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Abstract

This paper investigates the Gaussian quasi-likelihood estimation of an exponentially ergodic multidimen-
sional Markov process, which is expressed as a solution to a Lévy driven stochastic differential equations
whose coefficients are supposed to be known except for the finite-dimensional parameters to be estimated.
We suppose that the process is observed under the condition for the rapidly increasing experimental design.
By means of the polynomial type large deviation inequality, the mighty convergence of the corresponding
statistical random fields is derived, which especially leads to the asymptotic normality at rate

p
nhn for all

the target parameters, and also to the convergence of their moments. In our results, the diffusion coefficient
may be degenerate, or even null. Although the resulting estimator is not asymptotically efficient in the pres-
ence of jumps, we do not require any specific form of the driving Lévy measure, rendering that the proposed
estimation procedure is practical and somewhat robust to underlying model specification.

Keywords. Exponential ergodicity, Gaussian quasi-likelihood estimation, high-frequency sampling, Lévy
driven stochastic differential equation, polynomial type large deviation inequality.
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1 Introduction

LetX D .Xt /t2RC
be a solution to the Stochastic Differential Equation (SDE)

dXt D a.Xt ; ˛/dt C b.Xt ; ˇ/dwt C c.Xt�; ˇ/dJt ; (1)

where the ingredients involved are as follows.

� The unknown finite-dimensional unknown parameter

� D .˛; ˇ/ 2 ‚˛ �‚ˇ DW ‚;

where, for simplicity, the parameter spaces‚˛ � Rp˛ and‚ˇ � Rpˇ are supposed to be bounded
convex domains; the parameter˛ (resp.ˇ) affects local trend (resp. local dispersion).

� An r 0-dimensional standard Wiener processw and anr 00-dimensional centered pure-jump Lévy process
J , whose Lévy measure is denoted by�.

� The initial variableX0 independent of.w; J /, with � WD L.X0/ possibly depending on� .

� The measurable functionsa W Rd �‚˛ ! Rd , b W Rd �‚ˇ ! Rd ˝Rr 0

, andc W Rd �‚ˇ ! Rd ˝Rr 00

,
all of which are known except for� .

�This version: February 10, 2012
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Incorporation of the jump part extends a continuous-path diffusion parametric model, which are nowadays
widely used in many application fields. We denote byP� the image measure of a solution processX associated
with � 2 ‚ � Rp, wherep WD p˛ C pˇ . Suppose that the true parameter�0 D .˛0; ˇ0/ 2 ‚ does exist,
with P0 denoting the shorthand for the true image measureP�0

, and thatX is not completely (continuously)
observed but only discretely at high frequency under the condition for the rapidly increasing experimental
design: we are given a sample.Xt0 ; Xt1 ; : : : ; Xtn/, wheretj D tnj D jhn for somehn > 0 such that

Tn WD nhn ! 1 and nh2n ! 0 (2)

for n ! 1. The main objective of this paper is to estimate�0 under the exponential ergodicity ofX ; the
equidistant sampling assumption can be weaken to some extent as long as the long-term and high-frequency
framework is concerned, however, it is just a technical extension just making the presentation notationally
messy, hence we do not deal with it here to make the presentation clearer. It is common knowledge that the
maximum likelihood estimation is generally infeasible since the transition probability is most often unavailable
in a closed form. This implies that the conventional statistical analyses based on the genuine likelihood have no
utility. For this reason, we have to resort to some other feasible estimation procedure, which could be a lot of
things. Among several possibilities, we are concerned here with theGaussian Quasi Likelihood (GQL)function
defined as if the conditional distributions ofXtj givenXtj �1

are Gaussian with approximate but explicit mean
vector and covariance matrix; see (10) below.

The terminology “Quasi Likelihood” has originated as the pioneering work Wedderburn [39], the concept of
which formed a basis of generalized linear regression. The GQL based estimation has been known to have the
advantage of computational simplicity and robustness for misspecification of the noise distribution, and well-
established as a fundamental tool in estimating possibly non-Gaussian and dependent statistical models. Just to
be a little more precise, consider a time-seriesY1; : : : ; Yn in R with a fixedY0, and denote bymj�1.�/ 2 R and
vj�1.�/ > 0 the conditional mean and conditional variance ofYj given.Y0; : : : ; Yj�1/, where� is an unknown
parameter of interest. Then, theGaussian Quasi Maximum Likelihood Estimator (GQMLE)is defined to be a
maximizer of the function

� 7!

nX
jD1

log

´
1p

2�vj�1.�/
exp

�
�
.Yj �mj�1.�//

2

2vj�1.�/

�µ
:

Namely, we compute the likelihood of.Y1; Y2; : : : ; Yn/ as if the conditional law ofYj given.Y1; : : : ; Yj�1/ is
Gaussian with meanmj�1.�/ and variancevj�1.�/, so that only the structures of the conditional mean and
variance do matter. Although it is not asymptotically efficient in general, it can serve as a widely applicable
estimation procedure. One can consult Heyde [9] for an extensive and systematic account of statistical inference
based on the GQL. The GQL has been a quite popular tool for (semi)parametric estimation, and especially there
exist vast amounts of literatures concerning asymptotics of the GQL for time series models with possibly non-
Gaussian error sequence; among others, we refer to Straumann and Mikosch [35] for a class of conditionally
heteroscedastic time series models, and Bardet and Wintenburger [1] for multidimensional causal time series,
as well as the references therein.

Let us return to our framework. On the one hand, for the diffusion case (wherec � 0), the the GQL-
estimation issue has been solved under some regularity conditions. Especially, the GQL leads to an asymptoti-
cally efficient estimator, where the crucial point is that the optimal rates of convergence for estimating˛ andˇ
are different and given by

p
Tn and

p
n, respectively; see Gobet [8] for the local asymptotic normality of the

corresponding statistical experiments. For how to construct an explicit contrast function, we refer to Yoshida
[40] and Kessler [15] as well as the references therein; specifically, they employed a discretized version of the
continuous-observation likelihood process, or a higher-order local-Gauss approximation of the transition den-
sity, respectively. Sørensen [34] includes an extensive bibliography of many existing results including explicit
martingale estimating functions for discretely observed diffusions (not necessarily at high frequency). On the
other hand, the issue has not been addressed enough in the presence of jumps (possibly of infinite variation).
The question we should then ask is what will occur when one adopts the GQL function. In this paper, we will
provide sufficient conditions under which the GQL random field associated with our statistical experiments
converges in a mighty mode. We will apply Yoshida [41] to derive the mighty convergence with the limit
being shifted Gaussian. As results, we will obtain: an asymptotically normally distributed estimator at rate
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p
Tn for both˛ andˇ; and also, very importantly, the convergence of their moments to the corresponding ones

of the limit centered Gaussian distribution. Different from the diffusion case, the GQL does not lead to an
asymptotically efficient estimator in the presence of jumps, and is not even rate-efficient forˇ. Nevertheless,
as mentioned before, it has at least two practically important advantages: first, the computation of estimates is
straightforward; second, the estimation procedure is robust to modelling Lévy measure, which we actually do
not need to specify.

We should mention that the convergence of moments especially serves as a fundamental tool when analyz-
ing asymptotic behavior of the expectations of statistics depending on the estimator; for example, asymptotic
bias and mean squared prediction error, model-selection devices (information criteria), remainder estimation
in higher-order inference. In the past, several authors have investigated such a strong mode of convergence
of estimators: see Bhansali and Papangelou [2], Chan and Ing [3], Findley and Wei [5], Inagaki and Ogata
[11], Jeganathan [13, 14], Ogata and Inagaki [30], Sieders and Dzhaparidze [33], and Uchida [36], as well as
Ibragimov and Has’minski [10], Kutoyants [19, 20], and Yoshida [41]. See also the recent paper Uchida and
Yoshida [37] for an adaptive parametric estimation of diffusions with moment convergence of estimators under
the sampling designnhkn ! 0 for arbitrary integerk � 2.

The rest of this paper is organized as follows. Section2 introduces our GQL random field and presents its
asymptotic behavior, together with a small numerical example for observing finite-sample performance of the
GQMLE. Section3 provides a somewhat general result concerning the mighty convergence, based on which
we prove our main result in Section4. In Section5, we prove a fairly simple criterion for the exponential
ergodicity assumption in dimension one, only in terms of the coefficient.a; b; c/ and the Lévy measure�.dz/.

Throughout this paper, asymptotics are taken forn ! 1 unless otherwise mentioned, and the following
notation is used.

� Ir denotes ther � r-identity matrix.

� Given a multilinear formM D ¹M .i1i2:::iK / W ik D 1; : : : ; dk I k D 1; : : : ; Kº 2 Rd1 ˝ � � � ˝ RdK and
variablesuk D ¹u

.i/

k
ºi�dk

2 Rdk , we write

MŒu1; : : : ; uK � D

d1X
i1D1

� � �

dKX
iK D1

M .i1i2:::iK /u
.i1/
1 : : : u

.iK /
K :

The correspondences of indices ofM anduk will be clear from each context. Some ofuk may be
missing in “MŒu1; : : : ; uK �”, so that the resulting form again defines a multilinear form; for exam-
ple, MŒu3; : : : ; uK � 2 Rd1 ˝ Rd2 . WhenK � 2, identifyingM as a vector or matrix, we write:
M˝2 D MM> with > denoting the transpose; furthermore,jM j denotes either, depending on the con-
text, det.M/ whend1 D d2, or any matrix norm ofM .

� @ma stands for the bundledmth partial differential operator with respect toa D ¹a.i/º.

� C denotes generic positive constant possibly varying from line to line, and we writexn . yn if xn � Cyn
a.s. for everyn large enough.

2 Gaussian quasi-likelihood estimation

We denote by.�;F ;F D .Ft /t2RC
; P / be a complete filtered probability space on which the processX given

by (1) is defined: the initial variableX0 beingF0-measurable, and.w; J / is F-adapted.

2.1 Assumptions

Here we list up our assumptions. We will give remarks on some of them in Section2.3.

Assumption 2.1(Moments). EŒJ1� D 0,EŒJ˝2
1 � D Ir 00 , andEŒjJ1jq� < 1 for all q > 0.
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We introduce the functionV W Rd �‚ˇ ! Rd ˝ Rd by

V D b˝2
C c˝2:

For each� , the functionx 7! V.x; ˇ/ can be viewed as an approximate local covariance matrix of the law of
h

�1=2
n .Xhn

� x/ underP� Œ�jX0 D x�.

Assumption 2.2(Smoothness). (a) The coefficient.a; b; c/ admits partial derivatives jointly continuous in
x and� , such that

sup
.x;˛/2Rd �‚

¹j@xa.x; ˛/j C j@xb.x; ˇ/j C j@xc.x; ˇ/jº < 1;

and that, for eachk 2 ¹0; 1; 2º andl 2 ¹0; 1; : : : ; 5º there exists a constantC.k; l/ � 0 for which

sup
.x;�/2Rd �‚

.1C jxj/�C.k;l/
°
j@kx@

l
˛a.x; ˛/j C j@kx@

l
ˇb.x; ˇ/j C j@kx@

l
ˇc.x; ˇ/j

±
< 1:

(b) V.x; ˇ/ is invertible for each.x; ˇ/, and there exists a constantC.V / � 0 such that

sup
.x;�/2Rd �‚

.1C jxj/�C.V /jV �1.x; ˇ/j < 1:

When we consider large-time asymptotics, the stability property ofX much affects the statistical analyses
in essential ways. A typical situation to be considered is thatX is ergodic. We here impose the stronger stability
condition. LetPt .x; dy/ denote the transition probabilityP0ŒXt 2 dyjX0 D x�, andkmk� WD supjf j�� jm.f /j

for a signed measurem on thed -dimensional Borel space.

Assumption 2.3(Stability). For anyq � 2, the following conditions hold true forg.x/ WD 1C jxjq:

(a) There exists a probability measure�0 and a constanta > 0 such that

sup
t2RC

eatkPt .x; �/ � �0.�/kg . g.x/; x 2 Rd : (3)

(b)
sup
t2RC

E0 Œg.Xt /� < 1: (4)

The condition (3) with gq being replaced by the constant1 is theexponential ergodicity, which in particular
entails the ergodic theorem: the limit�0 is a unique invariant distribution such that, for everyf 2 L1.�0/

1

Tn

Z Tn

0

f .Xt /dt !
p

Z
f .x/�0.dx/; (5)

where!p stands for the convergence in probability. We also note that Assumption2.3entails theexponential
absolute regularity, also referred to as theexponentiaľ -mixing property. This means thaťX .t/ D O.e�at /

ast ! 1 for somea > 0, whereˇX denotes thě -mixing coefficient

ˇX .t/ WD sup
s2RC

Z
kPt .x; �/ � �PsCt .�/k�Ps.dx/;

where�Pt WD L.Xt / andkmk WD kmk1. Let us recall that the exponential absolute regularity implies the
exponential strong-mixing property, which plays an essential role in Yoshida [41, Lemma 4], which we will
apply in the proof of Theorem2.7.

Several sufficient conditions for Assumption2.3 are known; for diffusion processes, see the references of
Masuda [25, 26] for some details. In the presence of the jump component, verification of (3) can become much
more involved. Especially if the coefficients are nonlinear and the Lévy processJ is of infinite variation, the
verification may be far from being a trivial matter. We refer to Kulik [16, 17], Maruyama and Tanaka [22],
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Menaldi and Robin [28], Meyn and Tweedie [29], and Wang [38] as well as Masuda [25, 26] for some general
results concerning the exponential ergodicity. For the sake of convenience, focusing on the univariate case
and setting ease of verification above generality, we will provide in Proposition5.1 sufficient conditions for
Assumption2.3, in a form enabling us to deal with cases of nonlinear coefficients and infinite-variationJ ; see
also Remark5.4.

DefineG1.�/ D .G˛1.�/;G
ˇ
1.ˇ// 2 Rp by

G˛1.�/ D

Z
@˛a.x; ˛/

�
V �1.x; ˇ/ Œa.x; ˛0/ � a.x; ˛/�

�
�0.dx/; (6)

Gˇ1.�/ D

Z ®
V �1.@ˇV /V

�1.x; ˇ/
¯
ŒV .x; ˇ0/ � V.x; ˇ/� �0.dx/: (7)

(In (7), we regarded “V �1.@ˇV /V
�1.x; ˇ/” as a bilinear form with dimensions of indices beingpˇ andd2.)

Further, letG0
1.�0/ WD diag¹G0˛

1.�0/;G
0ˇ
1.�0/º 2 Rp ˝ Rp, where, for eachv0

1; v
0
2 2 Rp˛ andv00

1 ; v
00
2 2 Rpˇ ,

G0˛
1.�0/Œv

0
1; v

0
2� D �

Z
V �1.x; ˇ0/

�
@˛a.x; ˛0/Œv

0
1�; @˛a.x; ˛0/Œv

0
2�
�
�0.dx/; (8)

G0ˇ
1.�0/Œv

00
1 ; v

00
2 � D �

Z
trace

®
V �1.@ˇV /V

�1.@ˇV /.x; ˇ0/Œv
00
1 ; v

00
2 �
¯
�0.dx/: (9)

Assumption 2.4(Identifiability). There exist positive constants�˛ D �˛.�0/ and�ˇ D �ˇ .�0/ such that

jG˛1.�/j2 � �˛j˛ � ˛0j
2 andjGˇ1.ˇ/j2 � �ˇ jˇ � ˇ0j

2 for every� 2 ‚.

Assumption 2.5(Nondegeneracy). BothG0˛
1.�0/ andG0ˇ

1.�0/ are invertible.

Assumptions2.4 and2.5 are quite typical in statistical estimation. As seen in Lemma2.6 below, the both
assumptions are implied by a kind of uniform nonsingularity. Define two bilinear formsNA.˛0; ˛00; ˇ0/ and
NB.ˇ0; ˇ00/ by, just like (8) and (9),

NA.˛0; ˛00; ˇ0/Œv0
1; v

0
2� D

Z
V �1.x; ˇ0/

�
@˛a.x; ˛

0/Œv0
1�; @˛a.x; ˛

00/Œv0
2�
�
�0.dx/;

NB.ˇ0; ˇ00/Œv00
1 ; v

00
2 � D

Z
trace

®
.V �1.@ˇV /V

�1/.x; ˇ0/@ˇV.x; ˇ
00/Œv00

1 ; v
00
2 �
¯
�0.dx/:

Lemma 2.6. Suppose thatNA.˛0; ˛00; ˇ0/ and NB.ˇ0; ˇ00/ are nonsingular uniformly in̨ 0; ˛00 2 ‚˛ andˇ0; ˇ00 2

‚ˇ . Then, both Assumptions2.4and2.5hold true.

Proof. It is obvious that Assumption2.5 follows. The mean-value theorem applied to (6) and (7) leads to
G˛1.�/ D NA.˛; Q̨ ; ˇ/Œ˛0 � ˛� for some Q̨ lying the segment connecting̨ and˛0, with a similar form for

Gˇ1.ˇ/; recall that‚˛ and‚ˇ are presupposed to be convex. Since inf˛0;˛00;ˇ 0

ˇ̌
j NA.˛0; ˛00; ˇ0/j

ˇ̌
> 0 and

infˇ 0;ˇ 00

ˇ̌
j NB.ˇ0; ˇ00/j

ˇ̌
> 0 under the assumption, the matricesNA˝2 and NB˝2 are uniformly positive definite,

whence Assumption2.4follows.

2.2 Main result

In what follows, we write
�jY D Ytj � Ytj �1

for any processY , and
fj�1.a/ D f .Xtj �1

; a/

for a variablea in some setA and a measurable functionf onRd � A. The Euler approximation for SDE (1)
is formally

Xtj � Xtj �1
C aj�1.˛/hn C bj�1.ˇ/�jw C cj�1.ˇ/�jJ

underP� , which leads us to consider the local-Gauss distribution approximation

L.Xtj jXtj �1
/ � Nd

�
Xtj �1

C aj�1.˛/hn; hnVj�1.ˇ/
�
: (10)
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Put
�j .˛/ D �jX � hnaj�1.˛/:

Based on (10), we define our GQL by

Qn.�/ D �

nX
jD1

²
log jVj�1.ˇ/j C

1

hn
V �1
j�1.ˇ/

�
�j .˛/

˝2
�³
; (11)

and the corresponding GQMLE by any element

O�n D . Ǫn; Ǒ
n/ 2 argmax

�2‚�

Qn.�/;

where‚� denotes the closure of‚.
Under Assumption2.1 we have

R
z.k/z.l/�.dz/ D ıkl for k; l 2 ¹1; : : : ; r 00º. We need some further

notation in this direction. Fori1; : : : ; im 2 ¹1; : : : ; r 00º with m � 3, we write�.m/ for themth mixed moments
of �:

�.m/ D ¹�i1:::im.m/ºi1;:::;im WD

²Z
z.i1/ : : : z.im/�.dz/

³
i1;:::;im

:

Let c.�k/.x; ˇ/ 2 Rd denote thekth column ofc.x; ˇ/. We introduce the matrix

V.�0/ WD

�
G0˛

1.�0/ V˛ˇ
V>
˛ˇ

Vˇˇ

�
; (12)

where, for eachv0 2 Rp˛ andv00
1 ; v

00
2 2 Rpˇ ,

V˛ˇ Œv0; v00
1 � WD �

Z X
k0;l 0;s0

�k0l 0s0.3/V �1.x; ˇ0/
h
@˛a.x; ˛0/Œv

0�; c.�s
0/.x; ˇ0/

i
�
®
@ˇV

�1.x; ˇ/
¯
Œv00
1 ; c

.�k0/.x; ˇ0/; c
.�l 0/.x; ˇ0/��0.dx/;

Vˇˇ Œv00
1 ; v

00
2 � WD

Z X
s;t;s0;t 0

�sts0t 0.4/
°
@ˇV

�1.x; ˇ0/Œv
00
1 ; c

.�s/.x; ˇ0/; c
.�t/.x; ˇ0/�

±
�

°
@ˇV

�1.x; ˇ0/Œv
00
2 ; c

.�s0/.x; ˇ0/; c
.�t 0/.x; ˇ0/�

±
�0.dx/:

Finally, put

†0 D

 
.G0˛

1/
�1.�0/ .G0˛

1/
�1V˛ˇ .G0ˇ

1/
�1.�0/

Sym: .G0ˇ
1/

�1Vˇˇ .G0ˇ
1/

�1.�0/

!
:

Now we can state our main result, the proof of which is deferred to Section4.1.

Theorem 2.7. Suppose the conditions2.1, 2.2, 2.3, 2.4, and2.5. Then we have

E0

h
f
�p

Tn. O�n � �0/
�i

!

Z
f .u/� .uI 0;†0/ du; n ! 1;

for every continuous functionf W Rp ! R of at most polynomial growth.

We immediately see thatǪn and Ǒ
n are asymptotically independent if�.3/ D 0, implying that Ǫn and Ǒ

n

may not be asymptotically independent if� is skewed. Ifc � 0 so thatX is a diffusion, then�.4/ D 0, so that
Vˇˇ D 0 and

p
Tn. Ǒ

n�ˇ0/ is asymptotically degenerate at0. This is in accordance with the case of diffusion,
where the GQMLE of̌ is

p
n-consistent.

In order to construct confidence regions for�0 as well as to perform statistical tests, we need a consistent
estimator of the asymptotic covariance matrix†0. Although†0 contains unknown third and fourth mixed
moments of�, It turns out to be possible to provide a consistent estimator of†0 without any specific knowledge
of � other than Assumption2.1. Let

O†n D

 
. OG0˛

n /
�1 . OG0˛

n /
�1 OV˛ˇ;n. OG0ˇ

n /
�1

Sym: . OG0ˇ
n /

�1 OVˇˇ;n. OG0ˇ
n /

�1

!
:

6



where, for eachv0
1; v

0
2 2 Rp˛ andv00

1 ; v
00
2 2 Rpˇ ,

OG0˛
n Œv

0
1; v

0
2� WD �

1

n

nX
jD1

V �1
j�1.

Ǒ
n/
�
@˛aj�1. Ǫn/Œv

0
1�; @˛aj�1. Ǫn/Œv

0
2�
�
;

OG0ˇ
n Œv

00
1 ; v

00
2 � WD �

1

n

nX
jD1

trace
°�
V �1
j�1.@ˇVj�1/V

�1
j�1.@ˇVj�1/

�
. Ǒ
n/Œv

00
1 ; v

00
2 �
±
;

OV˛ˇ;nŒv0
1; v

00
1 � WD �

nX
jD1

1

Tn

�
V �1
j�1@ˇV

�1
j�1

�
. Ǒ
n/Œ@˛aj�1. Ǫn/Œv

0
1�; �j . Ǫn/; v

00
2 ; �j . Ǫn/

˝2�;

OVˇˇ;nŒv00
1 ; v

00
2 � WD

nX
jD1

1

Tn

�
@ˇV

�1
j�1@ˇV

�1
j�1

�
. Ǒ
n/Œv

00
1 ; �j . Ǫn/

˝2; v00
2 ; �j . Ǫn/

˝2�:

Corollary 2.8. Under the conditions of Theorem2.7, we haveO†n !p †0, so that the weak convergence

O†�1=2
n

p
Tn. O�n � �0/ !

L Np.0; Ip/

holds true.

The proof of Corollary2.8 is given in Section4.2.

2.3 Remarks

1. The revealed convergence rate
p
Tn of the GQMLE Ǒ

n alerts someone to take precautions against the
presence of jumps. For instance, suppose that one has adopted the parametric diffusion model (i.e. (1)
with c � 0) although there actually does exist a nonnull jump part. Then, he/she takes

p
n for the conver-

gence rate ofǑn, although the true one is
p
Tn, which may lead to a seriously inappropriate confidence

zone. This point can be sufficient grounds for importance of testing the presence of jumps. In case of
one-dimensionalX , Masuda [27, Section 4] constructed an analogue to Jarque-Bera normality test and
studied its asymptotic behavior. We will report a multivariate extension of the result in a subsequent
paper.

2. Here are some remarks concerning the stability condition. The exponential mixing property can be
drastically relaxed if we are only interested in the asymptotic normality ofO�n. Then, the mere ergodicity
(i.e. kPt .x; �/��0.�/k ! 0 ast ! 1 for everyx, without knowledge of its decreasing rate) suffices, and
we could exactly proceed as in Masuda [27, Theorem 3.4]. Although the paper just cited dealt with one-
dimensionalX , a multivariate extension in deducing the asymptotic normality would be straightforward.
See Masuda [27, p.115] for some discussion concerning a relation between the uniform (in time) moment
estimates and the boundedness of the coefficients. See also Remark5.4.

3. Our identifiability condition Assumption2.4 can be stringent; for example, it excludes the case where
b.x; ˇ/ D ˇ0 andc.x; ˇ/ D ˇ00, so that there exist infinitely many̌ D .ˇ0; ˇ00/ such thatV.x; ˇ/ �

V.x; ˇ0/ D 0 for everyx. However, this is unavoidable as our contrast functionMn is constructed solely
based on fitting local conditional mean and covariance matrix. Roughly speaking, in order to estimate
both parameters separately contained inb andc, we need “distinct” nonlinearities inx for b.x; ˇ/ and
c.x; ˇ/ to fulfil Assumption2.4.

4. Although we are considering “ergodic”X , it is obvious that we can target Lévy processes as well,
according to the built-in independence of the increments.�jX/j�n.

5. A general form of the martingale estimating functions is

� 7!

nX
jD1

Wj�1.�/
°
g.Xtj �1

; Xtj I �/ �E
j�1

�
Œg.Xtj �1

; Xtj I �/�
±

for someW 2 Rp ˝ Rm andRm-valued functiong onRd � Rd �‚. We would have a wide choice of
W andg. When the conditional expectations involved do not admit closed forms, then the leading-term
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approximation of them via the Itô-Taylor expansion can be used. In view of this, as in Kessler [15], it
would be formally possible to relax the conditionnh2n ! 0 in (2) by gaining the order of the Ito-Taylor
expansions of the conditional mean and conditional covariance:

E� ŒXtj jFtj �1
� D Xtj �1

C aj�1.˛/hn C � � � ;

V� ŒXtj jFtj �1
� D Vj�1.ˇ/hn C � � � ;

which we have implicitly used up to thehn-order terms to buildQn of (11). However, we then need
specific moment structures of�, which appear in the higher orders of the above Itô-Taylor expansion.
Moreover, we should note that the convergence rate

p
Tn can be never improved for both̨andˇ even

if E� ŒXtj jFtj �1
� andV� ŒXtj jFtj �1

� have closed forms, such as the case of linear drifts, so that the rate
of hn ! 0 may not matter as long asTn ! 1.

2.4 A numerical example

For simulation purpose, we consider the following concrete model:

dXt D
�˛Xtp
1CX2t

dt C
p
ˇdJt ; X0 D 0; (13)

where the true value is.˛0; ˇ0/ D .1; 1/, the driving process is the normal inverse Gaussian Lévy process
such thatL.Jt / D NIG.ı; 0; ıt; 0/, ı > 0. It holds thatEŒJt � D 0, EŒJ 21 � D t , andL.Jt / ! N .0; 1/ in
total variation ası ! 1, and that�.3/ D 0 and�.4/ D 3=ı2. The model (13) is a normal-inverse Gaussian
counterpart to the hyperbolic diffusion, for whichJ is replaced by a standard Wiener process. For thisX , we
can verify all the assumptions.

We simulated1000 independent paths by Euler scheme with sufficiently fine stepsize to obtain1000 in-
dependent estimatesO�n D . Ǫn; Ǫn/, and then computed their empirical mean and standard deviations. Table
1 reports the results; just for comparison, we included the case of diffusion, whereZ is a standard Wiener
process. From the table, we can observe the following:

� The performance ofǪn are rather similar for all the three cases;

� The performance ofǑn gets better for largerı, which can be expected from the fact that the asymptotic
variance of Ǒn is a constant multiple of�.4/ D 3ı�2.

Tn hn Diffusion ı D 1 ı D 10

˛ ˇ ˛ ˇ ˛ ˇ

10 0.05 1.158 0.964 1.149 0.982 1.179 0.965
(0.629) (0.100) (0.621) (0.576) (0.645) (0.113)

0.01 1.193 0.993 1.172 0.968 1.210 0.993
(0.673) (0.044) (0.635) (0.476) (0.658) (0.069)

100 0.05 0.999 0.970 0.997 0.976 0.996 0.971
(0.184) (0.031) (0.188) (0.174) (0.177) (0.035)

0.01 1.018 0.994 1.017 0.996 1.017 0.994
(0.184) (0.014) (0.189) (0.174) (0.181) (0.022)

Table 1:Finite sample performance ofO�n concerning the model (13); just for comparison, the case of diffusion
is also included.

3 Mighty convergence of a class of continuous random fields

In this section, we will prove a fundamental result concerning the “single-norming” mighty convergence of
a continuous statistical random fields associated with general vector-valued estimating functions; here, the
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“single-norming” means that the rates of convergence are the same for all the arguments of the corresponding
estimator. Theorem3.5below will serve as a fundamental tool in the proof of Theorem2.7. The content of this
section can be read independently of the main body of this paper.

To proceed, we need some notation. Denote by¹Xn;An; .P� /�2‚ºn2N underlying statistical experiments,
where‚ � Rp is a bounded convex domain. Let�0 2 ‚, and writeP0 D P�0

. Let Gn D .Gj;n/pjD1 W

Xn�‚ ! Rp be vector-valued random functions; as usual, we will simply writeGn.�/, dropping the argument
of Xn. Our target “contrast” function is

Mn.�/ WD �
1

Tn
jGn.�/j2; (14)

where.Tn/ is a nonrandom positive real sequence such thatTn ! 1. The corresponding “M -estimator” is
defined to be any measurable mappingO�n W Xn ! ‚� such that

O�n 2 argmax
�2‚�

Mn.�/:

Due to the compactness of‚� and the continuity ofMn imposed later on, we can always find such aO�n. The
estimateO�n can be any root ofGn.�/ D 0 as soon as it exists.

SetUn.�0/ WD ¹u 2 Rp W �0 C T
�1=2
n u 2 ‚º and define random fieldsZn W Un.�0/ ! .0;1/ by

Zn.u/ D Zn.uI �0/ WD exp
®
Mn.�0 C T �1=2

n u/ � Mn.�0/
¯
: (15)

Obviously, it holds that
Oun WD

p
Tn. O�n � �0/ 2 argmax

�2‚�

Zn.�/:

We consider the following two conditions for the random fieldsZn.

� (Polynomial type Large Deviation Inequality (PLDI))For everyM > 0, we have

sup
r>0

´
rM sup

n2N
P0

�
sup

juj>r

Zn.u/ � e�r

�µ
< 1: (16)

� (Weak convergence on compact sets)There exists a random fieldZ0.�/ D Z0.�I �0/ such thatZn !L Z0
in C.B�.R// for eachR > 0, whereB�.R/ WD ¹u 2 RpI juj � Rº.

Under these conditions, the mode of convergence ofZn.�/ is mighty enough to deduce that the maximum-point
sequence. Oun/n is Lq.P0/-bounded for everyq > 0, which especially implies that. Oun/n is tight: indeed, if
(16) is in force,

sup
n2N

P0Œj Ounj > r� � sup
n2N

P0

�
sup

juj>r

Zn.u/ � Zn.0/
�

D sup
n2N

P0

�
sup

juj>r

Zn.u/ � 1

�
. 1

rM

for everyr > 0, so that

sup
n2N

E0Œj Ounj
q� D

Z 1

0

sup
n2N

P0Œj Ounj > s1=q�ds . 1C

Z 1

1

s�M=qds < 1:

If u 7! Z0.u/ is a.s. maximized at a unique pointOu1, then it follows from the tightness of. Oun/n2N that
Oun !L Ou1; let us remind that the weak convergence on any compact set alone is not enough to deduce the
weak convergence ofOun, sinceUn.�0/ " Rp and we have no guarantee that. Oun/ is tight. Moreover, owing to
the PLDI, the moment off . Oun/ converges to that off . Ou1/ for every continuous functionf onRp of at most
polynomial growth. In our framework, logZ0 admits a quadratic structure with a normally distributed linear
term and a nonrandom positive definite quadratic term, so thatOu1 is asymptotically normally distributed.

We now introduce regularity conditions.

Assumption 3.1(Smoothness). The functions� 7! Gn.�/ are continuously extended to the boundary of‚,
and belong toC3.‚/, P0-a.s.
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Assumption 3.2(Bounded moments). For everyK > 0,

sup
n2N

E0

"ˇ̌̌̌
1

p
Tn

Gn.�0/
ˇ̌̌̌K#

C

3X
kD0

sup
n2N

E0

"
sup
�2‚

ˇ̌̌̌
1

Tn
@k�Gn.�/

ˇ̌̌̌K#
< 1:

LetM > 0 be a given constant.

Assumption 3.3(Limits). (a) There exist a nonrandom functionG1 W ‚ ! Rp and positive constants
� D �.�0/ and � such that:G1.�0/ D 0; sup� jG1.�/j < 1; jG1.�/j

2 � �j� � �0j
2 for every

� 2 ‚; and

sup
n2N

E0

"
sup
�2‚

ˇ̌̌̌p
Tn

�
1

Tn
Gn.�/ � G1.�/

�ˇ̌̌̌MC�
#
< 1:

(b) There exists a nonrandomG0
1.�0/ 2 Rp ˝ Rp of rankp such that

sup
n2N

E0

"ˇ̌̌̌p
Tn

�
1

Tn
@�Gn.�0/ � G0

1.�0/

�ˇ̌̌̌M#
< 1:

Assumption 3.4(Weak convergence). T �1=2
n Gn.�0/ !L Np.0;V.�0// for some positive definiteV.�0/ 2

Rp ˝ Rp.

Let †.�0/ WD .G0
1/

�1V.G0
1/

�1>.�0/, and denote by�.uI 0;†.�0// the centered Gaussian density with
covariance matrix†.�0/. The main claim of this section is the following.

Theorem 3.5. LetM > 0.

(a) Suppose that Assumptions3.1, 3.2, and3.3. Then the PLDI (16) holds true.

(b) If Assumption3.4 is additionally met, then

E0Œf . Oun/� !

Z
f .u/� .uI 0;†.�0// du

for every continuous functionf W Rp ! R satisfying thatlim supjuj!1 juj�qjf .u/j < 1 for some
q 2 .0;M/.

Proof. Applying Taylor expansion to (15), we get

logZn.u/ D �n.�0/Œu� �
1

2
�.�0/Œu; u�C �n.u/; (17)

where�n.�0/ WD T
�1=2
n @�Mn.�0/, �n.�0/ WD �T �1

n @2
�
Mn.�0/, �.�0/ WD 2G0

1.�0/
>G0

1.�0/, and

�n.u/ WD
1

2
¹�.�0/ � �n.�0/ºŒu; u� �

Z 1

0

.1 � s/

Z
@��n.�0 C stT �1=2

n u/ŒsT �1=2
n u; u˝2�dtds: (18)

We will prove (a) by making use of Yoshida [41, Theorem 3(c)]. We will verify the conditions [A100], [A4 0],
[A6], [B1] and [B2] of that paper, omitting the full description of the conditions. Assumption3.3assures [B1]
(the positive definiteness of�.�0/) and the convergenceT �1

n Mn.�/ !p �jG1.�/j
2 for each� 2 ‚. Let

Yn.�/ WD
1

Tn
¹Mn.�/ � Mn.�0/º D

1

Tn
logZn

�p
Tn.� � �0/

�
;

thenYn.�/ !p �jG1.�/j
2 DW Y.�/. ObviouslyY.�/ � ��2j� � �0j

2 for each� 2 ‚, verifying [B2] (the
identifiability). Next, we will verify the conditions [A100] and [A6] in the following form:

[A100] (i) supnE0
�
sup� jT �1

n @3
�
Mn.�/j

K
�
< 1 for everyK > 0.
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(ii) supnE0
�
j
p
Tn.�n.�0/ � �.�0/j

M��1
�
< 1 for every�1 > 0 small enough.

[A6] (i) supnE0
�
j�n.�0/j

K
�
< 1 for everyK > 0.

(ii) supnE0
�
sup� j

p
Tn.Yn.�/ � Y.�//jMC�=2

�
< 1, for � given in Assumption3.3.

At this stage, we should remark that the remaining [A40] is in force under [A100] and [A6]: here, [A40] is the
“tuning-parameter controlling” condition concerned with the moment-order indicesM1; : : : ;M4 in the notation
of Yoshida [41]. We only give a sketch of verification of [A40]. The indices corresponding toM1 andM3 can
be taken arbitrarily large under Assumption3.2, so it suffices to look atM2 andM4. It turns out that, by taking
the tuning parameters of Yoshida [41] as�1; �2; ˛ � 0 andˇ2 D 0 and theň 1 � 1=2 with � D 2, we can
pick a constantı 2 .0; �=2/ small enough so that [A40] follows withM2 D M C ı andM4 D M � ı. Building
on these observations, we are left to proving [A100] and [A6] above.

We begin with [A100]. SincejT �1
n @3

�
Mn.�/j . jT �1

n Gn.�/jjT �1
n @3

�
Gn.�/jCjT �1

n @�Gn.�/jjT �1
n @2

�
Gn.�/j,

we have for everyK > 0

sup
n2N

E0

"
sup
�2‚

ˇ̌̌̌
1

Tn
@3�Mn.�/

ˇ̌̌̌K#
< 1:

Noting that@�i
@�j Mn D �2T �1

n ¹@�i
@�j GnŒGn�C @�i

GnŒ@�j Gn�º, we also have

p
Tnj�n.�0/ � �.�0/j .

ˇ̌̌̌
1

p
Tn

Gn.�0/
ˇ̌̌̌ ˇ̌̌̌
1

Tn
@2�Gn.�0/

ˇ̌̌̌
C

�
j�.�0/j C

ˇ̌̌̌
1

Tn
@�Gn.�0/

ˇ̌̌̌� ˇ̌̌̌p
Tn

�
1

Tn
@�Gn.�0/ � G0

1.�0/

�ˇ̌̌̌
:

Therefore, Assumptions3.2and3.3combined with Hölder’s inequality yield that for�1 2 .0;M/

sup
n2N

E0

�ˇ̌̌p
Tn.�n.�0/ � �.�0/

ˇ̌̌M��1

�
. 1C

´
sup
n2N

E0

"ˇ̌̌̌p
Tn

�
1

Tn
@�Gn.�0/ � G0

1.�0/

�ˇ̌̌̌M#µ.M��1/=M

< 1:

Thus [A100] follows.
Next we prove [A6]. The statement (i) is obvious from Assumption3.2:

sup
n2N

E0
�
j�n.�0/j

K
�
. sup
n2N

E0

"ˇ̌̌̌
1

Tn
@�Gn.�0/

ˇ̌̌̌K ˇ̌̌̌
1

p
Tn

Gn.�0/
ˇ̌̌̌K#

< 1: (19)

Using the estimateˇ̌̌p
Tn.Yn.�/ � Y.�//

ˇ̌̌
�

1
p
Tn

ˇ̌̌̌
1

p
Tn

Gn.�0/
ˇ̌̌̌2

C

�
jG1.�/j C

ˇ̌̌̌
1

Tn
Gn.�/

ˇ̌̌̌� ˇ̌̌̌p
Tn

�
1

Tn
Gn.�/ � G1.�/

�ˇ̌̌̌
;

it follows under Assumptions3.2and3.3that

sup
n2N

E0

�
sup
�2‚

ˇ̌̌p
Tn.Yn.�/ � Y.�//

ˇ̌̌MC�=2
�

. 1C sup
n2N

E0

"
sup
�2‚

ˇ̌̌̌p
Tn

�
1

Tn
Gn.�/ � G1.�/

�ˇ̌̌̌MC�
#.MC�=2/=.MC�/

< 1:

Thus [A6] is ensured, and the proof of (a) is complete.

We now turn to the proof of (b). Fix anyR > 0. Since we know that the sequence. Oun/ isLq.P0/-bounded
for eachq 2 .0;M/ and that the set argmaxu logZ1.u/ a.s. consists of the only point

Ou1 WD �.�0/
�1�1.�0/ � Np.0;†.�0//;
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it suffices to show that logZn !L logZ1 in C.B�.R//, where

logZ1.u/ WD �1.�0/Œu� �
1

2
�.�0/Œu; u�; �1.�0/ � Np

�
0; 4G0

1.�0/
>V.�0/G0

1.�0/
�

(e.g. Yoshida [41, Theorem 5]). We haveT �1
n @�Gn.�0/ !p G0

1.�0/ from Assumption3.3, hence Slutsky’s
lemma and Assumption3.4 imply that

�n.�0/ D �
2

Tn
@�Gn.�0/

�
1

p
Tn

Gn.�0/
�

!
L �1.�0/:

Also, we have

j�n.u/j . juj
2
j�n.�0/ � �.�0/j C

juj3

p
Tn

sup
�2‚

ˇ̌̌̌
1

Tn
@3�Mn.�/

ˇ̌̌̌
D op.1/ (20)

for every u 2 B�.R/. Thus, recalling the expression (17), we get logZn.u/ !L logZ0.u/ for every
u 2 B�.R/, and moreover, due to the linearity inu of the weak convergence term�n.�0/Œu�, the Cramér-
Wold device ensures the finite-dimensional convergence. Therefore, it remains to check the tightness of
¹logZn.u/ºu2B�.R/. In view of the classical Kolmogorov’s tightness criterion for continuous random fields
(e.g. Kunita [18, Theorem 1.4.7]), it suffices to show that there exists a constant > p.D dim‚/ such that

sup
u2B�.R/

sup
n2N

E0 Œj logZn.u/j �C sup
n2N

E0

"
sup

juj�R

j@u logZn.u/j
#
< 1: (21)

In view of the estimates in (19) and (20) as well as the expressions (17) and (18),

sup
u2B�.R/

sup
n2N

E0 Œj logZn.u/j � . sup
n2N

E0 Œj�n.�0/j
 �C 1C sup

u2B�.R/

sup
n2N

E0 Œj�n.u/j
 �

. 1CE0 Œj�n.�0/ � �.�0/j
 �C sup

n2N
E0

�
sup
�2‚

ˇ̌̌̌
1

Tn
@3�Mn.�/

ˇ̌̌̌�
< 1:

Furthermore, since

@u logZn.u/ D @u

²
Mn

�
�0 C

1
p
Tn
u

�
� Mn.�0/

³
D

1
p
Tn
@�Mn

�
�0 C

1
p
Tn
u

�
D

1
p
Tn

²
@�Mn.�0/C

1
p
Tn

Z 1

0

@2�Mn

�
�0 C

s
p
Tn
u

�
Œu�ds

³
;

the finiteness of supnE0
�
supjuj�R j@u logZn.u/j

�
follows on applying Assumption3.2to the estimate

sup
juj�R

j@u logZn.u/j .
ˇ̌̌̌
1

p
Tn

Gn.�0/
ˇ̌̌̌ ˇ̌̌̌
1

Tn
@�Gn.�0/

ˇ̌̌̌
C sup
�2‚

ˇ̌̌̌
1

Tn
@2�Mn.�/

ˇ̌̌̌
.
ˇ̌̌̌
1

p
Tn

Gn.�0/
ˇ̌̌̌ ˇ̌̌̌
1

Tn
@�Gn.�0/

ˇ̌̌̌
C sup
�2‚

´ˇ̌̌̌
1

Tn
Gn.�/

ˇ̌̌̌ ˇ̌̌̌
1

Tn
@2�Gn.�/

ˇ̌̌̌
C

ˇ̌̌̌
1

Tn
@�Gn.�/

ˇ̌̌̌2µ
:

Thus we have obtained (21), thereby achieving the proof of (b).

Remark 3.6. We have confined ourselves to the “single-norming (i.e. scalar-Tn)” case for the squared quasi-
score function. Nevertheless, as in the original formulation of Yoshida [41, Theorem 1], it would be also
possible to deal with “multi-norming” cases where elements ofO�n possibly converge at different rates, i.e.,
cases of a matrix norming instead of the scalar norming

p
Tn. This would require somewhat more complicated

arguments, but we do not need such an extension in this paper.
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4 Proofs of Theorem2.7and Corollary 2.8

4.1 Proof of Theorem2.7

The proof of Theorem2.7 is achieved by applying Theorem3.5. When we have a reasonable estimating
function � 7! Gn.�/ with which an estimator of� is defined by a random root of the estimating equation
Gn.�/ D 0, it may be unclear what is the “single” associated contrast function to be maximized or minimized;
for example, it would be often the case whenGn is constructed via a kind of (conditional-) moment fittings.
The setup (24) provides a way of converting the situation fromZ-estimation toM -estimation.

4.1.1 Introductory remarks

At first glance, it seems that, in order to investigate the asymptotic behavior ofO�n, we may proceed as in the
case of diffusions, expanding the GQLQn of (11) and then investigating asymptotic behaviors of the derivatives
@k
�
Qn; see Yoshida [41, Section 6] for details. Following this route however leads to a lesser evil, essentially

due to the fact that.h�1=2
n �jX/j�n is notLq.P0/-bounded forq > 2. To see this more precisely, let us take a

brief look at the simple one-dimensional Lévy processXt D ˛t C
p
ˇJt , with � D .˛; ˇ/ 2 R � .0;1/ and

L.J1/ admitting finite moments. In this case,Qn.�/ D �
P
j ¹.logˇ/C .ˇhn/

�1.�jX � ˛hn/
2º:

@˛Qn.�/ D

nX
jD1

2

ˇ
.�jX � ˛hn/; @ˇQn.�/ D

nX
jD1

1

ˇ2hn

®
.�jX � ˛hn/

2
� ˇhn

¯
;

@2˛Qn.�/ D
�2Tn

ˇ
; @˛@ˇQn.�/ D �

nX
jD1

2

ˇ2
.�jX � ˛hn/;

@2ˇQn.�/ D �

nX
jD1

2

ˇ3hn

²
.�jX � ˛hn/

2
�
ˇhn

2

³
:

We can deduce the convergences

1

Tn
@2˛Qn.�0/ !

p
�2ˇ�1

0 ;
1

p
n

p
Tn
@˛@ˇQn.�0/ !

p 0;
1

n
@2ˇQn.�/ !

p
�ˇ�2

0 ;

so that the normalized quasi observed-information matrix�D�1
n @2

�
Qn.�0/D�1

n !p diag.2ˇ�1
0 ; ˇ�2

0 /, where
Dn WD diag.

p
Tn;

p
n/. In view of the classical Cramér type method forM -estimation, we should then have

a central limit theorem for the normalized quasi score¹T
�1=2
n @˛Qn.�0/; n�1=2@ˇQn.�0/º for an asymptotic

normality at rateDn to be valid for theM -estimator associated withQn. However, different from the drifted
Wiener process, the sequence¹n�1=2@ˇQn.�0/º doesnot converge, because.h�1=2

n �jX/j�n cannot beLq-
bounded for largeq > 2 as can be seen from the moment structure of Lévy processes; see Luschgy and
Pagès [21] for general moment estimates in small time with several concrete examples. Although we only
mentioned the Lévy process with diagonal norming, situation remains the same even whenX is actually an
ergodic solution to (1).

The observation made in the last paragraph says that the situation is different from the case of diffusions,
when developing asymptotic theory concerning the Gaussian quasi-likelihood for the model (1) under high-
frequency sampling framework; it is also different from the case of time series models, where the usual

p
n-

consistency holds in most cases (see the references cited in the Introduction). Earlier attempts to tackle this
point have been made by Mancini [23], Shimizu and Yoshida [32], Ogihara and Yoshida [31], where they
incorporated jump-detection filters in defining a contrast function. The filter approach has its own advantage
such as

p
n-rate estimation of the diffusion parameter even in the presence of jumps, however, we should

have in mind that its implementation involves fine-tuning parameters, thereby possibly preventing us from
straightforward use of the approach.

In order to prove Theorem2.7, we will look at not� 7! Qn.�/ but

� 7! Gn.�/ D
®
G˛n.�/;G

ˇ
n .�/

¯
;

13



whereG˛n W ‚ ! Rp˛ andGˇn W ‚ ! Rpˇ are defined by

G˛n.�/ D

nX
jD1

@˛aj�1.˛/
�
V �1
j�1.ˇ/Œ�j .˛/�

�
; (22)

Gˇn .�/ D

nX
jD1

�
¹�@ˇV

�1
j�1.ˇ/ºŒ�j .˛/

˝2� � hn
@ˇ jVj�1.ˇ/j

jVj�1.ˇ/j

�
: (23)

Our contrast functionMn.�/ is then defined to be the “squared quasi score” as in (14):

Mn.�/ D �
1

Tn
jGn.�/j2: (24)

Trivially, Gn W ‚ ! Rp fulfil that Gn.�/ D
®
@˛Qn.�/; 2hn@ˇQn.�/

¯
. The difference is that we put the

factor “2hn” in front of @ˇQn.�/; our estimating procedure is formally not the usualM -estimation based on
the Taylor expansion of� 7! Qn.�/ around�0, but rather a kind of minimum distance estimation concerning
the Gaussian-quasi score function. The optimization with respect to� is asymptotically the same for both of
Qn andMn: if there is no root� 2 ‚ for Gn.�/ D 0, then we may assign any value (e.g. any element of‚) to
O�n, upholding the claim of Theorem2.7.

Remark 4.1. More general cases than (22) and (23) can be treated, such as

G˛n.�/ D

nX
jD1

W ˛
j�1.�/¹Xtj �mj�1.�/º;

Gˇn .�/ D

nX
jD1

�
W
ˇ;1
j�1.�/Œ¹Xtj �mj�1.�/º

˝2� � hnW
ˇ;2
j�1.�/

�
;

for some measurableW ˛ W Rd � ‚ ! Rp˛ ˝ Rd , W ˇ;1 W Rd � ‚ ! Rpˇ ˝ .Rd ˝ Rd /, andW ˇ;2 W

Rd � ‚ ! Rpˇ . This may be called a GQMLE as well, for we are still solely fitting the local mean vectors
and covariance matrices. This setting allows us to deal with, for example, the parametric model

dXt D a.Xt ; �/dt C b.Xt ; �/dwt C c.Xt�; �/dJt

with possibly degenerateb andc, the resulting GQMLEO�n still being asymptotically normal at rate
p
Tn under

suitable conditions. To avoid unnecessarily messy notation and regularity conditions without losing essence,
we have decided to treat (1) in this paper.

For later use, we here introduce some convention and recall a couple of basic facts that we will make use
often without notice.

� We will often suppress “.�0/” from the notation:aj�1 WD aj�1.˛0/, G˛n D G˛n.�0/, and so forth.

�
R
j

denotes a shorthand for
R tj
tj �1

.

� M 0
j�1.�/ WD @˛aj�1.˛/

>V �1
j�1.ˇ/ 2 Rp˛ ˝ Rd .

� M 00
j�1.ˇ/ WD �@ˇV

�1
j�1.ˇ/ D ¹V �1

j�1.@ˇVj�1/@ˇV
�1
j�1º.ˇ/ 2 Rpˇ ˝ Rd ˝ Rd .

� dj�1.ˇ/ WD jVj�1.ˇ/j
�1¹@ˇ jVj�1.ˇ/jº 2 Rpˇ .

� Given real sequencean and random variablesYn possibly depending on� , we writeYn D O�
p .an/ if

supn;� E0
�
ja�1
n YnjK

�
< 1 for everyK > 0.

� R denotes a generic function onRd possibly depending onn and� , for which there exists a constant
C � 0 such that supn;� jR.x/j � C.1C jxj/C for everyx 2 Rd .
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� Burkholder’s inequality: for a martingale difference array.�nj /j�n and everyp � 1,

E0

�
max
k�n

ˇ̌̌̌X
j�k

1
p
n
�nj

ˇ̌̌̌p�
. E0

��
1

n

X
j�n

�2nj

�p=2�
. 1

n

X
i�n

E
�
j�nj j

p
�
:

Moreover, ifc is a sufficiently integrable predictable process, then

E0

�ˇ̌̌̌ Z T

0

cs�dJs

ˇ̌̌̌q�
. .1 _ T /q=2�1

Z T

0

E0Œjcsj
q�ds

for everyT > 0 andq � 2.

� Sobolev inequality (e.g. Friedman [7, Section 10.2]):

E0

�
sup
�2‚

ju.�/j

�
.
Z
‚

¹E0Œju.�/j
q�CE0Œj@�u.�/j

q�º d� . sup
�2‚

¹E0Œju.�/j
q�CE0Œj@�u.�/j

q�º

for q > p and a random fieldu 2 C1.‚/; recall that we are presupposing the boundedness and convexity
of ‚. We will make use of this type of inequality to derive some uniform-in-� moment estimates for
martingale terms.

We now turn to the proof of Theorem2.7by verifying the conditions of Theorem3.5.

4.1.2 Verification of the conditions onGn

We rewriteGn as follows:

G˛n.�/ D

nX
jD1

M 0
j�1.�/Œ�j � � hn

nX
jD1

M 0
j�1.�/

�
aj�1.˛/ � aj�1

�
; (25)

Gˇn .�/ D

nX
jD1

°
M 00
j�1.ˇ/Œ�

˝2
j � � hndj�1.ˇ/

±
C 2hn

nX
jD1

M 00
j�1.ˇ/Œ�j ; aj�1 � aj�1.˛/�C h2n

nX
jD1

M 00
j�1.ˇ/

�
¹aj�1 � aj�1.˛/º

˝2
�
: (26)

We have�j D �j C rj , where

�j WD

Z
j

Qaj�1.s/ds C

Z
j

b.Xs; ˇ0/dws C

Z
j

c.Xs�; ˇ0/dJs; (27)

rj WD

Z
j

°
E
j�1
0 Œa.Xs; ˛0/� � aj�1

±
ds; (28)

with Qaj�1.s/ WD a.Xs; ˛0/ � E
j�1
0 Œa.Xs; ˛0/�. Obviously,.�j /j�n forms a martingale difference array with

respect to the discrete-time filtration.Ftj /j�n.
Itô’s formula and the present integrability condition lead to

E
j�1
0 Œa.Xs; ˛0/� � aj�1 D

Z
j

E
j�1
0 ŒAa.Xu; ˛0/�du D hnRj�1; (29)

whereA denotes the (extended) generator associated withX underP0, that is, forf 2 C2.Rd /

Af .x/ D @f .x/Œa.x; ˛0/�C
1

2
@2f .x/Œb.x; ˇ0/

˝2�

C

Z ®
f .x C c.x; ˇ0/z/ � f .x/ � @f .x/c.x; ˇ0/z

¯
�.dz/:

Putting (28) and (29) together givesrj D h2nRj�1, therefore

�j D �j C h2nRj�1: (30)

Assumption3.1 obviously holds under the present differentiability conditions. We begin with verifying
Assumption3.2.
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Lemma 4.2. For everyK > 0, we have

sup
n2N

E0

"ˇ̌̌̌
1

p
Tn

Gn.�0/
ˇ̌̌̌K#

C sup
n2N

E0

"
sup
�2‚

ˇ̌̌̌
1

Tn
Gn.�/

ˇ̌̌̌K#
< 1:

Proof. By substituting (30) in (25) and (26) and then rearranging the resulting terms, we have

G˛n.�/ D

nX
jD1

M 0
j�1.�/�j C hn

nX
jD1

M 0
j�1.�/¹aj�1 � aj�1.˛/º C h2n

nX
jD1

M 0
j�1.�/Rj�1; (31)

Gˇn .�/ D

nX
jD1

°
M 00
j�1.ˇ/Œ�

˝2
j � � hndj�1.ˇ/

±
C 2hn

nX
jD1

M 00
j�1.ˇ/Œ�j ; aj�1 � aj�1.˛/�C h2n

nX
jD1

Rj�1: (32)

To achieve the proof, we will separately look atT �1=2
n G˛n, T �1=2

n Gˇn , T �1
n G˛n.�/, andT �1

n Gˇn .�/. Fix any
integerK > .2 _ p/ in the sequel.

First we proveT �1=2
n G˛n D O�

p .1/. Observe that

1
p
Tn

G˛n D

nX
jD1

1
p
Tn
M 0
j�1�j C

q
Tnh2n

1

n

nX
jD1

M 0
j�1 D

nX
jD1

1
p
Tn
M 0
j�1�j CO�

p

�q
Tnh2n

�
:

By (27),

nX
jD1

1
p
Tn
M 0
j�1�j D

nX
jD1

1
p
n

�
M 0
j�1

1
p
hn

Z
j

b.Xs; ˇ0/dws

�
C
p
hn

nX
jD1

1
p
n

�
M 0
j�1

1

hn

Z
j

Qaj�1.s/ds

�
C

nX
jD1

1
p
Tn
M 0
j�1

Z
j

c.Xs�; ˇ0/dJs : (33)

Burkholder’s inequality implies that the first and second term on the right-hand side areO�
p .1/ andO�

p .
p
hn/,

respectively. As for the last term, by writing1j W .0;1/ ! ¹0; 1º for the identity function of the interval
.tj�1; tj �,

E0

�ˇ̌̌̌ nX
jD1

1
p
Tn
M 0
j�1

Z
j

c.Xs�; ˇ0/dJs

ˇ̌̌̌K�
. T �K=2

n E0

�ˇ̌̌̌ Z Tn

0

nX
jD1

1j .s/M 0
j�1c.Xs�; ˇ0/dJs

ˇ̌̌̌K�
. T �K=2

n TK=2�1
n

Z Tn

0

E0

�� nX
jD1

1j .s/jM 0
j�1c.Xs�; ˇ0/j

�K�
ds

D
1

Tn

Z Tn

0

nX
jD1

1j .s/E0ŒjM 0
j�1c.Xs�; ˇ0/j

K �ds

. 1

Tn

nX
jD1

Z
j

ds D 1; (34)

hence we are done.

We now proveT �1=2
n Gˇn D O�

p .1/. In the sequel, we may and do suppose thatd D pˇ D r 0 D r 00 D 1:
this reduction is possible because of the the polarization identity

ŒS 0; S 00� D
1

4

�
ŒS 0

C S 00� � ŒS 0
� S 00�

�
;

which is valid for any two semimartingalesS 0 andS 00. Substituting (30) in (26) gives

1
p
Tn

Gˇn D

nX
jD1

1
p
Tn

�
M 00
j�1�

2
j � hndj�1

�
CO�

p

�q
Tnh2n

�
;
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so that it remains to verify
nX

jD1

1
p
Tn
M 00
j�1.�

2
j � hnVj�1/ D O�

p .1/: (35)

Define�j .t/ for t 2 .tj�1; tj � by

�j .t/ D

Z t

tj �1

Qaj�1.s/ds C

Z t

tj �1

b.Xs; ˇ0/dws C

Z t

tj �1

c.Xs�; ˇ0/dJs :

LetN.ds; dz/ denote the Poisson random measure associated withJ (i.e. Jt D
R t
0

R
z QN.ds; dz/), and QN its

compensated version. The quadratic variation at timet is then given as follows (cf. Jacod and Shiryaev [12,
I.4.49(d), I.4.55(b)]):

Œ�j .�/�t D

Z t

tj �1

b2.Xs�; ˇ0/ds C

Z t

tj �1

Z
c2.Xs�; ˇ0/z

2N.ds; dz/

D .t � tj�1/Vj�1 C

Z t

tj �1

Z
c2.Xs�; ˇ0/ QN.ds; dz/C

Z t

tj �1

gj�1.s/ds;

where we used the assumption
R
z2�.dz/ D 1 (with the temporary assumptionr 00 D 1) andgj�1.s/ WD

b2.Xs; ˇ0/ � b2j�1 C c2.Xs�; ˇ0/ � c2j�1. Applying the integration-by-parts formula, we get

�2j � hnVj�1 D

²
2

Z
j

�j .s�/d�j .s/C

Z
j

Z
c2.Xs�; ˇ0/z

2 QN.ds; dz/

C

Z
j

�
gj�1.s/ �E

j�1
0 Œgj�1.s/�

�
ds

³
C

Z
j

E
j�1
0 Œgj�1.s/�ds

DW �
.0/
j C �

.1/
j ; say.

We can deduce that
Pn
jD1 T

�1=2
n M 00

j�1�
.0/
j D O�

p .1/, as is the case in the proof of
Pn
jD1 T

�1=2
n M 0

j�1�j D

O�
p .1/ via the expression (33). Moreover, we can apply Itô’s formula to get�.1/j D h2nRj�1 under the

C2 property ofx 7! .b.x; ˇ0/; c.x; ˇ0//, from which it follows that supnE0Œj
Pn
jD1 T

�1=2
n M 00

j�1�
.1/
j jK � .

supn.Tnh
2
n/
K=2 < 1. We thus get (35).

Let us turn to prove sup� jT �1
n G˛n.�/j D O�

p .1/. In the same way as in the proof ofT �1=2
n G˛n D O�

p .1/,

we can prove
Pn
jD1 T

�1=2
n M 0

j�1.�/�j D O�
p .T

�1=2
n / for each� 2 ‚, since the explicit dependence on� is

only through the predictable partsM 0
j�1.�/; similar arguments will apply in some places below. Therefore, it

follows from (31) that, for each� 2 ‚,

1

Tn
G˛n.�/ D

1
p
Tn

0@ nX
jD1

1
p
Tn
M 0
j�1.�/�j

1AC hn

0@1
n

nX
jD1

M 0
j�1.�/

1AC
1

n

nX
jD1

M 0
j�1.�/¹aj�1 � aj�1.˛/º

D O�
p

�
1

p
Tn

_ hn

�
C
1

n

nX
jD1

M 0
j�1.�/¹aj�1 � aj�1.˛/º

D O�
p

�
1

p
Tn

�
C
1

n

nX
jD1

M 0
j�1.�/¹aj�1 � aj�1.˛/º; (36)

so thatT �1
n @�G˛n.�/ D O�

p .1/, and in a quite similar manner we obtain (see (50) and (51) below)

1

Tn
@�G˛n.�/ D O�

p

�
1

p
Tn

�
C
1

n

nX
jD1

@�
�
M 0
j�1.�/¹aj�1 � aj�1.˛/º

�
D O�

p .1/: (37)

Therefore, we arrive at sup� jT �1
n G˛n.�/j D O�

p .1/ by means of the Sobolev inequality.
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It remains to prove sup� jT �1
n Gˇn .�/j D O�

p .1/; remind we are supposing thatd D pˇ D r 0 D r 00 D 1. As
in the proof of (35), we can prove

nX
jD1

1
p
Tn
@k�M

00
j�1.ˇ/.�

2
j � hnVj�1/ D O�

p .1/

for eachk D 0; 1 andˇ, so that the Sobolev inequality gives
Pn
jD1 T

�1=2
n M 00

j�1.ˇ/.�
2
j � hnVj�1/ D O�

p .1/.
Therefore, it follows from (32) and simple manipulation that

1

Tn
Gˇn .�/ D

1
p
Tn

0@ nX
jD1

1
p
Tn
M 00
j�1.ˇ/.�

2
j � hnVj�1/

1AC
2
p
Tn

n

nX
jD1

1
p
Tn
M 00
j�1.ˇ/

®
aj�1 � aj�1.˛/

¯
�j

C
hn

n

nX
jD1

Rj�1 C
1

n

nX
jD1

M 00
j�1.ˇ/

®
Vj�1 � Vj�1.ˇ/

¯
D O�

p

�
1

p
Tn

_

p
Tn

n
_ hn

�
C
1

n

nX
jD1

M 00
j�1.ˇ/

®
Vj�1 � Vj�1.ˇ/

¯
D O�

p

�
1

p
Tn

�
C
1

n

nX
jD1

M 00
j�1.ˇ/

®
Vj�1 � Vj�1.ˇ/

¯
: (38)

ThusT �1
n Gˇn .�/ D O�

p .1/. Similarly, we getT �1
n @�Gˇn .�/ D O�

p .1/ (see (52) and (53) below)

1

Tn
@�Gˇn .�/ D O�

p

�
1

p
Tn

�
C
1

n

nX
jD1

@�
�
M 00
j�1.ˇ/

®
Vj�1 � Vj�1.ˇ/

¯�
D O�

p .1/; (39)

completing the proof.

Next we turn to verifying the uniform moment estimates in Assumptions3.3. To this end, we prove a
preliminary lemma.

Lemma 4.3. Letf W Rd �‚ ! R andg W Rd ! Œ1;1/ be measurable functions and suppose the following
conditions:

� � 7! f .x; �/ is differentiable for eachx, andsup�¹jf .x; �/j _ j@�f .x; �/jº � g.x/ for k D 0; 1;

� supt E0Œg.Xt /� < 1;

� kPt .x; �/ � �0.�/kg . e�atg.x/ for some constanta > 0 and a probability measure�0;

Then we have

sup
n2N

E0

�
sup
�2‚

ˇ̌̌̌p
Tn

�
1

n

nX
jD1

fj�1.�/ �

Z
f .x; �/�0.dx/

�ˇ̌̌̌K�
< 1:

Proof. Let ƒ0
n.f I �/ WD n�1

Pn
jD1¹fj�1.�/ � E0Œfj�1.�/�º andƒ00

n.f I �/ WD n�1
Pn
jD1¹E0Œfj�1.�/� �R

f .x; �/�0.dx/º, so thatn�1
Pn
jD1 fj�1.�/�

R
f .x; �/�0.dx/ D ƒ0

n.f I �/Cƒ00
n.f I �/. Under the present

assumptions, we can apply Yoshida [41, Lemma 4] to getE0Œj@k�ƒ
0
n.�/j

K � . T
�K=2
n C T 1�K

n . T
�K=2
n for

k D 0; 1, yielding that maxkD0;1 sup� supnE0Œj
p
Tn@

k
�
ƒ0
n.f I �/jK � < 1. Therefore, the Sobolev inequality

gives

sup
n2N

E0

�
sup
�2‚

ˇ̌̌p
Tnƒ

0
n.f I �/

ˇ̌̌K�
< 1

As forƒ00
n.f I �/, we have fork D 0; 1:

ˇ̌̌p
Tn@

k
�ƒ

00
n.f I �/

ˇ̌̌
D

ˇ̌̌̌
ˇ̌pTnn nX

jD1

�“
@k�f .y; �/Ptj �1

.x; dy/�.dx/ �

“
@k�f .y; �/�0.dy/�.dx/

�ˇ̌̌̌ˇ̌
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D

ˇ̌̌̌
ˇ̌pTnn nX

jD1

Z �Z
@k�f .y; �/

®
Ptj �1

.x; dy/ � �0.dx/
¯�
�.dx/

ˇ̌̌̌
ˇ̌

�

p
Tn

n

nX
jD1

Z Ptj �1
.x; �/ � �0.�/


g
�.dx/

.
p
Tn

n

nX
jD1

exp.�atj�1/ .
1

p
Tn
:

This ends the proof.

Corollary 4.4. Assumption3.3(a) holds true.

Proof. Again we may and do suppose thatd D pˇ D r 0 D r 00 D 1. Recalling (36), (37), (38), and (39), we
apply Lemma4.3with f .x; �/ D M 0.x; �/¹a.x; ˛0/�a.x; ˛/º andf .x; �/ D M 00.x; ˇ/¹V.x; ˇ0/�V.x; ˇ/º

to conclude

sup
n2N

E0

"
sup
�2‚

ˇ̌̌̌p
Tn

�
1

Tn
Gn.�/ � G1.�/

�ˇ̌̌̌K#
< 1

for everyK > 0, whereG1.�/ WD .G˛1.�/;G
ˇ
1.�// are given by (6) and (7), the integrals in which are finite

by the assumptions. TriviallyG1.�0/ D 0, and Assumption3.3(a) is verified with� D �˛ ^ �ˇ .

Let us mention the fundamental fact concerning conditional size ofX ’s increments. For the convenience of
reference we include a sketch of the proof.

Lemma 4.5. Letg.x/ WD ja.x; ˛0/j_ jb.x; ˇ0/j_ jc.x; ˇ0/j, and fix anyq � 2 such thatEŒjJt jq� < 1. Then

E
j�1
0

"
sup

s2Œtj �1;tj �

jXs �Xtj �1
j
q

#
.
²
h
q=2
n gq.Xtj �1

/ if c � 0;

hng
q.Xtj �1

/ otherwise:

In particular, the left-hand side is essentially bounded if so isg.

Proof. We only mention the case ofc 6� 0. Given anM > 0, we let�j�1;M WD inf¹s � tj�1 W jXsj � M º and
�j�1;M .s/ WD E

j�1
0

�
sup¹jXu �Xtj �1

jq W u 2 Œtj�1; s ^ �j�1;M �º
�
. We can make use of the Lipschitz property

of the coefficients and Masuda [24, Lemma E.1] to derive�j�1;M .tj / .
R tj
tj �1

�j�1;M .s/dsChng
q.Xtj �1

/, the
upper bound beingP0-a.s. finite according to the definition of�j�1;M . Hence the claim follows on applying
Gronwall’s inequality and then lettingM " 1. The case ofc � 0 is similar.

We now prove the central limit theorem required in Assumption3.4.

Lemma 4.6. We have
1

p
Tn

Gn.�0/ !
L Np .0;V.�0// ;

whereV.�0/ is given by (12).

Proof. We begin with extracting the leading martingale terms of the sequencesT
�1=2
n G˛n andT �1=2

n Gˇn ; recall
the expressions (31) and (32). Let us rewrite (27) as�j D mj C r 0

j , where

mj WD bj�1�jw C cj�1�jJ;

r 0
j WD

Z
j

Qaj�1.s/ds C

Z
j

.b.Xs; ˇ0/ � bj�1/dws C

Z
j

.c.Xs�; ˇ0/ � cj�1/dJs :

We claim that it suffices to prove that

nX
jD1

1
p
Tn

 
Q˛j

Q
ˇ
j

!
!

L Np .0;V.�0// ; (40)
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where Q˛j WD M 0
j�1mj and Q

ˇ
j WD M 00

j�1Œm
˝2
j � � hndj�1, both of which form martingale difference arrays

with respect to.Ftj /j�n; we can verify thatEj�1
0 Œ Q

ˇ
j Œu�� D 0 for eachu 2 Rpˇ , making use of the identity

trace¹A.x/�1@xA.x/º D @xjA.x/j=jA.x/j for a differentiable square-matrix functionA. In fact, recalling what
we have seen in the proof of Lemma4.2, we observe the following.

� We have

1
p
Tn

G˛n D

nX
jD1

1
p
Tn
M 0
j�1

�Z
j

b.Xs; ˇ0/dws C

Z
j

c.Xs�; ˇ0/dJs

�
C op.1/

D

nX
jD1

1
p
Tn

Q˛j C

nX
jD1

1
p
Tn
M 0
j�1

Z
j

.b.Xs; ˇ0/ � bj�1/dws

C

nX
jD1

1
p
Tn
M 0
j�1

Z
j

.c.Xs�; ˇ0/ � cj�1/dJs C op.1/:

By means of Burkholder’s inequality and Lemma4.5combined with the conditioning argument,

E0

�ˇ̌̌̌ nX
jD1

1
p
Tn
M 0
j�1

Z
j

.b.Xs; ˇ0/ � bj�1/dws

ˇ̌̌̌2�
. E0

� nX
jD1

1

Tn
jM 0

j�1j
2
jRj�1j

Z
j

hnds

�
. hn:

Following the same line as in (34), we also getE0Œj
Pn
jD1 T

�1=2
n M 0

j�1

R
j .c.Xs; ˇ0/�cj�1/dJsj

2� . hn.
Therefore, it follows that

1
p
Tn

G˛n D

nX
jD1

1
p
Tn

Q˛j C op.1/: (41)

� PutB 0
n D 2

Pn
jD1 T

�1=2
n M 00

j�1Œmj ; r
0
j � andB 00

n D
Pn
jD1 T

�1=2
n M 00

j�1Œr
0
j ; r

0
j �, then we see that

1
p
Tn

Gˇn D

nX
jD1

1
p
Tn
.M 00

j�1Œ�
˝2
j � � hndj�1/C op.1/ D

nX
jD1

1
p
Tn

Q
ˇ
j C B 0

n C B 00
n C op.1/:

Since supj�nE0Œjr
0
j jq� . h2n for everyq � 2 andEj�1

0 Œjmj j2� . jRj�1j
2hn, the Cauchy-Schwarz

inequality leads to

E0ŒjB
0
nj� . 1

n

nX
jD1

r
n

hn
E0

h
jRj�1j

2E
j�1
0 Œjmj j

2�
i1=2

E0
�
jr 0
j j
2
�1=2 .q

nh2n ! 0:

Moreover, for any� 2 .0; 1=3/ Hölder’s inequality gives

E0ŒjB
00
n j� . 1

n

nX
jD1

r
n

hn
E0
�
jRj�1jjr

0
j j
2
�

. 1

n

nX
jD1

r
n

hn
E0

h
jRj�1j

.1C�/=�
i�=.1C�/

E0

h
jr 0
j j
2.1C�/

i1=.1C�/

. 1

n

nX
jD1

r
n

hn
E0

h
jr 0
j j
2.1C�/

i1=.1C�/

.
q
nh

4=.1C�/�1
n .

q
nh2n ! 0:

Hence we have derived
1

p
Tn

Gˇn D

nX
jD1

1
p
Tn

Q
ˇ
j C op.1/: (42)

Having (41) and (42) in hand, it remains to verify (40). We are going to apply the classical martingale central
limit theorem (e.g. Dvoretzky [4]).
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Put Qj D . Q˛j ; Q
ˇ
j /. It is easy to verify the Lyapunov condition: in fact, we haveEj�1

0 Œj Qj jK � . hnjRj�1j

for anyK > 2, so that
Pn
jD1E0ŒjT

�1=2
n Qj jK � . T

1�K=2
n ! 0. It remains to compute the convergence of the

quadratic characteristics:
Pn
jD1E

j�1
0 Œ Q˝2

j � !p V.�0/. By means of the Cramér-Wold device, it suffices to
prove that for eachv0

1; v
0
2 2 Rp˛ andv00

1 ; v
00
2 2 Rpˇ ,

nX
jD1

1

Tn
E
j�1
0

�
. Q˛j /

˝2
�
Œv0
1; v

0
2� !

p G0˛
1Œv

0
1; v

0
2�; (43)

V˛ˇ;nŒv0
1; v

00
1 � WD

nX
jD1

1

Tn
E
j�1
0

h
Q˛j ˝ Q

ˇ
j

i
Œv0
1; v

00
1 � !

p V˛ˇ Œv0
1; v

00
1 �; (44)

Vˇˇ;nŒv00
1 ; v

00
2 � WD

nX
jD1

1

Tn
E
j�1
0

h
. Q
ˇ
j /

˝2
i
Œv00
1 ; v

00
2 � !

p Vˇˇ Œv00
1 ; v

00
2 �: (45)

First, (43) readily follows on notingEj�1
0 Œm˝2

j � D hnVj�1 and applying the ergodic theorem (5). Next,

V˛ˇ;nŒv0
1; v

00
1 � D

1

n

nX
jD1

1

hn
E
j�1
0

h
M 0
j�1Œmj �˝M 00

j�1Œm
˝2
j �

i
Œv0
1; v

00
1 �

D
1

n

nX
jD1

1

hn

X
k;l;s

E
j�1
0

h
m
.k/
j m

.l/
j m

.s/
j

i °
M

0.�s/
j�1 ˝M

00.�kl/
j�1

±
Œv0
1; v

00
1 �: (46)

For later use, we here note that, ash ! 0,

E
h
J
.i1/

h
� � � J

.im/

h

i
D

²
h�i1i2i3.3/ m D 3;

h�i1i2i3i4.4/CO.h2/ m D 4I

this can be easily seen through the relation between the mixed moments and cumulants ofJh, where the latter
can be computed as the values at0 of the partial derivatives of the cumulant functionu 7! logEŒexp.iJhŒu�/� D

h
R

¹exp.iuŒz�/ � 1 � iuŒz�º�.dz/. In view of the expression

m
.k/
j D

X
k0

b
.kk0/
j�1 �jw

.k0/
C
X
k00

c
.kk00/
j�1 �jJ

.k00/

together with the orthogonalities between the increments ofw andJ , we get

E
j�1
0

h
m
.k/
j m

.l/
j m

.s/
j

i
D

X
k0;l 0;s0

c
.kk0/
j�1 c

.l l 0/
j�1 c

.ss0/
j�1 E

h
�jJ

.k0/�jJ
.l 0/�jJ

.s0/
i

D
X
k0;l 0;s0

c
.kk0/
j�1 c

.l l 0/
j�1 c

.ss0/
j�1 E

h
J
.k0/

hn
J
.l 0/

hn
J
.s0/

hn

i
D hn

X
k0;l 0;s0

c
.kk0/
j�1 c

.l l 0/
j�1 c

.ss0/
j�1 �k0l 0s0.3/: (47)

(SinceEŒJ1� D 0, the3rd mixed cumulants and the3rd mixed moments ofJhn
coincides.) Substituting (47)

in (46), we get (44):

V˛ˇ;nŒv0
1; v

00
1 � D

1

n

nX
jD1

X
k;l;s

X
k0;l 0;s0

c
.kk0/
j�1 c

.l l 0/
j�1 c

.ss0/
j�1 �k0l 0s0.3/

°
M

0.�s/
j�1 ˝M

00.�kl/
j�1

±
Œv0
1; v

00
1 �

D
1

n

nX
jD1

X
k0;l 0;s0

�k0l 0s0.3/
°
M 0
j�1Œv

0
1; c

.�s0/
j�1 �

± °
M 00
j�1Œv

00
1 ; c

.�k0/
j�1 ; c

.�l 0/
j�1�

±
!
p V˛ˇ Œv0

1; v
00
1 �:
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Finally, we look atVˇˇ;n. Direct computation gives

Vˇˇ;nŒv00
1 ; v

00
2 � D

1

n

nX
jD1

1

hn
E
j�1
0

h�
M 00
j�1 ˝M 00

j�1

�
Œv00
1 ; m

˝2
j ; v00

2 ; m
˝2
j �

i
�
1

n

nX
jD1

E
j�1
0

h�
dj�1 ˝M 00

j�1

�
Œv00
1 ; v

00
2 ; m

˝2
j �

i
�
1

n

nX
jD1

E
j�1
0

h�
dj�1 ˝M 00

j�1

�
Œv00
2 ; v

00
1 ; m

˝2
j �

i
C hn

0@ 1
n

nX
jD1

d˝2
j�1Œv

00
1 ; v

00
2 �

1A
D
1

n

nX
jD1

1

hn
E
j�1
0

h
¹M 00

j�1Œv
00
1 ; m

˝2
j �º¹M 00

j�1Œv
00
2 ; m

˝2
j �º

i
COp.hn/

D
1

n

nX
jD1

1

hn

X
k;l;k0;l 0

M
00.�kl/
j�1 Œv00

1 �M
00.�k0l 0/
j�1 Œv00

2 �E
j�1
0

h
m
.k/
j m

.l/
j m

.k0/
j m

.l 0/
j

i
COp.hn/: (48)

Using the orthgonality as before and noting the fact thatEŒjwhn
j4� D O.h2n/, we get

E
j�1
0

h
m
.k/
j m

.l/
j m

.k0/
j m

.l 0/
j

i
D

X
s;t;s0;t 0

c
.ks/
j�1 c

.lt/
j�1c

.k0s0/
j�1 c

.l 0t 0/
j�1 E

h
J
.s/

hn
J
.t/

hn
J
.s0/

hn
J
.t 0/

hn

i
CRj�1h

2
n

D hn
X
s;t;s0;t 0

c
.ks/
j�1 c

.lt/
j�1c

.k0s0/
j�1 c

.l 0t 0/
j�1 ¹�sts0t 0.4/CO.hn/º CRj�1h

2
n

D hn
X
s;t;s0;t 0

c
.ks/
j�1 c

.lt/
j�1c

.k0s0/
j�1 c

.l 0t 0/
j�1 �sts0t 0.4/CRj�1h

2
n: (49)

By putting (48) and (49) together, we get (45):

Vˇˇ;nŒv00
1 ; v

00
2 � D

1

n

nX
jD1

X
s;t;s0;t 0

�sts0t 0.4/
°
M 00
j�1Œv

00
1 ; c

.�s/
j�1; c

.�t/
j�1�

± °
M 00
j�1Œv

00
2 ; c

.�s0/
j�1 ; c

.�t 0/
j�1�

±
COp.hn/

!
p Vˇˇ Œv00

1 ; v
00
2 �:

The proof is thus complete.

4.1.3 Verification of the conditions on@k
�
Gn

Based on (25) and (26), we derive the following bilinear forms:

@˛G˛n.�/ D

nX
jD1

@˛M
0
j�1.�/Œ�j � � hn

nX
jD1

@˛M
0
j�1.�/Œaj�1.˛/ � aj�1� � hn

nX
jD1

M 0
j�1.�/@˛aj�1.˛/; (50)

@ˇG˛n.�/ D

nX
jD1

@ˇM
0
j�1.�/Œ�j � � hn

nX
jD1

@ˇM
0
j�1.�/Œaj�1.˛/ � aj�1�; (51)

@˛Gˇn .�/ D �2hn

nX
jD1

®
M 00
j�1.ˇ/@˛aj�1.˛/

¯
Œ�j � hn¹aj�1.˛/ � aj�1º�; (52)

@ˇGˇn .�/ D

nX
jD1

°
@ˇM

00
j�1.ˇ/Œ�

˝2
j � � hn@ˇdj�1.ˇ/

±
� 2hn

nX
jD1

@ˇM
00
j�1.ˇ/Œ�j ; aj�1.˛/ � aj�1�

C h2n

nX
jD1

@ˇM
00
j�1.ˇ/

�
¹aj�1.˛/ � aj�1º

˝2
�
: (53)

We can prove the following lemma in a similar way to the proof of Lemma4.2.
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Lemma 4.7. For everyK > 0,

sup
n
E0

"
sup
�

ˇ̌̌̌
1

Tn
@k�Gn.�/

ˇ̌̌̌K#
< 1; k D 1; 2; 3:

Recall that the matrixG0
1.�0/ D diag¹G0˛

1.�0/;G
0ˇ
1.�0/º is given by (8) and (9).

Lemma 4.8. For everyK > 0,

sup
n2N

E0

"ˇ̌̌̌p
Tn

�
1

Tn
@�Gn.�0/ � G0

1.�0/

�ˇ̌̌̌K#
< 1:

Proof. First, concerning the off-diagonal parts we have

1

Tn
@ˇG˛n D

1
p
Tn

nX
jD1

1
p
Tn
@ˇM

0
j�1Œ�j � D O�

p

�
1

p
Tn

�
;

1

Tn
@˛Gˇn D �2

hn
p
Tn

nX
jD1

1
p
Tn
M 00
j�1

�
@˛aj�1; �j

�
D O�

p

�
hn

p
Tn

�
;

where the moment estimates for the martingale terms will be proved in an analogous way to the proof of Lemma
4.2. Next, we observe

1

Tn
@˛G˛n � G0˛

1 D
1

p
Tn

nX
jD1

1
p
Tn
@˛M

0
j�1Œ�j � �

1

n

nX
jD1

M 0
j�1@˛aj�1 � G0˛

1.�0/

D O�
p

�
1

p
Tn

�
C

1
p
Tn

8<:pTn
0@�

1

n

nX
jD1

M 0
j�1@˛aj�1 � G0˛

1.�0/

1A9=;
D O�

p

�
1

p
Tn

�
;

where we used Lemma4.3 for the last equality. It remains to look atT �1
n @ˇGˇn . Plugging in the identity

�j D mj C r 0
j C h2nRj�1 and making use of what we have seen in the first half of the proof of Lemma4.6, we

proceed as follows:

1

Tn
@ˇGˇn D

1

Tn

nX
jD1

�
@ˇM

00
j�1Œ.mj C r 0

j /
˝2� � hn@ˇdj�1

�
CO�

p .hn/

D
1

Tn

nX
jD1

�
@ˇM

00
j�1Œm

˝2
j � � hn@ˇdj�1

�
CO�

p

�p
hn

�
D

1
p
Tn

8<: nX
jD1

1
p
Tn

�
@ˇM

00
j�1Œm

˝2
j � �E

j�1
0

h
@ˇM

00
j�1Œm

˝2
j �

i�9=;
C

1

Tn

nX
jD1

�
E
j�1
0

h
@ˇM

00
j�1Œm

˝2
j �

i
� hn@ˇdj�1

�
CO�

p

�p
hn

�
D

1

Tn

nX
jD1

�
E
j�1
0

h
@ˇM

00
j�1Œm

˝2
j �

i
� hn@ˇdj�1

�
CO�

p

�
1

p
Tn

�
D
1

n

nX
jD1

h
trace

®�
�@ˇl

@ˇl0V
�1
j�1

�
Vj�1

¯
� @ˇl

@ˇl0 log jVj�1j

ipˇ

l;l 0D1
CO�

p

�
1

p
Tn

�
: (54)

The.l; l 0/th component of the first term in (54) tends in probability toZ �
trace

®
�@ˇl

@ˇl0V
�1V.x; ˇ0/

¯
� @ˇl

@ˇl0 log jV j.x; ˇ0/
�
�0.dx/
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D �

Z
trace

®�
V �1.@ˇl

V /V �1.@ˇl0V /
�
.x; ˇ0/

¯
�0.dx/;

which equals the.l; l 0/th component ofG0ˇ
1.�0/. Accordingly, a reduced version of Lemma4.3with‚ D ¹�0º

applies to conclude thatT �1
n @ˇGˇn .�0/ � G0ˇ

1.�0/ D O�
p .T

�1=2
n /. The proof is complete.

4.2 Proof of Corollary 2.8

Since N̨n WD
p
Tn. Ǫn � ˛0/ D Op.1/ and Ň

n WD
p
Tn. Ǒ

n � ˇ0/ D Op.1/, it is easy to see from Taylor

expansion thatOG0˛
n !p G0˛

1.�0/ and OG0ˇ
n !p G0ˇ

1.�0/. As for OV˛ˇ;n and OVˇˇ;n, we can substitute�j . Ǫn/ D

�j C
p
hn=nRj�1Œ N̨n� in their definitions and apply Taylor expansion as before to derive

OV˛ˇ;nŒv0
1; v

00
1 � D �

nX
jD1

1

Tn

®
V �1
j�1Œ@˛aj�1Œv

0
1�; �j �

¯ °
@ˇV

�1
j�1Œv

00
1 ; �

˝2
j �

±
COp

�
1

p
Tn

�
; (55)

OVˇˇ;nŒv00
1 ; v

00
2 � D

nX
jD1

1

Tn

�
@ˇV

�1
j�1 ˝ @ˇV

�1
j�1

�
Œv00
1 ; �

˝2
j ; v00

2 ; �
˝2
j �COp

�
1

p
Tn

�
: (56)

We only show thatOV˛ˇ;nŒv0
1; v

00
2 � !p V˛ˇ Œv0

1; v
00
1 �, for the case ofOVˇˇ;n is similar.

Write
Pn
jD1 �j for the first term in the right-hand side of (55). In view of the Lenglart domination prop-

erty for martingale
Pn
jD1.�j � E

j�1
0 Œ�j �/ (cf. Jacod and Shiryaev [12, I.3.30]), it suffices to show thatPn

jD1E
j�1
0 Œ�j � !p V˛ˇ Œv0

1; v
00
1 � and

Pn
jD1E0Œ�

2
j � ! 0. But the former can be similarly derived as in

what we have seen in the proof of Lemma4.6. Likewise, noting thatEj�1
0 Œj�j jq� � hnRj�1 for everyq � 2,

we get
Pn
jD1E0Œ�

2
j � . T �1

n ! 0, whenceOV˛ˇ;nŒv0
1; v

00
1 � !p V˛ˇ Œv0

1; v
00
1 �.

5 Appendix: A criterion for the exponential ergodicity in dimension
one

Here we setd D r 0 D r 00 D 1, and suppress dependence on the parameter from the notation:

dXt D a.Xt /dt C b.Xt /dwt C c.Xt�/dJt : (57)

We introduce the following set of conditions.

E1. .a; b; c/ is of classC1.R/ and globally Lipschitz, and.b; c/ is bounded.

E2. Either one of the following conditions holds true:

(i) b.x0/ ¤ 0 for somex0, and there exists a constant� > 0 such that�.��; 0/^ �.0; �/ > 0 for every
� 2 .0; �/;

(ii) b � 0, c.x00/ ¤ 0 for everyx00, and we have the decomposition

� D �? C �\

for two Lévy measures�? and�\, where the restriction of�? to some open set of the form.��; 0/[

.0; �/ admits a continuously differentiable positive densityg?.

E3. (i) EŒJ1� D 0 and
R

jzj>1 jzjq�.dz/ < 1 for someq � 1, and

lim sup
jxj!1

a.x/

x
< 0:

(ii) EŒJ1� D 0 and
R

jzj>1 exp.qjzj/�.dz/ < 1 for someq > 0, and

lim sup
jxj!1

sgn.x/a.x/ < 0:
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The next proposition gives a pretty simple criterion for Assumption2.3.

Proposition 5.1. The following holds true.

(a) Suppose E1, E2, and E3(i). Then, there exist a probability measure� and a constanta > 0 such that (3)
and (4) hold true for aC2-functiong such thatg.x/ D 1C jxjq outside a neighborhood of the origin.

(b) Suppose E1, E2, and E3(ii). Then, there exist a probability measure� and constantsa; � > 0 such that
(3) and (4) hold true for aC2-functiong such thatg.x/ D 1C exp.�jxj/ outside a neighborhood of the
origin.

Proof. The Lipschitz continuity implies that the SDE (57) admits a unique strong solution. We consider the
following conditions:

(I) Every compact sets are petite for some skeleton chain ofX (that is, the Markov chain.Xj�/j2ZC
);

(II) The exponential Lyapunov-drift criterion (to be fulfilled for some')

A' � �c' C d; (58)

whereA denotes the extended generator ofX , the function' W R ! RC belonging to the domain ofA
satisfies that limjxj!1 '.x/ D 1, andc; d > 0 are constants.

As in the proof of Masuda [25, The proof of Theorem 2.2], in each of (a) and (b) the exponential ergodicity (3)
follows from (I) and (II), and the moment bound (4) from (II). In order to prove (I), we will here first verify
the Local Doeblin (LD) condition(see Kulik [16, Appendix A.1] for details); we note that the LD condition
implies (I) for any� > 0. Then, we will derive the drift condition (58) in (II) with different choices of' under
E3(i) and E3(ii).

Verification of (I): the LD condition.
First, we verify the LD condition when E2(i) is in force. Let…x.A/ WD �.¹z 2 R W c.x/z 2 Aº/. By Kulik

[16, Proposition A.2 and Proposition 4.7]), it suffices to verify the following condition:

8x 2 R 8v 2 ¹�1; 1º 9� 2 .0; 1/ 8ı > 0 W …x .¹y 2 R W yv � �jyjº \ ¹y 2 R W jyj � ıº/ > 0:

Simple manipulation shows that this conditions is equivalent to the following: for everyx 2 R andı > 0 we
have� .¹z 2 R W 0 � c.x/z � ıº/ ^ � .¹z 2 R W �ı � c.x/z � 0º/ > 0. Since�.R/ > 0, it suffices to look at
x such thatc.x/ ¤ 0. However, for suchx, the condition obviously holds true under E2(i).

Next we verify the LD condition under E2(ii). Ifc is constant, then we can apply Kulik [16, Proposition
0.1] to verify the LD condition. Hence we suppose that@xc 6� 0 in what follows. First, we smoothly truncate
the support of�? as follows: pick any� 2 .0; �/, let W R ! Œ0; 1� be given by1

 .z/ WD

²
exp

®
�.z � �/�1 � .� � z/�1

¯
.� < z < �/;

0 .otherwise/;

and set
�1.dz/ WD ¹ .z/C  .�z/ºg?.z/dz:

Then we have the decomposition� D �1C�2, where�2.dz/ WD Œ1�¹ .z/C .�z/º��?.dz/C�\.dz/ defines
a Lévy measure. The functionz 7! ¹ .z/C .�z/ºg?.z/ is smooth and supported byŒ��;���[ Œ�; ��. With
this truncation, we can apply Kulik [16, Proposition A.1]: we have already verified Kulik’s conditionS in the
previous paragraph, and it suffices to prove that

9x00
2 R 9t 00 > 0 W Px00

�
OSt 00 D R

�
> 0;

where OSt WD
®
uE t�c.X��/I u 2 R; � 2 D1 \ .0; t/

¯
, with D1 and.E ts /0�s�t respectively denoting the domain

of the point processN1 associated with�1 and the right-continuous solution to

E ts D 1C

Z t

s

@xa.Xu/Eus duC

Z t

s

@xc.Xu�/Eu�
s dJu:

1The author owes Professor A. M. Kulik for this clear-cut choice of .
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The stochastic-exponential formula leads to

E ts D exp.Yt � Ys/
Y
s<u�t

.1C�Yu/exp.��Yu/; s � t;

whereYu WD
R u
0 @xa.Xv/dv C

R u
0 @xc.Xv�/dJv. We now introduce the two auxiliary sets:

A0.t/ WD ¹! 2 � W D1 \ .0; t/ ¤ ;º;

A00.t/ WD
®
! 2 � W �

�
.0; t �; ¹z 2 RI jzj � 1=k@xck1º

�
D 0

¯
;

where�.dt; dz/ denotes the Poisson random measure associated withJ . According to the implications®
j�Juj < k@xck

�1
1 ; u 2 .0; t �

¯
� ¹j@xc.Xu�/�Juj < 1; u 2 .0; t �º

D ¹j�Yuj < 1; u 2 .0; t �º

�
®
E ts ¤ 0; s 2 Œ0; t �

¯
;

the process.jE ts j/0�s�t stays positive a.s. onA00.t/. SinceP ŒA0.t/ \ A00.t/� > 0 for every t > 0 andc is
supposed to be non-vanishing onR, we observe that for everyx 2 R andt > 0,

Px Œ OSt D R� � Px

h
¹ OSt D Rº \ A0.t/ \ A00.t/

i
� Px

�
¹E tsc.Xs�/ ¤ 0 for somes 2 .0; t/º \ A0.t/ \ A00.t/

�
D Px

�
¹c.Xs�/ ¤ 0 for somes 2 .0; t/º \ A0.t/ \ A00.t/

�
D Px

�
A0.t/ \ A00.t/

�
> 0;

whence we have verified the LD condition.

Verification of (II): the drift condition.
Now we turn to the verification of (58). For verification under E3(i), one can refer to Kulik [16] and Masuda

[25, 26]; in this case, we may set'.x/ D jxjq outside a sufficiently large neighborhood of the origin. It remains
to prove (58) under E3(ii), and we will achieve this in a somewhat similar manner to the proof of Masuda [26,
Theorem 1.2].

Fix any� 2 .0; qkck�1
1 ^ 1/ and pick a' 2 C2.R/ such that the following three conditions are in force: (i)

'.x/ D exp.�jxj/ for jxj � ��1; (ii) '.x/ � exp.�jxj/ for everyx; and (iii) j@2x'.x/j � C�2'.x/ for everyx.
We can writeA' D G' C J ', where

G'.x/ WD @x'.x/a.x/C
1

2
@2x'.x/b

2.x/;

J '.x/ WD

Z
¹'.x C c.x/z/ � '.x/ � @x'.x/c.x/zº �.dz/

According to the local boundedness ofx 7! A'.x/, we may and do concentrate onx with jxj large enough.
Direct algebra gives

G'.x/ � �'.x/ ¹sgn.x/a.x/C C�º : (59)

Also, by means of Taylor’s theorem and the property of',

jJ '.x/j . jc.x/j2
Z

jzj2

 
sup
0�s�1

ˇ̌
@2x'.x C sc.x/z/

ˇ̌!
�.dz/

. �2 exp.�jxj/

Z
jzj2 exp.�kck1jzj/ �.dz/

. �2'.x/: (60)

By putting (59) and (60) together and by taking� small enough, we can find a constantc0 > 0 for which
A'.x/ � �c0'.x/ for everyjxj large enough. The proof of Proposition5.1 is complete.

Remark 5.2. If the condition on� in E2(i) fails to hold, thenJ is necessarily a compound-Poisson process. In
this case, we can utilize the criteria given in Masuda [26].
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Remark 5.3. Comparing E3(ii) with E3(i), we may say that (58) follows from a weaker condition on the drift
functiona in compensation for a stronger moment condition on�.

Remark 5.4. By combining the results of the LD-condition argument and general stability theory for Markov
processes, it is possible to formulate subexponential- and polynomial-ergodicity versions, as well as the ergod-
icity version (without rate specification): see e.g. Meyn and Tweedie [29] and Fort and Roberts [6]. Especially,
as in Masuda [26], the conditions on.a; b; c/ in Proposition5.1 can be considerably relaxed in case of the
ergodicity version.
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