
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

LEARNABILITY OF XML DOCUMENT TRANSFORMATION
RULES USING TYPED EFSS

Sugimoto, Noriko
Department of Informatics, Kyushu University

https://doi.org/10.5109/21044

出版情報：Bulletin of informatics and cybernetics. 41, pp.25-38, 2009-12. 統計科学研究会
バージョン：
権利関係：



LEARNABILITY OF XML DOCUMENT TRANSFORMATION RULES
USING TYPED EFSS

by

Noriko Sugimoto

Reprinted from the Bulletin of Informatics and Cybernetics
Research Association of Statistical Sciences,Vol.41

- r� �- r�-
FUKUOKA, JAPAN

2009



Bulletin of Informatics and Cybernetics, Vol. 41, 2009

LEARNABILITY OF XML DOCUMENT
TRANSFORMATION RULES USING TYPED

EFSS

By

Noriko Sugimoto
∗

Abstract

EFSs are logic programs expressing various formal languages. Typed EFSs are
EFSs augmented by introducing types for variables. In this paper, we define a sub-
class of the typed EFSs, called DS-typed regular EFSs, to model XML documents.
We show that the class of languages defined by DS-typed regular EFSs properly
includes the class of languages defined by balanced grammars, one formal model
of schemata of XML documents. We also define another subclass of the typed
EFSs, called DS-typed regular TEFSs, which represent translation rules between
languages defined by DS-typed regular EFSs. The DS-typed regular TEFSs can
have local variables under some conditions. We prove that the class of translation
rules defined by DS-typed regular TEFSs is learnable from positive examples un-
der the restriction that the number of clauses in an EFS and the length of each
clause are bounded by some constants. This restriction is essential since the class
of translations is not learnable from positive examples without the restriction.

Key Words and Phrases: Typed EFSs, Elementary formal systems, XML document transform,

Learnability.

1. Introduction

XML (eXtensible Markup Language) is a widely-known data format for structured
documents. In this paper, we propose a unifying framework to discuss the learnability
of transformations between XML documents from a viewpoint of the formal language
theory.

The elementary formal systems (EFSs) were first introduced by Smullyan (1961),
and can be regarded as logic programs over strings as shown by Arikawa et al. (1992)
and Yamamoto (1992). The EFSs are flexible enough to define various classes of for-
mal languages in the Chomsky hierarchy, and work as an adequate tool for learn-
ing not only formal languages (Arikawa et al. (1992) and Shinohara (1994)), but also
translations between formal languages (Sugimoto et al. (1996) and Sugimoto (1998)).
Kiwata & Arikawa (1996) introduced the typed EFSs, which enable us to easily de-
scribe some structures of data. The derivation procedure, defined as in the same way
as in the ordinary EFSs, was shown to be sound and complete as an acceptor for the
languages defined by the typed variable-bounded EFSs.

∗ Department of Informatics, Kyushu University, Moto-oka 744, Nishi-Ku Fukuoka 819-0395, Japan.
tel +81–92–802–3786 noriko.horibe@i.kyushu-u.ac.jp



26 N. Sugimoto

On the other hand, Berstel & Boasson (2002) discussed XML documents in the
framework of extended context-free grammars. They modeled XML documents as Dyck
strings and schemata as balanced grammars, where Dyck strings are well-formed se-
quences of brackets.

In this paper, we adopt the typed EFSs to represent transformation rules over
XML documents. First, we introduce a subclass of the typed EFSs to model XML
documents, named DS-typed regular EFSs (DS-REFSs), which consists of the regular
EFSs such that all variables are typed with either the nonempty Dyck strings or the
Dyck primes. The class of languages represented by DS-REFSs properly includes the
class of languages defined by the balanced grammars. It follows from the results by
Kiwata & Arikawa (1996) that the derivation procedure is sound and complete as an
acceptor of languages defined by DS-REFSs.

Next, we define another subclass of the typed EFSs, called DS-typed regular TEFSs
(DS-RTEFSs), which represent translations over languages defined by DS-REFSs. For
a DS-RTEFS, each of the clauses in it may have local variables under some conditions,
which will be useful to express translations.

We also discuss the learnability of translations from only positive examples. The
learning in this setting was applied to various targets in the works by Gold (1967),
Shinohara (1991), Shinohara (1994) and Sugimoto (1998). Arimura & Shinohara (1994)
showed that the class of linearly covering programs, which is a useful subclass of logic
programs with local variables, is learnable from positive examples. Rao (1996) extended
this class by using the linear predicate inequalities to express standard Prolog programs
as quick-sort or merge-sort. Sugimoto (1998) proposed the class of linearly-moded EFSs
by introducing local variables and linear predicate inequalities based on mode infor-
mation, which can express translations of context-sensitive languages. Each linearly-
moded EFS represents a translation in which every output sentence is shorter than the
corresponding input sentence. On the other hand, translations defined by DS-RTEFSs
possibly contain some pairs of input-output sentences such that the output sentence is
slightly longer than the input sentence.

In this paper, we show that the class of translations defined by DS-RTEFSs is
learnable from positive examples under the restriction that the number of clauses in an
EFS and the length of each clause are bounded by some constants. Furthermore, we
show that this restriction is essential since the class of translations is not learnable from
positive examples without the restriction.

2. Preliminaries

This section gives some basic definitions and notations according to the works of
Arikawa et al. (1992), Sugimoto & Ishizaka (1999), and Yamamoto (1992).

2.1. Elementary formal systems

The set of finite strings over a set A is denoted by A∗. The empty string is denoted
by ε. Let A+ = A∗ − {ε}.

Let Σ, X, and Π be a finite set of constant symbols, a countable set of variables,
and a finite set of predicate symbols, respectively. We assume that Σ, X, and Π are
mutually distinct. Each predicate symbol in Π is associated with a non-negative integer
called its arity .



Learnability of XML Document Transformation Rules Using Typed EFSs 27

A term is an element of (Σ∪X)+. A term is said to be regular if every variable occurs
at most once in the term. An atomic formula (atom) is of the form p(π1, π2, . . . , πn),
where p is a predicate symbol with arity n and each πi is a term (i = 1, 2, . . . , n). A
definite clause (clause) is of the form A← B1, . . . , Bn (n ≥ 0), where A,B1, . . . , Bn are
atoms. The atom A and the sequence B1, . . . , Bn are, respectively, called the head and
the body of the clause. A goal clause (goal) is of the form ← B1, . . . , Bn (n ≥ 0) and
the goal with n = 0 is called the empty goal . An expression is a term, an atom, a clause,
or a goal. An expression E is said to be ground if E has no variable. For an expression
E and a variable x, var(E) and oc(x,E) denote the set of all variables occurring in E
and the number of occurrences of x in E, respectively. An elementary formal system
(EFS ) is a finite set of clauses.

A substitution θ is a (semi-group) homomorphism on (Σ ∪X)+ satisfying the fol-
lowing conditions:

1. aθ = a for every a ∈ Σ, and

2. the set D(θ) = {x ∈ X | xθ ̸= x} is finite.

For a substitution θ, if D(θ) = {x1, x2, . . . , xn} and xiθ = πi for every i (i = 1, 2, . . . , n),
then θ is denoted by the set {x1/π1, x2/π2, . . . , xn/πn}. For an expression E and a
substitution θ, Eθ is defined to be the expression obtained by simultaneously replacing
each occurrence of the variables x in E with xθ.

Let (E1, E2) be a pair of expressions. A substitution θ is said to be a unifier of
E1 and E2 if E1θ = E2θ. The set of all unifiers θ of E1 and E2 satisfying D(θ) ⊆
var(E1) ∪ var(E2) is denoted by U(E1, E2). We say that E1 and E2 are unifiable if
the set U(E1, E2) is not empty. An expression E1 is a variant of E2 if there exist two
substitutions θ and δ such that E1θ = E2 and E2δ = E1.

2.2. Semantics of EFSs

We give two semantics of EFSs by using provability relations and derivations. First,
we introduce the provability semantics. Let Γ and C be an EFS and a clause. Then,
the provability relation Γ ⊢ C is defined inductively as follows:

1. If C ∈ Γ then Γ ⊢ C.

2. If Γ ⊢ C then Γ ⊢ Cθ for any substitution θ.

3. If Γ ⊢ A← B1, . . . , Bm and Γ ⊢ Bm ← then Γ ⊢ A← B1, . . . , Bm−1.

A clause C is provable from Γ if Γ ⊢ C holds. The provability semantics of an EFS Γ,
denoted by PS(Γ), is defined as the set of all ground atoms A satisfying Γ ⊢ A←. For
an EFS Γ and a unary predicate symbol p, the language defined by Γ and p is denoted
by L(Γ, p), and defined as the set of all strings w ∈ Σ+ such that p(w) ∈ PS(Γ).

The second semantics is based on a derivation for EFSs. We assume a computation
rule R to select an atom from every goal. Let Γ be an EFS, G be a goal, and R be
a computation rule. A derivation from G is a (possibly infinite) sequence of triplets
(Gi, Ci, θi) (i = 0, 1, . . .) which satisfies the following conditions:

1. Gi is a goal, θi is a substitution, Ci is a variant of a clause in Γ, and G0 = G.



28 N. Sugimoto

2. var(Ci) ∩ var(Cj) = ∅ for any i and j with i ̸= j, and var(Ci) ∩ var(Gi) = ∅ for
any i.

3. If Gi =← A1, . . . , Ak, and Am is the atom selected by R, then Ci is of the form
A← B1, . . . , Bn satisfying that A and Am are unifiable, θi ∈ U(A,Am), and Gi+1

is of the following form:

(← A1, . . . , Am−1, B1, . . . , Bn, Am+1, . . . , Ak)θi.

The atom Am is called a selected atom of Gi, and Gi+1 is called a resolvent of Gi

and Ci by θi.

A refutation is a finite derivation ending with the empty goal. The procedural semantics
of an EFS Γ, denoted by RS(Γ), is defined as the set of all ground atoms A satisfying
that there exists a refutation of Γ from the goal ← A.

Yamamoto (1992) showed that PS(Γ) = RS(Γ) for every EFS Γ. This implies that
a string w ∈ Σ+ is in the language defined by an EFS Γ and a predicate symbol p if and
only if there exists a refutation of Γ from ← p(w). The derivation procedure can thus
be regarded as an acceptor for the language.

3. Typed EFSs

This section augments EFSs by introducing types for variables according to the
work of Kiwata & Arikawa (1996).

A type is a recursive subset of Σ+. A typed variable is an expression x : T consisting
of a variable x and a type T , which implies that the type of x is T .

A context is a finite set of typed variables. For a context CN = {x1 : T1, x2 :
T2, . . . , xn : Tn}, the set of variables x1, x2, . . . , xn is denoted by var(CN). A context
CN is consistent if, for any typed variables xi : Ti and xj : Tj in CN，xi = xj implies
Ti = Tj . Let E be an expression and CN be a context such that var(E) = var(CN).
Then a couple (E,CN) is said to be a typed expression.

Example 3.1. Let E = axaya, CN1 = {x : {bb}, y : {bbb}}, CN2 = {x : {(bb)n | n ≥
1}, y : {(bbb)n | n ≥ 1}}, and CN3 = {x : {(bb)n | n ≥ 1}}. Then, both (E,CN1) and
(E,CN2) are typed expressions. On the other hand, (E,CN3) is not a typed expression
because y ∈ var(E) and y ̸∈ var(CN3).

Let θ = {x1/τ1, . . . , xn/τn} be a substitution and CN be a context such that
var(CN) = var(τ1) ∪ var(τ2) ∪ · · · ∪ var(τn). Then, a couple (θ, CN) is said to be a
typed substitution.

Example 3.2. Let θ = {x′/ax, y/aaya}, CN1 = {x : {bb}, y : {bbb}}, CN2 = {x :
{(bb)n | n ≥ 1}, y : {(bbb)n | n ≥ 1}}, and CN3 = {x : {(bb)n | n ≥ 1}}. Then, (θ, CN1)
and (θ, CN2) is typed substitution. However, (θ, CN3) is not a typed substitution be-
cause y ∈ var(ax) ∪ var(aaya) and y ̸∈ var(CN3).

Let E be an expression and CN = {x1 : T1, x2 : T2, . . . , xn : Tn} be a context.
Then, the interpretation of E on CN , denoted by I(E,CN), is defined as the set of all
expressions E′ such that there exists a substitution θ satisfying the following conditions:

1. E′ = Eθ,



Learnability of XML Document Transformation Rules Using Typed EFSs 29

2. D(θ) = var(CN), and

3. for each xi ∈ var(CN), xiθ ∈ Ti.

Let (E,CN) be a typed expression. Then, the interpretation of (E,CN), denoted by
I(E,CN), is defined as the interpretation of E on CN . It is clear that all elements in
I(E,CN) are ground.

Example 3.3. Let E, CN1, CN2, and CN3 be an expression and contexts used in Exam-
ple 3.1. Then, I(E,CN1) = {abbabbba} and I(E,CN2) = {a(bb)ma(bbb)na | m,n ≥ 1},
and I(E,CN3) = {a(bb)maya | m ≥ 1} hold.

Let (E,CN) be a typed expression with CN = {x1 : T1, x2 : T2, . . . , xm : Tm}
and (θ,D) be a typed substitution, where θ = {y1/τ1, y2/τ2, . . . , yn/τn}. Then, (θ,D)
is applicable to (E,CN) if and only if it satisfies the following conditions:

1. For any i ∈ {1, 2, . . . ,m}, if there exists j ∈ {1, 2, . . . , n} such that yj = xi then
the interpretation of τj on D is a subset of Ti.

2. Context C((E,CN) · (θ,D)) = {xi : Ti | xi /∈ {y1, y2, . . . , yn}} ∪ {zj : Sj ∈ D |
zj ∈ var(E · θ)} is consistent.

Then the typed expression (E,CN) · (θ,D) is defined to be (E · θ, C((E,CN) · (θ,D))).
In general, it is difficult to determine whether (θ,D) is applicable to (E,CN) or not,

since we have to consider the inclusion relation on sets of strings in the first condition
of the above statements. However, we can avoid the difficulty by restricting the class of
types as in the following sections

Example 3.4. Suppose that E, θ, CN1, CN2, and CN3 are the same as in Example 3.1
and Example 3.2. Let T1, T2, T3, and T4 be the types {bb}, {bbb}, {(bb)n | n ≥ 1}, and
{(bbb)n | n ≥ 1}, respectively. Then, (θ, CN2) = ({x′/ax, y/aaya}, {x : T3, y : T4}) is
not applicable to (E,CN1) = (axaya, {x : T1, y : T2}), since y ∈ var(CN1) ∩D(θ) but
the interpretation of aaya on CN2 is {aa(bbb)na | n ≥ 1} and it is not a subset of T2.

On the other hand, (θ, CN1) = ({x′/ax, y/aaya}, {x : T1, y : T2}) is applicable to
(E,CN2) = (axaya, {x : T3, y : T4}), and

(E,CN2) · (θ, CN1) = (axaya, {x : T3, y : T4}) · ({x′/ax, y/aaya}, {x : T1, y : T2})
= (E · θ, C((E,CN2) · (θ, CN1)))

= (axaaayaa, {x : T3, y : T2})

Definition 3.5. A typed EFS is a finite set of typed definite clauses.

We can also define the provability, the derivations, the refutations, and the definable
languages for the typed EFSs in a similar way to the ordinary EFSs.

Lemma 3.6 (Kiwata & Arikawa (1996)). Let E1 and E2 be a pair of typed ex-
pressions. If one of them is ground, then every unifier of E1 and E2 is ground and the
set of all unifiers U(E1, E2) is finite and computable.

A typed EFS Γ is said to be variable-bounded, if each clause A ← B1, B2, . . . , Bm

in Γ satisfies var(Bi) ⊆ var(A) for each i (i = 1, 2, . . . ,m).

Lemma 3.7 (Kiwata & Arikawa (1996)). The derivation procedure is complete
and sound as an acceptor for languages defined by the typed variable-bounded EFSs.



30 N. Sugimoto

4. Relationships between typed EFSs and ordinary EFSs

For a typed EFS Γ, let ORG(Γ) denote the set of ordinary EFSs that are equivalent
to Γ, and let T (Γ) denote the set of types occurring in Γ.

Lemma 4.1. Let Γ be a typed variable-bounded EFS, then there exists at least one
variable-bounded EFS in ORG(Γ).

Proof. As shown by Arikawa et al. (1992), the class of languages defined by the
variable-bounded EFSs subsumes the class of recursive languages. Let T1, T2, . . . , Tn be
the types in T (Γ). We can build variable-bounded EFSs Γ1,Γ2, . . . ,Γn such that, for
any i and j in {1, 2, . . . , n}, L(Γi) = Ti and i ̸= j implies Π(Γi) ∩ Π(Γj) = ∅. For each
clause (A ← B1, . . . , Bm, CN) ∈ Γ and each xj : Tij ∈ CN (j = 1, . . . , k), a clause

A← B1, B2, . . . , Bm, qi00 (x0), q
i1
0 (x1), . . . , q

ik
0 (xk) be in Γ′, where q

ij
0 is a start predicate

symbol of Γj . It is clear that Γ
′ ∪ Γ1 ∪ Γ2 ∪ · · · ∪ Γn is variable-bounded in ORG(Γ).

A typed EFS Γ is said to be a typed length-bounded EFS, if each clause A ←
B1, B2, . . . , Bm in Γ satisfies |Aθ| ≥ |B1θ|+ |B2θ|+ · · ·+ |Bmθ| for any substitution θ.

Lemma 4.2. Let Γ be a typed length-bounded EFS satisfying that the types in T (Γ)
are definable by length-bounded EFSs. Then there exists at least one length-bounded EFS
in ORG(Γ).

Proof. Let T1, T2, . . . , Tn be the types in T (Γ). From the assumption of this
lemma, we can build length-bounded EFSs Γ1,Γ2, . . . ,Γn satisfying that, for any i and
j, L(Γi, q

i
0) = Ti and i ̸= j implies Π(Γi) ∩ Π(Γj) = ∅. Let Γ′ be the set of clauses

C ′ constructed from Γ by the following procedure: for each clause C in Γ and for each
variable x occurring in the head of C, if x does not occur in the body, then C ′ is
constructed by adding the atom qi0(x) to the body of C, where the type of x is Ti.

It is clear that Γ′ ∪ Γ1 ∪ Γ2 ∪ · · · ∪ Γn is length-bounded and in ORG(Γ).

A typed EFS is said to be a typed regular EFS, if each clause A← B1, B2, . . . , Bm

in Γ satisfies the following conditions:

1. The predicate symbols are unary.

2. Every variable x occurs at most once in A.

3. For any i (i = 1, 2, . . . ,m), Bi is of the form p(xi) and xi ∈ var(A).

4. For any i and j (i, j = 1, 2, . . . ,m), i ̸= j implies xi ̸= xj .

5. The types in T (Γ) are definable by regular EFSs.

Lemma 4.3. There exists a typed regular EFS Γ such that ORG(Γ) has no regular
EFSs.

Proof. Let

Γ =

{
(q0(x)← q1(x), {x : {ambmcn | n ≥ 1}}),
(q1(xy)←, {x : {am | m ≥ 1}, y : {bncn | n ≥ 1}})

}
.



Learnability of XML Document Transformation Rules Using Typed EFSs 31

Then, types {ambmcn | n ≥ 1}, {am | m ≥ 1}, and {bncn | n ≥ 1} are defined by the
following regular EFSs:

Γ1 =


q0(xy)← q1(x), q2(y);
q1(axb)← q1(x);
q1(ab)←;
q2(cx)← q2(x);
q2(c)←;

 ,

Γ2 =

{
q0(ax)← q0(x);
q0(a)←;

}
, and Γ3 =

{
q0(bxc)← q0(x);
q0(bc)←;

}
.

Since Γ1,Γ2, and Γ3 are regular EFSs, Γ is a typed regular EFS. On the other hand, we
can prove that L(Γ, q0) = {anbncn | n ≥ 1} by induction on the length of strings. The
class of languages defined by regular EFSs is equivalent to the context-free languages,
as proved by Arikawa et al. (1992). Thus, ORG(Γ) contains no regular EFSs.

The above lemmata show the difference between the expressive powers of the typed
EFSs and the ordinary EFSs.

5. DS-typed regular EFSs

This section gives a class of typed EFSs to represent languages consisting of well-
formed strings of brackets.

Let I be a finite set of indices, and define BL and BR by:

BL = {[i| i ∈ I} BR = {]i | i ∈ I}.

In what follows, we assume that Σ = BL ∪BR.

Definition 5.1 (Bruggemann-Klein & Wood (2004)). A Dyck string is de-
fined inductively as follows.

1. The empty string ϵ is a Dick string.

2. If u is a Dyck string and a ∈ I, then [au]a is a Dyck string.

3. If u and v are Dick strings, then uv is also a Dyck string.

The set of non-empty Dyck strings is denoted by DS+. A Dyck string is said to be a
Dyck prime if it is of the form [au]a where u is a Dick string. The set of Dyck primes is
denoted by DS1.

Definition 5.2. A typed regular EFS Γ is said to be a DS-typed regular EFS (DS-
REFS), if the term in the head of each clause is of the form [ax1x2 · · ·xk]a or x1x2 · · ·xk,
and all types in T (Γ) are DS1 or DS+.

From now on, variables x typed with DS+ are written as x+ for the sake of sim-
plicity. Thus, the clause

(p(xy)→ q1(x), q2(y), {x : DS1, y : DS+})

can be written as
p(xy+)→ q1(x), q2(y

+).



32 N. Sugimoto

Proposition 5.3. The set of languages defined by DS-REFSs properly includes the
set of languages defined by balanced grammars.

Proof. Let G be a balanced grammar (Σ, N, P,A0), where N is a finite set of
non-terminals, P is a finite set of productions, and A0 is the start symbol in N . From
the definition of balanced grammars, each element of P is of the form A→ [aτ ]a, where
τ is a regular expression on N . If τ includes A∗ for some A ∈ N , it is replaced by ϵ+A+.
We can construct equivalent clauses as follows:

1. If τ = E1E2 · · ·Ek where Ei ∈ {Ai, A
+
i } for each i = 1, 2, . . . k, then a clause

qA([aD1D2 · · ·Dk]a)← q1(D1), q2(D2) · · · qk(Dk),

is constructed, where if Ei = Ai then Di = xi and qi = qAi , else Di = x+
i and qi

is defined as follows:
qi(xy

+)← qAi(x), qi(y
+), and

qi(x)← qAi(x).

2. If τ = π1+π2+ · · ·+πm where each πi has the above form, then we can construct
equivalent clauses by the above method for rules A→ πi for each i = 1, 2, . . . ,m.
Let Γ be a DS-REFS constructed by the above method. We can prove that, for
any w ∈ Σ∗ and any A ∈ N , if w is derived from A on G then w ∈ L(Γ, qA) holds,
by induction on the length of w.

Example 5.4. A balanced grammar ({[0, ]0,[1, ]1},{A0, A1},{A0→ [0A
∗
1]0,A1→ [1]1},A0)

is is represented by the following DS-REFS:

Γ =


pA0([0xy

+]0)← pA1(x), p1(y
+);

pA0([0x]0)← pA1(x);
p1(xy

+)← pA1(x), p1(y
+);

p1(x)← pA1(x);
pA1([1]1)←

 .

From the result of Kiwata & Arikawa (1996), we can prove that, for any DS-REFS
Γ and any w ∈ Σ+, w ∈ RS(Γ) if and only if w ∈ L(Γ).

6. Translations by typed EFSs

This section gives a class of typed EFSs to represent translation rules between Dyck
strings.

An EFS is said to be a translation EFS (TEFS) if all the predicate symbols in it
are binary. Let Γ be a TEFS and q0 be a start predicate symbol in ΠΓ. Then, the
translation defined by Γ, denoted by Trans(Γ), is defined by

Trans(Γ) = {(s, t) ∈ Σ+ × Σ+ | q0(s, t) ∈ PS(Γ)}.

We define a class of TEFSs in order to represent translations between Dyck strings.

Definition 6.1. A TEFS Γ is said to be a DS-typed regular TEFS (DS-RTEFS) if
it satisfies the following conditions:



Learnability of XML Document Transformation Rules Using Typed EFSs 33

1. The types in T (Γ) are either DS1 or DS+.

2. For each clause in Γ, the term of the head has one of the forms [ax1x2 · · ·xk]a or
x1x2 · · ·xk such that i ̸= j implies xi ̸= xj .

3. The terms in the body of each clause in Γ are variables.

4. Each clause
p0(s0, t0)← p1(s1, t1), . . . , pm(sm, tm)

in Γ satisfies the following conditions:

(a) var(t0) ⊆ var(s0) ∪ var(t1) ∪ · · · ∪ var(tm),

(b) var(si) ⊆ var(s0) ∪ var(t1) ∪ · · · ∪ var(ti−1) for any i (1 ≤ i ≤ m), and

(c) var(ti) ⊆ var(t0) ∪ var(si+1) ∪ · · · ∪ var(sm) for any i (1 ≤ i ≤ m).

Since we can determine whether the above condition holds or not for any typed
EFSs, the problem of deciding whether Γ is a DS-RTEFS or not is solvable. For a DS-
RTEFS, each clause in the EFS may have local variables under some conditions, which
is a useful to express translation rules.

Example 6.2. Let Γ be a typed EFS defined as follows:

Γ =


q0([ax1x

+
2 ]a, [ay1y

+
2 ]a)← q1(x1, y1), q2(x

+
2 , y

+
2 );

q1([bx1x2x3]b, x2)←;
q2(x1x

+
2 , y1y

+
2 )← q1(x1, y1), q2(x

+
2 , y

+
2 );

q2(x, y)← q1(x, y)

 .

It is clear that each clause in Γ satisfies the statements in Definition 6.1. The DS-RTEFS
Γ represents the translation from [a[bu1v1w1]b[bu2v2w2]b· · ·[bunvnwn]b]a to [av1v2 · · · vn]a,
where ui, vi, wi ∈ DS1 for each i = 1, 2, . . . , n.

In Sugimoto & Ishizaka (1999), a restricted derivation is proposed in order to gen-
erate languages by using maximally general unifiers instead of unifiers in the ordinary
derivation. In this section, we apply the restricted derivation to DS-RTEFSs in order
to compute output sentences from a given input sentence on translations defined by
DS-RTEFSs.

In the following discussion, we consider only the term π which satisfies that all
variables in var(π) are typed by DS1 or DS+. A typed term (π,CN) is represented by
the expression π′ obtained by replacing each variable x occurs in π such that x : DS+ ∈
CN into x+. The interpretation of (π,CN) is denoted by I(π′). For any typed term π,
we can prove the following statements:

1. whether I(π) ⊆ DS1 or not is computable, and

2. whether I(π) ⊆ DS1 or not is computable,

by the induction on the length of w. This implies the following lemma.

Lemma 6.3. For any typed term τ and typed substitution θ such that all types used
in τ and θ are DS1 or DS+, whether θ is applicable to τ or not is computable.



34 N. Sugimoto

Proof. Let θ be a typed substitution {x1/π1, x2/π2, . . . , xm/πm}. We can prove
that θ is applicable to τ if and only if, for each i (i = 1, 2, . . . ,m), if τ = uxiv then
I(πi) ⊆ DS1 holds, by the induction on the length of π. This result proves this lemma.

The equivalence and the composition of two typed substitutions are defined same
way as those of ordinary substitutions (Sugimoto & Ishizaka (1999)).

Let E1 and E2 be a pair of typed expressions. A maximally general unifier (mxgu,
for short) of E1 and E2 is a unifier θ ∈ U(E1, E2) satisfying that, for any δ ∈ U(E1, E2)
such that θ and δ are equivalent on var(E1) ∪ var(E2), there is no substitution γ such
that θ = δ · γ. The set of all mxgu’s of E1 and E2 is denoted by MXGU(E1, E2).

We define the number of mxgu’s of two typed terms π and τ as the cardinality of
equivalence classes of substitutions on var(π)∪var(τ). Thus, we say that MXGU(π, τ)
is finite, if the number of mxgu’s is finite without equivalent substitutions on var(π) ∪
var(τ). From the definition of maximally general unifiers, the following lemmata hold (
Sugimoto & Ishizaka (1999)).

Lemma 6.4. Let π and τ be terms. If π is ground, then the set MXGU(π, τ) is
finite and computable, and MXGU(π, τ) = U(π, τ) holds.

Lemma 6.5. Let π be x or x+ and τ be a typed term such that x /∈ var(τ). Then,
MXGU(π, τ) is a singleton set {x/τ} or {π/τ}, if π and τ are unifiable.

Note that, if π = x and τ = [ay1]a[ay2]a then π and τ are not unifiable, because πθ is of
the form [au]a for any typed substitution θ which is applicable to π.

A restricted derivation is defined by replacing unifiers with mxgu’s in the definition
of the ordinary derivation. A restricted derivation ending with the empty goal is called
a restricted refutation. We assume a computation rule R to select the left-most atom
from every goal.

Let Γ be a DS-RTEFS and G =← q(π1, π2) be a typed goal. If π1 is ground and
π2 is y or y+, then all resolvents form G is of the form

← q1(w, τ(1,2)), q2(τ(2,1), τ(2,2)), . . . , qm(τ(m,1), τ(m,2)),

where w ∈ DS+ and τ(i,j) ∈ DS+ ∪ {x, x+ | x is a variable}. Thus, for each step of the
restricted derivation, the number of mxgu’s is finite and computable. This result implies
the following theorems.

Theorem 6.6. Let ← p(w, y+) be a goal and Γ be a DS-RTEFS. Then, the set of
all strings w′ ∈ DS+ such that Γ ⊢ p(w,w′)← is computable.

Theorem 6.7. Let A be a ground atom and Γ be a DS-RTEFS. Then, the problem
of deciding whether Γ ⊢ A← or not is solvable.

Note that, DS-RTEFSs can represent translations including (s, t) ∈ Σ+ ×Σ+ such
that |s| ≤ |t|. Thus, DS-RTEFSs can represent translations which can not be represented
by any linearly-moded EFSs (Sugimoto (1998)).

Example 6.8. Let Γ be a DS-RTEFS given in Example 6.2. We describe a refutation
from a goal clause ← q0([a[b[1]1[2]2[3]3]b[b[4]4[5]5[6]6]b]a, y) in Figure 1.



Learnability of XML Document Transformation Rules Using Typed EFSs 35

Figure 1: Restricted refutation for the DS-RTEFS

7. Learnability of DS-RTEFSs from positive examples

This section discusses the learnability of subclasses of DS-RTEFSs from positive
examples.

Let Γ1,Γ2, . . . be any recursive enumeration of DS-RTEFSs. Then, the class C =
Trans(Γ1),Trans(Γ2), . . . is an indexed family of recursive sets. A translation is a subset
of Σ+ × Σ+. A semantic mapping is a mapping from EFSs to translations. A semantic
mapping M is monotonic if Γ′ ⊆ Γ implies M(Γ′) ⊆ M(Γ). An EFS Γ is reduced w.r.t.
a set S of atoms if for any Γ′ ⊂ Γ, S ⊆ M(Γ) but S ̸⊆ M(Γ′). A concept defining
framework is a triple (U,E,M) of a universe U of objects, a universe E of expressions,
and a semantic mapping M .

Definition 7.1. A concept defining framework (U,E,M) has bounded finite thick-
ness if M is monotonic, and for any finite set S ⊆ U and any n (n ≥ 0), the set

{M(Γ) | Γ is reduced w.r.t. S and |Γ| ≤ n}

is finite.

Shinohara (1991) showed that if a concept defining framework C = (U,E,M) has
bounded finite thickness, then the class

Ck = {M(Γ) | Γ ⊆ E and |Γ| ≤ k}

is learnable from positive examples.
Let Em denote the set of DS-RTEFSs in which each clause has at most m atoms

in its body. Consider the concept defining framework (Σ+ ×Σ+, Em,Trans). Then the
next theorem follows.



36 N. Sugimoto

Theorem 7.2. For any k ≥ 0, the class

TEm
k = {Trans(Γ) | Γ ⊆ Em and |Γ| ≤ k}

is learnable from positive examples.

Proof. We show that the concept defining framework (Σ+×Σ+, Em,Trans) has
bounded finite thickness for any m ≥ 1.

Since the function PS is monotonic, so is the function Trans. Let n be a positive
integer, S be a finite subset of Σ+ × Σ+, and l be the maximum length of the amount
of s and t such that (s, t) ∈ S. If an DS-RTEFS Γ is reduced w.r.t. S and |Γ| ≤ n,
then each clause p0(s0, t0)← p1(s1, t1), . . . , pi(si, ti) ∈ Γ satisfies the conditions |s0| ≤ l,
|t0| ≤ l, |sj | = |tj | = 1 for any j (1 ≤ j ≤ i). Since i ≤ m and the number of all predicate
symbols in Γ is at most n, the set

{Trans(Γ) | Γ is reduced w.r.t. S and |Γ| ≤ n}

is finite. By Shinohara’s theorem (Shinohara (1991)), the class Em
k is learnable from

positive examples.

The following two theorems show that the restriction for the number of clauses and
atoms in the body of each clause are essential for the learnability.

Theorem 7.3. The class

TEm = {Trans(Γ) | Γ ⊆ Em}

is not learnable from positive examples for any m ≥ 1.

Proof. The class E1 contains the following EFSs Γn (n ≥ 1) and Γ∞:

Γn =



q0(x, [y])← q1(x, y);
q1(x, [y])← q2(x, y);
· · ·
qn−1(x, [y])← qn(x, y);
q0(x, x)←;
q1(x, x)←;
· · ·
qn(x, x)←;


,

Γ∞ =

{
q0(x, x)←;
q0(x, [y])← q0(x, y)

}
.

Then, Trans(Γn) = {([i]i, [j ]j) | i ≤ j ≤ i + n} and Trans(Γ∞) = {([i]i, [j ]j) | i ≤ j}.
Since Trans(Γi) ⊆ Trans(Γi+1) and Trans(Γi) ⊆ Trans(Γ∞) for any i ≥ 1, the class E1

is superfinite. Hence, it is not learnable from positive examples (Gold (1967)).

We denote the set of all DS-RTEFSs which have at most k clauses by Ek.

Theorem 7.4. The class

TEk = {Trans(Γ) | Γ ⊆ Ek}

is not learnable from positive examples for any k ≥ 3.



Learnability of XML Document Transformation Rules Using Typed EFSs 37

Proof. The class E3 contains the following EFSs Γn (n ≥ 1) and Γ∞:

Γn =

 q0(x, y)← q1(x, y1), q1(y1, y2), . . . , q1(yn, y);
q1(x, x)←;
q1(x, [x])←

 ,

Γ∞ =

{
q0(x, x)←;
q0(x, [y])← q0(x, y)

}
.

Then, Trans(Γn) = {([i]i, [j ]j) | i ≤ j ≤ i + n} and Trans(Γ∞) = {([i]i, [j ]j) | i ≤ j}.
Since Trans(Γi) ⊆ Trans(Γi+1) and Trans(Γi) ⊆ Trans(Γ∞) for any i ≥ 1, the class E3

is superfinite. Hence, it is not learnable from positive examples (Gold (1967)).

8. Conclusion

We have proposed a unifying framework to discuss the learnability of translations
between XML documents from a viewpoint of the formal language theory. In this paper,
XML documents are modeled as well-formed sequences of brackets, and represented by
typed EFSs, which have typed variables instead of ordinary variables. We have proposed
a subclass of typed EFSs, called DS-REFS, in which all variables are typed with the
nonempty Dyck strings or the Dyck primes. We have shown that the class of languages
represented by DS-REFSs properly includes the class of languages defined by the bal-
anced grammars. Furthermore, we have defined another subclass of the typed EFSs,
called DS-RTEFSs, which represent translations over languages defined by DS-RTEFSs.
The DS-RTEFSs is powerful expressions for translations, in which local variables are
allowed differently from the ordinary EFSs. In the derivations of the DS-RTEFSs, all
unifiers of two terms are computable even if both of the two terms include variables.
This is an important and special property of DS-RTEFSs, because it is hard to consider
the compatibility of types for each variable in general. Thus, we have obtained that, in
the class of translations defined by DS-RTEFS, all output strings are computable from a
given input string by the derivation procedure using maximally general unifiers instead
of unifiers in the ordinary derivation procedure. Finally, we have shown that the class
of translations defined by DS-RTEFSs is learnable from positive examples under the re-
strictions that the number of clauses in an EFS and the length of a clause are bounded
by some constant. Furthermore, we have shown that the restriction is essential since the
class of translations is not learnable from positive examples without the restriction.

One of the future works is to develop an efficient learning algorithm for the DS-
RTEFSs. In particular, it is important issue to discuss the learnabilitiy of translations
by constructive methodology in order to implement an automatic transformation system
for XML documents.

References

S. Arikawa, T. Shinohara, and A. Yamamoto (1992). Learning elementary formal sys-
tems. Theoretical Computer Science, 95(11):97–113.

H. Arimura and T. Shinohara (1994). Inductive inference of prolog programs with lin-
ear data dependency from positive data. Proc. Information Modelling and Knowledge
Bases V, 365–375.



38 N. Sugimoto

J. Berstel and L. Boasson (2000). XML grammars. Proc. 25th International Symposium
on Mathematical Foundations of Computer Science, pages 182–191.

J. Berstel and L. Boasson (2002). Formal properties of XML grammars and languages.
Acta Informatica, 38(9):649–671.

E. Gold (1967). Language identification in the limit. Information and Control, 10:447–
474.

K. Kiwata and S. Arikawa (1996). Introducing types into elementary formal systems.
Bulletin of Informatics and Cybernetics, 28(1):79–89.

A. Bruggemann-Klein and D. Wood (2004). Balanced context-free grammars, hedge
grammars and pushdown caterpillar automata. Proc. Extreme Markup Language 2004.

M. K. Rao (1996). A class of prolog programs inferable from positive data. Proc. 7th
International Workshop on Algorithmic Learning Theory, Lecture Notes in Artificial
Intelligence 1160, 272–284.

T. Shinohara (1991). Inductive inference of monotonic formal systems from positive
data. New Generation Computing, 8:371–384.

T. Shinohara (1994). Rich classes inferable from positive data: length-bounded elemen-
tary formal system. Information and Computation 108:175–186.

R. Smullyan (1961). Theory of formal systems. Princeton University Press.

N. Sugimoto, K. Hirata and H. Ishizaka (1996). Constructive learning of translations
based on dictionaries. Proc. 7th International Workshop on Algorithmic Learning
Theory, Lecture Notes in Artificial Intelligence 1160, 177–184, 1996.

N. Sugimoto (1998). Learnability of translations from positive examples. Proc. 9th
International Workshop on Algorithmic Learning Theory, Lecture Notes in Artificial
Intelligence, 1501:169–178.

N. Sugimoto and H. Ishizaka (1999). Generating languages by a derivation procedure
for elementary formal systems. Information Processing Letters, 69:161–166.

N. Sugimoto, H. Ishizaka, and T. Shinohara (2001). An efficient derivation for elemen-
tary formal systems based on partial unification. Proc. 4th International Conference
on Discovery Science 2001, Lecture Notes in Artificial Intelligence, 2226:350–364.

A. Yamamoto (1992). Procedural semantics and negative information of elementary
formal system. Journal of Logic Programming, 13:89–97.

Received December 3, 2008
Revised December 25, 2008


