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MULTIRELATIONAL MODELS OF LAZY,
MONODIC TREE, AND PROBABILISTIC

KLEENE ALGEBRAS

By

Hitoshi Furusawa∗, Koki Nishizawa† and Norihiro Tsumagari‡

Abstract

This paper studies basic properties of multirelations, and then shows that
classes of multirelations provides models of three weaker variants of Kleene al-
gebras, namely, lazy, monodic tree, and probabilistic Kleene algebras. Also it is
shown that these classes of up-closed multirelations need not be models of Kozen’s
Kleene algebras unlike the case of ordinary binary relations.

Key Words and Phrases: Multirelations, Lazy Kleene algebras, Monodic tree Kleene algebras,

Probabilistic Kleene algebras

1. Introduction

A notion of Kleene algebras is introduced by Kozen (1994) as a complete axioma-
tisation of regular events. Three weaker variants of Kleene algebras have been indepen-
dently introduced for different purposes.

• Möller (2004) has introduced lazy Kleene algebras to handle both of finite and
infinite streams. A lazy Kleene algebra subsumes Dijkstra’s computation calculus
(cf. Dijkstra (2000)), Cohen’s omega algebra (cf. Cohen (2000)) and von Wright’s
demonic refinement algebra (cf. von Wright (2004)).

• A notion of monodic tree Kleene algebras has been introduced by Takai and Furu-
sawa (2006) to develop Kleene-like algebras for a class of tree languages, which is
called monodic. Though, as reported by Takai and Furusawa (2008), the proof of
their completeness result contains some mistakes, the set of monodic tree languages
over a signature still forms a monodic tree Kleene algebra.

• McIver and Weber (2005) have introduced a notion of probabilistic Kleene al-
gebras. Using probabilistic Kleene algebras, McIver, Cohen, and Morgan (2006)
have generalised Cohen’s separation theorems (cf. Cohen (2000)) for probabilistic
distributed systems and the general separation results are applied to Rabin’s so-
lution (cf. Rabin (1982)) to distributed mutual exclusion with bounded waiting.
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This result shows that probabilistic Kleene algebras are useful to simplify models
of probabilistic distributed systems without numerical calculations which makes
difficult to analyse.

Up-closed multirelations are studied as a semantic domain of programs. They
serve predicate transformer semantics with both of angelic and demonic nondetermin-
ism in the same framework (cf. Martin, Curtis, and Rewitzky (2004), Rewitzky (2003),
Rewitzky and Brink (2006)). Constructions of reflexive and transitive closure of up-
closed multirelations are studied by Tsumagari, Nishizawa, and Furusawa (2008). Also
up-closed multirelations provide models of game logic introduced by Parikh (1985).
Pauly and Parikh (2003) have given an overview of this research area. Operations of
the game logic have been studied from an algebraic point of view by Goranko (2003)
and Venema (2003). They have given complete axiomatisation of iteration-free game
logic.

In this paper, we give multirelational models of three weaker variants of Kleene
algebras. Since these are independently introduced, they have not been investigated
from the unified point of view. Our giving models may reveal both of difference and
commonality of these. Though it is known that the set of (usual) binary relations
on a set forms a Kleene algebra, models here need not be. Essentially, this paper
is reorganising and revising results (cf. Furusawa, Tsumagari, and Nishizawa (2008),
Tsumagari, Nishizawa, and Furusawa (2008)) presented at the International Conference
on Relational Methods in Computer Science, Frauenwörth, Germany, 2008.

We begin in Section 2 and 3 recalling definitions of three weaker variants of Kleene
algebras and study basic notions and properties of up-closed multirelations. In Section
4, we show that the set of up-closed multirelations on a set forms a lazy Kleene alge-
bra. Though Möller (2004) has proved the fact via correspondence between up-closed
multirelations and monotone predicate transformers, we prove it without using the corre-
spondence. In the proof, right residue plays an important rôle. We also give an example
which shows that the set of up-closed multirelations need not form a monodic tree Kleene
algebra. We introduce the notion of finitary up-closed multirelations in the beginning
of Section 5. Then we show that the set of finitary up-closed multirelations on a set
forms a monodic tree Kleene algebra. Tarski’s least fixed point theorem for continuous
mappings is used to prove it. Assuming a notion called totality, which is introduced by
Rewitzky and Brink (2006), we obtain a multirelational model of probabilistic Kleene
algebras.

2. Lazy, Monodic Tree, and Probabilistic Kleene Algebra

We recall the definition of lazy Kleene algebras introduced by Möller (2004).

Definition 2.1. A lazy Kleene algebra is a tuple (K,+, ·, ∗, 0, 1) of a set K, two
binary operations + and · on K, a unary operation ∗ on K, and 0, 1 ∈ K satisfying the
following conditions:

0 + a = a (1)

a+ b = b+ a (2)

a+ a = a (3)

a+ (b+ c) = (a+ b) + c (4)
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a(bc) = (ab)c (5)

0a = 0 (6)

1a = a (7)

a1 = a (8)

ab+ ac ≤ a(b+ c) (9)

ac+ bc = (a+ b)c (10)

1 + aa∗ ≤ a∗ (11)

ab ≤ b =⇒ a∗b ≤ b (12)

for all a, b, c ∈ K, where · is omitted and the order ≤ is defined by a ≤ b iff a+b = b. ⊓⊔

The notion of monodic tree Kleene algebras introduced by Takai and Furusawa
(2006) is as follows.

Definition 2.2. A lazy Kleene algebra (K,+, ·, ∗, 0, 1) satisfying

a(b+ 1) ≤ a =⇒ ab∗ ≤ a (13)

for all a, b ∈ K is called a monodic tree Kleene algebra. ⊓⊔

The notion of probabilistic Kleene algebras introduced by McIver and Weber (2005)
is as follows.

Definition 2.3. A monodic tree Kleene algebra (K,+, ·, ∗, 0, 1) satisfying

a0 = 0 (14)

for all a ∈ K is called a probabilistic Kleene algebra. ⊓⊔

Kozen’s Kleene algebras require stronger conditions

ab+ ac = a(b+ c) (9’)

and
ab ≤ a =⇒ ab∗ ≤ a (13’)

instead of (9) and (13), respectively. Note that a probabilistic Kleene algebra satisfying
(9’) is a Kleene algebra in the sense of Kozen (1994).

3. Up-Closed Multirelation

In this section we recall definitions and basic properties of multirelations and their
operations. More precise information on these can be obtained from Rewitzky (2003),
Martin, Curtis, and Rewitzky (2004), Rewitzky and Brink (2006).

A multirelation over a set A is a subset of the Cartesian product A×℘(A) of A and
the power set ℘(A) of A. A multirelation R is called up-closed if (x,X) ∈ R and X ⊆ Y
imply (x, Y ) ∈ R for each x ∈ A, X,Y ⊆ A. The null multirelation ∅ and the universal
multirelation A×℘(A) are up-closed, and will be denoted by 0 and ∇, respectively. The
set of up-closed multirelations over A will be denoted by UMRel(A).
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For a family {Ri | i ∈ I} of up-closed multirelations the union
∪

i∈I Ri is up-closed
since

(x,X) ∈
∪

i∈I Ri and X ⊆ Y
⇐⇒ ∃i ∈ I. (x,X) ∈ Ri and X ⊆ Y
=⇒ ∃i ∈ I. (x, Y ) ∈ Ri (Ri is up-closed)
⇐⇒ (x, Y ) ∈

∪
i∈I Ri .

So UMRel(A) is closed under arbitrary union
∪
. Then it is immediate that a tuple

(UMRel(A),
∪
) is a sup-semilattice equipped with the least element 0 with respect to

the inclusion ordering ⊆.

Remark. UMRel(A) is also closed under arbitrary intersection
∩
. So, UMRel(A)

forms a complete lattice together with the union and the intersection. ⊓⊔

R + S denotes R ∪ S for a pair of up-closed multirelations R and S. Then the
following holds.

Proposition 3.1. A tuple (UMRel(A),+, 0) satisfies conditions (1), (2), (3), and
(4) in Definition 2.1. ⊓⊔

For a pair of multirelations R,S ⊆ A× ℘(A) the composition R;S is defined by

(x,X) ∈ R;S iff ∃Y ⊆ A.((x, Y ) ∈ R and ∀y ∈ Y.(y,X) ∈ S) .

It is immediate from the definition that one of the zero laws

0 = 0;R

is satisfied. The other zero law
R; 0 = 0

need not hold.

Example 3.2. Consider the universal multirelation ∇ on a singleton set {x}. Then,
since (x, ∅) ∈ ∇, ∇; 0 = ∇ ̸= 0. ⊓⊔

Also the composition ; preserves the inclusion ordering ⊆, that is,

P ⊆ P ′ and R ⊆ R′ =⇒ P ;R ⊆ P ′;R′

since

(x,X) ∈ P ;R ⇐⇒ ∃Y ⊆ A.((x, Y ) ∈ P and ∀y ∈ Y.(y,X) ∈ R)
=⇒ ∃Y ⊆ A.((x, Y ) ∈ P ′ and ∀y ∈ Y.(y,X) ∈ R′)
⇐⇒ (x,X) ∈ P ′;R′ .

If R and S are up-closed, so is the composition R;S since

(x,X) ∈ R;S and X ⊆ Z
=⇒ ∃Y ⊆ A.((x, Y ) ∈ R and ∀y ∈ Y.(y, Z) ∈ S) (S is up-closed)
⇐⇒ (x,Z) ∈ R;S .

In other words, the set UMRel(A) is closed under the composition ;.
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Lemma 3.3. Up-closed multirelations are associative under the composition ;.

Proof. Let P , Q, and R be up-closed multirelations over a set A. We prove
(P ;Q);R ⊆ P ; (Q;R).

(x,X) ∈ (P ;Q);R
⇐⇒ ∃Y ⊆ A.((x, Y ) ∈ P ;Q and ∀y ∈ Y.(y,X) ∈ R)
⇐⇒ ∃Y ⊆ A.(∃Z ⊆ A.((x,Z) ∈ P and ∀z ∈ Z.(z, Y ) ∈ Q) and

∀y ∈ Y.(y,X) ∈ R)
=⇒ ∃Z ⊆ A.((x,Z) ∈ P and

∀z ∈ Z.∃Y ⊆ A.((z, Y ) ∈ Q and ∀y ∈ Y.(y,X) ∈ R))
⇐⇒ ∃Z ⊆ A.((x,Z) ∈ P and ∀z ∈ Z.(z,X) ∈ Q;R)
⇐⇒ (x,X) ∈ P ; (Q;R) .

For P ; (Q;R) ⊆ (P ;Q);R it is sufficient to show

∃Z ⊆ A.((x,Z) ∈ P and
∀z ∈ Z.∃Y ⊆ A.((z, Y ) ∈ Q and ∀y ∈ Y.(y,X) ∈ R))

=⇒ ∃Y ⊆ A.(∃Z ⊆ A.((x,Z) ∈ P and ∀z ∈ Z.(z, Y ) ∈ Q) and
∀y ∈ Y.(y,X) ∈ R) .

Suppose that there exists a set Z such that

(x,Z) ∈ P and ∀z ∈ Z.∃Y ⊆ A.((z, Y ) ∈ Q and ∀y ∈ Y.(y,X) ∈ R) .

If Z is empty, it is obvious since we can take the empty set as Y . Otherwise, take a set
Yz satisfying

(z, Yz) ∈ Q and ∀y ∈ Yz.(y,X) ∈ R

for each z ∈ Z. Then set Y0 =
∪

z∈Z Yz. Since Q is up-closed, (z, Y0) ∈ Q for each z.
Also (y,X) ∈ R for each y ∈ Y0 by the definition of Y0. Thus Y0 satisfies

∃Z ⊆ A.((x,Z) ∈ P and ∀z ∈ Z.(z, Y0) ∈ Q) and ∀y ∈ Y0.(y,X) ∈ R .

⊓⊔

We used the fact that Q is up-closed to show P ; (Q;R) ⊆ (P ;Q);R. Multirelations need
not be associative under the composition.

Example 3.4. Consider multirelations

R = {(x, {x, y, z}), (y, {x, y, z}), (z, {x, y, z})} and
Q = {(x, {y, z}), (y, {x, z}), (z, {x, y})}

on a set {x, y, z}. Here, R is up-closed but Q is not. Since R;Q = 0, (R;Q);R = 0. On
the other hand, R; (Q;R) = R since Q;R = R and R;R = R. Therefore

(R;Q);R ⊆ R; (Q;R)

but
R; (Q;R) ̸⊆ (R;Q);R .

Replacing Q with an up-closed multirelation Q′ defined by Q′ = Q+R,

R; (Q′;R) = (R;Q′);R

holds since Q′;R = R = R;Q′. ⊓⊔



16 H. Furusawa, K. Nishizawa and N. Tsumagari

The identity 1 ∈ UMRel(A) is defined by

(x,X) ∈ 1 iff x ∈ X .

Lemma 3.5. The identity satisfies the unit laws, that is,

1;R = R and R; 1 = R

for each R ∈ UMRel(A).

Proof. First, we prove 1;R ⊆ R.

(x,X) ∈ 1;R ⇐⇒ ∃Y ⊆ A.((x, Y ) ∈ 1 and ∀y ∈ Y.(y,X) ∈ R)
⇐⇒ ∃Y ⊆ A.(x ∈ Y and ∀y ∈ Y.(y,X) ∈ R)
=⇒ (x,X) ∈ R .

Conversely, if (x,X) ∈ R, then (x,X) ∈ 1;R since (x, {x}) ∈ 1. Next, we prove R; 1 ⊆ R.

(x,X) ∈ R; 1 ⇐⇒ ∃Y ⊆ A.((x, Y ) ∈ R and ∀y ∈ Y.(y,X) ∈ 1)
⇐⇒ ∃Y ⊆ A.((x, Y ) ∈ R and ∀y ∈ Y.y ∈ X)
⇐⇒ ∃Y ⊆ A.((x, Y ) ∈ R and Y ⊆ X)
=⇒ (x,X) ∈ R

since R is up-closed. Conversely, if (x,X) ∈ R, then (x,X) ∈ R; 1 since, by the definition
of 1, (y,X) ∈ 1 for each y ∈ X. ⊓⊔

Therefore the following property holds.

Proposition 3.6. A tuple (UMRel(A), ; , 0, 1) satisfies conditions (5), (6), (7), and
(8) in Definition 2.1. ⊓⊔

As Example 3.2 has shown, the condition (14) need not be satisfied. We discuss about
this condition in Section 6.

Since the composition ; preserves the inclusion ordering ⊆, we have∪
i∈I

R;Si ⊆ R; (
∪
i∈I

Si)

for each up-closed multirelation R and a family {Si | i ∈ I}. Also∪
i∈I

Ri;S = (
∪
i∈I

Ri);S

holds for each up-closed multirelation S and a family {Ri | i ∈ I} since

(x,X) ∈
∪

i∈I Ri;S ⇐⇒ ∃k.((x,X) ∈ Rk;S)
⇐⇒ ∃k.(∃Y ⊆ A.((x, Y ) ∈ Rk and ∀y ∈ Y.(y,X) ∈ S))
⇐⇒ ∃Y ⊆ A.(∃k.((x, Y ) ∈ Rk and ∀y ∈ Y.(y,X) ∈ S))
⇐⇒ ∃Y ⊆ A.((x, Y ) ∈

∪
i∈I Ri and ∀y ∈ Y.(y,X) ∈ S))

⇐⇒ (x,X) ∈ (
∪

i∈I Ri);S .



Multirelational Models of Lazy, Monodic Tree, and Probabilistic Kleene Algebras 17

Proposition 3.7. A tuple (UMRel(A),+, ; ) satisfies conditions (9) and (10) in
Definition 2.1. ⊓⊔

We give an example showing that the equation (9’) need not hold in UMRel(A).

Example 3.8. Consider the up-closed multirelation

R = {(x,W ) | z ∈ W} ∪ {(y,W ) | {x, z} ⊆ W} ∪ {(z,W ) | {x, z} ⊆ W}

on a set {x, y, z}. Clearly, this R is up-closed. Then, R; (1 + R) ̸⊆ R; 1 + R;R since
(y, {z}) ̸∈ R; 1 +R;R though (y, {z}) ∈ R; (1 +R). ⊓⊔

4. Multirelational Model of Lazy Kleene Algebra

For R ∈ UMRel(A), a mapping φR : UMRel(A) → UMRel(A) is defined by

φR(ξ) = R; ξ + 1 .

Since (UMRel(A),∪,∩) is a complete lattice and the mapping φR preserves the ordering
⊆, φR has the least fixed point, given by

∩
{ξ | φR(ξ) ⊆ ξ}.

For an up-closed multirelation R we define R∗ as

R∗ =
∩

{ξ | φR(ξ) ⊆ ξ} .

Then the following (15) and (16) hold since R∗ is the least fixed point of φR.

1 +R;R∗ ⊆ R∗ (15)

1 +R;P ⊆ P =⇒ R∗ ⊆ P (16)

Thus, we have already shown the following proposition.

Proposition 4.1. A tuple (UMRel(A),+, ; , ∗, 0, 1) satisfies the condition (11) in
Definition 2.1. ⊓⊔

For P,Q ∈ UMRel(A) we define P/Q as

P/Q =
∪

{ξ | ξ;Q ⊆ P} .

Lemma 4.2. For P,Q,R ∈ UMRel(A) it holds that

R ⊆ P/Q ⇐⇒ R;Q ⊆ P .

Proof. Suppose that R ⊆ P/Q. By the left distributivity we have

R;Q ⊆ (P/Q);Q =
∪
{ξ | ξ;Q ⊆ P};Q

=
∪
{ξ;Q | ξ;Q ⊆ P}

⊆ P .

Conversely, suppose that R;Q ⊆ P . Since R ∈ {ξ | ξ;Q ⊆ P}, R ⊆ P/Q holds. ⊓⊔

Proposition 4.3. For P,R ∈ UMRel(A) it holds that

R;P ⊆ P =⇒ R∗P ⊆ P .
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Proof. Suppose that R;P ⊆ P . Then we have

(1 +R; (P/P ));P = P +R; (P/P );P
⊆ P +R;P
⊆ P

since (P/P );P ⊆ P . So 1 + R; (P/P ) ⊆ (P/P ) holds. By (16) we have R∗ ⊆ P/P .
Therefore R∗;P ⊆ P holds. ⊓⊔

Theorem 4.4. A tuple (UMRel(A),+, ; , ∗, 0, 1) is a lazy Kleene algebra. ⊓⊔

(UMRel(A),+, ; , ∗, 0, 1) need not satisfy the condition (13).

Example 4.5. Consider up-closed multirelations

P = {(n,X) | X is infinite} and
R = {(0, ∅)} ∪ {(n,X) | ∃m ∈ X.n ≤ m+ 1}

over the set N of natural numbers. It can be proved that φR(ξ) = R; ξ + 1 ⊆ ξ implies
∀m ∈ N.(m, {0}) ∈ ξ by induction on m. So, ∀m ∈ N.(m, {0}) ∈ R∗ holds since R∗

is the least fixed point of φR. Moreover, (n,N) ∈ P holds for a natural number n.
Therefore, (n, {0}) ∈ P ;R∗ holds. Since (n, {0}) ̸∈ P , we have P ;R∗ ̸⊆ P . However,
P ; (R+ 1) ⊆ P holds. ⊓⊔

Therefore (UMRel(A),+, ; , ∗, 0, 1) need not be a monodic tree Kleene algebra.

5. Multirelational Model of Monodic Tree Kleene Algebra

For monodic tree Kleene algebras, we consider a subclass of up-closed multirela-
tions.

Definition 5.1. An up-closed multirelation R is called finitary if (x, Y ) ∈ R im-
plies that there exists a finite set Z such that Z ⊆ Y and (x,Z) ∈ R. ⊓⊔

Clearly all up-closed multirelations over a finite set are finitary. The set of finitary
up-closed multirelations over a set A will be denoted by UMRelf (A).

Remark. An up-closed multirelation R is called disjunctive (cf. Pauly and Parikh
(2003)) or angelic (cf. Martin, Curtis, and Rewitzky (2004)) if, for each x ∈ A and each
V ⊆ ℘(A),

(x,
∪

V ) ∈ R iff ∃Y ∈ V.(x, Y ) ∈ R .

Let R be disjunctive and (x,X) ∈ R. And let V be the set of finite subsets of X.
Then

∪
V = X. By disjunctivity, there exists Y ∈ V such that (x, Y ) ∈ R. Also Y is

finite by the definition of V . Therefore disjunctive up-closed multirelations are finitary.
However, finitary up-closed multirelations need not be disjunctive. Consider a finitary
up-closed multirelation R = {(x, {x, y})} on a set {x, y}. Then

∪
{{x}, {y}} = {x, y}

and (x, {x, y}) ∈ R but (x, {x}), (x, {y}) ̸∈ R. ⊓⊔

It is obvious that 0, 1 ∈ UMRelf (A). Also the set UMRelf (A) is closed under arbitrary
union

∪
.
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Proposition 5.2. The set UMRelf (A) is closed under the composition ;.

Proof. Let P and R be finitary up-closed multirelations. Suppose (x,X) ∈ P ;R.
Then, by the definition of the composition, there exists Y ⊆ A such that

(x, Y ) ∈ P and ∀y ∈ Y.(y,X) ∈ R .

Since P is finitary, there exists a finite set Y0 ⊆ Y such that

(x, Y0) ∈ P and ∀y ∈ Y0.(y,X) ∈ R .

Also, since R is finitary, there exists a finite set Xy ⊆ X such that (y,Xy) ∈ R for each
y ∈ Y0. Then the set

∪
y∈Y0

Xy is a finite subset of X such that

(x,
∪

y∈Y0

Xy) ∈ P ;R

since (y,
∪

y∈Y0
Xy) ∈ R for each y ∈ Y0. Therefore P ;R is finitary. ⊓⊔

Thus, if R and ξ are finitary, then so is φR(ξ).
The set UMRelf (A) need not be closed under arbitrary intersection

∩
.

Example 5.3. For each natural number i, consider the finitary up-closed multirelation
Ri = {(1, X) | i ∈ X} over the set N of natural numbers. Then,

∩
{Ri | i ∈ N} is not

finitary since
∩
{Ri | i ∈ N} = {(1,N)}. ⊓⊔

For a family {Pi | i ∈ I} of Pi ∈ UMRelf (A) we define that∧
{Pi | i ∈ I} =

∪
{R ∈ UMRelf (A) | ∀i ∈ I.R ⊆ Pi} .

Then, in a poset (UMRelf (A),⊆),
∧
{Pi | i ∈ I} is the greatest lower bound of a family

{Pi | i ∈ I}.
For a finitary up-closed multirelation R we define R∗ as

R∗ =
∧

{ξ | φR(ξ) ⊆ ξ} .

Then, as the case of UMRel(A) in the last section, it may be shown that a tuple
(UMRelf (A),+, ; , ∗, 0, 1) is a Lazy Kleene algebra.

Moreover, for a finitary up-closed multirelation R, we obtain bottom-up construc-
tion of R∗. Proving the fact, we use the following lemma.

Lemma 5.4. Let D be a directed subset of UMRelf (A) and let R ∈ UMRelf (A).
Then it holds that

R; (
∪

D) =
∪

{R;P | P ∈ D}.

Proof.
∪
{R;P | P ∈ D} ⊆ R; (

∪
D) holds by the monotonicity of composition.

Suppose (x,X) ∈ R; (
∪
D). Then, by the definition of composition, there exists Y ⊆ A

such that

(x, Y ) ∈ R and ∀y ∈ Y.(y,X) ∈
∪

D .
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Since R is finitary, there exists a finite set Y0 ⊆ Y such that

(x, Y0) ∈ R and ∀y ∈ Y0.(y,X) ∈
∪

D .

Thus there exists Py ∈ D such that (y,X) ∈ Py for each y ∈ Y0. Since D is directed
and Y0 is finite, there exists P0 ∈ D such that Py ⊆ P0 for each y ∈ Y0. Therefore
(x,X) ∈ R;P0, and then (x,X) ∈

∪
{R;P | P ∈ D}. ⊓⊔

Proposition 5.5. Let R be a finitary up-closed multirelation. Then

R∗ =
∪
n≥0

φn
R(0) ,

where φ0
R is the identity mapping and φn+1

R = φR ◦ φn
R.

Proof. Since R∗ is the least fixed point of φR, it is sufficient to show that φR is
continuous, that is, ∪

{φR(P ) | P ∈ D} = φR(
∪

D)

for each directed subset D of UMRelf (A).
∪
{φR(P ) | P ∈ D} ⊆ φR(

∪
D) holds by the

monotonicity of φR. On the other hand, it is obvious that

1 ⊆
∪
{φR(P ) | P ∈ D} and∪

{R;P | P ∈ D} ⊆
∪
{φR(P ) | P ∈ D}

by the definition of φR. Also, R; (
∪

D) =
∪
{R;P | P ∈ D} holds by Lemma 5.4.

Therefore it holds that φR(
∪
D) ⊆

∪
{φR(P ) | P ∈ D}. ⊓⊔

Remark. The bottom-up construction does not work in the case of UMRel(A).
Let N be the set of natural numbers and let ω satisfy

∀n ∈ N.n < ω .

Now consider an up-closed multirelation

R = {(x,X) | y < x =⇒ y ∈ X}

over N ∪ {ω}, which is not finitary. Then
∪

n≥0 φ
n
R(0) is not a fixed point of φR since

(ω, ∅) ̸∈
∪

n≥0 φ
n
R(0) and (ω, ∅) ∈ φR(

∪
n≥0 φ

n
R(0)). ⊓⊔

A condition related to the operator ∗ is left to check.

Proposition 5.6. Let P,R ∈ UMRelf (A). Then the following implication holds.

P ; (R+ 1) ⊆ P =⇒ P ;R∗ ⊆ P

Proof. It will be follow from P ;φn
R(0) ⊆ P since

P ;R∗ ⊆ P ; (
∪
n≥0

φn
R(0)) =

∪
n≥0

P ;φn
R(0) ⊆ P
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by Lemma 5.4. Supposing that P ; (R+1) ⊆ P , we show that P ;φn
R(0) ⊆ P by induction

on n. For n = 0 it holds since φ0
R is the identity. For n = 1

P ;φR(0) = P ; (R; 0 + 1) ⊆ P ; (R+ 1) ⊆ P .

Assume that P ;φn
R(0) ⊆ P for n ≥ 1. Then we have

P ;φn+1
R (0) = P ; (R;φn

R(0) + 1)
⊆ P ; (R;φn

R(0) + φn
R(0))

= P ; (R+ 1);φn
R(0)

⊆ P ;φn
R(0)

⊆ P

since 1 ⊆ R;φn−1
R (0) + 1 = φn

R(0) for n ≥ 1. ⊓⊔

Remark. Kozen’s Kleene algebras requires the condition (13’)

ab ≤ a =⇒ ab∗ ≤ a

instead of (13). The following example shows that the condition (13’) need not hold for
finitary up-closed multirelations. Consider the up-closed multirelation R appeared in
Example 3.8. Then R;R ⊆ R since

R;R = {(w,W ) | w ∈ {x, y, z}, {x, z} ⊆ W} ⊆ R .

Also, we have already seen that (y, {z}) ∈ R; (R+ 1) in Example 3.8. Since

R; (R+ 1) ⊆ R;φ2
R(0) ⊆ R; (

∪
n≥0

φn
R(0)) = R;R∗ ,

(y, {z}) ∈ R;R∗. But (y, {z}) ̸∈ R. So, R;R∗ ̸⊆ R in spite of R;R ⊆ R. ⊓⊔

We have already shown the following.

Theorem 5.7. A tuple (UMRelf (A),+, ; , ∗, 0, 1) is a monodic tree Kleene algebras.
⊓⊔

Example 3.2 shows that (UMRelf (A),+, ; , ∗, 0, 1) need not be a probabilistic Kleene
algebra.

6. Multirelational Model of Probabilistic Kleene Algebra

It has been shown by Rewitzky and Brink (2006) that the following notion ensures
the right zero law.

Definition 6.1. A multirelation R on a set A is called total if (x, ∅) ̸∈ R for each
x ∈ A. ⊓⊔
Clearly, the null multirelation 0 and the identity 1 are total.

The set of finitary total up-closed multirelations will be denoted by UMRel+f (A).

Then UMRel+f (A) is closed under
∪
,
∧
, ;, and ∗.

Theorem 6.2. A tuple (UMRel+f (A),+, ; , ∗, 0, 1) is a probabilistic Kleene algebra.
⊓⊔

(UMRel+f (A),+, ; , ∗, 0, 1) need not be a Kozen’s Kleene algebra. It is induced from
either Example 3.8 or the last remark in which we consider only finitary total up-closed
multirelations.
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Table 1: Summary

UMRel(A) UMRelf (A) UMRel+f (A)

lazy KA? ⃝ ⃝ ⃝
monodic tree KA? × ⃝ ⃝
probabilistic KA? × × ⃝
KA? × × ×

⃝ : Yes
× : Not always

7. Conclusion

This paper has studied up-closed multirelations carefully. Then we have shown that
classes of up-closed multirelations provides models of three weaker variants of Kleene
algebras:

• the set UMRel(A) of up-closed multirelations forms a lazy Kleene algebra,

• the set UMRelf (A) of finitary up-closed multirelations forms a monodic tree Kleene
algebra,

• and the set UMRel+f (A) of finitary total up-closed multirelations forms a proba-
bilistic Kleene algebra.

Also we have shown that

• (13) need not hold in UMRel(A) and

• (14) need not hold in UMRel(A) nor UMRelf (A).

Table 1 summarises the results of this paper.
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