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Abstract

This paper is concerned with a multivariate growth curve model for observa-
tions obtained by simultaneously measuring m response variables at each of p time
points, on samples from multiple groups. The objective is to develop a test for
determining whether the m2 = m − m1 response variables carry no additional
information (are redundant) for a comparison between the groups, given the pres-
ence of the first m1 response variables. We obtain some equivalent hypotheses for
redundancy by extending the technique of Rao (1970). The likelihood ratio (LR)
test is discussed. However, because its null distribution is complicated, we propose
a more practical approximate test using a conditional LR criterion.

Key Words and Phrases: Additional information, Comparison between groups, Multivariate

growth curve model, Likelihood ratio test.

1. Introduction

Many phenomena are described by multiple characteristic values. In clinical trials,
target diseases are often characterized by numerous primary variables (or primary end-
points) and symptomatic states. For example, if we conduct a clinical trial involving
migraines, we will be assessing four primary variables (Walter et al. (2007)). In addi-
tion, multiple time points of longitudinal data must be analyzed in clinical trials that
evaluate changes in the effects of treatment of a chronic disease over time.

In recent years, many trials have conducted using multiple primary variables (or
multiple endpoints), without attempting to reduce the number of variables. The usual
analysis procedures in this situation are O’Brien’s procedure (O’Brien (1984)) and the
closed testing procedure (Marcus et al. (1967)).

On the other hand, the guideline presented in Statistical Principles for Clinical
Trials (1998), developed by the International Conference on Harmonisation (ICH), states
that it is generally preferable to have only one primary variable. If we follow this
guideline, we must strive to reduce the number of variables in clinical trials planned
for multiple primary variables, and it is important to devise a statistical method for
accomplishing this.

This paper is concerned with a multivariate growth curve model for observations
obtained by simultaneously measuring m response variables at each of p time points, on
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samples from multiple groups. The objective is to develop a test for determining whether
the m − m1 response variables carry no additional information (are redundant) for a
comparison between the groups, given the presence of the first m1 response variables.

In Section 2, we explain the multivariate growth curve model, together with some
notations used in this paper, and discuss the maximum likelihood estimators for the
multivariate growth curve model, as well as the likelihood ratio (LR) criterion for the
general linear hypothesis. In Section 3, we discuss some equivalent hypotheses for re-
dundancy in the case of two response variables and then derive a LR criterion. However,
since the null distribution is complicated, we present a more practical approximate test
for the hypothesis of redundancy. Then, we extend these results to the case of multiple
response variables. A numerical example is given to illustrate the procedure

2. Multivariate Growth Curve Model

2.1. Model

In this section, we discuss the maximum likelihood estimators for the multivariate
growth curve model, as well as the likelihood ratio (LR) criterion for the general linear
hypothesis. The results are well known that a theory of the LR test and maximum
likelihood estimator is essentially the same as that in a univariate growth curve model.
However, we state these derivations together with some notations used in this paper as
preliminaries for subsequent section.

Let y
(i)
ℓjk denote the ℓth response measurement at time tk on the jth subject from

the ith group, for i = 1, . . . , g + 1, j = 1, · · · , Ni, k = 1, . . . , p and ℓ = 1, . . . ,m.

Let y
(i)
j = (y

(i)
1j1, . . . , y

(i)
1jp , . . . , y

(i)
mj1, . . . , y

(i)
mjp)

′ denote the vector of observations on the

jth subject from the ith group. We assume that the y
(i)
j are independent and have a

multivariate normal distribution with means and covariances given by

E[y
(i)
j ] = Xmθ(i) : mp× 1, V ar[y

(i)
j ] = Σ : mp×mp, (2.1)

where Xm = (Im⊗X), X is a p×q within-subject design matrix with rank(X) = q ≤ p,

θ(i) is anmq×1 parameter vector on the ith group, and ⊗ is the Kronecker product. The
covariance matrix Σ is assumed to be unknown but positive definite. Similarly, let Y =

[y
(1)
1 , · · · ,y(1)

N1
, . . . ,y

(g+1)
1 , · · · ,y(g+1)

N(g+1)
]′ denote the N ×pm matrices of all observations,

where N is the total sample size (i.e., N =
∑g+1

i=1 Ni). Then, the distribution of Y is
normal with

E[Y ] = AΘ′X ′
m, V ar[Y ] = Σ⊗ IN , (2.2)

where A is an N × (g + 1) between-subject design matrix, Θ = [θ(1), · · · ,θ(g+1)] is
an mq × (g + 1) parameter matrix, and V ar[Y ] is the covariance matrix for the vector
obtained from Y by using the vec(·) operator. Hence, V ar[Y ] = V ar[vec(Y )].

The model (2.2) is called a multivariate growth curve model (See, for example,
Kshirsagar and Smith (1995), Nummi and Möttönen (2000)). In this model, the mean
has the same form for each group. (For instance, it might be a polynomial of degree
q − 1 for each group.)
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2.2. Maximum Likelihood Estimators

In this section, we discuss some maximum likelihood estimators for a multivariate
growth curve model. In order to simplify the model, we consider a transformation defined
by

Z = [z
(1)
1 , · · · , z(1)

N1
, . . . , z

(g+1)
1 , · · · , z(g+1)

N(g+1)
]′

= [Y (Im ⊗Q1), Y (Im ⊗Q2)] = (U, V ),

where Q = (Q1, Q2) is any p× p nonsingular matrix such that Q1 = X(X ′X)−1 : p× q,
Q′

2X = O : p× (p− q), and Q′
2Q2 = Ip−q (see, Siotani et al. (1985)). Then,

E[Z] = (AΘ′, O), V ar[Z] = Ψ⊗ IN . (2.3)

By (2.1), the entries in each row of Z are independent and have a multivariate normal
distribution with

E[z
(i)
j ] = µ(i) =

(
θ(i)

0

)
: mp× 1, (2.4)

V ar[z
(i)
j ] = Ψ =

(
Ψuu Ψuv

Ψvu Ψvv

)
, Ψuv : mq ×m(p− q). (2.5)

This transformation may be regarded as a representation of y as an mp-dimensional
random variable y = (y11, . . . , y1p, . . . , ym1, . . . , ymp)

′, which is decomposed into an mq-
dimensional main random variable u = (u11, . . . , u1q, . . . , um1, . . . , umq)

′ and an m(p −
q)-dimensional covariate random variable v = (v11, . . . , v1(p−q), . . . , vm1, . . . , vm(p−q))

′.
Moreover, the covariate v is independent of the mean parameters. From (2.4) and
(2.5) , the conditional distribution of U given V and the marginal distribution of V are
multivariate normal with means and covariances given by

E[U |V ] = A∗Ξ′, V ar[U |V ] = Ψuu·v ⊗ IN , (2.6)

E[V ] = O, V ar[V ] = Ψvv ⊗ IN , (2.7)

where

A∗ = (A, V ), Ξ = (Θ,Γ), Γ = ΨuvΨ
−1
vv ,

Ψuu·v = Ψuu −ΨuvΨ
−1
vv Ψvu.

The conditional model of U given V is a multivariate linear model. The maximum likeli-
hood estimator for the multivariate growth curve model is then obtained by applying the
maximum likelihood estimator for the multivariate linear model to the model specified
by (2.6) and (2.7).

Ξ̂
′
= (A∗′A∗)−1A∗′U, NΨ̂uu·v = U ′(IN −A∗(A∗′A∗)−1A∗′)U, (2.8)

NΨ̂vv = V ′V. (2.9)

Let

nS = Y ′(IN −A(A′A)−1A′)Y, (2.10)
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where n = N−(g+1). Then, nS has the Wishart distribution with n degrees of freedom.
By the same derivation used to obtain the maximum likelihood estimator for a univariate
growth curve model, the maximum likelihood estimator of Θ′ can be expressed as

Θ̂
′

= (A′A)−1A′Y S−1Xm(X ′
mS−1Xm)−1. (2.11)

Similarly, the maximum likelihood estimator of Ψuu·v is given by

NΨ̂uu·v = (X ′
mS−1Xm)−1. (2.12)

2.3. Likelihood Ratio Tests

We now turn our attention to the problem of testing the linear hypothesis

H0 : CΘ′ = O,

where C is a known c × (g + 1) matrix with rank(C) = c(≤ g + 1). Because all the
information about Θ is contained in U , and the covariate V = (V1, V2) depends on the
hypothesis through the covariance matrix, we can start with the conditional model (2.6),
and the hypothesis is then expressed as

H0 : C∗Ξ′ = O, (2.13)

where C∗ = (C,O) : c × {g + m(p − q) + 1}. Let B, W and T = W + B be the
matrices containing the sums of squares and products of transformed between-group
observations, transformed within-group observations, and the total of the transformed

observation vectors z
(i)
j , respectively. Hence

B =

g+1∑
i=1

Ni(z̄
(i) − z̄)(z̄(i) − z̄)′, W =

g+1∑
i=1

Ni∑
j=1

(z
(i)
j − z̄(i))(z

(i)
j − z̄(i))′, (2.14)

where z̄(i) = (1/Ni)
∑Ni

j=1 z
(i)
j and z̄ = (1/N)

∑g+1
i=1 Niz̄

(i). We partition B,W , and T
in the same manner as Ψ:

B =

(
Buu Buv

Bvu Bvv

)
, W =

(
Wuu Wuv

Wvu Wvv

)
, T =

(
Tuu Tuv

Tvu Tvv

)
.

Then, in the conditional model (2.6), the LR criterion for the hypothesis of equality of

the vectors of growth curve coefficients for the g + 1 groups (i.e., θ(1) = · · · = θ(g+1)) is
given by

Λ0 =
|Wuu·v|
|Tuu·v|

,

where

Wuu·v = Wuu −WuvW
−1
vv Wvu, Tuu·v = Tuu − TuvT

−1
vv Tvu.

The LR criterion is obtained by reducing the conditional model (2.6) to a conditional
multivariate analysis of variance (MANOVA) model. When the hypothesis is true, the
statistic Λ0 has a Wilks lambda distribution Λmq,g,n−m(p−q).
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The hypothesis of equality is thus equivalent to the linear hypothesis in which the
first g columns of C constitute an g × g identity matrix, and all the entries of the last
column are −1, i.e. c = g and

C = (Ig,−1g) =


1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1

 .

Then, the LR criterion for the linear hypothesis is the same as Λ0 (see, Kshirsagar and
Smith (1995), Tamhane (2009)).

The LR criterion for the general linear hypothesis (2.13) is obtained by the usual
procedure for multivariate linear models:

Λ = λ2/n =
|Se|

|Se + Sh|
, (2.15)

where

Se = U ′(IN −A∗(A∗′A∗)−1A∗′)U, Sh = (C∗Ξ̂
′
)′{C∗(A∗′A∗)−1C∗′}−1(C∗Ξ̂

′
),

are the matrices containing the respective sums of squares and products due to error and
hypothesis (2.13) (see, Siotani et al. (1985)). Using maximum likelihood estimators, we
can express these statistics as

Se = (X ′
mS−1Xm)−1, (2.16)

Sh = (CΘ̂
′
)′(CRC ′)−1(CΘ̂

′
), (2.17)

where

R = (A′A)−1 + (A′A)−1A′Y S−1

×{S −Xm(X ′
mS−1Xm)−1X ′

m}S−1Y ′A(A′A)−1.

When the hypothesis (2.13) is true, the statistic (2.15) has a Wilks lambda distribution
Λmq,c,n−m(p−q), and the limiting null distribution of the following statistic corrected by
a Bartlett factor:

−
{
n−m(p− q)− 1

2
(mq − c+ 1)

}
log Λ (2.18)

is a chi-squared distribution with cmq degrees of freedom (See, for example, Timm
(2002)). The above results are summarized in the following well-known theorem, which
will be used in the next section.

Theorem 2.1. The LR criterion for the linear hypothesis (2.13) in the multivariate
growth curve model is given by (2.15), where Se, Sh are defined by (2.16) and (2.17). If
the hypothesis is true, the statistic (2.15) has a Wilks lambda distribution Λqm,c,n−m(p−q),
and the limiting null distribution of (2.18) is a chi-squared distribution with cqm degrees
of freedom.
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3. Tests for Redundancy

3.1. Redundancy in the case of two response variables

In this subsection, we consider the case m = 2, and formulate the redundancy of
y2 in the presence of y1.

We partition the observations y
(i)
j as

y
(i)
j =

(
y
(i)
1j

y
(i)
2j

)
, i = 1, . . . , g + 1; j = 1, . . . , Ni,

and θ(i) and Σ in the same manner as y
(i)
j :

θ(i) =

(
θ
(i)
1

θ
(i)
2

)
, i = 1, . . . , g + 1, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, Σij : p× p, (i, j = 1, 2),

where θ
(i)
ℓ is a q × 1 parameter vector for the ℓth response variable of the ith group.

Following the technique of Rao (1970), we define the redundancy of y2 in the presence
of y1 for the multivariate growth curve model by

Xθ
(1)
2 − Σ21Σ

−1
11 Xθ

(1)
1 = · · · = Xθ

(g+1)
2 − Σ21Σ

−1
11 Xθ

(g+1)
1 . (3.1)

This formulation is equivalent to the conditional mean of y2 = (y21, · · · , y2p)′ given
y1 = (y11, · · · , y1p)′ are the same for all the groups.

We will now rewrite the hypothesis of redundancy in terms of the transformed
random variables z2 in the presence of z1 and prove that it is equivalent to hypothesis

(3.1). We partition z
(i)
j as

z
(i)
j =


Q′

1y
(i)
1j

Q′
1y

(i)
2j

Q′
2y

(i)
1j

Q′
2y

(i)
2j

 =


u
(i)
1j

u
(i)
2j

v
(i)
1j

v
(i)
2j

 , i = 1, . . . , g + 1; j = 1, . . . , Ni

and µ(i) and Ψ in the same manner as z
(i)
j :

µ(i) =


θ
(i)
1

θ
(i)
2

0
0

 , i = 1, . . . , g + 1, Ψ =


Ψ11 Ψ12 Ψ13 Ψ14

Ψ21 Ψ22 Ψ23 Ψ24

Ψ31 Ψ32 Ψ33 Ψ34

Ψ41 Ψ42 Ψ43 Ψ44

 .

Let z1 = (u′
1,v

′
1)

′ and z2 = (u′
2,v

′
2)

′. Then, we can write the hypothesis for the
redundancy of z2 in the presence of z1 as

H : µ
(1)
2 −Ψ(24)(13)Ψ

−1
(13)(13)µ

(1)
1 = · · · = µ

(g+1)
2 −Ψ(24)(13)Ψ

−1
(13)(13)µ

(g+1)
1 ,(3.2)

where

µ
(1)
1 =

(
θ
(i)
1

0

)
, µ

(1)
2 =

(
θ
(i)
2

0

)
, i = 1, . . . , g + 1,

Ψ(24)(13) =

(
Ψ21 Ψ23

Ψ41 Ψ43

)
, Ψ(13)(13) =

(
Ψ11 Ψ13

Ψ31 Ψ33

)
.
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This hypothesis can be expressed as

Q′(Xθ
(1)
2 − Σ21Σ

−1
11 Xθ

(1)
1 ) = · · · = Q′(Xθ

(g+1)
2 − Σ21Σ

−1
11 Xθ

(g+1)
1 ).

The derivation from the hypothesis (3.2) to the above expression can be provided by
using the following transformation,

Ψ(24)(13)Ψ
−1
(13)(13)µ

(i)
1 =

(
Ψ21·3
Ψ41·3

)
Ψ−1

11·3θ
(i)
1 , i = 1, . . . , g + 1

and

Ψ−1
11·3 = X ′Σ−1

11 X,

(
Ψ21·3
Ψ41·3

)
= Q′Σ21Σ

−1
11 X(X ′Σ−1

11 X)−1,

µ
(i)
2 = Q′Xθ

(i)
2 , i = 1, . . . , g + 1.

Because the matrix Q is a nonsingular matrix, the hypothesis (3.1) is equivalent to the
hypothesis (3.2) after the transformation (2.3). Hence we can consider the redundancy
of the subset of main variables (u′

1,u
′
2)

′ and covariates (v′
1,v

′
2)

′ as being the same as
the redundancy of y2.

Fujikoshi and Khatri (1990) discussed the redundancy of the subset of main vari-
ables and covariates in covariate discriminant analysis with multiple groups. We extend
their results to ones of redundancy in the multivariate growth curve model. Specifically,
they showed that the hypothesis of redundancy (3.2) can be decomposed into

H1 : θ
(1)
2 −Ψ21·34Ψ

−1
11·34θ

(1)
1 = · · · = θ

(g+1)
2 −Ψ21·34Ψ

−1
11·34θ

(g+1)
1 , (3.3)

H2 : Ψ41·3Ψ
−1
11·3θ

(1)
1 = · · · = Ψ41·3Ψ

−1
11·3θ

(g+1)
1 , (3.4)

where

Ψ21·34 = Ψ21 −Ψ2(34)Ψ
−1
(34)(34)Ψ(34)1, Ψ11·34 = Ψ11 −Ψ1(34)Ψ

−1
(34)(34)Ψ(34)1,

Ψ41·3 = Ψ41 −Ψ43Ψ
−1
33 Ψ31, Ψ11·3 = Ψ11 −Ψ13Ψ

−1
33 Ψ31.

The hypotheses (3.3) and (3.4), which are equivalent to the hypothesis (3.2) is equivalent
to

θ
(1)
2 −Ψ21·3Ψ

−1
11·3θ

(1)
1 = · · · = θ

(g+1)
2 −Ψ21·3Ψ

−1
11·3θ

(g+1)
1 (3.5)

and

Ψ41·3Ψ
−1
11·3θ

(1)
1 = · · · = Ψ41·3Ψ

−1
11·3θ

(g+1)
1 . (3.6)

The equivalence of the set of (3.3) and (3.4) and the set of (3.5) and (3.6) is proved by
using

Ψ21·34 = Ψ21·3 −Ψ24·3Ψ
−1
44·3Ψ41·3,

and the following result (See, for example Schott (2005)):

Ψ−1
11·34 = Ψ−1

11·3 +Ψ−1
11·3Ψ14·3(Ψ44·3 −Ψ41·3Ψ

−1
11·3Ψ14·3)

−1Ψ41·3Ψ
−1
11·3.
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3.2. Likelihood ratio test for H1

We partition Y,Θ, and S in the same manner as y
(i)
j :

Y = (Y1, Y2), Θ =

(
Θ1

Θ2

)
, S =

(
S11 S12

S21 S22

)
.

Likewise, Z is partitioned in the same manner as z
(i)
j :

Z = (Y1Q1, Y2Q1, Y1Q2, Y2Q2) = (U1, U2, V1, V2).

The LR test for the hypothesis (3.3) is provided by the conditional distribution of U2

given (U1, V ), and this is obtained from the conditional distribution of U given V

U2|(U1, V ) ∼ N(A1Ξ
′
1,Ψ22·134 ⊗ IN ), (3.7)

where

U = (U1, U2), V = (V1, V2), A1 = (A,U1, V ), Ξ1 = (Θ2·1,Γ1,Γ2),

Θ2·1 = Θ2 − Γ1Θ1, Γ1 = Ψ21·34Ψ
−1
11·34, Γ2 = Ψ2(34)Ψ

−1
(34)(34) − Γ1Ψ1(34)Ψ

−1
(34)(34),

Ψ22·(134) = Ψ22 −Ψ2(134)Ψ
−1
(134)(134)Ψ(134)2.

In this way, we obtained the LR criterion for the hypothesis of equality of the parameters

θ
(i)
2·1(i = 1, . . . , g + 1) for the g + 1 groups, where θ

(i)
2·1 is the ith column vector of Θ2·1,

i.e., Θ2·1 = (θ
(1)
2·1, · · · ,θ

(g+1)
2·1 ). We partition B and W , defined by (2.14), in the same

manner as Ψ:

B =


B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

 , W =


W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44

 .

Because the test of (3.3) under a conditional model of U2 given (U1, V ) is the test
for a hypothesis of equality of mean parameters in a multivariate linear model, we obtain
the LR criterion λ1 given by

Λ1 = λ
2/n
1 =

|W22·134|
|T22·134|

, (3.8)

where

W22·134 = W22 −W2(134)W
−1
(134)(134)W(134)2,

W(134)(134) =

 W11 W13 W14

W31 W33 W34

W41 W43 W44

 , etc.

Because (3.7) is the conditional MANOVA model, hypothesis (3.3) can be expressed as
the linear hypothesis

H1 : C1Ξ
′
1 = O, (3.9)
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where C1 = (C,O,O) : g× (g+2p− q+1), C = (Ig,−1g) and 1g is a g× 1 vector, all of
whose components are 1. From Theorem 2.1, the LR criterion for the linear hypothesis
(3.9) is expressed as

Λ1 = λ
2/n
1 =

|Se1|
|Se1 + Sh1|

, (3.10)

where

Se1 = U ′
2(IN −A1(A

′
1A1)

−1A′
1)U2,

Sh1 = (C1Ξ̂
′
1)

′{C1(A
′
1A1)

−1C ′
1}−1(C1Ξ̂

′
1).

To obtain the LR criterion using maximum likelihood estimators, we refer to the
following Lemma (see, Siotani et al. (1985)):

Lemma 3.1. Let G1 : p × q and G2 : p × (p − q) have the respective ranks q and
(p− q), and let G′

2G1 = O. Then, if S is a symmetric positive definite matrix,

S−1 − S−1G1(G
′
1S

−1G1)
−1G′

1S
−1 = G2(G

′
2SG2)

−1G′
2.

We first express A1(A
′
1A1)

−1A′
1 and (A′

1A1)
−1 as the matrix A and the complete covari-

ate (U1, V ), respectively. Then we decompose the partitioned matrix of U1 and V and
apply Lemma 3.1 to it. Finally, Se1 and Sh1 are written in terms of maximum likelihood
estimators as

Se1 = (X ′S−1
22·1X)−1, (3.11)

Sh1 = {C(Θ̂2 − Γ̂1Θ̂1)
′}′(CR1C

′)−1{C(Θ̂2 − Γ̂1Θ̂1)
′}, (3.12)

where (3.11) and (3.12) are the matrices containing the respective sums of squares and
products due to error and hypothesis for (3.9), and

Γ̂1 = (X ′S−1
22·1X)−1X ′S−1

22·1S21S
−1
11 X,

R1 = R+ (A′A)−1A′Y S−1X2

×
(

S∗
11 S∗

12

S∗
21 S∗

21S
∗−1
11 S∗

12

)
X ′

2S
−1Y ′A(A′A)−1,

R = (A′A)−1 + (A′A)−1A′Y S−1

×{S −X2(X
′
2S

−1X2)
−1X ′

2}S−1Y ′A(A′A)−1.

Here X2 = (I2 ⊗X) and

S∗ = (X ′
2S

−1X2)
−1 =

(
S∗
11 S∗

12

S∗
21 S∗

22

)
, S∗

ij : q × q, (i, j = 1, 2).

The null distribution of the LR criterion (3.10) is a Wilks lambda distribution
Λq,g,n−2p+q, which is independent of (U1, V1, V2), and the limiting null distribution of
the statistic corrected by a Bartlett factor:

−
{
n− 2p+ q − 1

2
(q − g + 1)

}
log Λ1

is a chi-squared distribution with gq degrees of freedom.
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3.3. Likelihood ratio test for H2

We consider the conditional distribution of (U1, V2) given V1. If the parameters
are unrestricted, we can obtain maximum likelihood by using the conditional density
expressed as the product of the conditional density of U1 given V and the conditional
density of V2 given V1. On the other hand, when the hypothesis (3.4) is true, we use the
expression given by

f(V2|(U1, V1))f(U1|V1) = (2π)pN/2|Ψ44·13|−N/2 (3.13)

×etr

{
−1

2
Ψ−1

44·13

[
V2 − (B1,B2)

(
U1

V1

)]′
×
[
V2 − (B1,B2)

(
U1

V1

)]}
×|Ψ11·3|−N/2etr

{
−1

2
Ψ−1

11·3
[
U1 −AΘ1 −Ψ13Ψ

−1
33 V1

]′
×
[
U1 −AΘ1 −Ψ13Ψ

−1
33 V1

]}
,

where B1 = Ψ41·3Ψ
−1
11·3,B2 = Ψ43Ψ

−1
33 − B1Ψ13Ψ

−1
33 . Using Fujikoshi and Khatri (1990),

the conditional LR test for (3.13) is based on

Λ(2) =
|W11·34||T44·3|

|W11·3||T44·3|
∏q

i=q−r+1 fi
=

∏q
i=1(1− ρ2i )∏q
i=q−r+1 fi

, (3.14)

where r = rank(Ψ41·3Ψ
−1
11·3), f1 ≥ · · · ≥ fq−r > 1 > fq−r+1 ≥ · · · ≥ fq > 0 are the eigen-

values of T11·34W
−1
11·3 and ρ21 ≥ · · · ≥ ρ2q are the eigenvalues of W14·3W

−1
44·3W41·3W

−1
11·3.

Because the null distribution of Λ(2) is complicated, we turn to an approximate test.
For the sake of practicality, we consider the test for the redundancy of v2 in the

presence of u1 and v1 only. We begin with the conditional distribution of V2 given
(U1, V1),

V2|(U1, V1) ∼ N(A2Ξ
′
2,Ψ44·13 ⊗ IN ), (3.15)

where

A2 = (A,U1, V1), Ξ2 = (−Θ∗
1,B1,B2), Θ∗

1 = B1Θ1,

Ψ44·13 = Ψ44 −Ψ4(13)Ψ
−1
(13)(13)Ψ(13)4.

Thus, we consider the problem of testing of the hypothesis of equality of the parameters

θ
∗(i)
1 (i = 1, . . . , g+1) for the g+1 groups, where Θ∗

1 = (θ
∗(1)
1 , · · · ,θ∗(g+1)

1 ). We assume
that the dimensions of the parameter Θ1 are not reduced by multiplying by the matrix
B1. Then, the conditional LR criterion can be written as

Λ2 = λ
2/n
2 =

|W44·13|
|T44·13|

instead of (3.14), where

W44·13 = W44 −W4(13)W
−1
(13)(13)W(13)4,

W(13)(13) =

(
W11 W13

W31 W33

)
, etc.
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Because (3.15) is the conditional MANOVA model, hypothesis (3.4) can be expressed as
the linear hypothesis

H2 : C2Ξ
′
2 = O, (3.16)

where C2 = (C,O,O) : g × (g + p+ 1) and C is the same as in the previous section. By
Theorem 2.1, the LR criterion for the linear hypothesis (3.16) is expressed as

Λ2 = λ
2/n
2 =

|Se2|
|Se2 + Sh2|

, (3.17)

where

Se2 = V ′
2(IN −A2(A

′
2A2)

−1A′
2)V2,

Sh2 = (C2Ξ̂
′
2)

′{C2(A
′
2A2)

−1C ′
2}−1(C2Ξ̂

′
2).

By again applying Lemma 3.1, with A2(A
′
2A2)

−1A′
2 and (A′

2A2)
−1 expressed as the

matrix A and the covariate V , respectively, Se2 and Sh2 can be written in terms of
maximum likelihood estimators as

Se2 = Q′
2S22·1Q2, (3.18)

Sh2 = {C(B̂1Θ̂1)
′}′(CR2C

′)−1{C(B̂1Θ̂1)
′}, (3.19)

where (3.18) and (3.19) are the matrices containing the respective sums of squares and
products due to error and hypothesis (3.16). Moreover,

B̂1 = Q′
2S21S

−1
11 X,

R2 = (A′A)−1 + (A′A)−1A′Y1S
−1
11 Y ′

1A(A
′A)−1.

By Theorem 2.1, the null distribution of the LR criterion (3.17) is a Wilks lambda
distribution Λp−q,g,n−p, and the limiting null distribution of the statistic corrected by a
Bartlett factor:

−
{
n− p− 1

2
(p− q − g + 1)

}
log Λ2

is a chi-squared distribution with g(p− q) degrees of freedom.
The joint density of (U1, U2, V1, V2) can be partitioned as follows:

f(U1, U2, V1, V2) = f(U2|U1, V1, V2) · f(V2|U1, V1) · f(U1, V1).

Two statistics Λ1 and Λ2 are derived from the conditional density of U2 given (U1, V1, V2)
and the conditional density of V2 given (U1, V1), respectively. We propose Λ1 · Λ2 for
testing (3.3) and (3.4) as an approximate LR test. We note that Λ1 ·Λ2 is not an exact
LR test, since the marginal of U1 does depend on the hypothesis. The approximate test
for (3.2) can thus be written in closed form. From a result concerning the distribution
of a product of independent Lambda distributions (found in Siotani et al. (1985)), the
distribution of

Λ∗ = −gp

(
2∑

i=1

αiβi

γi + (1/2)(βi − αi − 1)

)−1

log
2∏

i=1

Λi (3.20)
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is asymptotically a chi-squared distribution with gp degrees of freedom, where

α1 = q, β1 = g, γ1 = n− 2p+ q,
α2 = p− q, β2 = g, γ2 = n− p.

3.4. Redundancy in the case of multiple response variables

In this subsection, we extend the results of the previous subsections to the case
of multiple response variables. We partition y into the first m1 response variables
y1 and the m2 = m − m1 remaining response variables y2. We also partition the
other parameters in accordance with the number of response variables of y1,y2. Then,
the hypothesis for the redundancy of the remaining m2 = m − m1 response variables
can be formulated in much the same way as in Subsection 3.1. Let C1 = (C,O,O) :
g × (g +mp−m2q + 1) and C2 = (C,O,O) : g × (g +m1p+ 1).

We recalculate the statistics (3.11) and (3.12) of hypothesis (3.9), and obtain

Se1 = (X ′
m2

S−1
22·1Xm2)

−1, (3.21)

Sh1 = {C(Θ̂2 − Γ̂1Θ̂1)
′}′(CR1C

′)−1{C(Θ̂2 − Γ̂1Θ̂1)
′}, (3.22)

where Xm1 = (Im1 ⊗X), Xm2 = (Im2 ⊗X),

Γ̂1 = (X ′
m2

S−1
22·1Xm2)

−1X ′
m2

S−1
22·1S21S

−1
11 Xm1 ,

R1 = R+ (A′A)−1A′Y S−1Xm

×
(

S∗
11 S∗

12

S∗
21 S∗

21S
∗−1
11 S∗

12

)
X ′

mS−1Y ′A(A′A)−1,

R = (A′A)−1 + (A′A)−1A′Y S−1

×{S −Xm(X ′
mS−1Xm)−1X ′

m}S−1Y ′A(A′A)−1,

where Xm = (Im ⊗X).
The null distribution of the LR criterion is a Wilks lambda distribution

Λm2q,g,n−mp+m2q,

and the limiting null distribution of the statistic corrected by a Bartlett factor:

−
{
n−mp+m2q −

1

2
(m2q − g + 1)

}
log Λ1

is a chi-squared distribution with gm2q degrees of freedom, where n = N − (g + 1).
Equivalently, we recalculate the statistics (3.18) and (3.19) of hypothesis (3.16) for

an approximate test, and we this time get

Se2 = (Im2 ⊗Q′
2)S22·1(Im2 ⊗Q2), (3.23)

Sh2 = {C(B̂1Θ̂1)
′}′(CR2C

′)−1{C(B̂1Θ̂1)
′}, (3.24)

where

B̂1 = (Im2 ⊗Q′
2)S21S

−1
11 Xm1 ,

R2 = (A′A)−1 + (A′A)−1A′Y1S
−1
11 Y ′

1A(A
′A)−1,
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The null distribution of the LR criterion (3.17) is a Wilks lambda distribution
Λm2(p−q),g,n−m1p, and the limiting null distribution of the statistic corrected by a Bartlett
factor:

−
[
n−m1p−

1

2
{m2(p− q)− g + 1}

]
log Λ2

is a chi-squared distribution with gm2(p− q) degrees of freedom.

Using the aforementioned result for the distribution of a product of independent
Lambda distributions, the distribution of

Λ∗ = −gm2p

(
2∑

i=1

αiβi

γi + (1/2)(βi − αi − 1)

)−1

log
2∏

i=1

Λi (3.25)

is asymptotically a chi-squared distribution with gm2p degrees of freedom, where

α1 = qm2, β1 = g, γ1 = n−mp+m2q,
α2 = m2(p− q), β2 = g, γ2 = n− pm1.

Theorem 3.2. The hypothesis for redundancy in a multivariate growth curve model
is given by (3.1), and this hypothesis is expressed in closed form by (3.3) and (3.4). It is
assumed that the dimensions of the parameter Θ1 are not reduced by multiplying by the
matrix B1. The conditional LR criterion for these hypotheses is given by (3.25). If the
hypothesis is true, the distribution of the statistic (3.25) is asymptotically a chi-squared
distribution with gm2p degrees of freedom.

4. A numerical example

The following data set (used by Timm (1980)), was obtained in a study concerning
the relative effectiveness of two orthopedic adjustments of the mandible. Nine subjects
were assigned to each of two different orthopedic treatments, called activator treatments.
Two variables were used to indicate the size of the mandible.

For this data set, we assume a multivariate growth curve model, in which the time
trend for each group is described by a first-degree polynomial. We are testing whether
the second response variable Y2:[ANS-Me(mm)] carries no additional information (is re-
dundant) for the comparison between the two groups in the presence of the first response
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variable Y1:[Sor-Me(mm)]. The estimates are as follows:

Θ̂
′

=

[
121.4296 1.5203 64.4045 1.0392
126.0568 1.9227 65.9698 1.2001

]
,

S =


48.3160 47.7830 49.1076 28.5087 27.8594 30.6250
47.7830 48.5382 49.6597 28.5313 28.4531 31.4497
49.1076 49.6597 51.1111 29.2135 29.0937 32.2431
28.5087 28.5313 29.2135 20.7569 20.7656 22.3507
27.8594 28.4531 29.0937 20.7656 23.1250 23.2656
30.6250 31.4497 32.2431 22.3507 23.2656 25.0556


Se1 =

[
4.0179 0.1368
0.1368 0.0749

]
, Se2 = 1.0940,

Sh1 =

[
1.2227 0.1850
0.1850 0.0280

]
, Sh2 = 0.01043,

Λ1 = 0.6477, Λ2 = 0.9906,

α1 = 2, β1 = 1, γ1 = 12,
α2 = 1, β2 = 1, γ2 = 13.

Λ∗ = −3

(
2∑

i=1

αiβi

γi + (1/2)(βi − αi − 1)

)−1

log
2∏

i=1

Λi = 5.0854 < χ2
3(0.05)

Hence, the null hypothesis is not rejected at the 5% significance level, and we cannot
say that the second response variable Y2 is not redundant.

5. Conclusion

In this paper, we developed an LR test for redundancy in a comparison between
multiple groups, using a multivariate growth curve model. In order to accomplish this,
we transformed the original variables y to the main variables u and covariates v, and
verified that the hypothesis of the redundancy is independent of this transformation.
Moreover, we presented some equivalent hypotheses and derived their LR criteria. How-
ever, the test statistics has a complicated null distribution. We therefore provided a
conditional LR criterion which is given by a product of the LR criterion when thinking
only about each hypothesis as a more practical approximate test and prove that the
corrected test statistics has a chi-squared distribution.
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