gu) by the Proposition 5.3.
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Example 5.5
In the Figure 27(a), MMO(Gu) = (Vd; Ed) and fdout(v) j v 2 Vdg = f3; 2; 1g. p = 4(Gd) = 3; Vp =
f9; 11; 12g; V1 = f9; 10; 11; 12; 13; 14g. So we cannot apply the Theorem 5.14. In the Figure 27(b)
MMO(Gu) = (Vd; Ed) and fdout(v) j v 2 Vdg = f2; 1g. Here p = 4(Gd) = 2, Vp = f1; 2; 3; 4; 5; 6g
and V1 = f1; 2; 3; 4; 5; 6; 7; 8g. Then we have LE(MMO(Gu)) = LEopt(Gu) from the Theorem 5.14.
However, we note that both graphs have optimal orientation and minimum Laplacian energy.
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(b) MMO(Gu)

Figure 27: Graphs consists of optimal Laplacian Energy.

Example 5.6
The counter example graphs, where we could not �nd an optimal orientation using MMO are shown
in the Figure 28 and the Figure 29. Let G1 = (Vd1 ; Ed1) be a directed graph as in the Figure 28.
Then we have fdout(v) j v 2 Vd1g = f5; 4; 3; 2g. There does not exist a directed path from maximum
degree 5 to degree 3 or 2. In other words vertices f1; 2; 3; 4; 5; 6g cannot access from the vertices
f7; 8; 9; 10; 11; 12; 13; 14; 15; 16g. Reverse path algorithm of MMO halt at this stage, since there is no
directed path start from maximum vertex degree. However, the graph G1 is not optimal since we can
still change some arcs and change the outdegrees of vertices. The Figure 29 also demonstrate a worst
case example, where minimum degree vertex v2 can not access from the maximum degree vertex v8,
and it is impossible to continue MMO algorithm. Hence there are some zero degree vertices remained.

Reverse path algorithm always starting from maximum degree vertex and �nd a directed path in order
to reduce the maximum outdegree. Even the maximum degree is reduced, there is no e�ect to the
outdegree of a minimum degree vertex if there is no directed path exists from the maximum degree to
the minimum degree. This algorithm works well if graph has only two consecutive degrees as described
in the Proposition 5.3 of previous section. However, this algorithm is not always e�ciently minimize
the sum of squares of outdegrees. This can be modi�ed by considering the semi matching problem.
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Figure 28: Worst case example(1).

Figure 29: Worst case example(2).

5.6 Find an oriented graph with minimum Laplacian energy using semi-
matchings

In this section, we solve our problem using optimal semi-matching problem. First we will present
previous results in [23] related to the bipartite semi-matchings.

5.7 Characterization of optimal semi matchings

De�nition 5.8 (Semi matching)
Let G = (U; V;E) be a bipartite graph. A set M � E(G) be a semi-matching if each vertex u 2 U(G)
is incident with exactly one edge in E(G).

We denote the degree of a vertex v with respect to the semi matching M as dM (v). In the load
balancing problem, d(v) denote the number of tasks that machine v is capable of executing and dM (v)
is the number of tasks assigned to machine v. This is called the load on vertex v.
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De�nition 5.9 (Cost of a vertex with respect to semi-matching)
Let G = (U; V;E) be a bipartite graph with jV j = m and jU j = n The cost of a semi-matching

with respect to the vertex v is costM (v) =
dM (v)X
i=1

i =
(dM (v) + 1)dM (v)

2
and the total cost of a

semi-matching is T (M) =
nX
i=1

costM (vi)

A semi-matching with minimum cost is called an optimal semi-matching.

De�nition 5.10 (Alternate path)
Let M is a semi matching in a bipartite graph G = (U; V;E). Then alternate path is a sequence of
edges P = ((v1; u1); (u1; v2); : : : ; (uk�1; vk)) with vi 2 V; ui 2 U and (vi; ui) 2 M for each i.

De�nition 5.11 (Cost reducing path)
Let M be a semi matching and
P = ((v1; u1); (u1; v2); : : : ; (uk�1; vk)) be an alternate path where, vi 2 V; ui 2 U , and (vi; ui) 2 M . If
dM (v1) � 1 > dM (vk) then P is called a cost reducing path relative to M . The cost reduce path can
be eliminated by deleting edges (vi; ui) from M for all i and adding (ui; vi+1) to M for all i. Then
the cost of vertex v1 decrease by 1 and the cost of vertex vk increase by 1.

Optimal semi-matchings have useful load balancing such as minimum variance of dM (v), minimum
maximum dM (v) and minimum Lp norm of dM (v).

Example 5.7 (Cost reducing path)
Let G = (U; V;E) be a bipartite graph such that V = fv1; v2; v3g, U = fu1; u2; u3; u4; u5g and
E = f(u1; v1); (u1; v2); (u2; v2); (u3; v2); (u4; v2); (u3; v3); (u5; v3)g. We de�ne semi matching M such
that M = f(u1; v2); (u2; v2); (u3; v2); (u4; v2); (u5; v3)g. The Figure 30(a) shows the graph with semi
matching M . We use dotted lines to represent the semi matching. Vertex v2 has load 4 and vertex
v3 has load 1 and v1 has load 0 with respect to the semi matching M . There exists an alternating
path f(v2; u1); (u1; v1)g in G, which is a cost reducing path and we can reduce the cost on degree
v2 by deleting edge (v2; u1) from M and adding (u1; v1) to M . This will increase dM (v1) by 1 and
decrease dM (v2) by 1. Similarly, (v2; u3); (u3; v3) is a cost reducing path and we can balance the cost
by deleting edges (v2; u3) from M and add (u3; v3) to M . Then we can obtain the graph with optimal
semi matching as shown in the Figure 30(b).

Theorem 5.15 ([23])
Semi-matching is optimal if and only if no cost reducing path exists.

Theorem 5.16 ([23])
Let 1 < p < 1. A semi-matching is optimal if and only if it is optimal with respect to the Lp norm
of its load vector.

(Proof) Fix any p > 1 and de�ne fp(x) = xp. fp is strictly convex and costM (fp) is a strict cost
function. Let X be the load vector for M . Since k X kp = (costM (fp(x)))1=p, M optimizes k X kp if
and only if it optimizes costM (fp(x)). That is if and only if M is an optimal semi matching.
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Figure 30: Cost reducing paths and semi matching.

De�nition 5.12 (Network )
A ow network is a directed graph G = (V (G); E(G)) with source s and sink t, where edge (u; v) 2
E(G) has capacity c(u; v) > 0, ow f(u; v) � 0 and cost(u; v) � 0. For each (u; v) 2 E(G), f(u; v) �
c(u; v) and

P
u f(u; v) =

P
u f(v; u).

De�nition 5.13 (Maximum Flow)
The value of the ow is

P
u2V f(s; u) and is the amount of the ow passing from the source to sink.

Maximum ow is the maximum ow passing from source s to sink t. If the ow on the edge is equal
to its capacity then the ow is called saturated.

Proposition 5.5 ([23])
Let Gu = (Vu; Eu) be an undirected graph. De�ne a bipartite graph G = (U; V;E) such that U = Eu,
V = Vu and E = f(u1; v1) j u1 = (u; v) 2 Eu; u = v1 or v = v1g. Let N = (VN ; EN ; CN ) be a network
ow constructed from G such that VN = (U [V ) [ fsg [ ftg, EN = f(s; ui) j ui 2 Ug [ f(ui; vj) j ui 2
U; vj 2 V g [ f(vi; cj) j1 � i � jV j; 1 � j � dout(i)g [ f(ci; t) j 1 � i � 4(Gu)g, where s and t denotes
a source and a sink. The edges connecting s to ui and ui to vj has cost 0 and capacity 1. Each vertex
vi connects to the cost centers with capacity 1 and cost 1; 2; : : : ; dout(i) of Gu. If f is a maximum
integral ow in N then f determines a semi-matching in Gu.

(Proof) Since all edges from s to U have a unit capacity, total capacity is jU j. If this cut has a
maximum ow then each vertex carry one unit of ow from U to V . That is each vertex in the set U
is matched with the vertex in V and the graph represent a semi matching M . Since the value of the
maximum ow is equal to the capacity of the minimum cut and this cut is saturated in any ow, and
then the ow in f induces the semi matching.
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Figure 31: Network ow and semi matching.

Example 5.8
The Figure 31(a) shows an undirected graph and the Figure 31(b) and Figure 31(c) shows the network
ow constructed for it. Oriented graphs in the Figure 31(d) and Figure 31(e) shows the orientations
obtained from the network ow.

We can construct an optimal semi matching algorithm as in the Table 5.7.

Theorem 5.17
Let Gu = (Vu; Eu) be an undirected graph and Gd = (Vd; Ed) = OSM(Gu). Then LE(Gd) =
LEopt(Gu).

Any directed graph Gd = (Vd; Ed) can be represented as a bipartite graph G = (U; V;E), where
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Input An undirected graph Gu = (Vu; Eu).
Output An oriented graph OSM(Gu) = Gd = (Vd; Ed).
Step 1: Construct the bipartite graph Gb = (Ub; Vb; Eb), where Ub = Eu,

Vb = Vu and Eb = f(u; v) j u = (v1; v2); (v1; v) 2 Eug.
Step 2: Assign an arbitrary semi matching M .
Step 3: Let v1 be maxfdM (v)jv 2 Vbg.
Step 4: Find an alternate path P = v1 ! u1 ! � � � ! vk.

of length k(k � 1), which satisfy dM (vi) � dM (v1) for
1 � i � k � 1 and dM (vk) � dM (v1) � 2.
If such P exists then set M = (M n P ) [ �P ,
where �P = vk ! � � � ! v1 and goto Step 3.
Otherwise halt.

Table 4: OSM algorithm.

V = fv j v 2 Vdg and U = fe j e 2 Edg. Then we can add two vertices, which is called source
and sink to make a network ow. It is possible to �nd the optimal ow in the network and it is also
possible to �nd the optimal oriented graph with minimum cost assign to vertices. However the order
of the ow algorithms are O(n+m)3. Here we consider MMO problem and apply it to minimize the
maximum degree and obtain oriented graph. The order of the MMO algorithm introduced by [5] is
O(m1:5) and the one introduced by [45] is O(m2). The MMO which we consider here has a low order
compare with ow algorithms.
As shown in the previous examples MMO not working properly on each graph. If MMO is failed
then we can construct a bipartite graph for the resulted directed graph obtained from MMO, which
has the minimum maximum outdegree. Then semi matching is optimal if there does not exists a cost
reducing path by the Theorem 5.15. Lets consider the Figure 29 again. This can be represented as a
bipartite graph BG = (U1; V1; E1) where U1 = Ed and V1 = Vd and E1 = f(ei; vj); (ei; vk) j (vj ; vk) 2
Vd and ei 2 Edg as in the Figure 32(a). Red lines indicate the semi-matching for the graph. Maximum
outdegree is 3 and minimum outdegree is 0. There exists a cost reducing path v1 ! e1 ! v2. By
eliminating this cost reducing path, we obtain the graph as in the Figure 32(b), where green edge
represent the arc add to semi matching. Optimal orientation obtained by removing cost reducing path
is represented in the Figure 32(c).

Let f(x) =
nX
i=1

f(xi)2, where xi � 0; f(xi) = dout(i) and there exists at least one i with dout(i) > 0.

Then f 00(xi) = 2 > 0 and f(xi) is a strictly convex function. Then f(x) =
Pn
i=1(dout(i))2 is a strictly

convex function. By the Theorem 5.16, semi-matching is optimal with respect to L2 norm of its load
vector. Hence the sum of squares of outdegrees of vertices and the resulted orientation has an optimal
semi matching. By using MMO we can reduce the maximum outdegree and then by semi-matchings
we can optimize the result by eliminating cost reducing paths. This yield the oriented graph with
minimum Laplacian energy.
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(a) Semi-matching (b) Optimal semi-
matching

(c) Optimal oriented graph

Figure 32: Optimal oriented graph using semi-matching.

5.8 Conclusion

We consider the problem of �nding directed graphs with minimum Laplacian energy. First we derive
a formula for Laplacian energy of directed graph using out degrees of vertices. Then we discuss
the relationship between undirected and directed Laplacian energies. We enumerate the structure of
directed graphs with Laplacian energy less than some integer value. Since we showed that Laplacian
energy of a simple directed graph is the sum of squares of outdegrees, we can construct an algorithm
to minimize the Laplacian energy of oriented graph by using semi matching algorithms.
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6 Spectral clustering for directed graphs

6.1 Introduction

This chapter demonstrates experimental results of spectral clustering algorithms on directed graphs.
Since a graph constructed by hyper links in web-pages is a directed graph, its adjacency matrix A
is asymmetric and does not always have real eigenvalues. We extend undirected spectral clustering
algorithms to the directed graphs using some transformation such as A = A + AT ; A = AAT and
A = ATA and compare the resulted clusters. Then we apply the spectral clustering algorithms to
directed graphs using the directed Laplacian introduced by Fan Chung [11] and k-means algorithms.
We propose an algorithm which merge clusters by minimizing the normalized cut de�ned for directed
graphs.

6.2 Spectral clustering on undirected graphs

This section explains the existing spectral clustering algorithms to �nd clusters in an undirected graph.
We list three algorithms as listed in the Table 5, Table 6 and Table 7 using three kinds of Laplacian
matrices. Number of clusters need to be decided in order to apply the algorithm. This number may
or may not give optimal clustering results. If some one wants to �nd the optimal clusters then it is
better to decide possible number of clusters in the graphs. There are several ways to get an idea of the
appropriate number of clusters in a given graph. The following list some techniques useful to �nd the
number of clusters.

1. Eigengap heuristics and the eigenvectors: This can be used for any matrix. Here number
of clusters k are chosen such that the �rst few eigenvalues �1; : : : ; �k are small and �k+1 is
relatively large. Similarly, the number of large gaps in the second eigenvector also gives an idea
of number of clusters.

2. Modularity function: Modularity function Q is introduced in [39],[38] to �nd the association
between groups. Q not only measure the quality of the particular division of the network but
also useful to automatically select the optimal number of clusters by �nding the cluster number
which has a maximum Q value.

3. Commute distance: Measures the distance between vertices. Distance between the vertices to
belong to same cluster is small and di�erent clusters are large.

De�nition 6.1 (Modularity function)
Let V1; V2; : : : ; Vk are k clusters of the graph G = (V (G); E(G)). Then the modularity function Q(k)
of cluster k is de�ned as

Q(k) =
kX
i=1

 
w(Vi; Vi)
w(V; V )

�
�
w(Vi; V )
w(V; V )

�2
!
;

where w(Vi; Vi) measures the sum of edge weights withing the same cluster and w(Vi; V ) measures
the sum of weights of edges between the vertices in Vi and all other vertices in V . We can write this
much precisely as

Q(k) =
kX
i=1

 
vol(Vi)
vol(G)

�
�
cut(Vi; V )
vol(G)

�2
!
:
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Input V a vertex set and E an edge set.
k: number of clusters.

Step 1 Construct W weighted adjacency matrix with size n� n.
Step 2 Find L = D �W .
Step 3 Find the �rst k eigenvectors u1; : : : ; uk.
Step 4 Let U 2 <n�k be a matrix contain vectors u1; : : : ; uk as columns.
Step 5 Let yi 2 <k is a row vector of U for i = 1; : : : ; n.
Step 6 Cluster points (yi)i=1;:::;n 2 <k with k �means algorithm.
Step 7 Let clusters as Ci, i = 1; : : : ; k.
Output Clusters A1; : : : ; Ak with Ai = fj j yj 2 Cig.

Table 5: Clustering using di�erence Laplacian matrix.

Input V a vertex set and E an edge set.
k: number of clusters.

Step 1 Construct W weighted adjacency matrix with size n� n.
Step 2 Find L = D�1=2LD�1=2.
Step 3 Find the �rst k eigenvectors u1; : : : ; uk.
Step 4 Let U 2 <n�k be a matrix contains the eigenvectors u1; : : : ; uk as columns.
Step 5 Form U 0 = (u0

ij) with size n� k,
where u0

ij = uij=(
P
k u

2
ik)1=2.

Step 5 Let yi 2 <k is a row vector of U 0 for i = 1; : : : ; n.
Step 6 Cluster points (yi)i=1;:::;n 2 <k with k �means algorithm.
Step 7 Let clusters as Ci, i = 1; : : : ; k.
Output Clusters A1; : : : ; Ak with Ai = fj j yj 2 Cig.

Table 6: Clustering using normalized Laplacian matrix.

k value respect to the maximum number of Q(k) is the optimal number of clusters in the graph.

De�nition 6.2 (Commute distance )
Commute distance for undirected weighted graph G is de�ned in [46] as cij = vol(G)(l�ii � 2l�ij + l�jj),
where l� is the generalized inverse of L. The matrix L can be decomposed as L = ZRZT , where
Z is the matrix contains the eigenvectors as columns, R is the diagonal matrix with eigenvalues on
diagonal. So the generalized inverse of L is de�ned as l� = ZR�ZT , where

R� = (r�
ij) =

�
1
�i
; if �i 6= 0,

0 otherwise.

Note. We can replace the step 2 of the Table 5 by any matrix and apply the algorithm. Here we
consider di�erence, normalized Laplacian matrix and Laplacian matrix Lrw.
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Input V a vertex set and E an edge set.
k: number of clusters.

Step 1 Construct W weighted adjacency matrix with size n� n.
Step 2 Find L = D �W .
Step 3 Compute Lrw = D�1L.
Step 4 Find the �rst k eigenvectors u1; : : : ; uk of Lrw.
Step 5 Let U 2 <n�k be a matrix contains the eigenvectors u1; : : : ; uk as columns.
Step 6 Let yi 2 <k is a row vector of U for i = 1; : : : ; n.
Step 7 Cluster points (yi)i=1;:::;n 2 <k with k �means algorithm.
Step 8 Let clusters as Ci, i = 1; : : : ; k.
Output Clusters A1; : : : ; Ak with Ai = fj j yj 2 Cig.

Table 7: Clustering using Laplacian matrix with random walk.

clus1 clus2 clus3 clus4
1 7 14 18
2 8 15 19
3 9 16 20
4 10 17 21
5 11 22
6 12 23

13

Table 8: Clusters obtained from the Figure 33(a).

6.3 Experimental results

This section demonstrates experimental results on spectral clustering algorithms applied ton real world
networks. Examples consider here are undirected.

Example 6.1 (Find clusters in a small network graph)
Suppose we have a graph as in the Figure 33. We plot the di�erence Laplacian eigenvalues as in
the Figure 33(b). First 4 eigenvalues are small and 5th eigenvalue is large. So by following eigengap
heuristics, it is possible to have 4 clusters. The Figure 33(c) represent the second eigenvector. We can
identify three considerable gaps between the second eigenvector values and this shows the existence
of 4 clusters.

We use spectral clustering algorithm to �nd the clusters in the Figure 33(a) and we received 4 clusters
as in the Table 8.

Example 6.2 (Find Q values)
We can merge the spectral clustering algorithms with the Q values. That is we can �nd
the clusters and then calculate the Q values for each cluster number. Algorithm select the
best number of clusters with respect to the maximum Q value. The Figure 34(a) shows
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(a) Original data (b) Eigenvalues of the di�erence
Laplacian

(c) The second eigenvector

Figure 33: Identify the number of clusters using eigenvalues and the second eigenvector.
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Q values for clusters generated by using L;L; Lrw for above Example 6.1. In the Fig-
ure 34(a), L is a di�erence Laplacian matrix, Lsym is a normalized Laplacian and Lrw is
a di�erence Laplacian with random walk. The Figure 34(c) shows Q values obtained for
the dolphin social network in the Figure 34(b) using normalized matrix. Data available at
http://www-personal.umich.edu/~mejn/netdata/. The Figure 34(d) shows Q values for football
data. Data available at http://vlado.fmf.uni-i.si/pub/networks/data/sport/football.net.
The Figure 34(c) shows 5 clusters with maximum Q value (0.4902), where [31] found 2 main com-
munities and further divide into 4 sub communities. Q values between 0.3 and 0.7 shows a good
relationship among the data. Q < 0:3 shows a weak relationship. We can select the best number of
clusters by using the maximum value of Q.

6.4 Random walk on directed graphs

Let G = (V (G); E(G)) be a directed graph with a vertex set V (G) and an edge set E(G). We denote
the outdegree of vertex u as dout(u) and indegree as din(u).

De�nition 6.3 (Random walk)
A walk is a sequence of vertices w = (v0; v1; : : : ; vt) such that (vi; vi+1) is an edge. A random walk is
de�ned by a transition probability matrix P , where P (u; v) denotes the probability of moving from a
vertex u to a vertex v.

De�nition 6.4 (Transition probability matrix)
For a weighted directed graph with edge weights w(u; v) > 0 transition probability matrix P can be
de�ned as

p(u; v) =
� wuv∑

l(wul) if (u; v) 2 E(G),
0 otherwise.

Clearly, P (u; v) > 0 only if (u; v) 2 E(G). Also,
P
v P (u; v) = 1. However, for a directed graph, it is

not required that
P
v P (u; v) = 1 in general. According to the Perron-Frobenius theorem, transition

probability matrix P of a strongly connected directed graph has a unique left eigenvector � with �(v) > 0
for all v, and �P = �. The random walk on such a graph has a unique stationary distribution, which
satisfy the balance equation �(v) =

X
u�v

�(u)P (u; v) as well as
P
v �(v) = 1. Generally, all directed

graphs are not satisfy above condition. One possibility is to replace the random walk with teleporting
random walk, which was used for page ranking in [40].

De�nition 6.5 (Teleporting random walk)
Transition probability of this model can be written as follows.

p"(u; v) =
� 1

vol(G) if dout(u) = 0,

" � wu;v=dout(u) + (1 � ") � 1=vol(G) if dout(u) > 0.

Here " is a damping factor (0 < " < 1) and vol(G) =
P
i(d

out(i) + din(i)). Random walk move to
next page by selecting a link with probability " or it jumps to entire web with probability (1 � ").

De�nition 6.6 (Directed Laplacian Fan Chung [11])
The Laplacian L of a directed graph G is de�ned by L = I �  1=2P �1=2 +  �1=2P t 1=2

2
, where  

is a diagonal matrix with entries  (i; i) = �(i).
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(a) Example 6.1 (b) Dolphin social network

(c) Q values of dolphin social network (d) Football data - original graph

(e) Q values for football data

Figure 34: Q values for clusters.
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Input V a vertex set and E an edge set.
k: number of clusters.
P :transition probability matrix.
�: stationary distribution.

Step 1 Construct  with stationary distributions �.
Step 2 Find L = I �  1=2P �1=2+ �1=2P t 1=2

2 .
Step 3 Find the �rst k eigenvectors u1; : : : ; uk of L.
Step 4 Let U 2 <n�k be a matrix contains the eigenvectors u1; : : : ; uk as columns.
Step 5 Let yi 2 <k is a row vector of U for i = 1; : : : ; n.
Step 6 Cluster points (yi)i=1;:::;n 2 <k with k �means algorithm.
Step 7 Let clusters as Ci, i = 1; : : : ; k.
Output Clusters A1; : : : ; Ak with Ai = fj j yj 2 Cig.

Table 9: Clustering using directed Laplacian matrix.

De�nition 6.7 (Out boundary)
Let G = (V;E) be a directed graph. Let S � G. Then the out boundary of S is de�ned by
@S = f(u; v) 2 E(G)ju 2 S; v 2 V n Sg.

De�nition 6.8 (Volume)
The volume of a subset S � V (G) is denoted by vol(S) =

P
v2S �(v) is the probability that the

random walk occupies some vertex in S. Consequently vol(V ) = 1. The volume of @S is denoted by
vol(@S) =

P
(u;v)2@S �(u)P (u; v) is the probability random walk jump from S to @S.

De�nition 6.9 (Weighted Normalized Cut (WNcut))
Let S and V nS are disjoint sets in G. Let �(i) be the stationary distribution. Then WNcut for the
directed graph can be de�ned as follows.

WNcut(S; V n S) =
cut(S; V n S)

vol(S)
+
cut(V n S; S)
vol(V n S)

=
vol(@S)
vol(S)

+
vol(@(V n S))
vol(V n S)

Since the probability which the random walk leaves a vertex is equal to the probability of arriving at

a vertex, we have vol(@S) = vol(@(V n S)). Then WNcut(S; V n S) = vol(@S)(
1

vol(S)
+

1
vol(V n S)

).

We can de�ne the WNcut(S1; : : : ; Sn) for partitions S1; : : : ; Sn as WNcut(S1; : : : ; Sn) =
nX
i=1

vol(@Si)
vol(Si)

. Good partition of a directed graph under this criteria corresponding to the cut such

that probability of going from one community to another is small, while probability of remaining in the
current cluster is high. Zhou et al.[50] �nd approximation to this minimization problem by solving the
eigenvectors of the directed Laplacian. By following the above de�nitions, we can apply the clustering
algorithm to a strongly connected directed graph. Our algorithm is given the Table 9.
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If the graph is not a strongly connected directed graph then we can replace the random walk with
teleporting random walk as de�ned above. Besides that there are some ways to extend the undirected
spectral clusterings to directed clustering. We list some of methods here.

1. Replace directed edges with undirected edges. This method directly transform directed graphs into
undirected graphs and it also destroyed the valuable information on the edges.

2. Method of symmetrization. Since the adjacency matrix A of a directed graph is asymmetric,
we can use the symmetric matrix (A + AT )=2 instead of A. Then normalized Laplacian of the
undirected graph changes to L = D�1=2(D � (A+AT )

2 )D�1=2. We can apply spectral clustering
algorithms using this modi�ed normalized Laplacian matrix.

6.5 Comparison of clustering methods

Example 6.3
Graph given in the Figure 35(a) has directed and undirected edges. The Figure 35(b) is ob-
tained by applying undirected spectral clustering methods. We have three clusters which consists
of vertices f1; 2; 3; 4g,f10; 11; 12; 13g and f5; 6; 7; 8; 9g. The Figure 35(c) is obtained by applying
directed spectral clustering methods. There we obtained three clusters which consists of vertex
ff1; 2; 3; 4; 5g; f10; 11; 12; 13g; f6; 7; 8; 9gg.

It is also interesting to compare the results of directed clustering methods and symmetrization trans-
formations. The following example demonstrates di�erent transformation methods.

Example 6.4
We apply directed clustering method to �nd 2 clusters using teleporting random walk as in the
Figure 36(d). Then we apply clustering with di�erent transformations. According to the results,
we obtained di�erent clusters from di�erent symmetrization methods as shown in the Figure 36(a),
Figure 36(b) and Figure 36(c).

6.6 Proposed method by using merging techniques

Suppose we need to �nd k clusters in the directed graph. By using directed spectral clustering method
we can �nd k0 < k number of clusters initially. Then we merge two clusters by minimizing WNcut
value. Algorithm stop when we receive required number of clusters k. Here we demonstrates some
example by applying this method.

Example 6.5
The Figure 37(a) show a directed graph with 2 known community structure. By observing the second
eigenvector of directed Laplacian, we can identify the two partitions.

L =

2666666664

1 �:025 �:25 0 0 0 0
�:25 1 �:075 0 0 �:25 0
�:25 �:075 1 �0:25 �:25 0 0

0 0 �:25 1 �:025 �0:25 �0:5
0 0 �:25 �:025 1 0 �0:25
0 �:25 0 �:025 0 1 �0:25
0 0 0 1 �0:5 �0:25 1

3777777775
;
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(a) Network Graph (b) Undirected clusters

(c) Directed clusters

Figure 35: Directed and undirected clusters.

P =

2666666664

0 0:5 0:5 0 0 0 0
0 0 1 0 0 0 0
0 0:5 0 0 0:5 0 0
0 0 0:5 0 0 0:5 0
0 0 0 0:5 0 0 0:5
0 0:5 0 0 0 0 0:5
0 0 0 1 0 0 0

3777777775
;
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(a) Clusters using A = AT A (b) Clusters using A = AAT

(c) Clusters using A = (A +
AT )=2

(d) Directed clustering

Figure 36: Clusters from directed and undirected clustering.

Y =

2666666664

0:2372 0:3009
0:4913 0:4335
0:5462 0:3455
0:3928 �0:4577
0:2850 �0:2492
0:2724 �0:2152
0:3071 �0:5330

3777777775
:

Here L is the directed Laplacian matrix, P is the transition probability matrix and Y is the �rst two
eigenvectors. By looking at the second eigenvector, it is clear that �rst 3 vertices are belong to one
cluster. Since this graph is a strongly regular, we can easily apply spectral clustering algorithm and
obtained two clusters as in the Figure 37(b).

Example 6.6
This example demonstrates our proposed method. First we �nd 7 clusters using directed spectral
clustering methods. Then we apply merging techniques until we receive 2 clusters by minimizing
WNcut values. Resulted �gures are listed in the Figure 38.
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(a) Original graph (b) Two Clusters

Figure 37: Directed graph with 2 clusters.

Even though the experimental results give good clustering results for small graphs, applying this
method to large networks is computationally di�cult since it need to consider several subsets and
compute normalized cut in order to minimize the normalized cut. Other problems remained here are
to �nd the stopping criteria, when we do not know the number of clusters we want to �nd. It is
remained for the future to expand this algorithm to e�cient one.

6.7 Conclusion

For the undirected graphs we have followed several clustering methods. We can apply Shi and Malik’s
[42] minimum normalized cut or spectral clustering algorithms to �nd clusters. But there is no way to
select the best number of clusters. So it seemed that spectral clustering use with Newman modularity
function performed well since it is possible to identify the best possible number of clusters. Here we
use spectral algorithms to �nd the clusters in the directed Laplacian and use the multiple eigenvectors
to �nd the k clusters. We followed the techniques in [42] and proposed a merging algorithm for �nding
clusters in directed graphs. Our WNcut de�nition is a generalization of [42], [11] and the one de�ned
in [50]. The major disadvantage in our approach is applying the algorithm to a large network takes
lot of memory to merging and minimizing normalized cut. It is remained for the future to improve
the e�ciency of the algorithm.
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Figure 38: Clusters by merging method.

136



References

[1] C. Adiga and Z. Khoshbakht. On some inequalities for the skew Laplacian energy of digraphs.
Journal of inequalities in pure and applied mathematics, 10(3), 2009.

[2] C. Adiga and M. Smitha. On the skew Laplacian energy of a digraph. International Math. Forum
4, (39):1907{1914, 2009.

[3] S. Akbari, E. Ghorbani, and M.R. Oboudi. Edge addition, singular values, and energy of graphs
and matrices. Linear Algebra and its Applications, 430:2192{2199, 2009.

[4] Y.Ng. Andrew, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems, pages 849{856. MIT Press, 2001.

[5] Y. Asahiro, E. Miyano, H. Ono, and K. Zenmyo. Graph orientation algorithms to minimize the
maximum outdegree. Int. J. Found. Compute. Sci., 18(2):197{215, 2007.

[6] N. Biggs. Algebraic Graph Theory. Cambridge University Press, second edition, 1993.

[7] V. Brankov, D. Stevanovi�c, and I. Gutman. Equienergetic chemical trees. J.Serb.Chem.Soc.,
69(7):549{553, 2004.

[8] P. Buser. On the bipartition of graphs. Discrete Applied Mathematics, 9(1):105{109, 1984.

[9] S. Butler. Interlacing for weighted graphs using normalized Laplacian. Electronic Journal of
Linear Algebra, 16:90{98, 2007.

[10] F. Chung. Spectral Graph Theory. CBMS Regional Conference Series in Mathematics. AMS,
1997.

[11] F. Chung. Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics,
9:1{19, 2005.

[12] C.A. Coulson. On the calculation of the energy in unsaturated hydrocarbon molecules. Cambridge
Phil. Soc., 36:201{203, 1940.

[13] D.M Cvetkovi�c, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Applications. Academic
Press, New York, 1980.

[14] E.B. Davies, G.M.L. Gladwell, J. Leydold, and P.F. Stadler. Discrete nodal domain theorems.
Linear Algebra and its Applications, 336:51{60, 2001.

[15] Ying Du, Danny Z. Chen, and Xiaodong Wu. Approximation algorithms for multicommodity
ow and normalized cut problems: Implementations and experimental study. Lecture Notes in
Computer Science, 3106:112{121, 2004.

[16] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23(2):298{305, 1973.

[17] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its applications
to graph theory. Czechoslovak Mathematical Journal, 25(4):619{633, 1975.

137



[18] S. Guattery and G.L. Miller. On the performance of spectral graph partitioning methods. In
Proceedings of the sixth annual ACM-SIAM symposium on Discrete Algorithms, pages 233{242.
ACM-SIAM, 1995.

[19] S. Guattery and G.L. Miller. On the quality of spectral separators. SIAM J. Matrix Anal. Appl.,
19(3):701{719, 1998.

[20] I. Gutman. Topology and stability of conjugated hidrocarbons. The dependence of total �-electron
energy on molecular topology. J.Serb.Chem.Soc., 70(3):441{456, 2005.

[21] I. Gutman, D. Kiani, M. Mirzakhah, and B. Zhou. On incidence energy of a graph. Linear
Algebra and its Applications, 431(8):1223{1233, 2009.

[22] I. Gutman and B. Zhou. Laplacian energy of a graph. Linear Algebra and its Applications,
414:29{37, 2006.

[23] N.J.A. Harvey, R.R. Ladner, L. Lov�asz, and T. Tamir. Semi-matchings for bipartite graphs and
load balancing. Journal of Algorithms, 59:53{78, 2006.

[24] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[25] J.M. Kleinberg. Authritative soures in a hyperlinked environment. Journal of the ACM,
46(5):604{632, 1999.

[26] J.H. Koolen and V. Moulton. Maximal energy graphs. Advances in Applied Mathematics, 26:47{
52, 2001.

[27] J.H. Koolen, V. Moulton, and I. Gutman. Improving the McClelland inequality for total �-
electron energy. Chemical Physics Letters, 320:213{216, 2000.

[28] M. Lazi�c. On the Laplacian energy of a graph. Czechoslovak Math. Journal, 56(131):1207{1213,
2006.

[29] E. A. Leicht and M. E. J. Newman. Community structure in directed networks. Physical Review
Letters, 100:118{703, 2008.

[30] J. Li, W.C. Shiu, and A. Chang. On the Laplacian Estrada index of a graph. Appl. Anal.
Discrete Math., 3:147{156, 2009.

[31] D. Lusseau and M. E. J. Newman. Identifying the role that individual animals play in their
social network. In Proceedings of the Royal Society B Biological Sciences, volume 271, pages
S477{S481, 2004.

[32] B.J. McClelland. Properties of the latent roots of a matrix: The estimation of �-electron energies.
The Journal of Chemical Physics, 54(2):640{643, 1971.

[33] R. Merris. Laplacian matrices of graphs:A survey. Linear Algebra and its Applications,
197,198:143{176, 1994.

[34] Bojan Mohar. Isoperimetric numbers of graphs. Journal of Combinatorial Theory, series B
47:274{291, 1989.

138



[35] Bojan Mohar. The Laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applica-
tions, 2:871{898, 1991.

[36] Saralees Nadarajah. An approximate distribution for the normalized cut. J. Math Imaging Vis,
32:89{96, 2008.

[37] Saralees Nadarajah. On the normalized cut. Fundamenta Informaticae, 86(1-2):169{173, 2008.

[38] M. E. J. Newman. Fast algorithm for detecting community structure in networks. Physical
Review E, 69(6):66{133, 2004.

[39] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69(2):26{113, 2004.

[40] L. Page, S. Brin, R. Motwani, and T. Winograd. The page rank citation ranking: Bringing order
to the web. (Technical Report), Stanford Info. Lab, 1999.

[41] S. Radenkovi�c and I. Gutman. Total �-electron energy and Laplacian energy: How far the analogy
goes? Journal of the Serbian Chemical Society, 72(12):1343{1350, 2007.

[42] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888{905, 2000.

[43] Y. Song, P. Arbelaez, P. Hall, C. Li, and A. Balikai. Finding semantic structures in image
hierarchies using Laplacian graph energy. In Proceedings of the 11th European conference on
Computer vision: Part IV, ECCV’10, pages 694{707, 2010.

[44] P. Soundararajan and S. Sarkar. An in-depth study of graph partitioning measures for perceptual
organization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6):642{660,
2003.

[45] V. Venkateswaran. Minimizing maximum indegree. Discrete Applied Mathematics, 143(1-
3):374{378, 2004.

[46] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395{416,
2007.

[47] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory and
its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(11):1101{1113, 1993.

[48] J.M. Xu and C. Yang. Connectivity of Cartesian products of graphs. Discrete Mathematics,
306:159{165, 2006.

[49] Xiao-Dong Zhang. The signless Laplacian spectral radius of graphs with given degree sequences.
Discrete Applied Mathematics, 157:2928{2937, 2009.

[50] Dengyong Zhou, Jiayuan Huang, and Bernhard Sch�olkopf. Learning from labeled and unlabeled
data on a directed graph. In Proceedings of the 22nd International Conference on Machine
learning, pages 1036{1043. ACM, 2005.

[51] Zhongxun Zhu. The signless Laplacian spectral radius of bicyclic graphs with a given girth.
Electronic Journal of Linear Algebra, 22:378{388, 2011.

139


