
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Stable systolic category of the product of
spheres

柳, 浩一
九州大学大学院数理学府

https://doi.org/10.15017/21703

出版情報：九州大学, 2011, 博士（数理学）, 課程博士
バージョン：
権利関係：



KYUSHU UNIVERSITY

STABLE SYSTOLIC CATEGORY OF THE

PRODUCT OF SPHERES

by

HOIL RYU

A THESIS PRESENTED
IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

in the
GRADUATE SCHOOL OF MATHEMATICS

KYUSHU UNIVERSITY

January 2012



Stable systolic category of the product of spheres

Hoil Ryu Ph.D.

Kyushu University 2012

Introduction

In this paper, a manifold is assumed to be closed, connected, orientable and smooth. The

systole of a manifold M is the least length of non-contractible closed loops in M . One can

generalize this concept to the least volume of k–dimensional nonzero homology classes,

so called as the homology systole. Now we can imagine such systoles have some kind of

relations with the entire volume of M , and it is natural to ask what kind of relationship

exists.

As an answer, Gromov proved a theorem which says that the existence of non-trivial cup

product implies the existence of the stable isosystolic inequality as follows.

Gromov’s Theorem ([7, 7.4.C]). Let M be an n–manifold. If there exist some reduced real

cohomology classes α∗1, · · · ,α∗k with α∗i in H̃di (M ;R) and a nonzero cup product α∗1à · · ·à α
∗
k

in H̃n(M ;R), then there exists C > 0 satisfying

k
∏

i=1

stsysdi
(M ,G )≤ C ·mass

�

[M],G
�

for all Riemannian metric G on M where stsysdi
is the stable di–systole and [M] is the funda-

mental class of M with coefficients in Z/2Z.

The greatest k satisfying the stable isosystolic inequality is called the stable systolic cat-

egory of M which is introduced by Katz and Rudyak [8], and it is known as a homotopy

invariant by Katz and Rudyak [9]. We will show the stable systolic category of 0-universal

manifold is also invariant under the rational equivalences in 4.3.

For an orientable manifold M , Gromov’s Theorem implies that the stable systolic cate-

gory is not smaller than the real cup-length. So, is there some manifold M such that the

stable systolic category is greater than the real cup-length? If such M exists, then the inver-

sion of Gromov’s Theorem will fail for M , while this interesting question is not answered yet.

Instead of the answer, it is known the equality of them for some manifolds, eg, Dranishnikov

and Rudyak [3]. In this paper, we also show more equality later in 3.6 and 3.8.
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1 Stable systolic category

To define the stable systolic category, we need to consider the flat homology theory as

a metric space whose metric structure is induced by the integration on the space. One

can see the details about currents and homological integration at Federer [4], Federer [5],

Federer and Fleming [6], Serre [10] and White [11]. Since we use the integration theory to

define the norm on real homology vector space, we consider the local Lipschitz category L

whose objects are pairs of local Lipschitz neighborhood retracts in some finite dimensional

Euclidean space and whose morphisms are locally Lipschitzian maps. One can find formal

definition of L at Federer [4, 4.1.29 and 4.4.1]. In this section, we define some notations of

flat homology theory on L briefly and define systoles and systolic category for a manifold.

Let (X , A) be an object of L. Then we can assume that X and A possess the restricted

metrics of Rn. Let G be a Z–module with a norm | · | which makes G a complete metric

space. If G is Z or R, we assume that norm of G is the standard norm. The comass of a

differential form ω on X is defined as

comass(ω) := sup
�

|ωx(τ)| : x ∈ X , orthonormal q–frame τ
	

.

Also, the mass of a q–current T in X is the dual norm of comass, ie,

mass(T ) := sup
�

T (ω) : differential q–form ω, comass(ω)≤ 1
	

.

A Lipschitzian singular q–cube κ : Iq→ X , induces a homomorphism κ[ from the module of

polyhedral chains Pq(X ; G) to the module of rectifiable currents Rq(X ; G). Then the mass

of κ is defined by the mass of the image κ[ I
q where Iq is the corresponding polyhedral q–

current of the unit rectangular parallelepiped Iq. This correspondence of κ to κ[ I
q gives a

chain map Φ of degree 0 from the chain complex of all Lipschitzian singular cubes into the

chain complex of flat chains F∗(Rn|X ; G). Here F∗(Rn|X ; G) denotes the submodule of the

flat chains F∗(Rn; G) in Rn which consists of all flat chains supported in X . Then one can

verify that Φ induces an isomorphism Φ∗ from the singular homology module Hq(X , A; G) to

the homology module H[q(X , A; G) of the flat chains which is called the f lat homology.

For a Lipschitzian singular chain c, there exists a representation
∑

i κi ⊗ gi where gi is

contained in G and κi is a Lipschitzian singular q–cube which is not overlapping each other

(subdivide if necessary). Then the mass of c is defined as

mass(c) :=
∑

i

|gi| ·mass(κi) .
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The mass or volume of a singular homology class η in Hq(X , A; G) is defined by

mass(η; G) := inf
�

mass(c) : η= [c], c is a Lipschitzian cycle
	

.

If G is R, the mass is a norm on the homology vector spaces. We will omit G in the case of

Z.

The q--dimensional homology systole of (X , A) is defined by infimum of mass of non-

trivial q–th integral homology classes. However Gromov [2, p.301] claims that Gromov’s

Theorem will fail for S1 × S3, if we consider the homology systoles instead of the stable

systoles. Briefly, we can consider the stable systole as a systole in the real homology vector

spaces. Here we give formal definition for the stable systole. The inclusion ι : Z → R

induces the coefficient homomorphism ι∗ on homology. The stable mass on Hq(X , A;Z) is

defined as the mass of the image ι∗η. Then we can define the q--dimensional stable systole

of (X , A) as

stsysq(X , A) := inf
¦

stmass(η) : η ∈ Hq(X , A;Z), ι∗η 6= 0
©

.

A homology q–systole or a stable q–systole is called trivial, if it is infinite. If the q–th

real homology vector space Hq(X , A;R) is zero, then the stable q–systole is trivial for all

Riemannian metrics on (X , A). Hence if the q–th integral homology module Hq(X , A;Z) is a

torsion module, then the stable q–systole is trivial for every metric on (X , A).

For a given positive integer n> 0, a k–tuple P = (p1, · · · , pk) of positive integers is called

a partition of n if n = p1 + · · ·+ pk and p1 ≤ · · · ≤ pk ≤ n. A partition P is called positive

(or non-negative) if pi > 0 (or pi ≥ 0) for all i. The size of a partition which denoted by

size(P) is defined by the cardinality of positive integers contained in the partition. Hence if

a k–tuple P is a positive partition, then the size of partition is k. From now on, we suppose

a partition is positive unless otherwise stated. For a partition P, the duplicated number of

pi is the cardinality number of elements in P who are equal to pi .

Now we define concepts for an n–manifold M . A partition P of n is called stable systolic

categorical for M , if there exists a real number C > 0 and non-trivial stable pi–systoles such

that
size(P)
∏

i=1

stsyspi
(M ,G )≤ C ·mass

�

[M],G ;Z/2Z
�

for every Riemannian metric G on M where the fundamental class [M] in Hn(M ;Z/2Z).

Definition. The stable systolic category of M is defined by

catstsys(M) := sup
��

size(P) : P is stable systolic categorical partition for M
	

∪ {0}
�

.
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As we said before, the real cup-length is a lower estimate for the stable systolic category

from Gromov’s Theorem, where the real cup-length of M is defined by

cupR(M) :=min
�

k ≥ 0 : α0à α1à · · ·à αk = 0 for all αi ∈ eH∗(M ;R)
	

and eH∗(M ;R) denotes the reduced real cohomology ring of M .

If M is non-orientable, then the top dimensional real cohomology vector space Hn(M ;R)

vanishes. So every cohomology class in Hn(M ;R) vanishes, we can not apply Gromov’s

Theorem for top dimension. This is a reason to consider only orientable manifolds in this

paper.

2 Preliminaries on stable systoles

Many equations and inequalities for mass are studied. One can find those results at Babenko

[1], Federer [4] and Whitney [12]. Here we state or recall some of them for the stable

systoles, with some appropriate modifications applied. Through this section, we suppose U

and V be open subsets of Rm and Rn respectively.

Proposition 2.1. For a non-empty local Lipschitz neighborhood retract X in Rn, the stable

0–systole is 1.

Proof. Let D0(X ) be the vector space of 0–currents. A map d : X → D0(X ) can be defined

as d(x)(ω) = dx(ω) := ω(x) for a point x of X and a differential 0–form ω on X . Then dx

is a polyhedral 0–current with mass(dx) = 1. This implies that dx is a normal 0–cycle with

coefficients Z. Furthermore, the image ι∗Φ−1
∗ [dx] is not vanished in H0(X ;R). So we have

stsys0(X ) =mass
�

ι∗Φ
−1
∗ [dx]

�

= 1

for an arbitrary point x in X .

Lemma 2.2. For a local Lipschitz neighborhood retract X in Rn, if one rescale the standard

metric G on Rn by the square of a real number t > 0, then the quotient mass of a homology

class η ∈ Hq(X ; G) increase by the tq times. Furthermore, the stable q–systole satisfies

stsysq(X , t2G|X ) = tq · stsysq(X ,G|X )

where G|X is the restriction of G on X .
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Proof. A similar result was introduced by Whitney [12] for the real flat chains. So the first

result is satisfied for an arbitrary homology class. Also the definition of the stable systole

implies

stsysq(X , t2G|X ) = inf
¦

tq ·mass(ι∗η,G|X ;R) : η ∈ Hq(X , A;Z), ι∗η 6= 0
©

which means the equality for the stable systoles.

Proposition 2.3 ([12, X.6 and X.7]). For a locally Lipschitzian map f : U → V and an

integral rectifiable q–current T whose support is contained in a compact subset K of U, there

exists an inequality

mass( f[T )≤ Lip( f |K)q ·mass(T )

where Lip( f |K) is the lower bound of Lipschitz constants of the restriction f |K.

Proposition 2.4. If f : (X , A)→ (Y, B) is a locally Lipschitzian map, then for any homology

class η of Hq(X , A; G) , there is a compact subset K of Rm which satisfies

0≤mass( f∗η; G)≤ Lip( f |K)q ·mass(η; G)

where f∗ : Hq(X , A; G)→ Hq(Y, B; G) is the induced homomorphism.

Proof. Note that f induces a homomorphism f[ : Zq(X , A; G) → Zq(Y, B; G) on flat cycles

as well as f[Fq(Rm|A; G) ⊂ Fq(Rn|B; G) . For a given flat homology class Φ∗η, let T

be a representative normal q–cycle in Zq(X , A; G). The naturality of Φ∗ implies Φ∗ f∗η =

f∗Φ∗η = f∗[T] = [ f[T]. Also the relation of cosets [ f[T] = [ f[T + f[Fq(Rm|A; G)] =

[ f[T +Fq(Rn|B; G)] implies that the relation of the sets

�

f[T : [T] = Φ∗η
	

⊂
�

S : [S] = Φ∗ f∗η
	

⊂ Zq(Y, B; G) .

With the definition of the mass of homology class, we obtain

mass( f∗η; G)≤ inf
�

mass( f[T ) : [T] = Φ∗η
	

.

Because of T is compact supported, there is a compact subset K of Rm with supp(T ) ⊂

int(K). Here we can apply 2.3 for T , so we have

mass( f∗η; G)≤ Lip( f |K)q · inf
�

mass(T ) : [T] = Φ∗η
	

which implies the result.

Lemma 2.5. Let (X , A) and (Y, B) are local Lipschitz neighborhood retract pairs. If a lo-

cally Lipschitzian map f : (X , A) → (Y, B) induces a monomorphism f∗ : Hq(X , A;R) →
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Hq(Y, B;R), then there is a compact subset K in the ambient space of X satisfying

stsysq(Y, B)≤ Lip( f |K)q · stsysq(X , A).

Furthermore, if Hq(X , A;R) is nonzero, then stsysq(Y, B) is a positive real number.

Proof. 2.4 and f∗
�

Hq(X , A;R) \ {0}
�

⊂
�

Hq(Y, B;R) \ {0}
�

imply the existence of inequality

in the stable systole level.

For integral homology class η with ι∗η is nonzero, the image f∗ι∗η does not vanish,

since f∗ is a monomorphism. Recall that the mass of real homology classes is a norm, hence

mass( f∗ι∗η) is a positive real number. Furthermore, the stable q–systole does not converges

to zero, since Z is discrete.

Let K (U) be the set of all real valued compact supported continuous functions on U .

We denoteK +(U) the subset of non-negative valued functions. For a subset A of U , we call

a sequence of functions f1, f2, · · · in K (U) suits A, if fi(x) ≤ fi+1(x) and limi→∞ fi(x) ≥ 1

for every x in A.

For a rectifiable current T in Rq(U) and a function f in K +(U), a monotone Daniell

integral ‖T‖ can be defined by

‖T‖( f ) := sup
�

T (ω) : comass(ωx)≤ f (x) for all x ∈ U
	

where the supremum is taken over all compact supported differential q–form ω on U . In

addition, there is associated Radon measure

ρT (A) := inf{ lim
i→∞
‖T‖( fi) : f1, f2, · · · suits A}

for a subset A of U , which satisfying

‖T‖( f ) =
∫

U

f dρT .

If we consider a function 1U which is defined by 1U(x) = 1 for all x , the mass is obtained

by ρT as

ρT (U) = ‖T‖(1U) =mass(T ).

One can find more details about these arguments in Federer [4, 2.5 and 4.1].
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Proposition 2.6. For rectifiable currents S in Rp(U) and T in Rq(V ), the mass of their cross

product is equal to the multiplication of their masses, ie,

mass(S× T ) =mass(S) ·mass(T )

with respect to the product metric on U × V .

Proof. Since S and T are rectifiable currents, mass can be written by associated Radon

measures ρS , ρT and ρS×T . Therefore Fubini’s Theorem (see Federer [4, 2.6.2.(2)]) implies

mass(S× T ) = ρS×T (U × V ) = ρS(U) ·ρT (V ) =mass(S) ·mass(T )

the result.

Lemma 2.7. Let (X , A) and (Y, B) are local Lipschitz neighborhood retract pairs. For homology

classes ξ ∈ Hp(X , A; G) and η ∈ Hq(Y, B; G), we can estimate

mass(ξ×η; G)≤mass(ξ; G) ·mass(η; G) and

stsysp+q
�

(X , A)× (Y, B)
�

≤ stsysp(X , A) · stsysq(Y, B)

with respect to the product metric on (X , A)× (Y, B).

Proof. Let S and T be representative rectifiable cycles corresponding to ξ and η respectively,

ie, Φ∗ξ= [S] with S ∈ Z [p(X , A; G) and Φ∗η= [T] with T ∈ Z [q(Y, B; G). Then the naturality

of a cross product implies that there is a representative rectifiable current with the form of

a cross product S× T in the coset [c] = Φ∗(ξ×η). Therefore

�

S× T : [S]× [T] = Φ∗ξ×Φ∗η
	

=
�

S× T : [S× T] = Φ∗(ξ×η)
	

⊂
�

c : [c] = Φ∗(ξ×η)
	

⊂ Z [p+q

�

(X , A)× (Y, B); G
�

.

Hence 2.6 implies an inequality

mass(ξ×η; G)≤ inf
�

mass(S× T ) : [S]× [T] = Φ∗ξ×Φ∗η)
	

=mass(ξ; G) ·mass(η; G)

on homology level. To show the inequality of the stable systoles, recall that the cross product

homomorphism

Hp(X , A;R)⊗Hq(Y, B;R)→ Hp+q
�

(X , A)× (Y, B);R
�
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is a monomorphism. Therefore we can estimate the stable q–systole as

stsysp+q
�

(X , A)× (Y, B)
�

≤ inf







mass(ξ×η) :
ξ ∈ Hp(X , A;Z), ι∗ξ 6= 0,

η ∈ Hq(Y, B;Z), ι∗η 6= 0







≤ stsysp(X , A) · stsysq(Y, B) .

where the second inequality is obtained by the result on homology level.

Lemma 2.8. Suppose X and Y are local Lipschitz neighborhood retracts. If Y is connected and

the Künneth formula gives an isomorphism of non-trivial vector spaces

Hq(X ;R)⊗H0(Y ;R)∼= Hq
�

X × Y ;R
�

6= {0} ,

then the stable q–systole satisfies

0< stsysq
�

X × Y
�

= stsysq(X )<∞.

with respect to the product metric on X × Y .

Proof. Let pr1 : X × Y → X be the first projection. From the assumption, for a nonzero

homology class η in Hq(X × Y ;R), there exist [S] 6= 0 in H[q(X ;R) and [T] 6= 0 in H[0(Y ;R)

whose cross product is the image of η in H[q
�

X × Y ;R
�

with the same positive mass, ie,

mass
�

[S]× [T]
�

=mass(η)> 0.

Note that the vector space of normal 0–chains N0(Y ;R) is equal to the vector space of

polyhedral 0–chains P0(Y ;R) which is generated by {dy : y ∈ Y } where d is defined in

the proof of 2.1. For every points y and y ′ in Y , [dy] = [dy ′] implies that there is a

nonzero real number r such that [T] = r[dy] with mass[T] = |r| · dy(1∗Y ) = |r|. Also,

every [S]× [T] has representation of [r · S]× [dy], therefore pr1∗ is an isomorphism with

pr1∗
�

[S]× [T]
�

= [r · S]. Hence 2.5 implies

stsysq(X × Y )≥ stsysq(X )> 0

with the fact of pr1 is a Lipschitzian map with Lip(pr1) = 1. As a result, we obtain the

equality by combining the result of 2.7.
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3 Calculation by dimension and constructing metrics

At first, we will calculate the stable systolic category from the dimensional information of

homology. If the homology group is not so complex such as a real homology sphere, we

know the stable systolic category by only using dimensional information. If an oriented

manifold has a relatively simple cup-product structure such as n–fold producted space of

spheres, then the stable systolic category can be also calculated instantly. Such methods to

calculate the stable systolic category can be generalized as follows.

For a topological space X , let lpd(X ) denote the least positive dimension of real coho-

mology vector spaces of X . So lpd(X ) = l if and only if eH i(X ;R) = {0} for 0 < i < l and
eH l(X ;R) 6= {0}. If M is an m–manifold, then lpd(M) is less than or equal to m.

Definition. An n–dimensional CW space X is said to have maximal real cup length, if there

exist some real cohomology classes α1, · · · ,αr with αi ∈ eHdi (X ;R), a nonzero cup-product

α1 à · · · à αr ∈ eHn(X ;R) and r := bn/ lpd(X )c where bxc denotes the floor of a real

number x .

Example 3.1. Let S be a manifold which is a real homology sphere. Then S has maximal real

cup length, because of lpd(S) = dim(S). The n–fold direct product of S also has maximal

real cup length. The direct product S2× S3 of spheres has maximal real cup length.

Corollary 3.2. If an m–manifold M has maximal real cup length, then the stable systolic

category of M is equal to the real cup-length of M, ie,

catstsys(M) = cupR(M) = bm/ lpd(M)c.

Proof. We need to verify that catstsys(M) ≤ cupR(M). Let r := bm/ lpd(M)c. If (d1, · · · , dk)

is a partition of m such that each stable di–systole is non-trivial, then di ≥ lpd(M), so there

is an inequality

k · lpd(M)≤ m= d1+ · · ·+ dk < (r + 1) · lpd(M)

which implies k ≤ r = cupR(M).

In general, the direct product M×N of manifolds does not have maximal real cup length

even if M and N have maximal real cup-length. For example, the direct product of spheres

S1× S2 does not have maximal real cup length.

Lemma 3.3. If manifolds M m1
1 , · · · , M mn

n have maximal real cup length, then the stable systolic

category of their n–fold direct product M1 × · · · ×Mn is greater than the sum of stable systolic

categories for each Mi , ie,

catstsys
�

M1× · · · ×Mn
�

≥ catstsys(M1) + · · ·+ catstsys(Mn).
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Proof. Since Mi has maximal real cup length, there is nonzero cup product αi,1à · · ·à αi,ri

in Hmi (Mi;R) where ri := bmi/ lpd(Mi)c= catstsys(Mi) for 1≤ i ≤ n.

By the Künneth formula, the n–fold cross product on the top dimensions induces an

isomorphism

n
⊗

i=1

Hmi (Mi;R)∼= Hm �M1× · · · ×Mn;R
�

where m :=
n
∑

i=1
mi .

This implies that the cross product of all αi,1à · · ·à αi,ri
is nonzero which can be written

as a cup product

^n
i=1 pr∗i

�

αi,1à · · ·à αi,ri

�

= pr∗1α1,1à · · ·à pr∗iαi, ji à · · ·à pr∗nαn,rn

in the top-dimensional real cohomology vector space Hm �M1× · · · ×Mn;R
�

, where pri :

M1 × · · · × Mn → Mi is the i–th projection, 1 ≤ i ≤ n and 1 ≤ ji ≤ ri . This cup product

implies that r1+ · · ·+ rn is a lower estimate for the stable systolic category of M1×· · ·×Mn

from Gromov’s Theorem.

Proposition 3.4. For manifolds M and N, the least positive dimension of cohomology of M×N

is the minimum of lpd(M) and lpd(N).

Proof. From the Künneth formula, H i(M × N ;R) = {0} for 0 < i < min
�

lpd(M), lpd(N)
�

.

If l := min
�

lpd(M), lpd(N)
�

= lpd(M), then H l(M ;R) is nonzero and the cross product

homomorphism H l(M ;R) ⊗ H0(N ;R) → H l(M × N ;R) is a monomorphism. Therefore

H l(M × N ;R) is nonzero. The case of lpd(M) > lpd(N) is shown by using the same argu-

ments.

For integers i and j 6= 0, let mod(i, j) denotes the remainder from the division of i by j.

Corollary 3.5. Suppose manifolds M m and N n have maximal real cup length, and an integer

l := lpd(M × N). If M and N satisfy the conditions

bm/ lpd(M)c= bm/lc, bn/ lpd(N)c= bn/lc and

mod(m, l) +mod(n, l)< l,

then M × N has maximal real cup length. Therefore,

catstsys(M × N) = catstsys(M) + catstsys(N) .

Proof. Let integers r := bm/lc and s := bn/lc.
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3.4 implies that l = min
�

lpd(M), lpd(N)
�

= lpd(M × N). So we can formulate b(m+

n)/ lpd(M ×N)c= r+ s+ bmod(m, l)+mod(n, l)c. By the assumption, bmod(m, lpd(M))+

mod(n, lpd(N))c is zero, so we have

b(m+ n)/ lpd(M × N)c= r + s.

Thus it is sufficient to show that there is a nonzero cup product with the length of r + s.

Since M and N have maximal real cup length, there are cohomology classes α1, · · · ,αr

and β1, · · · ,βs with their cup products are nonzero cohomology classes α1 à · · · à αr in

Hm(M ;R) and β1 à · · ·à βs in Hn(M ;R). From the proof of 3.3, there is a nonzero cup

product pr∗1α1 à · · · à pr∗1αr à pr∗2β1 à · · · à pr∗2βs in the top dimensional cohomology

vector space Hm+n(M × N ;R).

Without the condition of the product M × N has maximal real cup length, we can gen-

eralize this corollary as follow.

Theorem 3.6. Let manifolds M m and N n have maximal real cup length. If

mod
�

m, lpd(M)
�

+mod
�

n, lpd(N)
�

<max
�

lpd(M), lpd(N)
�

,

then the stable systolic category of their product M × N is the sum of each stable systolic

category, ie,

catstsys(M × N) = catstsys(M) + catstsys(N) .

Proof. Since M and N have maximal real cup length,

r := bm/ lpd(M)c= catstsys(M) and s := bn/ lpd(N)c= catstsys(N) .

In the case of lpd(M) = lpd(N) is 3.5. So we will assume lpd(M)< lpd(N).

From 3.3, catstsys(M × N) ≥ catstsys(M) + catstsys(N) = r + s . Therefore, it is sufficient

to show that any partition of m+n whose size is greater than r+s, is not a stable systolic

categorical partition.

Suppose the partition (d1, · · · , dk) of m+n is a stable systolic categorical for M ×N with

some integer 1 ≤ r ′ ≤ k and the condition 0 < lpd(M) ≤ d1 ≤ · · · ≤ dr ′ < lpd(N). For an

arbitrary t ≥ 1, let Gt := t2GM +GN be a Riemannian metric on M × N . Then 2.2 and 2.8
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imply that the stable systoles for the partition (d1, · · · , dk) satisfies

k
∏

i=1

stsysdi
(M × N ,Gt)≥

r ′
∏

i=1

stsysdi
(M , t2GM ) ·

k
∏

j=r ′+1

stsysd j
(M × N ,Gt)

= td1+···+dr′ ·
r ′
∏

i=1

stsysdi
(M ,GM ) ·

k
∏

j=r ′+1

stsysd j
(M × N ,Gt)

Since t ≥ 1, we can obtain the inequality stsysd j
(M × N ,Gt) ≥ stsysd j

(M × N ,G1) for each

r ′ + 1 ≤ j ≤ k. On the other hands, the mass of integral fundamental class [M × N] is

characterized by 2.2 and 2.7 as

mass
�

[M × N],Gt
�

≤mass
�

[M], t2GM
�

·mass
�

[N],GN
�

= tm ·mass
�

[M],GM
�

·mass
�

[N],GN
�

.

Here if we assume that d1+ · · ·+ dr ′ > m, then we have

k
∏

i=1
stsysdi

(M×N ,Gt)

mass
�

[M×N],Gt
� ≥ t(d1+···+dr′ )−m ·

r ′
∏

i=1
stsysdi

(M ,GM ) ·
k
∏

j=r ′+1
stsysd j

(M×N ,G1)

mass
�

[M],GM
�

·mass
�

[N],GN
�

where the right-hand side of the inequality diverges as t → ∞. This contradicts to that

(d1, · · · , dk) is a stable systolic categorical partition. Hence we obtain d1+ · · ·+ dr ′ ≤ m and

dr ′+1+ · · ·+ dk ≥ n. This condition for m implies

r ′ ≤ b(d1+ · · ·+ dr ′)/ lpd(M)c ≤ bm/ lpd(M)c ≤ r .

Let s′ := k− r ′. From the assumption, lpd(M)/ lpd(N)< 1 and

mod(m, lpd(M)) +mod(n, lpd(N))< lpd(N),

so we can calculate as

k = r ′+ s′ ≤ r + s

which implies catstsys(M × N)≤ catstsys(M) + catstsys(N) .

Corollary 3.7. Suppose manifolds M0 × M1 × · · · × Mk and Mk+1 × · · · × Mn × Mn+1 have

maximal real cup length with

lpd(M0) = lpd(M1) = · · ·= lpd(Mk) and

lpd(Mk+1) = · · ·= lpd(Mn) = lpd(Mn+1) .
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Let ri := bdim(Mi)/ lpd(Mi)c for 0≤ i ≤ n+1 . If M0, · · · , Mn+1 satisfy conditions dim(Mi) =

lpd(Mi) · ri for 1≤ i ≤ n and

dim(M0)− lpd(M0) · r0+ dim(Mn+1)− lpd(Mn+1) · rn+1

<max
�

lpd(M0), lpd(Mn+1)
�

then:

catstsys

�

n+1
∏

i=0
Mi

�

=
n+1
∑

i=0

catstsys(Mi) =
n+1
∑

i=0

ri .

Note that 3.6 is not applied for the product S1 × S2 of spheres, but we will show the

equality for such partial cases as follow.

Theorem 3.8. If manifolds Sm1
1 , · · · , Smn

n are real homology spheres, then the stable systolic

category of their n–fold direct product is the number of spheres.

Proof. Since every real homology spheres have maximal real cup length, 3.3 gives us a lower

estimate catstsys(S1× · · · × Sn)≥ n.

Suppose mi ≤ mi+1 for each 1 ≤ i ≤ n. Then a partition (m1, · · · , mn) of
∑

i mi can be

rewritten as (r1, · · · , r1, r2, · · · , rl−1, rl , · · · , rl) where ri is a range. This corresponding to

rewrite

Sm1
1 × · · · × Smn

n =
�

Sr1
1 × · · · × Sr1

s1

�

×
�

Sr2
s1+1× · · · × Sr2

s1+s2

�

× · · ·

×
�

Srl
s1+···+sl−1+1× · · · × Srl

s1+···+sl−1+sl

�

where ri := ms1+···+si−1+1 = · · · = ms1+···+si−1+si
with ri < ri+1 and si > 0 is the duplicated

number of ri , so that s1+ · · ·+ sl = n. For simplicity, let define

Xp := S1× · · · × Ss1+···+sp
and Yp := Ss1+···+sp+1× · · · × Sn

for 1≤ p ≤ n. Then S1×· · ·×Sn = Xp×Yp and we can observe that Gp,t := t2GXp
+GYp

is a

Riemannian metric on Xp×Yp for t > 0 when GXp
+GYp

is a Riemannian metric on Xp×Yp.

Now we can apply 2.8 and 2.2, so there exist equations

stsysq(Xp × Yp,Gp,t) = stsysq(Xp, t2GXp
) = tq · stsysq(Xp,GXp

)

for the non-trivial stable systoles in the dimension of 1≤ q ≤ s1+ · · ·+ sp.

Let (d1, · · · , dk) be the longest stable systolic categorical partition for S1 × · · · × Sn with

the condition di ≤ di+1. Then we can rewrite (d1, · · · , dk) by the ranges {r1, · · · , rl} with
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the duplicated number s′i ≥ 0 of ri . We will show that the partition is not longer than n by

induction on p for 1 ≤ p ≤ l and contradiction. Assume that s′i = si for 1 ≤ i ≤ p − 1. If

s′p > sp, then using a similar argument in the proof of 3.6, we can observe that the right-hand

side of the inequality

k
∏

i=1
stsysdi

(Xp×Yp,Gp,t)

mass
�

[Xp×Yp],Gp,t
� ≥ tw ·

p
∏

i=1
stsysri

(Xp,GXp
)s
′
i ·

l
∏

i=p+1
stsysri

(Xp×Yp,Gp,1)s
′
i

mass
�

[Xp],GXp

�

·mass
�

[Yp],GYp

�

diverges as t approaches ∞ where w := r1(s′1 − s1) + · · ·+ rp(s′p − sp) = rp(s′p − sp) > 0.

This contradicts to that the partition (d1, · · · , dk) is stable systolic categorical, and hence we

obtain s′p ≤ sp. However we must choose s′p = sp to make the longest partition. As a result,

the size of the longest stable systolic categorical partition can not exceed n= s1+· · ·+sl .

4 Invariance under rational equivalences

Let U be an open subset of some finite dimensional Euclidean space. For a compact subset

C of U and a flat q–chain T in Fq(U |C;R), the f lat norm is defined by

|T |[C := inf
�

mass(T − ∂ S) +mass(S) : S ∈ Fq+1(U |C;R)
	

where Fq(U |C) is the module of all flat q–chains in U whose support is contained in C .

Suppose M and N are n–manifolds. Let K and L be a triangulation of M and N re-

spectively. In this section, K and L are subdivided if necessary, but we will use the same

symbol. For a continuous map f : M → N , there is a non-degenerate simplicial approxima-

tion g : K → L of f . For an open n–simplex e in L, consider a map h : K
g
→ L → L/(L \ e).

We will call deg(h) the degree of g at e which is denoted by dege(g). Let

D(g) := sup
�

|dege(g)| : open n-simplex e in L
	

.

Here D(g) is finite, because of we can assume that K and L are finite simplicial complexes.

For an arbitrary Riemannian metric GN on N , consider an embedding in Rm. Then

a current VN (ω) :=
∫

N
comass(ωx) dL n x is defined for an arbitrary compact supported

differential n–form ω where L n is the n–dimensional Lebesgue measure. We can observe

that VN is contained in Fn(Rm|N ;R) and satisfying mass(VN ) = stsysn(N).
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We take a closed m–ball C in Rm which contains N and L in its internal. For a sufficiently

small ε > 0, there is a piecewise linear metric GL = GL(ε) on L satisfying

|VL − VN |[C ≤ ε and
�

� stsysq(L,GL)− stsysq(N ,GN )
�

�≤ ε

for every non-trivial stable q–systoles (compare Federer [4, 4.1.22]) and the realization of

L with GL is a PL section of the normal bundle over N with GN in Rm. Such metric can be

obtained by subdividing K and L, and translating vertices in L along the fiber of the normal

bundle to do not degenerate any simplex. For 0 < ε′ < ε, a suitable metric GL(ε′) also can

be acquired by the same way. Hence we can assume that D(g) is not changed by ε and GL .

As ε approaches to 0, each L, GL and g∗GL converges to N , GN and a piecewise Riemannian

metric on M respectively. Under this circumstance, we obtain following lemma.

Lemma 4.1. Suppose q–th real homology vector space of K and L are non-trivial. If g : K → L

induces a monomorphism g∗ between the q–th real homology vector spaces, then

stsysq(L,GL)≤ stsysq(K , g∗GL)≤ D(g) · stsysq(L,GL)<∞

for every piecewise linear metric GL on L.

Proof. With the pullback PL metric g∗GL on K , g is a distance decreasing map. Combining

this with 2.5,

stsysq(L,GL)≤ Lip(g)q · stsysq(K , g∗GL)≤ stsysq(K , g∗GL).

On the other hands, the inverse image of an arbitrary q–simplex of L is D(g) of q–

simplices as at most, since g is a non-degenerate simplicial map and every q–simplex is

contained in the boundary of some n–simplex for q < n. Also each simplex in the inverse

image has same mass of the preimage, since the restriction of g on each simplex is isometry.

This implies that the mass of a q–chain c of K is not greater than D(g) times of the mass of

the image g[(c) which is not trivial. Therefore we can verify that

stsysq(K , g∗GL)≤ D(g) · stsysq(L,GL)

for an arbitrary PL metric GL .

Remark. If K is not a triangulation of a manifold, we can not sure that every q–simplex of

K is contained in the boundary of some n–simplex for q < n. For example, a triangulation

of the one-point union S1 ∨ S2 has some 1–simplex in S1 which is not contained in the

boundary of any 2–simplex.



15

Since the stable systolic category is a homotopy invariant, here we obtain following

proposition using similar techniques of Katz and Rudyak [9].

Proposition 4.2. Let M and N are n–manifolds. If there exists a smooth map f : M →

N which induces a monomorphism on every real homology vector space, then catstsys(M) ≤

catstsys(N).

Proof. We apply 4.1,

stsysq(N ,GN )≤ stsysq(L,GL) + ε ≤ stsysq(K , g∗GL) + ε and

stsysq(N ,GN ) + ε ≥ stsysq(L,GL)≥ 1/D(g) · stsysq(K , g∗GL)

where L converges to N in some Euclidean space and g∗GL converges to a piecewise Rie-

mannian metric GM on M as ε approaches to 0. Suppose there exists a stable systolic

categorical partition (d1, · · · , dk) for M . Then there exist C > 0 and δ = δ(ε) > 0 such that

δ converges to 0 as ε approaches to 0 and

k
∏

i=1

stsysdi
(K , g∗GL)≤ C ·mass([K], g∗GL) +δ,

because of each metric g∗GL can be approximated by some Riemannian metrics on M . We

can assume that ε ≤ stsysdi
(N ,GN ) for all i, so

k
∏

i=1

stsysdi
(L,GL)≤ 2k ·

k
∏

i=1

stsysdi
(K , g∗GL)

≤ 2k · C ·mass([K], g∗GL) + 2kδ

≤ 2k · C · D(g) ·mass([L],GL) + 2k(C · D(g) · ε+δ).

This implies the partition (d1, · · · , dk) is also stable systolic categorical for N . Therefore we

obtain the result catstsys(M)≤ catstsys(N).

Let X and Y are simply connected spaces. A continuous map f : X → Y is called a

rational equivalence, if the induced map f ∗ : H∗(Y ;Q)→ H∗(X ;Q) is an isomorphism.

Corollary 4.3. The stable systolic category of a 0–universal manifold is invariant under the

rational equivalences.

Proof. Because M is a 0–universal manifold, for a rational equivalence f : M → X , there

exists a rational equivalence g : X → M .



16

References

[1] I K Babenko, Asymptotic invariants of smooth manifolds, Russian Acad. Sci. Izv. Math. 41 (1993), no. 1,

1–38.

[2] M Berger, Systoles et applications selon gromov, Séminaire N. Bourbaki, Astérisque 216 Exp. 771 (1993),

279–310.

[3] A N Dranishnikov and Y B Rudyak, Stable systolic category of manifolds and the cup-length, J. Fixed Point

Theory Appl. 6 (2009), 165–177.

[4] H Federer, Geometric measure theory, Grundlehren der mathematischen Wissenschaften, Springer, 1969.

[5] , Real flat chains, cochain and variational problems, Indiana Univ. Math. J. 24 (1974), no. 4, 351–

407.

[6] H Federer and W H Fleming, Normal and integral currents, Ann. Math. 72 (1960), no. 3, 458–520.

[7] M Gromov, Filling riemannian manifolds, J. Differential Geom. 18 (1983), 1–147.

[8] M G Katz and Y B Rudyak, Lusternik-schnirelmann category and systolic category of low dimensional mani-

folds, Comm. Pure Appl. Math 59 (2006), 1433–1456.

[9] , Bounding volume by systoles of 3-manifolds, J. London Math. Soc. 78 (2008), no. 2, 407–417.

[10] J P Serre, Homologie singulière des espaces fibrés, Ann. Math. 54 (1951), no. 3, 425–505.

[11] B White, Rectifiability of flat chains, Ann. Math. 150 (1999), no. 1, 165–184.

[12] H Whitney, Geometric integration theory, Annals of Mathematics Studies, Princeton University Press, 1957.


	Introduction
	Acknowledgements
	Table of Contents
	1 Stable systolic category
	2 Preliminaries on stable systoles
	3 Calculation by dimension and constructing metrics
	4 Invariance under rational equivalences
	References

