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Abstract

Sato and Kawasaki (Preprint) introduced a class of n-person games called par-
tially monotone games, and showed that any partially monotone game has a pure-
strategy Nash equilibrium. Further, they proved that partial monotonicity is nec-
essary for the existence of a pure-strategy Nash equilibrium in the case of two
persons. In this paper, we present an algorithm for determining whether a two-
person game belongs to the class. Our algorithm requires O(m2n2) time, where m
and n are the number of pure strategies of players 1 and 2, respectively.
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1. Introduction

A Nash equilibrium is one of the most important solution concepts in non-coopera-
tive games. Nash (1950) and Nash (1951) showed that if each player uses a mixed-
strategy, any non-cooperative game has a Nash equilibrium. A pure-strategy Nash
equilibrium, on the other hand, does not always exist. Therefore, some authors dealt
with sufficient conditions for the existence of a pure-strategy Nash equilibrium. The first
result is due to Topkis (1979). He introduced the so-called supermodular games. He
first got monotonicity of the greatest and least element of each player’s best response by
assuming the property of increasing differences for each player’s payoff function. Next,
relying on Tarski’s fixed point theorem, he showed the existence in supermodular games.
Sato and Kawasaki (2009) introduced the so-called monotone game. They provided a
discrete fixed point theorem based on monotonicity of a set-valued mapping, and as
its application, showed that any monotone game has a pure-strategy Nash equilibrium.
The common idea of Sato and Kawasaki (2009) and Topkis (1979) is monotonicity of
the best responses.

In Sato and Kawasaki (Preprint), they introduced the so-called partially monotone
game (see Definition 2.1), and showed this game has a pure-strategy Nash equilibrium
(see Theorem 2.2), which is an extension of the result of Sato and Kawasaki (2009).
They also showed that partial monotonicity of the best responses is necessary for the
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existence in the case of two persons. Thus, the class of partially monotone games can be
regarded as a wide range of two-person games having a pure-strategy Nash equilibrium.

However, it is not efficient to check whether a game belongs to this class directly
from its definition. Hence the aim of this paper is presenting an efficient algorithm for
determining whether a two-person game is a partially monotone game.

In this paper, we consider the following two-person game G = {{S1, S2}, {A,B}}:

• S1 := {1, . . . ,m} is the set of pure strategies of player 1, where m ∈ N.

• S2 := {1, . . . , n} is the set of pure strategies of player 2, where n ∈ N.

• A = (aij) is a payoff matrix of player 1.

• B = (bij) is a payoff matrix of player 2.

If we impromptu check whether a two-person game is a partially monotone game, we
need O(2m+nm!n!) time in general. In Section 3, we prove any partially monotone
game contains a small-size subgame that is also a partially monotone game. Then our
algorithm requires only O(m2n2) time in total.

This paper consists of five sections. In Section 2, we recall the class of partially
monotone games and the existence theorem of a pure-strategy Nash equilibrium given
by Sato and Kawasaki (Preprint). Section 3 provides a useful property of the class for
computing. Section 4 develops an algorithm for determining whether a two-person game
belongs to the class. Finally, Section 5 is concluding remarks.

Notation Throughout this paper, let F1(j) and F2(i) be the set of best responses of
players 1 and 2, respectively, that is,

F1(j) :=

{
i′ ∈ S1 : ai′j = max

i∈S1

aij

}
for any j ∈ S2,

F2(i) :=

{
j′ ∈ S2 : bij′ = max

j∈S2

bij

}
for any i ∈ S1.

Further, F (i, j) := F1(j) × F2(i) denotes the set of best responses of (i, j) ∈ S1 × S2.
Then a pair (i∗, j∗) is a pure-strategy Nash equilibrium if and only if (i∗, j∗) ∈ F (i∗, j∗).

2. Preliminaries

We first recall the definition of a partially monotone game from Sato and Kawasaki
(Preprint). Although Sato and Kawasaki (Preprint) dealt with n-person games, we con-
sider only two-person games in this paper.

Let Tk be a non-empty subset of Sk. For any permutation σk on Tk, we define a total
order sk 5σk

tk on Tk by σk(sk) 5 σk(tk). Further, sk <σk
tk means σk(sk) < σk(tk).

For any σ = (σ1, σ2), s = (s1, s2) and t = (t1, t2), s ≺=σ
t means sk 5σk

tk for all k = 1, 2.
The symbol s ≼σ t means s ≺=σ

t and s ̸= t.

Definition 2.1. We call G a partially monotone game if there exist a selection f
of F , non-empty subsets Tk ⊂ Sk and permutations σk on Tk (k = 1, 2) such that at
least one of Tk’s has two or more elements, f(T1 × T2) ⊂ T1 × T2,

j0 <σ2 j1 ⇒ f1(j
0) 5σ1 f1(j

1) for any j0, j1 ∈ T2,



An algorithm for determining a class of two-person games having a pure-strategy Nash equilibrium 53

and
i0 <σ1 i1 ⇒ f2(i

0) 5σ2 f2(i
1) for any i0, i1 ∈ T1.

For the existence of a pure-strategy Nash equilibrium, we recall the following:

Theorem 2.2. Any partially monotone game has a pure-strategy Nash equilibrium
in T := T1 × T2.

3. A key lemma on partially monotone games

We first define the term of “isolated Nash equilibrium.”

Definition 3.1. A Nash equilibrium (i∗, j∗) is said to be isolated if (i∗, j∗) ∈
F (i, j) implies (i, j) = (i∗, j∗).

Since F has a separated form F1×F2, isolated Nash equilibria are characterized as
the lemma below. Further, the following implies that when (i∗, j∗) is an isolated Nash
equilibrium, the best response operation is closed in (S1 \ {i∗})× (S2 \ {j∗}).

Lemma 3.2. A Nash equilibrium (i∗, j∗) is isolated if and only if both i∗ ̸∈ F1(j)
for any j ̸= j∗, and j∗ ̸∈ F2(i) for any i ̸= i∗ hold. Then it holds that

F ((S1 \ {i∗})× (S2 \ {j∗})) ⊂ (S1 \ {i∗})× (S2 \ {j∗}).

Proof. Since (i∗, j∗) is a Nash equilibrium, it holds that i∗ ∈ F1(j
∗) and j∗ ∈

F2(i
∗).
(“only if” part) Suppose that i∗ ∈ F1(j) for some j ̸= j∗. Then (i∗, j∗) ∈ F1(j) ×

F2(i
∗) and (i∗, j) ̸= (i∗, j∗), which contradicts the assumption. Hence i∗ /∈ F1(j) for any

j ̸= j∗. Similarly, j∗ /∈ F2(i) for any i ̸= i∗. (“if” part) If (i∗, j∗) ∈ F1(j)× F2(i), then,
by the assumption, we have j = j∗ and i = i∗, that is, (i∗, j∗) is isolated. The second
claim is evident from the first claim. ⊓⊔

The next lemma will be a key in the proof of Theorem 3.5 below.

Lemma 3.3. Let G be a partially monotone game, and Tk (k = 1, 2) be corre-
sponding subsets of pure strategies mentioned in Definition 2.1. If G has an isolated
pure-strategy Nash equilibrium in T = T1 × T2, then it has another pure-strategy Nash
equilibrium in T , which neither first nor second element coincides with that of the isolated
equilibrium.

Proof. Let (i∗, j∗) be an isolated pure-strategy Nash equilibrium in T . Then it
follows from Lemma 3.2 that F (T ′) ⊂ T ′, where T ′

1 := T1 \ {i∗}, T ′
2 := T2 \ {j∗} and

T ′ := T ′
1 × T ′

2. Hence #T1 ≥ 2 and #T2 ≥ 2.
We first consider the case where #T1 = #T2 = 2, then T ′ is a single point set.

Since F (T ′) ⊂ T ′, the point is the pure-strategy Nash equilibrium we want.
Next, we consider the case where #Tk ≥ 3 for some k ∈ {1, 2}. By the definition

of a partially monotone game, there exist a selection f of F and permutations σk on
Tk (k = 1, 2) such that f(T ) ⊂ T ,

j0 <σ2 j1 ⇒ f1(j
0) 5σ1 f1(j

1) for any j0, j1 ∈ T2, (1)
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and
i0 <σ1 i1 ⇒ f2(i

0) 5σ2 f2(i
1) for any i0, i1 ∈ T1. (2)

Align the elements of T1 as i1 < i2 < · · · < im1 . Then, since i∗ and σ(i∗) belong to T1,
they can be expressed as i∗ = ip and σ(i∗) = iq for some 1 ≤ p, q ≤ m1, respectively.
Here we define a permutation σ̂1 on T ′

1 as follows.
Case 1: When p = q, we define σ̂1(i) := σ1(i) for any i ∈ T ′

1.
Case 2: When p > q, we define

σ̂1(σ
−1
1 (im)) :=

{
im−1, if q + 1 ≤ m ≤ p
im, otherwise.

Note that the meaning of σ̂1 is illustrated in Example 3.4 below.
Case 3: When p < q, we define

σ̂1(σ
−1
1 (im)) :=

{
im+1, if p ≤ m ≤ q − 1
im, otherwise.

In the same way, we define a permutation σ̂2 on T ′
2, and by (1) and (2), it follows

that

j0 <σ̂2 j1 ⇒ f1(j
0) 5σ̂1 f1(j

1) for any j0, j1 ∈ T ′
2,

i0 <σ̂1 i1 ⇒ f2(i
0) 5σ̂2 f2(i

1) for any i0, i1 ∈ T ′
1.

Then the subgame G′ = {{T ′
1, T

′
2}, {A′, B′}} is a partially monotone game. Therefore,

by Theorem 2.2, there exists a pure-strategy Nash equilibrium, say, (i′, j′) in T ′. Since
i∗ /∈ T ′

1 and j∗ /∈ T ′
2, (i

′, j′) is a pure-strategy Nash equilibrium we want. ⊓⊔

Example 3.4. Let T1 = {2, 4, 6, 8, 10, 12, 14}, i∗ = 12 and

σ1 =

(
2 4 6 8 10 12 14
14 2 10 12 8 4 6

)
=

(
4 12 14 10 6 8 2
2 4 6 8 10 12 14

)
.

Then T ′
1 := {2, 4, 6, 8, 10, 14}, p = 6 > 2 = q, ip = 12 and iq = σ1(ip) = 4. This is

Case 2 in the proof of Lemma 3.3, and our goal is deleting number 12 from the rage
of σ1 by renumbering. First, since there is no i ∈ T ′

1 such that σ1(i) = 4, we define
σ̂1(σ

−1
1 (6)) = σ̂1(14) := 4. By this procedure, since there does not exist i such that

σ1(i) = 6, we define σ̂1(σ
−1
1 (8)) = σ̂(10) := 6. Repeating this procedure until we meet i

such that σ1(i) = 12, we can delete number 12 from the range of σ1. We define σ̂1 = σ1

for numbers not appearing the procedure above. Then σ̂ is as follows:

σ̂1 =

(
2 4 6 8 10 14
14 2 8 10 6 4

)
.

Any partially monotone game has the property that it contains at least one 1× 2-,
2× 1- or 2× 2-subgame that is also a partially monotone game. This is a key property
for developing our algorithm in the next section.

Theorem 3.5. A game G is a partially monotone game if and only if there exist a
selection f of F , R1 ⊂ S1 and R2 ⊂ S2 such that one of the following holds:
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(i) #R1 = 1, #R2 = 2 and f(R1 ×R2) ⊂ R1 ×R2;

(ii) #R1 = 2, #R2 = 1 and f(R1 ×R2) ⊂ R1 ×R2;

(iii) there exists a permutation σ2 on R2 such that #R1 = #R2 = 2, f(R1 × R2) ⊂
R1 ×R2,

j <σ2 j′ ⇒ f1(j) 5id f1(j
′) for any j, j′ ∈ R2,

and
i <id i′ ⇒ f2(i) 5σ2 f2(i

′) for any i, i′ ∈ R1.

Proof. Since “if” part is evident from the definition of a partially monotone
game, we only prove “only if” part. Suppose that G = {{A,B}, {S1, S2}} is a partially
monotone game. Then, by Theorem 2.2, there exists a pure-strategy Nash equilibrium
in T , say, (i∗, j∗). Define

f1(j
∗) = i∗, f2(i

∗) = j∗.

Case 1: When (i∗, j∗) is isolated, by Lemma 3.3, there exists another pure-strategy
Nash equilibrium (i⋆, j⋆) in T such that i∗ ̸= i⋆ and j∗ ̸= j⋆. Taking R1 = {i∗, i⋆},
R2 = {j∗, j⋆}, f1(j⋆) = i⋆ and f2(i

⋆) = j⋆, we have

f(i∗, j∗) := (f1(j
∗), f2(i

∗)) = (i∗, j∗) ∈ F (i∗, j∗),
f(i∗, j⋆) := (f1(j

⋆), f2(i
∗)) = (i⋆, j∗) ∈ F (i∗, j⋆),

f(i⋆, j∗) := (f1(j
∗), f2(i

⋆)) = (i∗, j⋆) ∈ F (i⋆, j∗),
f(i⋆, j⋆) := (f1(j

⋆), f2(i
⋆)) = (i⋆, j⋆) ∈ F (i⋆, j⋆).

Hence f is a selection of F and f(R1 × R2) ⊂ R1 × R2. Moreover, by taking σ1 = id
and

σ2 =

{
id, if i∗ < i⋆ and j∗ < j⋆, or i∗ > i⋆ and j∗ > j⋆

(j∗, j⋆), otherwise,

we get (iii).
Case 2: When (i∗, j∗) is not isolated, there exists (i⋆, j⋆) ̸= (i∗, j∗) such that

(i∗, j∗) ∈ F (i⋆, j⋆).
Case 2-1: When i⋆ ̸= i∗ and j⋆ ̸= j∗, by defining R1, R2, f and σ2 in the same

way as Case 1, we get (iii).
Case 2-2: When i⋆ = i∗ and j⋆ ̸= j∗, by taking R1 = {i∗}, R2 = {j∗, j⋆} and

f1(j
⋆) = i∗, we get (i).
Case 2-3: When i⋆ ̸= i∗ and j⋆ = j∗, we easily obtain (ii) as well as Case 2-2. ⊓⊔

4. An algorithm

In this section, we present an algorithm for determining if a game is a partially
monotone game.

Algorithm. Main
Input: Payoff matrices A and B.
Output: TRUE or FALSE.
Step 0: Construct best response tables RA and RB as follows.
(0-1): For each j = 1, 2, . . . , n, RA(j) := {i′ ∈ S1 : ai′j = maxi∈S1

aij}.
(0-2): For each i = 1, 2, . . . ,m, RB(i) := {j′ ∈ S2 : bij′ = maxj∈S2 bij}.
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Step 1: For each T1 ⊂ S1 and T2 ⊂ S2 with #T1 = #T2 = 2, repeat the following.

(1-1): Check if T1 × T2 is a game or not by Algorithm Check-Game. Note that
we describe procedure Check-Game later. If it is true, then perform Step 1-2.

(1-2): Check if there exist a selection f of F and permutation σ2 on T2 such that
the following hold:

j <σ2 j′ ⇒ f1(j) 5id f1(j
′) for any j, j′ ∈ T2,

i <id i′ ⇒ f2(i) 5σ2 f2(i
′) for any i, i′ ∈ T1.

or not by Algorithm Check-Monotone. If it is true, then output TRUE and halt.

Step 2: For each T1 ⊂ S1 and T2 ⊂ S2 with #T1 = 2 and #T2 = 1, repeat the
following.

(2-1): Check if T1 × T2 is a game or not by Algorithm Check-Game. If it is true,
then output TRUE and halt.

Step 3: For each T1 ⊂ S1 and T2 ⊂ S2 with #T1 = 1 and #T2 = 2, repeat the
following.

(3-1): Check if T1 × T2 is a game or not by Algorithm Check-Game. If it is true,
then output TRUE and halt.

Step 4: Output FALSE.

Algorithm. Check-Game

Input: T1, T2, RA and RB .

Output: TRUE or FALSE.

Step 1: If for any j ∈ T2, RA(j) ∩ T1 ̸= ∅ is satisfied, then go to Step 2. Otherwise
output FALSE and halt.

Step 2: If for any i ∈ T1, RB(i) ∩ T2 ̸= ∅ is satisfied, then go to Step 3. Otherwise
output FALSE and halt.

Step 3: Output TRUE.

Algorithm. Check-Monotone

Input: T1 := {t11, t12} (t11 < t12), T2 := {t21, t22} (t21 < t22), RA and RB .

Output: TRUE or FALSE.

Step 1: (1-1) If RA(t21) = {t11} and RA(t22) = {t12}, then let ΣA = {id} and go
to Step 2.

(1-2) If RA(t21) = {t12} and RA(t22) = {t11}, then let ΣA = {(t21, t22)} and go to
Step 2.

(1-3) Let ΣA = {id, (t21, t22)}
Step 2: (2-1) If RB(t11) = {t21} and RA(t12) = {t22}, then let ΣB = {id} and go

to step 3.

(2-2) If RA(t11) = {t22} and RA(t12) = {t21}, then let ΣB = {(t21, t22)} and go to
step 3.

(2-3) Let ΣB = {id, (t21, t22)}
Step 3: If ΣA ∩ ΣB ̸= ∅, output TRUE. Otherwise output FALSE.

Theorem 4.1. This algorithm determines whether a two-person game is a partially
monotone game.
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Proof. Thanks to Theorem 3.5, it suffices to check 2 × 2-, 2 × 1- and 1 × 2-
subgames to determine whether a two-person game is a partially monotone game. This
yields our claim. ⊓⊔

Theorem 4.2. This algorithm requires O(m2n2) time in total.

Proof. Since the numbers of combinations of T1 and T2 satisfying #T1 = #T2 =
2, #T1 = 2 and #T2 = 1, and #T1 = 2 and #T2 = 1 are

m(m− 1)

2
× n(n− 1)

2
,
m(m− 1)

2
× n and m× n(n− 1)

2
,

respectively, Algorithm Main requires O(m2n2) time. Further, Algorithms Check-
Game and Check-Monotone require constant time. Thus, this algorithm requires
O(m2n2) time in total. ⊓⊔

5. Concluding remarks

At the beginning of this paper, we quoted an existence theorem of a pure-strategy
Nash equilibrium based on monotonicity of the best responses. On the other hand,
Iimura (2003) gave a class of games having a pure-strategy Nash equilibrium as an
application of another type of discrete fixed point theorems from Iimura et al. (2005).
Their theorem is based on Brouwer’s fixed point theorem and relies on an integrally
convex set. In Iimura (2003), he introduced direction preserving property for mappings,
and presented the existence theorem by using it. However, this property is also not
simple, so it is another interesting theme to create an algorithm for determining whether
a game belongs to his class.
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