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On the Automorphism Group of Some
Pro-l Fundamental Groups

Mamoru Asada and Masanobu Kaneko

Introduction

Let [ be a fixed prime number and g>>2 be an integer. Let G be the
pro-/ completion of the fundamental group of a compact Riemann surface
of genus g, i.e. G is a pro-/ group generated by 2g elements x,, -- -, x,,
with one defining relation;

(*) [xl, xg-s-l][xz’ xg+2]° e '{xg’ ng}’:—-“i
G=<X1, Xgy + v vy x2g”:x13 xg+l]' tet '[xga xZg]=1>pro-Z'

([ , ] denotes the commutator; [x, y]=xyx~'y~*) Let I . denote the group
of continuous automorphism of G and I", denote the outer automorphism
group of G; I" g_—:f ¢/Int G, Int G being the inner automorphism group of
G. (Note that every continuous automorphism of G is bi-continuous, as
G is compact.) Our aim in this paper is to study these groups /", and I',,
as a generalization of Thara [I,] Chapter I and as a preliminary to the
study of the Galois representations. We shall give filtrations of I", and
I', and prove a result on conjugacy classes of I',.

Now we shall state our results. Let G, denote the abelianized group
of G, so Gy, is a free Z;-module of rank 2g with a basis X, - -+, %, (Z;
denotes the ring of /-adic integers, and X, denotes the class of x;, (1<i<
2g).) The group r . acts on G,, naturally and, with respect to the basis
{%:}1<ci<se> WeE get a representation

i f'gw-»Aut Go~GL(Q2g; Z).

The group fg also acts naturally on the cohomology group H(G; Z,)
(i=1,2). (The action of G on Z, is trivial.) Now the cup product

HYG; Z)XHG; Z)—>HG; Z)~Z,

defines a non-degenerate alternating form, and the action of fg on
H¥G; Z;) (i=1, 2) are compatible with this cup product. It is well known
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that, from this, the image of 1 is contained in the group GSp 2g; Z)). In
Section 1 we shall prove the following

Proposition 1.  The image of 2 coincides with GSp 2g; Z,).

This may be a well-known fact. But the authors could not find a
suitable reference. We shall give a proof of Proposition 1 for the con-
venience of the readers. '

Let [ (1) denote the kernel of , so that we have an exact sequence

1————>l~1g(1)———->fg———>GSp Qg; Z,)—>1.

In Section 2 we shall give a filtration {I" (m)},»; of I',. This is naturally
induced by the descending central series of the group G;

G=G()DG2)D - - DGm>DGm+1)>---,

G(m+1)=[G, G(m)] (m=>1). We shall show that the filtration (oM} mss
is central, i.e. [I* (m), I ,(W]C T (m-+n) (m, n>1), and, using a result of
Labute [L], determine the structure of each I” (m)/I" (m+-1) (m=1) as
an abelian group (Theorem 1 and its Corollary). The filtration {I" ,(1)},u5,
_ of I, naturally induces a filtration {I" (1)}, of I',. In Section 3, we
shall study this filtration and obtain a result similar to that for I ¢ (Theo-
rem 2 and its Corollary). To study the filtration {I",(7)},.,, the crucial
point is the following

Proposition A. For m>1, Cent (G/G(m-+1)), the center of G/G(m+1),
coincides with G(m)|G(m+-1).

The proof of Proposition A will be given in Section 4. The group I,
and I", act on themselves as inner automorphisms. In Section 5, we shall
study these actions on the filtrations {I’ ()} ns: and {T" (M)} 1.

The homomorphism 1 induces naturally a homomorphism

A: I ,—>GSp (2g; Z).

Concerning this homomorphism, U. Jannsen and Y. Thara asked whether
a conjugacy class in I, can be characterized alone by its “abelian data”,
i.e. its image under A (up to GSp(2g; Z,)-conjugacy). In Section 6, we
shall answer this question in some special case, namely, we shall prove the
following

Theorem 3. Suppose that g>3. Let A=(a,;) be an element of
GSp (2g; Z,) satisfying the following conditions:



b

=1 mod / [£2
T\ mod /2 =2

and C be the GSp (2g; Z)-conjugacy class of A. Then, 27(C) contains
more than one I ,-conjugacy class.

Our motivation of the present work is as follows. This arises from
the investigation of the Galois representaticns by the towers of pro-/ cover-
ings of an algebraic curve. The study (or proposal) of such Galois repre-
sentations appeared in Belyi [B], Deligne [D], Grothendieck [G], and
Thara [I,, I,]. (See also Kohno-Oda [KO]in the present volume.) Let &k be
a perfect field whose characteristic is not / and K be an algebraic function
field of one variable over k with genus g. Let S={P,, ---, P,} be a set of
distinct k-rational prime divisors of K (r >0). (If r=0, S means an empty
set.) Let M be the maximum pro-/ extension of Kk which is unramified
outside the prime divisors in S. Thus, we have an exact sequence

1—>Gal (M/Kk)—>Gal (M/K)—>Gal (Kk/K)—>1.

Gal (k/k)

(Gal (/) denotes the Galois group of the extension in the parenthesis.)
This gives a representation of the group Gal (k/k);

¢: Gal (k/k)—>Aut G/Int G,

where G=Gal (M/Kk). In the case of k=Q, K=Q (¢) (¢: a variable over
Q) and r==3, the above representation has been studied in [I;, L,]. In this
case, the group G is isomorphic to the free pro-/ group F of rank 2, and
the image of ¢ is contained in the “pro-/ braid group™ of degree 2 which
is a subgroup of Aut F/Int F. In the case that the genus of the function
field K is greater than or equal to 2 and S is an empty set, Gal (M/KKk) is
isomorphic to the group G defined by (x). But our knowledge about the
groups I°, and I', is not so much. So, it seems that they are worth study-
ing as preliminaries for the investigations on the Galois representation ¢.

The composite of ¢ with 2 gives an /-adic linear representation. This
is nothing but the representation which arises from the action of Gal (k/k)
on the Tate module T(X) of the Jacobian variety X/k of the complete
non-singular model of K. Therefore, Theorem 3 suggests that the Galois
representation ¢ is not determined only by the representation 10¢p. We
can show that ¢ is actually not determined by 10¢ by giving explisit
examples. We shall give them in the forthcoming paper.



Our results as well as methods are completely parallel to those of [I;]
Chapter I. For the pro-/ braid group of arbitrary degree, see Oda [O]
and Kaneko [K]. In [K], the case that g>1 and r=1 is treated and
similar group theoretical results are obtained.

The authors wish to express their sincere gratitude to Professors Y.
Thara and Takayuki Oda for many valuable suggestions.

§1. Action of r zon Gy,

Let / be a fixed prime number and g>>2 be an integer. Let G be the
pro-I completion of the fundamental group of a compact Riemann surface
of genus g, i.e. G is a pro-/ group generated by 2g elements xy, - - -, X,
with one defining relation

( 1 ) [xla xg+1][x2a xg+2]° e '[xga x2g]: 1,

G= <x17 Xy + 00 -ngl [xla xg+1][x2, xg+2]' e '[xg> ng]:: l>pro-l'

Let [',=AutG be the automorphism group of G and I',=Aut G/Int G
be the outer automorphism group of G. (Int G denotes the inner auto-
morphism group of G.) Since G is a finitely generated pro-/ group, I ¢ 18
isomorphic to the projective limit lim Aut(G/N), where N runs over all
open characteristic subgroups of G. Hence, r . Is a profinite group (cf. [1,]
Ch. I).

Let G,,=G/[G, G] denote the abelianized group of G, so G, is a free
Z,-module of rank 2g with a basis %, - - -, X,,. (%; denotes the class of x;
(1<i<2g).) Then, I, acts on G,, naturally and, with respect to the basis
{%:}1<i<2¢> We get a continuous homomorphism

i: I ;—>Aut G,,~GL (2g; Z)),
namely, for ¢ € I o Ao)=((a, ;) € GL(2g; Z)) is determined by
x{=xf. - -x32¢ mod G(2) (1<ik2g).

The group I ¢ also acts naturally on the cohomology group HY(G; Z))
(i=1,2). (The action of G on Z, is trivial.) Now the cup product

HYG; Z)X H\G; Z)—>H*(G; Z)=Z,

defines a non-degenerate alternating form, and the actions of I° ¢ on
HYG; Z,)) (i=1, 2) are compatible with this cup product. From this, it
follows that the image of 1 is contained in the group

GSp (2g; Z)={A4 e GL(2g; Z))|'AJ ;A= p(A)J,, (4) € Z}},
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where J, = (1 0 ) Then, we have the following
g

Proposition 1.  The image of 1 coincides with GSp (2g; Z,).

We shall give a proof of Proposition 1, which may be well known,
for the convenience of the readers.

Proof. For A e GSp(2g; Z,), we construct an element ¢ € I° ¢ With
A(¢) = A by the method of “successive approximation”. Let a; denote the
i-th column vector of 4 (1<i<{2g). For simplicity, x* denotes x'*x§.

- - oxgzet, where a;=%(ay;, @y, - - -, By q) € ZF. Let

G=G(DDG2Q)D---DGmM>DGE(m+1DD---

be the descending central series of G, i.e. G(m+1)=[G, G(m)] (n>1). We
need the following

Lemma 1. Let m>1 and A=(a,)i<i<.; € GSp (2g; Z,). Suppose the
elements s{™, - - -, 5§ e G(2) satisfy a congruence

(2),  [s{Mxm, sithxe+i]e - - - o[siMx%, 5{77x"8]=1 mod G(m+-2).
Then, there exist sy, - - -, S, € G(2) such that

s, =5 mod G(m+1) (1<i<2g)

(3)
[s.x2, sg+1x“8+1]- - .[ng"é’J Szgx"zg];: 1.
The proof of Lemma 1 will be given later.
Now, by the defining relation of G and the assumption on 4, it is
easily verified that

[x%, x%&+1]e - - - «[x?2, x*¢]=1 mod G(3).

So, (2),, is satisfied for m=1 and s{™ =1 (1<i<2g). Thus, there exist
83 - -+, S, € G(2) satisfying the condition (3). We define ¢ € r ¢ by x{=
5;x% (1<i<2g). As the following argument shows, this is well-defined.
Let F be the free pro-/ group of rank 2g generated by x,, - - -, X,, and R
be the closed normal subgroup of F which is normally generated by [x,
Xgigle + - o[Xg Xo,), 50 that G=F/R. Let ¢ be the homomorphism F—G
defined by xZ=s,x% (1<i<2g). Since s,x* (1<i<2g) generate the group
G/G(2), 5;x* (1<Li<2g) generate the group G (Burnside’s theorem), hence
& is surjective. Obviously, RCKer 4, so ¢ induces a surjective homomor-
phism ¢: G—G. Since G is a finitely generated pro-/ group, ¢ is bijective,



i.e. ¢ is an automorphism.®™® . As A(¢)=4, this completes the proof of
Proposition 1.

Proof of Lemma 1. The proof is similar to that of Lemma 1 of [I,].
It suffices to prove that there exist s{™*V=s{™ mod G(m-+1) (1<i<2g)
satisfying the “next” higher congruence (2),,,,. Put s{™P=S,5{™ with
S; e Gm+1) (1<i<2g). We shall show that we can choose S; suitably
so that s™*? (1<i<2g) satisfy (2),.,- We use the following general
identity

(4) [ab, cd]=alb, cla=[a, clcalb, dla™[a, d Jc?
and calculate (2),,.,. For 1<i<2g, put a=S;, b=s{"x", ¢c=S,,,;, d=
sixee+i, Then,
[6, c]l=[s{™x, S,.,.]
’:Sém)[xai’ Sg+'£]s'§.m)~!{s§:m): Sg+i}a
[a9 c]=[Sia Sg+i]’
[b, d]=[s{"x", s x"e+7],
[a7 d] = [Sn s ;ﬁxay i]
=[Ss, sgls FRLSs, xe s o
Here, [s{™, Sg.il, [Si, Sgudl, [Ss, s8] belong to [G(2), G(m+ D] CG(m+3)
and [x*, Sgﬂ] [S;, x%+] e [G, G(m+-1)]=G(m+2) are central mod G(m
--3). Hence, we obtain
[Si5{x%, s tinter ]
=[x", Sg+i][Si5 xag“]SgnSi[sém)xaia Sé@ixug“](sgwsi)-l
=[x, S, JISs, x%+[s{™x, s{Px+]  mod G(m+-3).

(The last congruence follows from the fact that [S,, ,S;, [s{™x%, s {Fxe+ ]
belongs to [G(m+-1), G(D)]CG(m+3).) Put

p=[s{™xm, s{Vx %1 ]e . . . o[s{Mx%, 5{x"2] € G(m-+-2).
Then, we get
{SISYn)xal g+t g+1xag+1]' e .[Sgsé”")x"g’ SZgS§;n)xa2g]

— ﬁ S, IS, x%+7] mod G(m+3).

* The proof of this fact is the same way as Mal’cev’s theorem that “a finitely
generated residually finite group cannot be isomorphic with one of its proper quoti-
ent groups” (cf. e.g. [MKS] p. 415).



Since x* (1<i<2g) generate the group gr' G=G/G(2),
g™+ G= 37 [x* mod G(2), gr™*'G] + 37 [er™*! G, xe+* mod G(2)]
i=1 =1

holds. Here, gr* G=G(k)/G(k+1) (k>1) and the bracket operation [, ]:
grl GX gr™*' G—gr™*2 G is the one naturally induced by the commutator.
Therefore, we can choose S, - - -, S,, such that the congruence

o7'= [ 16" S, dISe ¥e+] mod G(m-+3)

holds. Then, s{™*V=S,s{™ (1<i<2g) satisfy the congruence (2),,.,, and
the proof of Lemma 1 is completed.

Remark. The surjectivity of 1 is also proved by using the Galois
representation and a classical result of Nielsen. (This is suggested to the
authors by Y. lhara and Takayuki Oda.)

First, by a result of Nielsen (cf. e.g. [MKS] Section 3.7 Th. N 13.),
Im 4 contains Sp (2g; Z), the symplectic group of degree 2g over Z. Since
Sp (2g; Z) is everywhere dense in Sp (2g; Z,) and ", is compact, it follows
that Im ADSp (2g; Z,). Therefore, to prove the surjectivity of 7, it suffices
to show that

pod: ' y—Z¥

is surjective. Here, u: GSp (2g; Z,)—>Z} is the “multiplicator”. Now,
let K be an algebraic function field of one variable over Q with genus g
and M be the maximum unramified pro-/ extension of KQ. Thus, we
have an exact sequence

1—>Gal (M/KQ)—>Gal (M/K )—>Gal (KQ/K)—>1.

Il

G Gal (Q/0)

2 canomn.

This gives a representation ¢ of the group Gal (Q/Q);
¢: Gal(Q/Q)—>Aut G/Int G=T,.
The homomorphism 2 naturally induces a homomorphism
1 I',—>GSp(2g; Z)).
Then, 20 ¢: Gal(Q/Q)—>GSp (2g; Z)) is the l-adic Iineaf representation
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arising from the action of Gal(Q/Q) on the Tate module Ty(X) of the
Jacobian variety X/Q of the complete non-singular model of K. Thus,

podop: Gal(Q/Q)—>ZF
is the l-cyclotomic character, which is surjective. Therefore, po1 is

surjective.

§2. Filtration of [,

In this section, we shall study a filtration of the group 7°,.
Let {G(m)},», be the descending central series of G. For each non-
negative integer m, put

I my={o el (1)|xx"eGim+1) Vx e G}.

Then, I (m) is a subgroup of r . (in fact, normal in r « (See Theorem 1
(i) below)) and

[y=T O (DD (DD - DI (m)D(m+1)D---.
In general, for an element ¢ of r & put
sdo)=xix7t  (1<i<2g).

As Gis topologically generated by Xy, - - -, X,,, o belongs to I" (m) if and
only if all 5,(0) (1<i<2g) belong to G(m+1).
For each m>>1, let f,, denote the following Z;-linear homomorphism:

fm: (grm+1 G)zg s grm+2 G

z
(Si)xgigzg}‘”_)z (%, Sg+i]+[sis fg+iD-
=

- Our result in this section is the following

Theorem 1. (i) [Fg(m), g(n)}cl’g(m-}»n) m, n>0.
(i) The Zymodule I' (m)|I (m--1) is isomorphic to Ker Fons th
kernel of f,, (m>1).

Proof. (i) For any two elements g, z of f’g, it is easily verified
that

siot)=s,0)s5,(x)
sile™)= {Sz'(o')a—l}_l'

Using these formulas, we can easily show that

(5)



(6) silo, 7" =5:0)s(2)s(0) Hs:(2) '}
=35,(0)5,(0) '[5:(0), s:(Ds;(D)s:i(r) '} (1<i<2g).

Assume that ¢ € [ (m) and ¢ € I"(n), so that s5,(¢) € G(m+-1) and s,(c) €
Gn+1) (1<i<2g). As g acts trivially on G/G(m 1), it is easily verified
that ¢ acts trivially on G(n+1)/G(m-+n-+-1). Therefore, s,(z){s,(z)"}" €
Gm+n+1). Similarly, s;(o)s;(e) e Gm-+n-+1). As [s,(0), 5:(7)]
belongs to [G(m -+ 1), G(n+ D] C G(m+n-+-2), we see that 5,([o, 7]) € G(m+
n+1) (1<i<2g). (Note that all G(m) (m>1) are characteristic sub-
groups of G.) Therefore, [s, 7] € I (m+n).

(i) Let ¢ be an element of I",(m), so s,(0) € G(m+1) (1<i<2g).
For each m>1, let &, be the following map;

h"m: Z’%g(m)__)(grm+l G)?g
ar—>(s:(c) mod G(M+2))1c; <20

Since I” ((m) acts trivially on G(m+ 1)/G(m+2), by the formula (5), h, is
a homomorphism. The kernel of hyis I Jm-+1). We first show that the
image of %, is contained in Ker f,,, By the relation (1), we get

( 7 ) [SI(U)xln Sg+1(o)xg+1]' ot '[Sg(a)xg’ SZg(G)ng]Z L.

We use the general identity (4) and calculate (7) mod G(m+3). Put a=
50), b=x,, c=5,,/0), d=x,,, (1<i<2g). Then, by simple calculations
similar to those in the proof of Lemma 1, we obtain

[Si(g)xi: Sg+z‘(a)xg+i1
=[x, xg+i][xi’ Sg+i(0')][~5‘7;(0')} xg«n'} mod G(m-3).

Thus, by the relation (1), we see that (7) mod G(m+3) is equivalent to the
following congruence:

[T Do e 0)lsio), xg d=1 mod Glm-+3)

which means that the image of %, is contained in Ker 7.

To show that the image of k coincides with Ker fm, let s=
(5P mod G(m+ 2))1<icz, be any element of Ker Fon (860 € G(m 4+ 1)
(1<i<2g)). Then, (2),., is satisfied for 4=1,,. So, by Lemma 1, there
exist 2g elements s, - - -, 5,, € G(m + 1) satisfying the condition (3) (m
being replaced by m--1) for A=1,,. By the same argument as in the
proof of Proposition 1, this implies that there exists an automorphism ¢ of
G such that x?=s,x,, i.e. 5,(c)=s, (1<i<2g). Thus, we have shown that
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the image of A,, coincides with Ker Fm» and the proof of Theorem 1 is
completed.

By a result of Labute [L], gr™ G is a free Z;-module of rank
wolmy=_ Z “( )(‘" ) (a=g+VE—1, p=g—vg'—1),

(¢ denotes the M&bius function). Thus, we obtain

Corollary 1. For m>1, I" (m)|I" ,(m-+1) is a free Z,-module of rank
2go(m+1)—w(m+2).

The following corollary will be used to prove Theorem 3 in Section 6.

Corollary 2. Suppose g>>3. Then, there exists an element p of I’ Ke))
satisfying the condition:

{&(,0) mod G(3), s(0) mod G(3) & G(2)'G(3)/G(3)
si(p) mod G(3) ¢ G(2)'G(3)/G(3).

Proof. Put s=(s;mod G(3));ci<np With 5, = [xg+s» Xgealy S2= [Xgi1s

Xgral S5=[Xgs25 xg,d] and s,=1(4<j<2g). Then,itis easﬂy verified that

s belongs to Ker £, (Jacobi’s identity). An element p of I” (1) correspond-
ing to s via A, satisfies the above condition.

§3. Filtrationof I',

In this section, we shall study a filtration of the group I,.

As before, let I',=1",/Int G denote the outer automorphlsm group
of G. PutI',()=1 (1)/Int G. As Int G acts trivially on G,;, the homo-
morphism 1 induces a homomorphism

2: I',—>GSp(2g; Z),
and I",(1)=Ker 1. By Proposition 1, we have an exact sequence
l—> 1 ()—I,—>GSp(2g; Z)—>1.
We have a natural filtration induced by that of I* ¢» namely,
I' (m)=1T",(m) Int G/Int G (m>0).
Then, I' (m) is a normal subgroup of I", and
=T 0D \)>DI,@)D: - DI (m>DI (m+ 1):) RN

To study this filtration, the following proposition is crucial.
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Proposition 2. Int GN I (m)=1Int, G(m) (m=>1), where
Int, G(m)={c € Int G'|3g € G(m) x"=gxg~* Vx e G}.

Let ¢ be an element of Int G, so x°=gxg™' (x € G) with some ge G. As
x°x~'=[g, x], o belongs to I (m) if and only if [g, x] belongs to G(m+1)
for all x e G. Thus, Proposition 2 is equivalent to the following

Proposition A. For m>1, Cent(G/G(m 1)), the center of G/G(n-+-1),
coincides with G(m)|G(m+1).

Since (Nps1 G(m)={1}, we obtain
Corollary. The center of G is trivial, so that Int G=G.

The proof of Proposition A will be given in Section 4.
By Proposition 2, we have

T m)= I (m)/Tnt, G(m),
T ()T 4+ D= m)| [ fm+ 1) Into GGm) ~ (m=1).

Fix an integer m>>1. Let f,,: (gr™*! G)**—>gr™** G be the Z,-linear homo-
morphism defined in Section 2. Set

Hm::{([é: le Y [‘S& x2g]) € (grm+1 G)2g }8 € grm G}'

Then, H,, is a Z;-submodule of (gr™*'G)*¢. By Jacobi’s identity and
D0 [%, X0d=0 (in gr* G), it is easily verified that H,, CKer f,,. So,
induces a Z,-linear homomorphism

Fui (@™ G| H,—>1™* G.
Then, we obtain the following

-Theorem 2. (i) [I',(m), [ (mICI (m~+n) m,n>0.
(i) The Z;-module H,, is isomorphic to gr™ G and

(8) I'(m)I (m+1)=Kerf, (m=>1).

Proof. (i) This is immediately obtained from Theorem 1 (i).
(i) By Proposition A, it follows that the mapping

e G—>H,
5““‘”’({5; xl]a DR [59 ng])

is a Z;-linear isomorphism.
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To show (8), let &,: I [m)—(gr™*! G)*¢ be the Z,-linear homomor-
phism defined in the proof of Theorem 1 (ii). We have already shown
that 4, induces an isomorphism;

I ()T (m+1)~Ker f,,C (1™ G)=.

As the image of Int, G(m)(C I ,(m)) under 4, is H,, we have an iso-
morphism

I ((m)/I (m+1) Int, Gm)~Kerf,,
and the proof is completed.

By using a result of Labute (cf. Corollary 1 of Theorem 1), we obtain

Corollary. For m>1, I' ,(m)/I" ,(m—+1) is a finitely generated Z,-
module and the rank of its free part is 2go(m—+ 1) — o(m+2) — w(m).

The authors do not know whether I (m)/" (m-+1) is torsion-free
or not.

§4. Proof of Propoesition A

To prove Proposition A, we need a result of Labute on the structure
of the graded Lie algebra associated with the group with one defining
relation. We shall briefly recall it.

Fix an integer g=>2. Let F be the free pro-/ group of rank 2g gener-
ated by x,, x,, - - -, X, and

F=F(1)DF2)>---DFm>DFm+1)>-.-.

be the descending central series of F. Then, the bracket operation [, ]
naturally defines a Lie algebra structure on gr F=@,., g™ F (gt™ F=
F(m)/F(m-+1)), and grF is a free Lie algebra over Z; generated by
x;mod F(2), - --, x;, mod F(2) e gr' F (Witt [W]). For simplicity,
x, mod F(2) is denoted by x; (1<i<2g), if there is no confusion. Let R
be the closed normal subgroup of F which is normally generated by [x,,
Xgyale -« o[xg, X50], so that G=F/R. Let U be the ideal of gr F generated
by > 6., [x;, x4, € gr' F. Then, the canonical projection F—G induces a
surjective Lie algebra homomorphism z: gr F—gr G.

Theorem L (Labute [L]). The kernel of n coincides with U, so that
(gr F)/U=grG.

The proof of Proposition A reduces to the following
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Proposition A’. Let & be an element of gr* F for some k>1. Assume
that

(9) [x, &leW  (1<KiL2g).
Then, Ee .

In fact, let g be an element of G such that gmod G(m--1) belongs to
Cent (G/G(m+-1)). Suppose that g ¢ G(k) for some k<m—1. Put é=
gmod G(k+1) e gr* G. By the assumption, [x,, g] € Gm-1) (1<i<2g),
so that [x,, £]=01in gr G. By Theorem L, a representative & of & in gr F'
satisfies [x,;, &] e A (1<i<2g). By Proposition A’, this implies & € %,
hence £=0, i.e. g€ G(k+1). Repeating this argument if necessary, we
conclude that g e G(m). Hence, Cent(G/G(m + 1)) C G(m)/G(m + 1).
Obviously Cent (G/G(m+1))D G(m)/G(m-+1), as Gim+1)=[G, G(m)].

We shall prove Proposition A’ in five steps. We use the terminologies
in [MKS].

Step 1. Let 7 be the non-commutative polynomial ring of 2g vari-
ables X, X, - -+, X,, over Z;;

M:ZL[XD sz: MY XZg]n.c.'

By Lemma 5.5 and Theorem 5.8 in [MKS], there exists an injective Lie
algebra homomorphism ¢: gr F~/, i.e.

o(@8)=apf) «wcZ
PE+7) =0 +o(p)
o[&, D=0 —oe(§) & negrF

satisfying o(x,) =X, (1<i<2g). In the following, we identify gr F with
its image o(gr F)C /.

Step 2. For n>1, we define a subset L™ of .o and an element z, of
L™ inductively as follows. Put L®={x,, x,, - - -, X,,} and z;=x,,. For
n>2, suppose that L™~ and z,_, are defined. Then, L™ is “the set of the
elements arising by elimination of z,_, from L"™”, je. if L*V={z,_,
Y1 Voo "’}a then’ v

L““:{yg"}]k———(), 1,2, -+, 2=1,‘2, o .},

where y" =y, and yF*V=[y®, z, |] (k=0,2>1). If 2<n<g, we put
Z,=Xpg (n-1y» a0d if n>g+1, z, is any element of L™ whose degree is the
minimum in L™,
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For n>>1, let S, denote the associative subalgebra generated by the
elements of L™ and 1. By Lemma 5.6 in [MKS], the elements of L™ and
1 are free generators of S,.

Step 3. Let & be an element of gr F whose degree is at least 2. Then,
& is a Lie element in L«*V ie. £ is contained in the free Lie algebra
generated by the elements of L¢*V in S,,,. In fact, by Lemma 5.6 and
Lemma 5.7 in [MKS], an element of gr F which does not contain a term
of the form ax,, (@ € Z;) is a Lie element in L®. In particular, £ is a Lie
element in L®. By the same lemmas, a Lie element in L® which does
not contain a term of the form ax,, (¢ € Z)) is a Lie element in L®. In
particular, £ is a Lie element in L®. Repeating this argument, we obtain
the claim.

Step 4. Let & be an element of gr F satisfying (9). Put Y=>7_,[x,,
Xg.s- We shall show that & belongs to (Y), the two-sided ideal of S,
generated by Y. First, we see that £=0 or the degree of & is at least 2.
In fact, assume that the degree of £ is at most 1, so & is expressed as

2%
sz é Olixi [¢ 4] € Z;;.
By the assumption we have
%
[xi, El= Zz ailx, x;] e U

As [x, x,Jmod G(3) (1<i<j<2g, (i,j)#(g, 2¢)) is a Z,-basis of gr* G, it
follows that o;=0 (2<<i<2g). Then, we have

[, El=1x,, axy]=ay[x,, x;] € U,

Thus, o, =0, hence £=0.

If £=0, obviously & € (¥). Assume that the degree of £ is at least 2.
Then, by the claim in Step 3, & € S,,;. By Step 2, the elements of L+
=(LE*\{[x,, %, ]) U{Y} and 1 are free generators of S,,,. Therefore,
& can be expressed as the following form;

E=wt+w w¢ (Y), w e (Y).

As [x, & e AC(Y), x,6—Ex, € (¥), hence x,w—wx,=0. Since x, is a
free generator of S,,,, we see that w is a polynomial of x, (See e.g. [MKS]
Problem 5.6-5). Similarly, we see that w is a polynomial of x,. Thus, w
must be 0 and we have shown that & ¢ (¥).

Step 5. We shall show that £ e . By Step 3, £ is a Lie element in
L&D, As [xg, xZg]: Y—'Zi:% [x4 xg-wl} and [x,, xg+1]: ty [xg—b ng—x]
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e Lt g is a Lie element in L&+, ie. & is contained in the free Lie
algebra § generated by the elements of L¢*P. Therefore, & can be ex-
pressed uniquely as follows;

E=n+7 579,

where 7 belongs to the ideal of § generated by Y, but 5’ does not. Obvi-
ously 5 € (¥), and by Step 4, £ e (Y). Thus, as an element of S, ,, 7/ =0.
By the Poincaré-Birkhoff-Witt theorem, this implies that '=0. Therefore,
& belongs to the ideal of § generated by Y, hence & € 9.

§5. Actions of /', and ", on the filtrations

The group I", and I, act on themselves as inner automorphisms. In
this section, we shall study these actions. First, we treat the action of .
By Theorem 1 (ii), for each m>1, we have an isomorphism

gr" I ,=T (m)[T" (m+1)=Ker f,,C(gr™*' Gy*
rmod [’ m+1D)<—>(s,(r) mod G(m+2)),<; <o

We shall identify these two modules.

Let ¢ be an element of [*, and Int (¢) denote the inner automorphism
of I", induced by ¢; Int (¢)()=07o™* (r € [',). By Theorem 1 (i), Int (q)
preserves the filtration {I",(m)},.1.

Proposition 3.  For each m>>1, the action of Int (o) on gt™ I, is de-
scribed as

(s:(gra™ymod G(m -+ Dicicse= (s4(r)mod G(m - 2))§s—~zlszg . 1(9') Te f’g(m),

where the action of I’ . on (gr™*! G)*€ is the one induced naturally from that
of ¢ on G and the action of GSp (2g; Z,) on (gr™** G)*¢ is right multiplica-
tion of matrix.

Proof. For simplicity, we employ the following abbreviations. For
a=%a, - - -, @,) € Z¥, x* denotes x{*--.x§% as in the proof of Propo-
sition 1. A column vector (0, ---,0,1,0, ---,0) ¢ Z% is denoted by ¢;

%
(1<i<2g). Forg el the i-th column vector of (o) € GSp (2g; Z,) is
denoted by 4,(c) (1<{i<2g).

Now, we shall calculate 5,(czo~") mod G(m+2) (1<i<2g). Fix an
integer ;. By using formulas (5), we can easily show that

(10) {siora ) =s0)si(D)s(0)”  (1<KiL2g).
As
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xixy=x""mod G(2),
there exists an element u, of G(2) such that
xgxy b=t e,
As s,(o)=x{x;", by the formula (10), we have
5ot = (u,x" e s (o) (ux 0 -e)~1

Since z acts trivially on G(2)/G(m+2), u;=u, mod G(m4-2). Furthermore,
for any r € Z,
(X7 =(x)"
=(s;()x;)"
=s5,(c)"x] mod G(m-+2),

as 5,(r) € G(m-+1) is central mod G(m+2). Therefore, we have
50707 ) =5 () 1< j<20A:(0) mod G(m-2).

(We employ the additive notation, namely, the right hand side of the above
congruence means s(z)*s - - - +5,,(7)% if 2,(0)="(a,, - - -, @,).) Thus, we
have

(soro™) mod G(m+ 2))1£€$2g =(s5,(z) mod G(m-+2))7 s_zl ngz(O')-

The action of /", is described similarly. By Theorem 2 (ii), for each
m>>1, we have an isomorphism

g™ 'y =I",(m)/T" (m+1)
=1, (m)/I" ,(m+1) Inty G(m) ~Ker f,,C (gr™** GY¢/H,,
rmod [ ((m+1) Intg G(m)<—>(s,(r) mod G(m-2)):<; <o, mod H,,.
We shall identify these two modules.

Let & be an element of I”, and Int (7) denote the inner automorphism
of I', induced by 7; Int(@)(z)=0o70~"' (rel,). By Theorem 2 (i), it
follows that Int () preserves the filtration {I" (71)}.»:, and by Proposition
3, we obtain the following

Proposition 4.  For each m>1, the action of Int (@) on gt™ I, is de-
scribed as

(s{ore™) mod G(m+2))1<ic, "
= (30 mod Gm+ DiZiea M) mod H, 7 € Iy,
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where g is a representative of G in I,.

Remark. It is easily verified that the action of ¢ € I", on gr™ G(m>1)
is completely determined by its action on gr' G, i.e. by i(s). Hence, the
action of Int (@) (e ') on gr™ ', (m=>1) is completely determined by
A(@). In particular, if @) =al,, (o € ZF), then,

(s(oro™y mod G(m+2))1<s<z,
=a™(5(z) mod G(m+2)),c;copmod H, 7l (m).

Corollary. Let  be an element of I', such that A@)=al,, (0 € ZF)
and « is not a root of unity. Then, the centralizer of @ in I (1) is {1}.

Proof. Let ¢ be an element of the centralizer of 7in I",(1). Suppose
that z=1. Then, there exists an integer m>1 such that 7 e I' ,(m) and
z¢ ' ,(m+1). By the above remark, we have

(@™ —1)(s(r) mod G(m~+2))1s2¢
=(sdlo, 7)) mod G(m+2))ics0, =0  mod H,,
o (resp. ) being a representative of & (resp. z) in I' (1) (resp. ", (m)). This
is a contradiction, so z=1.
§6. Conjugacy classes of ',

In this section we shall prove the following

Theorem 3. Suppose that g>3. Let A=/(a;;) be an element of
GSp (2g; Z)) satisfying the jfollowing conditions:

d/ 142
i {mo =

T ¥ lmodlr =2’

and C be the GSp (2g; Z,)-comjugacy class of A. Then, 2~(C) contains
more than one " ;-conjugacy class.

Proof. We need the following lemma whose proof will be given later.

Lemma 2. Let A be as in Theorem 3. Then, there exists an element
cel (ATl ¢ satisfying the following conditions:
a1 X7 =, x%, c, e GQQ)
¢, mod G(3) e G(2)'GR)IGB)  (1<i<2g).

Here, a, denotes the i-th column vector of A.
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Now, let ¢ be an element of I . satisfying the condition in Lemma 2.
We shall show that there exists an element of 17'(4) which is not I',-
conjugate to ¢ mod Int G. Equivalently, we shall show that there exists an
element p of I’ (1) satisfying the following conditions:

© eInt(t)£[o, 2]

for any 7 & G and any r e [', such that [o, 7] e I",(1). Let p be an ele-
ment of I",(1) satisfying the condition in Corollary 2 of Theorem 1. We
shall show that

(C%) (5,0 Int (¢)) mod G(3)),< j<z
#(5,([o, 7)) mod G(3))1< <2, (in (gr* G)*®)

for any ¢ e G and any z € I", such that [g, 7] € I" (1), which is stronger
than (C). We shall calculate both sides of (C*).

Calculations of 5,(p Int (z)) mod G(3) (1< j<2g). First

s,(p Int (1))=s5,(p)s; (Int (z)) mod G(3)
=s,(o)lt, x,] mod G(3)

holds, as Int (#)(x,)x;'=tx;t'x;'=[t, x;]. Since x;mod G(2) (1<j<2g)
is a Z,-basis of gr' G, there exist ay, - - -, @y, € Z; such that

=Xt 058 mod G(2).
Then, it is easy to see that
[7, xJ=[xgre - - - o x52, x;] mod G(3)
= ﬁl bro X mod G(3).

Therefore, we obtain
22
12) sfeInt (t)=s,p) ];[1 [x;, x,]% mod G(3).

Calculations of s,( g, 7)) mod G(3) (1< j<2g). We use the formula
6). Asso)=xx7'=c;x%x;" by (11) and as s,(z)=x5x7", we get
5,0, <D = (e xx7 ) x5x7Hox (e9) T Hx () 7Y
=c5(x {7
Put (b,,)=2(r) e GSp(2g; Z,), so that xj is of the following form;
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xy=ux™ u; e G2) (1<j<2g),
b; being the j-th column vector of (b,;). Then, we have

o, D =i () )
::c]r.(xglf. e -xgggf)’{(xlb”- . .xg;gf)v}%(u;l)v
= (X)) e - - - o () H{(D) e - - o (05p) e TN uT)
= c]f_(ulxbl)au. N .(uzgxbzg)azgf

X (ngxazg)— 273 P (Clxﬂl)“bu(u;—l)q.
As uy, -1 Uy, €4y - - -, Gy € G(2) are central mod G(3), we obtain

Sj({o" T])TUE(xbl)ali. PP o(xb“’g)a“g f(x“zg)'b%’f. P .(x‘“)"blf

Xuftie -« - ougei(u; ) cier e - - - ez mod G(3).

We shall show that the right hand side of this congruence is an /-th power
mod G(3). First, by the assumption on ¢; (1<i<2g), cjey?e---ec5, %7
is an I-th power mod G(3). Secondly, by the assumption on A4, u}¥ is an
[-th power mod G(3) if i#~j. As for the term u%(u;")°, it suffices to show
that [x,,, x,]"“[x,,, x,]° 0 <m<n<2g (m, n)+(g, 2g)) are all /-th powers
mod G(3), because [x,,, x,] 1 <m<n<2g (m, n)+#(g, 2g)) is a Z-basis of
gr* G. We have

[Xms Xn]™ Xy X, 17 =, X,]7 29[ x%, x%2] mod G(3)
=[x, x,17% [ [xs, xg]0m0 mod G(3)
1<i,k<2g
=[x, x,] vt emmann T [x,, x ] mod G(3).
(3,k)#(m,n)

By the assumption on A, this is an I-th power mod G(3). Lastly, using the
following identity

a*b*=la, b]*»=="Y(aby* mod GB) a,be G
(cf. e.g. [I;] Ch T § 4) successively, we get

(xbi)az‘j=(xi’ﬂ. v .x;’;g i)aij

=axeise o ] [, 6] tmememeseu=d mod G(3),
1<m<nL2g
NB1S (s Avis
(R =(xprie - - - o xige
=x@tiie. . axse i [ [x, X, ] amieni@MBiti=t  mod G(3).
€ 1<m<n<eg
By the assumption on 4, %a,,(a,;—1) and a,,a,; (m=n) belong to /Z,.
Put
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P:(xbl)alj. - .(xbzg)aggj
Q:(x“zg)-begf. “ee '(x‘")'blf,

Then, we have

P=(xbuui.. . .xggg E) DR L E RN .xggg 2g22g J)
mod G(2)'G(3)

O={(xmue . .. . X328 17)e . Lo (xP1 28028 e . .xgzgngﬂgi)}’l
mod G(2)'G(3).

Using that ab==[a, blba (a, b € G) and the assumption on A, we obtain
P=x{ie . expgi mod G(2)'G(3),
where (¢;;)=BA € GSp (2g; Z;). Similarly, we obtain
O=(x{ie. .. oxpen)! mod G(2)'G(3),

where (d,;)=AB e GSp (2g; Z)). As[o,7le ' (1), BA=AB. Thus, we
have PO=1mod G(2)’G(3), i.e. PQ is an /-th power mod G(3). Therefore,
we conclude that s([o, z]) (1< j<2g) are all I-th powers mod G(3).

Now we can show (C*). In fact, assume (C*) does not hold, i.e.

sipInt()=s(o,c) modGB)  (1<j<2g).

Then, for j=4 and 5, we see by the assumption on p and (12) that
1%, [x; x.J* and []2%,[x,, x,]** are both I-th powers mod G(3). Since
[Xps x,) mod G(3) (1 <m<<n<2g (m, n)~(g, 2g)) is a Z,-basis of gr* G, it
follows that ay, - - -, s, € [Z;. Then, for j=1, s,(pInt(¢)) is not an /th
power mod G(3) by (12), while s,([e, z]) is. This is a contradiction. Thus,
(C¥*) is verified and the proof of Theorem 3 is completed.

Proof of Lemma 2. The proof is completely parallel to that of Propo-
sition 1. First, we see that the following congruence holds.

(13) [xm, xoe+1][x™, x%e+2]e . . - o[x%, x"28]=1 mod G(3)*G(4).
In fact, for each i (1 <i<g), we have

[xe, xagH]__—_{x‘f”- P .x‘zl;gi, XPgtie. . .x‘z”;ggﬁ]
—_— Q1i @ 32 i a7, A
=[x, [xPte . o x@Et, X{retie. .. .ngggﬂ]]
X [xgete . .. eX528 T, XL o .xg;ggﬂ][xgﬁ, xPgtie. .o g;gﬁf],

Repeating this expansion successively and using the assumption on 4, we
see that
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[x, xeti]l= T[] [x%e, xire+i] mod G(3)'G(4).
1<m,n<2g

(Note that [G(2), G(Q)]CG(4), hence elements in G(2) are commutative
mod G(4).) Furthermore, we have

[x;mi’ xgn g+ E}E[xm’ {xm: xn]](llz)amiarn g+il@mi-1)
_[xﬂ’ [xm, xn]](l/z)ﬁmiam g+ilan g+’2"'1)[xm’ xn]amian g+i mod G(4)'

By the assumption on A, 34,4, ;.(@n—1) and 14,4, .. (@, ;..—1)
belong to IZ,. Thus,

il wed= T T Do lrmoees mod GOYG)
= (I}l [x, x‘g”])”‘*” mod G(3)'G(4)
=1 mod G(3)'G(4).

(¢ denotes the “multiplicator”.) Therefore, we have shown (13). Then,
using the following sublemma, we see that there exists an element ¢ ¢
2~1(4) satisfying (11) by the same argument as in the proof of Proposition
1. This completes the proof of Lemma 2.

Sublemma. Let m>1 and A=(a,;) e GSp(2g; Z,). Let s{™, ---,
s{ be elements of G(Z)‘G(S) satisfying a congruence
[s{mx, s{Txme+ e - o - o[siWx%, s{Px™e]=1 mod G(m+2)'G(m+3).

(a, denotes the i-th column vector of A.) Then, there exist sy, « -+, 5, €
G(2)'G(3) such that

=5 mod G(m+1)'G(m-+2) (1<i<2g)

[s,x, sgnxagu]. Cen .[ng“g, Szgx‘”g}::l_

The proof of this sublemma is similar to that of Lemma 1. The point is
that

G(m+2)'G(m+3)/G(m+3)
— 7 {ix*, GO+ 1'Gm+2)/G(m+2)]
+Ixs*i, Gm+-1)'G(m+2)/G(m~+2)]}.
We omit the details here.

Remarks. 1. Itis plausible that Theorem 3 is true for g=2. Butit
is also plausible that I",(1)=Int G-I ,(2) holds if g=2. At any rate,
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I(1)/Int G-f'2£2) is a finite abelian /-group (Corollary 1 of Theorem 1).
Suppose that ["y(1)=Int G-I'(2) holds. So, for any p e I'y(1), there exists
an element ¢ € G such that pInt () e ['y(2). Then, for z=1 we have

(55(o Int (£)) mod G(3))s< j<op=(5,([0, 7D Mm0d G())1<j<ze=0  in (er’G)*.

Thus, we can not show (C¥*). Therefore, our method, “calculations
mod G(3)” is no longer valid.

2. If we replace G by F, the free pro-/ group of rank r >3, our
theorem is true. The proof is just the same. (In the case of F™, the
image of “2” is GL (r; Z;), which is a direct consequence of Burnside’s
theorem.) It is plausible that our theorem is true for r=2. But note that
the method adopted here to prove Theorem 3 is no longer valid for r=2.
In fact, in the case of r=2, 2(1)=Int F®.0Q(2) holds, so that our
method, “calculations mod F®(3)”, gives us no information. Here,
{F®(m)}n», is the descending central series of F® and

Qm)={o € Aut F® | x7x"' ¢ FO(m+1) Yx e FO}  (m>1).

The proof that 2(1)=1Int F®. 2(2) is as follows. Let ¢ be an element
of £(1). Then, there exist ¢, ¢, € F(2) (F=F®) such that
X1 =X,y
X3 =X3Cs,

X, X, being the generators of F. As F(2)/F(3) is a free Z,-module of rank
1 generated by [x,, x,] mod F(3), there exist g, b € Z, such that

=[xy, X,]° mod F(3)
=[x, x,)° mod F(3).

Put r=x7%x7. Then, it is easily verified that
xg D =, mod F(3) (i=1,2),

which means ¢ Int () ¢ 2(2). Hence, 2(1)=Int F-2(2).
Therefore, to prove our theorem in the case of F®, it seems that
“calculations mod F®(4)” is necessary.

Added in proof. Prof. John Labute has kindly pointed out that our
proof of Prop. A’ in Section 4 is incorrect. The inclusion AC(Y) in
Step 4 (p. 150, . 29) does not hold because (Y) is a two-sided ideal of
Seare

Prof. Labute has given much simpler proof of Prop. A’ which is
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outlined as follows.

Let H be the ideal of gr F generated by x,, - - -, x,. Then, gr FOH
DU and (gr F)/H is a free Lie algebra generated by (the class of) x,,,,
-+, X;,. Furthermore, H/¥ is also a free Lie algebra. In order to see
this, we take a free generator system S (as Lie algebra) of H in the same
manner as in Prop. 1.1 in G. Viennot: Algébres de Lie libres et mono-
ides libres, Lecture Notes in Math. 691. Then, it can be shown that as
an ideal of H, ¥ is generated by a subset of S, hence H/¥ is free.

By hypothesis, [x,, &le WC H (g+1<1i<2¢g), so &e H because
(gr F)/H is free. Again, [x,,E]le A (1 <i<g), so £e Y because H/YU is
free.
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