Wide Feature Dielectric Planarization using MnO2 Slurry

Kishii, Sadahiro
Fujitsu Laboratories Limited

Nakamura, Ko
Fujitsu Laboratories Limited

Ohishi, Akiyoshi
Fujitsu Laboratories Limited

Okui, Yoshiko
Fujitsu Laboratories Limited

他

https://hdl.handle.net/2324/21661

出版情報：Technical Digest : 1996 Symposium on VLSI Technology, pp.74-75, 1996.06. JSAP
バージョン：
権利関係：(c) IEEE.
Wide Feature Dielectric Planarization using MnO$_2$ Slurry

Fujitsu Laboratories Limited
10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan

Introduction
Chemical Mechanical Polishing (CMP) is investigated or used for the dielectric planarization and tungsten plug formation. In our prior work, we formed a tungsten plug using the newly developed MnO$_2$ slurry [1]. In this study, we tried to planarize a dielectric (SiO$_2$) with MnO$_2$ slurry for the first time. For dielectric planarization, wide feature planarization and minimal lower level dielectric removal is essential and colloidal silica slurry is widely used [2]. We found that MnO$_2$ slurry can planarize wide feature (2 mm x 2 mm) steps to a smaller height than the conventional slurry, while incurring less lower level dielectric removal.

Experiment
For both MnO$_2$ slurry and the conventional colloidal silica slurry, we examined polishing rates and the planarization ability. Figure 1 shows the polishing conditions. The speed of the head rotation is the same with that of the turntable throughout the experiments. We varied the polishing pressure from 0.21 kg/cm2 to 0.84 kg/cm2 and the rotation speed from 20 to 100 rpm. The average abrasive particle size of MnO$_2$ was about 0.1 urn. The MnO$_2$ solid concentration was 7 wt%.

We formed a 0.5 um thick SiO$_2$ film on the six inch Si wafer by wet oxidation (Figure 2) and polished to characterize the polishing rate. Figure 3 shows a schematic cross-section of the test structure used to characterize the planarization ability. The SiO$_2$ film is formed using TEOS. Each region is 2 mm square and the initial step height is 0.8 um. We measured the remaining thickness of the high (TH) and the low (TL) and calculated the step height (=TH - TL).

Results and Discussion
We examined the pressure dependence of the polishing rate with MnO$_2$ slurry and the conventional slurry which is widely used. Figure 4 shows that MnO$_2$ has higher polishing rate at below 0.7 kg/cm2 than the conventional slurry.

We examined the rotation speed dependence of the polishing rate at pressures
0.56 kg/ cm² and 0.21 kg/ cm², respectively. At 0.56 kg/ cm², the polishing rate of both slurries increased for higher rotation speeds (Figure 5). At 0.21 kg/ cm², the polishing rate of MnO₂ slurry increased for higher rotation speeds, whereas the polishing rate of the conventional slurry did not (Figure 6).

At a pressure of 0.21 kg/ cm², MnO₂ slurry planarizes a 2 mm x 2 mm region step to a height of less than 0.1 um after 5 minutes of polishing. The conventional slurry planarizes the step to a height of over 0.35 um after 12 minutes of polishing. This is because the conventional slurry cannot achieve a sufficient removal rate at 0.21 kg/ cm² pressure (Figure 7). Despite the lower pressure, the upper level is more selectively removed [3], the conventional slurry cannot be used appropriately at 0.21 kg/ cm².

Therefore, we planarized the step at 0.21 kg/ cm² with MnO₂ and 0.56 kg/ cm² with the conventional slurry. We controlled the rotation speed to get the same polishing rate (120 nm/min). Figure 8 shows that the step height decreases and the lower level oxide removal increases as the polishing time increases. However, MnO₂ slurry reduces the step height faster and the final step height is less than the conventional slurry. To clarify the planarization efficiency, we plotted the relationship between the step height and the lower level oxide removal of both slurries (Figure 9). MnO₂ slurry can reduce the step height with less lower level oxide removal. Moreover, it can achieve a smaller height.

Figure 10 shows an SEM image of the planarized dielectric after MnO₂ polish applied to interconnect pattern. A completely planarized surface is achieved. We also developed the cleaning method for post MnO₂ polish (Figure 11). We can get the same level of cleanness with the reference by adding the HCl+H₂O₂+ H₂O (1:1:48) solution (at RT) supply before scrubbing.

Conclusion

We used the MnO₂ slurry for the dielectric planarization. We found that MnO₂ slurry has an ample removal rate at a low polishing pressure, whereas the conventional slurry does not. Therefore, the MnO₂ slurry can planarize dielectric more completely, with less lower level removal than the conventional slurry.

Acknowledgements

The authors would like to thank N. Ueda, K. Hanawa, H. Hone, N. Sasaki, T. Itoh, and H. Kaneta for their support during this work.

References
Fig. 1. Polishing conditions.

Fig. 2. Polishing rate measurement test structure.

Fig. 3. Planarization ability test structure and measured spots.

Fig. 4. Effect of pressure on polishing rate. The rotation speed is 40 rpm for MnO₂ and conventional slurries.

Fig. 5. Effect of rotation speed on polishing rate at pressure 0.56 kg/cm².

Fig. 6. Effect of rotation speed on polishing rate at pressure 0.21 kg/cm².

Fig. 7. Planarization trial at pressure 0.21 kg/cm² with MnO₂ and conventional slurries. The rotation speed is 40 rpm.

Fig. 8. Planarization ability comparison between MnO₂ and conventional slurry at the same polishing rate. The pressure is 0.21 kg/cm² and 0.56 kg/cm² with MnO₂ and conventional respectively.

Fig. 9. Planarization efficiency comparison between MnO₂ and conventional slurry at the same polishing rate.

Fig. 10. Cross-sectional view of dielectric after CMP with MnO₂.

Fig. 11. Cleaning method improvement.