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Abstract

This paper investigates the Gaussian quasi-likelihood estimation of an exponentially ergodic multidimen-
sional Markov process, which is expressed as a solution to a Lévy driven stochastic differential equations
whose coefficients are supposed to be known except for the finite-dimensional parameters to be estimated.
We suppose that the process is observed under the condition for the rapidly increasing experimental design.
By means of the polynomial type large deviation inequality, the mighty convergence of the corresponding
statistical random fields is derived, which especially leads to the asymptotic normality atrajefor all
the target parameters, and also to the convergence of their moments. In our results, the diffusion coefficient
may be degenerate, or even null. Although the resulting estimator is not asymptotically efficient in the pres-
ence of jumps, we do not require any specific form of the driving Lévy measure, rendering that the proposed
estimation procedure is practical and somewhat robust to underlying model specification.

Keywords. Exponential ergodicity, Gaussian quasi-likelihood estimation, high-frequency sampling, Lévy
driven stochastic differential equation, polynomial type large deviation inequality.
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1 Introduction
Let X = (X,):er, be a solution to the Stochastic Differential Equation (SDE)

dX; = a(Xy,@)dt + b(X;, B)dw; + ¢(X;—, B)dJ;, 1)
where the ingredients involved are as follows.

e The unknown finite-dimensional unknown parameter
0 =(a,f) €Oy xBg =: 0,

where, for simplicity, the parameter spaceg C RP* and®g C R?# are supposed to be bounded
convex domains; the parametefresp. ) affects local trend (resp. local dispersion).

e An r’-dimensional standard Wiener processnd anr”-dimensional centered pure-jump Lévy process
J, whose Lévy measure is denotediby

e The initial variableX, independent ofw, J), with  := L£(X,) possibly depending ofi.

e The measurable functions: R x®, — RY,h : R x0p — R?@R", andc : RY x@5 — R?QR"",
all of which are known except fdt.

*This version: February 10, 2012



Incorporation of the jump part extends a continuous-path diffusion parametric model, which are nowadays
widely used in many application fields. We denoteRyythe image measure of a solution proc&sassociated

with 6 € ® C R?, wherep := p, + pg. Suppose that the true paramefigr= (c, fo) € © does exist,

with Py denoting the shorthand for the true image meagiyg and thatX is not completely (continuously)
observed but only discretely at high frequency under the condition for the rapidly increasing experimental
design: we are given a samyl&,,, X;,...., X;,), wheret; = t_;’ = jh, for someh, > 0 such that

T, :=nh, - oo and nhﬁ -0 (2)

for n — oo. The main objective of this paper is to estiméteunder the exponential ergodicity &f; the
equidistant sampling assumption can be weaken to some extent as long as the long-term and high-frequency
framework is concerned, however, it is just a technical extension just making the presentation notationally
messy, hence we do not deal with it here to make the presentation clearer. It is common knowledge that the
maximum likelihood estimation is generally infeasible since the transition probability is most often unavailable
in a closed form. This implies that the conventional statistical analyses based on the genuine likelihood have no
utility. For this reason, we have to resort to some other feasible estimation procedure, which could be a lot of
things. Among several possibilities, we are concerned here witBdlussian Quasi Likelihood (GQE)nction
defined as if the conditional distributions &f; givenX,, | are Gaussian with approximate but explicit mean
vector and covariance matrix; sei) below.

The terminology “Quasi Likelihood” has originated as the pioneering work Wedderbtjritie concept of
which formed a basis of generalized linear regression. The GQL based estimation has been known to have the
advantage of computational simplicity and robustness for misspecification of the noise distribution, and well-
established as a fundamental tool in estimating possibly non-Gaussian and dependent statistical models. Just to
be a little more precise, consider a time-selfes . ., Y, in R with a fixedY,, and denote by:;_; () € R and
vj—1(8) > 0 the conditional mean and conditional varianc&’pfiven(Yy, ..., Y;—1), where is an unknown
parameter of interest. Then, tBaussian Quasi Maximum Likelihood Estimator (GQMIsEdefined to be a
maximizer of the function

- 1 ; —m_/—1(9))2)
0 log{ —— | 1.
'_)j; Og{ V2mv;—1(0) eXp( 2v;-1(0) }

Namely, we compute the likelihood ¢f1, Y>. ..., Y,) as if the conditional law o¥; given(Yy,...,Y;_1)is
Gaussian with meam;_;(f) and variancev;_;(8), so that only the structures of the conditional mean and
variance do matter. Although it is not asymptotically efficient in general, it can serve as a widely applicable
estimation procedure. One can consult Heydédr an extensive and systematic account of statistical inference
based on the GQL. The GQL has been a quite popular tool for (semi)parametric estimation, and especially there
exist vast amounts of literatures concerning asymptotics of the GQL for time series models with possibly non-
Gaussian error sequence; among others, we refer to Straumann and Mikdsidn & class of conditionally
heteroscedastic time series models, and Bardet and Wintenbl}der nultidimensional causal time series,

as well as the references therein.

Let us return to our framework. On the one hand, for the diffusion case (whexe0), the the GQL-
estimation issue has been solved under some regularity conditions. Especially, the GQL leads to an asymptoti-
cally efficient estimator, where the crucial point is that the optimal rates of convergence for estimatidg
are different and given by/7,, and./n, respectively; see Gobet][for the local asymptotic normality of the
corresponding statistical experiments. For how to construct an explicit contrast function, we refer to Yoshida
[40] and Kessler 5] as well as the references therein; specifically, they employed a discretized version of the
continuous-observation likelihood process, or a higher-order local-Gauss approximation of the transition den-
sity, respectively. Sgrenser] includes an extensive bibliography of many existing results including explicit
martingale estimating functions for discretely observed diffusions (not necessarily at high frequency). On the
other hand, the issue has not been addressed enough in the presence of jumps (possibly of infinite variation).
The question we should then ask is what will occur when one adopts the GQL function. In this paper, we will
provide sufficient conditions under which the GQL random field associated with our statistical experiments
converges in a mighty mode. We will apply Yoshidal] to derive the mighty convergence with the limit
being shifted Gaussian. As results, we will obtain: an asymptotically normally distributed estimator at rate



/T, for botha andp; and also, very importantly, the convergence of their moments to the corresponding ones
of the limit centered Gaussian distribution. Different from the diffusion case, the GQL does not lead to an
asymptotically efficient estimator in the presence of jumps, and is not even rate-efficigntNmvertheless,

as mentioned before, it has at least two practically important advantages: first, the computation of estimates is
straightforward; second, the estimation procedure is robust to modelling Lévy measure, which we actually do
not need to specify.

We should mention that the convergence of moments especially serves as a fundamental tool when analyz-
ing asymptotic behavior of the expectations of statistics depending on the estimator; for example, asymptotic
bias and mean squared prediction error, model-selection devices (information criteria), remainder estimation
in higher-order inference. In the past, several authors have investigated such a strong mode of convergence
of estimators: see Bhansali and PapangeljuChan and Ing §], Findley and Wei §], Inagaki and Ogata
[11], Jeganathanl]3, 14], Ogata and Inagaki3[], Sieders and Dzhaparidzed], and Uchida {¢], as well as
Ibragimov and Has'minskill(], Kutoyants [L9, 20], and Yoshida{1]. See also the recent paper Uchida and
Yoshida [37] for an adaptive parametric estimation of diffusions with moment convergence of estimators under
the sampling designiX — 0 for arbitrary integek > 2.

The rest of this paper is organized as follows. Secigmroduces our GQL random field and presents its
asymptotic behavior, together with a small numerical example for observing finite-sample performance of the
GQMLE. Section3 provides a somewhat general result concerning the mighty convergence, based on which
we prove our main result in Sectigh In Section5, we prove a fairly simple criterion for the exponential
ergodicity assumption in dimension one, only in terms of the coeffi¢ierit, ¢) and the Lévy measungdz).

Throughout this paper, asymptotics are takervifer oo unless otherwise mentioned, and the following
notation is used.

e [, denotes the x r-identity matrix.

e Given a multilinear formM = {M@1i2-ik) + jp = 1,... . di:k =1,....K} e RY ® --- ® R and
variablesu; = {ul(cl)}ifdk e R%  we write

d dg
Mluy,... ug] = Z Z M(iliz"'iK)u(I”)...u%’().

i1=1 ix=1

The correspondences of indices &f and u; will be clear from each context. Some nf may be
missing in “M[u4,...,uk]|”, so that the resulting form again defines a multilinear form; for exam-
ple, Mus,...,ug] € R4 @ R%2. WhenK < 2, identifying M as a vector or matrix, we write:
M®2 = MM T with T denoting the transpose; furthermof&(| denotes either, depending on the con-
text, detM) whend; = d,, or any matrix norm of\f.

e 97 stands for the bundledth partial differential operator with respectdo= {a D},

e C denotes generic positive constant possibly varying from line to line, and wexyrigey, if x, < Cy,
a.s. for every: large enough.

2 Gaussian quasi-likelihood estimation

We denote by, 7, F = (F;):cr,.. P) be a complete filtered probability space on which the pro&egs/en
by (1) is defined: the initial variabl&y being.Fo-measurable, andv, J) is F-adapted.

2.1 Assumptions

Here we list up our assumptions. We will give remarks on some of them in Secfion

Assumption 2.1(Moments) E[J;] = 0, E[J®?] = I,»,andE[|J,]%] < oo for all ¢ > 0.



We introduce the functio’ : RY x ©5 — R? @ R? by
V =b%®2 + %2

For each¥, the functionx — V(x, B) can be viewed as an approximate local covariance matrix of the law of
hy /2 (X, — x) underPy[| Xo = x].

Assumption 2.2(Smoothness) (a) The coefficien{a, b, ¢) admits partial derivatives jointly continuous in
x and@, such that

sup  {[dxa(x,a)| + [dxb(x, B)| + [dxc(x, B)[} < oo,
(x,0)€ERY xO

and that, for eacht € {0, 1,2} and!/ € {0, 1, ..., 5} there exists a constadt(k, /) > 0 for which

sup  (1+ [x)C®D {jokala(x. )| + 050D (x. B)| + 135 de(x. B} < oo,
(x,0)eRY xO

(b) V(x, B) is invertible for eachx, §), and there exists a consta@i}’) > 0 such that

sup (14 [xD~PV1(x, )| < 0.
(x,0)eR9 x®

When we consider large-time asymptotics, the stability property afuch affects the statistical analyses
in essential ways. A typical situation to be considered iskha ergodic. We here impose the stronger stability
condition. LetP;(x, dy) denote the transition probabilifo[X; € dy|Xo = x], and|m|, := sup i<, Im(f)I
for a signed measure on thed -dimensional Borel space.

Assumption 2.3(Stability). For anyg > 2, the following conditions hold true fgr(x) := 1 + |x|?:

(a) There exists a probability measutg and a constant > 0 such that

sup e[| Py(x.) = mo()lg S g(x). x eR. ®3)
tG]R+
(b)
sup Ep [g(X,)] < co. 4)
teER

The condition 8) with g, being replaced by the constanis theexponential ergodicitywhich in particular
entails the ergodic theorem: the limig is a unique invariant distribution such that, for evefiye L (o)

1 Tn

= | rende > [ peoma, ©
nJo

where—? stands for the convergence in probability. We also note that Assunipti@ntails theexponential
absolute regularityalso referred to as thexponential3-mixing property This means thafy (r) = O(e~%?)
ast — oo for somea > 0, wherefy denotes thg-mixing coefficient

Bx (1) := sup [ [[Pr(x.*) = nPs+:()InPs(dx),
S€R+
wherenP; := L(X;) and|m| := |m|;. Let us recall that the exponential absolute regularity implies the

exponential strong-mixing propertyhich plays an essential role in Yoshidal] Lemma 4], which we will
apply in the proof of Theorer&.7.

Several sufficient conditions for Assumpti@rB are known; for diffusion processes, see the references of
Masuda P5, 26] for some details. In the presence of the jump component, verificatia?) o become much
more involved. Especially if the coefficients are nonlinear and the Lévy protéssf infinite variation, the
verification may be far from being a trivial matter. We refer to Kulils[ 17], Maruyama and Tanak& 1],



Menaldi and Robing], Meyn and TweedieZ{9], and Wang £ as well as Masuda’p, 26] for some general

results concerning the exponential ergodicity. For the sake of convenience, focusing on the univariate case
and setting ease of verification above generality, we will provide in Propositibaufficient conditions for
Assumption2.3, in a form enabling us to deal with cases of nonlinear coefficients and infinite-variatieee

also Remarlb.4.

DefineGoo (8) = (G (8), G2, ()) € R by
G, (6) = / Bua(r.a) [V (x. B) [a(x. o) — alx. a)]] o(dx). ®)
GL,(6) = [ (V1 @5V (. B)) [V (x. Bo) — V(x. B)] o(d). @

(In (7), we regarded ¥ ~1(3g V)V ~!(x, B)" as a bilinear form with dimensions of indices beipg andd?.)
Further, letG/, (6p) := diag{G'% (6). G;‘Z(OO)} € R? ® R?, where, for eaclv], v5 € RP~ andvf,vj € R?8,

G (Bo)[vy, v3] = —/ V= (x, Bo) [Baa(x, ct0)[v]], Bea (x, ct0) [v5]] 7o (dx). 8
Gg‘i(@o)[v/{,v’z’ = —/trace{V‘l(aﬂ V)V (9 V)(x, Bo)[vy. v51} mo(dx). 9)
Assumption 2.4 (ldentifiability). There exist positive constanjg, = x«(6o) and yg = xg(6o) such that
GL(0)]? = xalo — aof? and|Gh (B)? = 2418 — Bol? for everyd € ©.
Assumption 2.5(Nondegeneracy)BothG/2 (6y) and Gﬁfg (6o) are invertible.

Assumptions2.4and2.5 are quite typical in statistical estimation. As seen in Lenthtebelow, the both
assumptions are implied by a kind of uniform nonsingularity. Define two bilinear fot(@s, «”, 8’) and

B(B’, B") by, just like @) and ©),
Ao 5] = [ V70 B [Baa e, 0)bi] Bua e, )uh]] o ().
B8 B)lvf. 4] = [ wace{(V @)V )k, B035 V (x. B 041} o).

Lemma 2.6. Suppose thati (o', «”, /) and B(B’, ) are nonsingular uniformly i, o” € ®, andp’, " €
©g. Then, both Assumptio2s4 and2.5hold true.

Proof. It is obvious that Assumptiof.5 follows. The mean-value theorem applied & and (/) leads to
G%(0) = A(a, @, B)[ao — «] for somea lying the segment connecting and p, with a similar form for
Ggo(,B); recall that®, and ®g are presupposed to be convex. Since/ig g/ |A(a/,a”,ﬂ/)|| > 0 and
infg: g ||B(B'. B")| > 0 under the assumption, the matricé$> and B®2 are uniformly positive definite,
whence Assumptiof.4 follows. O

2.2 Main result

In what follows, we write
AjY =Yy, - Yy,

for any procesy’, and
f}—l(a) = f(thflva)

for a variablez in some setd and a measurable functioghonR? x A. The Euler approximation for SDEY
is formally
th ~ X,jil +aj_1()h, + bj_l (,B)Ajw + Cj_l(,B)AjJ

under Py, which leads us to consider the local-Gauss distribution approximation

‘C(le|th71) ~ Nd (Xl‘j,I +aj—l(a)hnvhn‘/j—1(ﬁ)) . (10)

5



Put
)(j(Ol) = AjX —hnaj_l(a).

Based on10), we define our GQL by

n

Q.6 == 3 flog V1Bl + 17 ) [y @]} (11)

j=1
and the corresponding GQMLE by any element
6, = (o},,,ﬁ,,) € argmaxQ, (9),

fe®—
where®~ denotes the closure 6f.
Under Assumptior2.1 we have [ z®:Dv(dz) = §; for k,I € {1,...,r"}. We need some further
notation in this direction. Fan, ..., i, € {1,...,r"} with m > 3, we writev(m) for themth mixed moments

of v:

11 5eees im

0 = (3 i 1= | [ 2002000
Letc®(x, B) € R denote theth column ofc(x, B). We introduce the matrix

G%(6y) V
Voo = ( 7 v )
[

where, for each’ € R?« andvf, v) € R?8,

(12)

Vaplv' vl = — f > vk GV, o) [daa, @) ] e . Bo) |

ks
gV (x, B)) o, ¢V (x, o), ¢V (x, Bo)lo(d),
Vg vy, vyl := f D7 v @) {95V 0 Bo)[v] <0 x. o). e Bo)l|

s,t,s’,t/
{28V (. Bo) 05 ¢ (x. Bo). € x. Bo)]f o (d).

Finally, put
s _ [ ©2)7'00) (G Vap(GL) ™ (B0)
’ sym  (GE)WVgpGL) N (B) )
Now we can state our main result, the proof of which is deferred to Settion

Theorem 2.7. Suppose the conditiors], 2.2, 2.3, 2.4, and2.5. Then we have

Eo [f (\/T_,,(é,, - 90))] - / ) u:0, o) du, n — oo,

for every continuous functiofi : R? — R of at most polynomial growth.

We immediately see that, andBn are asymptotically independentiif3) = 0, implying thata, and,@n
may not be asymptotically independentifs skewed. Ifc = 0 so thatX is a diffusion, then/(4) = 0, so that
Vgg =0and «/T,,(,B} — Bo) is asymptotically degenerate@tThis is in accordance with the case of diffusion,
where the GQMLE of3 is 4/n-consistent.

In order to construct confidence regions figras well as to perform statistical tests, we need a consistent
estimator of the asymptotic covariance matky. Although X, contains unknown third and fourth mixed
moments ob, It turns out to be possible to provide a consistent estimat&pafithout any specific knowledge
of v other than Assumptiof.1. Let

s _ @O G Vapa G
n — 21BN —1 A —
sym  (GF) g (G



where, for each, v, € RP* andv/, v] € RP5,

A 1 <& n
G vgl 1= =~ > Vi (B [t 1 (@) (V1] daaj—1 (@) [VH]] .
j=1

. 1 <& _ 3 .
G v5] = — > trace{ (V2 (95 V-1 V2 98 Vi-0) (Bl v}
j=1
n
N 1 _ _ N R A ~
Vap v} v]] o= =3 (Vi 9pVih) (B Daaj—1 @n)[V1]. 27 @n). V5. 1 (Gn) 2],
j=1°"

n
A 1 _ _ N R R
Vepnlvi,v5] =) = (98 VitiogVith) (Bolvy. 2 @n)®2. v3. 2 (6n) ®2).
j=1°"

Corollary 2.8. Under the conditions of Theoret?, we haves, —? %, so that the weak convergence

2T, (6, — 60) —© Nypy(0.1,)

holds true.

The proof of Corollarny?.8is given in Sectior.2.

2.3

1.

Remarks

The revealed convergence rajé;, of the GQMLE ﬁn alerts someone to take precautions against the
presence of jumps. For instance, suppose that one has adopted the parametric diffusion motlel (i.e. (
with ¢ = 0) although there actually does exist a nonnull jump part. Then, he/sheyakfs the conver-

gence rate of},,, although the true one ig'T,,, which may lead to a seriously inappropriate confidence
zone. This point can be sufficient grounds for importance of testing the presence of jumps. In case of
one-dimensionak’, Masuda P 7, Section 4] constructed an analogue to Jarque-Bera normality test and
studied its asymptotic behavior. We will report a multivariate extension of the result in a subsequent
paper.

. Here are some remarks concerning the stability condition. The exponential mixing property can be

drastically relaxed if we are only interested in the asymptotic normaliéﬁ ofhen, the mere ergodicity

(i.e. | Ps(x,-)—mo(-)|| = Oast — oo for everyx, without knowledge of its decreasing rate) suffices, and
we could exactly proceed as in Masuda,[Theorem 3.4]. Although the paper just cited dealt with one-
dimensionalX, a multivariate extension in deducing the asymptotic normality would be straightforward.
See Masudal/, p.115] for some discussion concerning a relation between the uniform (in time) moment
estimates and the boundedness of the coefficients. See also Rerark

. Our identifiability condition Assumptio.4 can be stringent; for example, it excludes the case where

b(x,B) = B’ andc(x,B) = B”, so that there exist infinitely many = (8’, 8”) such thatV(x, 8) —

V(x, Bo) = 0 for everyx. However, this is unavoidable as our contrast funclifhnis constructed solely
based on fitting local conditional mean and covariance matrix. Roughly speaking, in order to estimate
both parameters separately contained sndc, we need “distinct” nonlinearities in for b(x, ) and

¢(x, B) to fulfil Assumption2.4.

. Although we are considering “ergodicX, it is obvious that we can target Lévy processes as well,

according to the built-in independence of the incrementsX); <.

. A general form of the martingale estimating functions is

n
0> 3 Wi (0) {g(Xe, . X1y:0) — E) M [g(Xiy, X1, 0)])
j=1

for someW € R? ® R™ andR™-valued functiong onR? x R4 x ©. We would have a wide choice of
W andg. When the conditional expectations involved do not admit closed forms, then the leading-term



approximation of them via the It6-Taylor expansion can be used. In view of this, as in Kesgleit [
would be formally possible to relax the conditioh? — 0 in (2) by gaining the order of the Ito-Taylor
expansions of the conditional mean and conditional covariance:

EolXy|Fiy ] = Xty + aj-1(@hn + -+,
Vo Xy | Fi; 1= Viea(B)hn + -+,

which we have implicitly used up to thie,-order terms to buildQ,, of (11). However, we then need
specific moment structures of which appear in the higher orders of the above Itd6-Taylor expansion.
Moreover, we should note that the convergence (41§ can be never improved for bothand8 even

if Eq[X:; |F¢,_ ] andVp[X,; |Fy;_,] have closed forms, such as the case of linear drifts, so that the rate
of b, — 0 may not matter as long &5, — oo.

2.4 A numerical example
For simulation purpose, we consider the following concrete model:

—aX
dX, = ——=Cdi + JBdJ,. Xo =0, (13)

V14 X/
where the true value i6xg, o) = (1, 1), the driving process is the normal inverse Gaussian Lévy process
such thatC(J;) = NIG(8,0,8t,0), 8§ > 0. It holds thatE[J,] = 0, E[J?] = ¢, andL(J;) — N(0, 1) in
total variation a$ — oo, and thatv(3) = 0 andv(4) = 3/§2. The model {3) is a normal-inverse Gaussian
counterpart to the hyperbolic diffusion, for whiohis replaced by a standard Wiener process. ForXhisie
can verify all the assumptions.

We simulatedl 000 independent paths by Euler scheme with sufficiently fine stepsize to olt@nin-
dependent estimatés = (&, &), and then computed their empirical mean and standard deviations. Table
1 reports the results; just for comparison, we included the case of diffusion, Whée standard Wiener
process. From the table, we can observe the following:

e The performance af, are rather similar for all the three cases;

e The performance qd?n gets better for largef, which can be expected from the fact that the asymptotic
variance off,, is a constant multiple of (4) = 3§~2.

T, hy Diffusion s=1 5§ =10
o p o B o B

10 0.05 1.158 0.964 1.149 0.982 1.179 0.965
(0.629) (0.100) (0.621) (0.576) (0.645) (0.113)
0.01 1.193 0.993 1.172 0.968 1.210 0.993
(0.673) (0.044) (0.635) (0.476) (0.658) (0.069)
100 0.05 0.999 0.970 0.997 0.976 0.996 0.971
(0.184) (0.031) (0.188) (0.174) (0.177) (0.035)

0.01 1.018 0.994 1017 0996 1.017 0.994
(0.184) (0.014) (0.189) (0.174) (0.181) (0.022)

Table 1:Finite sample performance 64 concerning the modelL@); just for comparison, the case of diffusion
is also included.

3 Mighty convergence of a class of continuous random fields

In this section, we will prove a fundamental result concerning the “single-norming” mighty convergence of
a continuous statistical random fields associated with general vector-valued estimating functions; here, the



“single-norming” means that the rates of convergence are the same for all the arguments of the corresponding
estimator. Theorer.5below will serve as a fundamental tool in the proof of Theogeim The content of this
section can be read independently of the main body of this paper.

To proceed, we need some notation. Denotgy, A,, (Pg)oco }nen Underlying statistical experiments,
where® C RP” is a bounded convex domain. Lé§ € ©, and write Py = Py,. LetG, = (Gj,n)j;l :
X, x® — RP be vector-valued random functions; as usual, we will simply wizit¢6), dropping the argument
of X,,. Our target “contrast” function is

Mo (6) 1=~ [Ga(O) . (14)

where(7},) is a nonrandom positive real sequence such That> oco. The correspondingM -estimator” is
defined to be any measurable mappihg X, — ©~ such that
én € argmaxM, (9).
fe®—
Due to the compactness & and the continuity oM, imposed later on, we can always find such,aThe

estimated,, can be any root ofs,, () = 0 as soon as it exists.
SetU, (6) := {u € R? : 6 + T, /*u € ®} and define random fields, : U, (6y) — (0, c0) by

Zn(u) = Zn(u; 0o) := exp{M, (6o + T, "/?u) — M, (6o)}. (15)

Obviously, it holds that

VT (6, — o) € argmaxz, (6).
fe®—

We consider the following two conditions for the random fielis

Up .

e (Polynomial type Large Deviation Inequality (PLDFpr everyM > 0, we have

sup{rM supPo[ sup Zy (u) > e_’:|} < 0. (16)

r>0 neN lul>r

¢ (Weak convergence on compact s@isgre exists a random fielty (-) = Zo(-; o) such thatz,, —* Z,
in C(B~(R)) for eachR > 0, whereB~(R) := {u € R?;|u| > R}.

Under these conditions, the mode of convergen, @) is mighty enough to deduce that the maximum-point
sequencetii, ), is L9(Py)-bounded for every > 0, which especially implies thati, ), is tight: indeed, if
(16) is in force,

1
SupPol|tiy| > r] < supPO[ Sup Z, (u) > Zn(O)} = supPo[ sup Zy, (u) > 1} S or
.

neN neN lu|>r neN |lu|>r

for everyr > 0, so that

o0 o0
SUPEo||iin|?] =/ supPolliis| > s"9ds <1 +/ sTMagds < oo.
neN 0 neN 1
If u — Zo(u) is a.s. maximized at a unique poif,, then it follows from the tightness dfi,),en that
i, =% lie; let us remind that the weak convergence on any compact set alone is not enough to deduce the
weak convergence df,, sinceU,(0y) 1 R? and we have no guarantee tliat,) is tight. Moreover, owing to
the PLDI, the moment of (iz,) converges to that of (i1..) for every continuous functiof onR? of at most
polynomial growth. In our framework, 10§, admits a quadratic structure with a normally distributed linear
term and a nonrandom positive definite quadratic term, saitlas asymptotically normally distributed.

We now introduce regularity conditions.

Assumption 3.1(Smoothness)The function® +— G, (0) are continuously extended to the boundaryeof
and belong ta??(®), Py-a.s.



Assumption 3.2(Bounded moments)For everyK > 0,

K 3
i| + ) SUpE, [sup

kzoneN 0O

1
— kG (0)

SUpE
PLo T,

1
.

K
< oQ.

Assumption 3.3(Limits). (a) There exist a honrandom functidh,, : ® — R? and positive constants
x = x(6p) and e such that: G (6p) = 0; sup [Geo(9)| < 00; |Geo(P)|?> > x]6 — 6o|? for every
0 € ®; and

Let M > 0 be a given constant.

1 M+e
JTn (FGn(e) - GM@))] } < 0.

SUpEy | sup
neN 0ec®

(b) There exists a nonrandof,,(6y) € R” ® R? of rank p such that

M
SupEq U/T_ (7-20Gn60) - Giuten)) } <.

neN

Assumption 3.4 (Weak convergence)Tn_l/zG,, (6o) —* N,(0,V(bp)) for some positive definit&¥(6y)
R? @ R?.

Let Z(6p) := (Gl) 'V(GL) 1T (6p), and denote by (u;0, =(6y)) the centered Gaussian density with
covariance matrix (6p). The main claim of this section is the following.

Theorem 3.5. LetM > 0.
(a) Suppose that Assumptiodd, 3.2, and3.3. Then the PLDI 16) holds true.

(b) If AssumptiorB8.4is additionally met, then

Eolf(in)] — / £ (430, 5(60)) du

for every continuous functioff : R? — R satisfying thatim sup,,|_, [#|77| f(u)| < oo for some
qe0,M).

Proof. Applying Taylor expansion tol(5), we get
1
109 Z () = An(O0)[u] — ST (O0)[ut, u] + & (). (17)
whereA, (6o) := T, />39M(6o), Tu () := —T,7 3M,(60), T (6o) := 2G/s, (6o) TGl (o), and

1
En(u) = %{F(GO)—Fn(QO)}[u,u]—/ (1—s)faer,,(9o + st TV 2u) s TV 2u, u®?)deds.  (18)
0

We will prove (a) by making use of Yoshida1, Theorem 3(c)]. We will verify the conditions [A], [A4/],
[A6], [B1] and [B2] of that paper, omitting the full description of the conditions. Assumpii@assures [B1]
(the positive definiteness @f(6)) and the convergendg, M, (0) —? —|G(0)|? for eachd € ©. Let

Va(6) 1= 7 (M, (6) My (60)) = - 1007, (VT8 — 60)).

thenY, (8) =2 —|Geo(#)|?> =: Y(#). ObviouslyY(#) < —x?|60 — 6|? for eachd € O, verifying [B2] (the
identifiability). Next, we will verify the conditions [A1] and [A6] in the following form:

[A1”] (i) sup, Eo[supy |7, ' 93M,(0)|X] < oo for everyK > 0.

10



(i) sup, Eo [IvTu(Tn(6o) — ' (6)|M~€1] < oo for everye; > 0 small enough.

[A6] (i) sup, Eo[|An(00)|X] < oo for everyK > 0.
(i) sup, Eo [supy |vTu(Ya(0) — Y(8))|M+</2] < oo, for e given in AssumptiorB.3

At this stage, we should remark that the remaining’[Agin force under [A”] and [A6]: here, [A4] is the
“tuning-parameter controlling” condition concerned with the moment-order indies. . , M, in the notation
of Yoshida [i1]. We only give a sketch of verification of [A§} The indices corresponding f&; and M3 can
be taken arbitrarily large under Assumptidr, so it suffices to look ad, andM,. It turns out that, by taking
the tuning parameters of Yoshidal] as p1, p2,« =~ 0 andf, = 0 and then8; ~ 1/2 with p = 2, we can
pick a constant € (0, ¢/2) small enough so that [Alfollows with M, = M + § andM, = M —§. Building
on these observations, we are left to proving Tpdnd [A6] above.

We begin with [AT]. Since|Tn‘1agM,, ) < |Tn‘1Gn(9)||Tn‘laan (O)|+|T, 105G, (9)||Tn—18§G,,(9)|,
we have for evenk > 0
K
} .

Noting thatdg, dp, M, = —2T,7"{0q, 99, Gn[Gn] + 99, Gn[dg; Gy]}, we also have

AV )

SUpEy {sup TL

neN 0ec® | In

\/T—n|rn<eo)—r<eo)|5’ J%Gn(eo) LG (00)
+ (I + | 736660 ) |V (72060 - Giuten) ).

Therefore, Assumption3.2 and3.3 combined with Holder’s inequality yield that feg € (0, M)

SUpE,s U VT (T (B0) - F(eo)\M_e']

neN

1 M (M—e)/M
S+ {SUPEO [ VT (Faan(e(,) - G;o(eo))' }} < o0,

neN

Thus [A1"] follows.
Next we prove [A6]. The statement (i) is obvious from Assumpftiah

K

L Gait)

SUPE [|An(60)1%] < supEo |: i

neN neN

1
— 039G, (6
T, 9Gn(6o)

K
:| < 00. (19)

Using the estimate

1 1
T | 77 o)

it follows under Assumption3.2and3.3that

2
VT 6) ~ (6| < + (16w +

1 1
EG”(G)D 'JT_ (an) - Goow))' ,

supko | sup| 757, 6) - v@n| |

neN 0c®
(M +€/2)/(M+¢€)

1 M+€
n\|\ + Yn — Uoo < Q.
/T_(T Gn(0) — G (9))‘ }

<1+ supEp [sup
neN 6e®

Thus [A6] is ensured, and the proof of (a) is complete.

We now turn to the proof of (b). Fix ani > 0. Since we know that the sequen@s,) is L?(Py)-bounded
for eachg € (0, M) and that the set argmgiogZ. (1) a.s. consists of the only point

floo := T'(60) ™" Aco(80) ~ N;(0, Z(6h)),

11



it suffices to show that l08,, —* l0gZes, in C(B~(R)), where
1
109 Zoo (u) := Aco(60)[u] — EF(QO)[% ul.  Aso(fo) ~ N (0.4G(60) T V(60)Gly (60))

(e.g. Yoshida{1, Theorem 5]). We hav@&, 194G, (6p) —? G/, (6p) from Assumption3.3, hence Slutsky'’s
lemma and AssumptioB.4 imply that

1

8 (B0) =~ G (B0) [J—T_

Gn (90)} —£ Aso(6o).

Also, we have
3
60001 < I (B0) — T(B0)| + " sup) 1
T fe®

g n(e))‘ = 0p(1) (20)

for everyu € B~(R). Thus, recalling the expression?, we get logZ,(u) —* logZe(u) for every

u € B7(R), and moreover, due to the linearity inof the weak convergence terr, (6p)[u], the Cramér-

Wold device ensures the finite-dimensional convergence. Therefore, it remains to check the tightness of
{logZ,(u)}uep—(r). In view of the classical Kolmogorov’s tightness criterion for continuous random fields
(e.g. Kunita [L8, Theorem 1.4.7]), it suffices to show that there exists a congtanp (= dim ©) such that

sup SupEy[|l0gZ,(u)|"] + supEg |: sup |9y, Ioan(u)P’] < 0. (21)
ueB~(R) neN neN |lu|<R

In view of the estimates inlE) and R0) as well as the expressionsd and (8),

sup supEyo [[109Z, (u)["] < SUPEo [|An(60)["] + 1+ Sup SUPEy [[&,(w)|”]
ueB~(R) neN neN u€eB~(R) neN

1
<1+ Eo[ITa(80) — T(60)"] + SUpEs [sup Lo
neN peo | Tn

14
]<OO

Furthermore, since

0y 109Z, (u) = 0y {M,, (90 + ! u) — M,,(Qo)}

VT,

=\/1T—n{39Mn(90)+ /ag ( ) s

the finiteness of sypE, [SUHu|§R |0, l0gZ,, (u)|y] follows on applying Assumptioi.2to the estimate

1
sup |9y l0gZ, ()| < Gn(6o) 89(} (6o)| + sup —32 (9)‘
lul<R Ty ’ ’ 6c®
1 2
< |—==G, (6 aGne su 82,,9 2 (0
N‘ﬂ_n (80| | 76 (0)+6€(§{T ()‘ ()}
Thus we have obtaine@J), thereby achieving the proof of (b). O

Remark 3.6. We have confined ourselves to the “single-norming (i.e. scBlai-case for the squared quasi-
score function. Nevertheless, as in the original formulation of Yoshida Theorem 1], it would be also
possible to deal with “multi-norming” cases where elementsé,pbossibly converge at different rates, i.e.,
cases of a matrix norming instead of the scalar normifi§j,. This would require somewhat more complicated
arguments, but we do not need such an extension in this paper.
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4 Proofs of Theorem2.7and Corollary 2.8
4.1 Proof of Theorem?2.7

The proof of Theoren®.7 is achieved by applying Theoref5. When we have a reasonable estimating
function 6 — G, (0) with which an estimator of is defined by a random root of the estimating equation
G, (0) = 0, it may be unclear what is the “single” associated contrast function to be maximized or minimized;
for example, it would be often the case wh@p is constructed via a kind of (conditional-) moment fittings.
The setupZ4) provides a way of converting the situation frafnestimation toM -estimation.

4.1.1 Introductory remarks

At first glance, it seems that, in order to investigate the asymptotic behav&gr, ofe may proceed as in the
case of diffusions, expanding the G@l, of (11) and then investigating asymptotic behaviors of the derivatives
8’5@,[; see Yoshida41, Section 6] for details. Following this route however leads to a lesser evil, essentially
due to the fact thattz, /2 A; X); <, is not L4(Py)-bounded fog > 2. To see this more precisely, let us take a
brief look at the simple one-dimensional Lévy proc&ss= at + \/,EJt, with 8 = (a, 8) € R x (0, 00) and
L(J1) admitting finite moments. In this cas@, (0) = —>_;{(log8) + (Bhn) Y (A; X — ahy)?}:

= 2 1
90 Qn(8) = 3 Z(AFX —oha). 35 Qn(8) = 3 o {(A7X —ha)? = Bha}.
j=17 7

J=1

20 (0) = 2"

“ 2
, aaaﬂ@n(m:—zpmﬂ—ahu,
j=1

2 Bhy
03Qu(0) = _,; i {(ij —ahy)? — T} .

We can deduce the convergences

7020 60) 7 265", ﬁaaaﬂ@nwa) 520, B306) ~P 5>
so that the normalized quasi observed-information mati, ' 97Q, (6o) D, ' —? diag28;". B5?), where
D, = diag(s/T,. /7). In view of the classical Cramér type method fdr-estimation, we should then have
a central limit theorem for the normalized quasi scﬁfg‘l/zaa(@n(eo),n_1/28ﬁQn (60)} for an asymptotic
normality at rateD,, to be valid for theM -estimator associated witQ,. However, different from the drifted
Wiener process, the sequer{m‘l/zaﬂ(@n(@o)} doesnot converge, becaus(éz,fl/zAj X)j<n cannot beL?-
bounded for largey > 2 as can be seen from the moment structure of Lévy processes; see Luschgy and
Pages 71] for general moment estimates in small time with several concrete examples. Although we only
mentioned the Lévy process with diagonal norming, situation remains the same everXwheactually an
ergodic solution toX).

The observation made in the last paragraph says that the situation is different from the case of diffusions,
when developing asymptotic theory concerning the Gaussian quasi-likelihood for the mjpdetér high-
frequency sampling framework; it is also different from the case of time series models, where thg/usual
consistency holds in most cases (see the references cited in the Introduction). Earlier attempts to tackle this
point have been made by Mancirid, Shimizu and Yoshidad?], Ogihara and Yoshida3[l], where they
incorporated jump-detection filters in defining a contrast function. The filter approach has its own advantage
such as\/n-rate estimation of the diffusion parameter even in the presence of jumps, however, we should
have in mind that its implementation involves fine-tuning parameters, thereby possibly preventing us from
straightforward use of the approach.

In order to prove Theorer®.7, we will look at notd — Q, () but

0 > Ga(0) = {G%(9),GE (9)},
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whereG% : @ — RP« andG? : © — R?# are defined by

G2(0) = > daaj—1(e) [V;i 4 (B)xj (@)]]. (22)
j=1
“ _ 3pV;-1(B)]
G (0) = (_a ~1 (o) ®2 —hnﬂ]—). 23
7 (0) ; (=0 Vi (BNt @] = b=y 2 (23)

Our contrast functioiM,, (9) is then defined to be the “squared quasi score” ag4j (
1
M, (0) = _T_|Gn(9)|2- (24)

Trivially, G, : ©® — R? fulfil that G,(0) = {94Qn(6).2h,98Q,(#)}. The difference is that we put the
factor “2h," in front of 93Q,(6); our estimating procedure is formally not the usilestimation based on
the Taylor expansion df — Q,(8) aroundé,, but rather a kind of minimum distance estimation concerning
the Gaussian-quasi score function. The optimization with respetig@asymptotically the same for both of
Q, andMi,: if there is no roo® € ® for G, () = 0, then we may assign any value (e.g. any eleme@)ab

é,,, upholding the claim of Theore& 7.

Remark 4.1. More general cases tha2?) and (23) can be treated, such as
n
GZ(0) = > W (O Xs, —m;1(6)},
j=1

n

GEO) = Y (W OUXs, =m0} - W 0)),

Jj=1

for some measurabl#’® : RY x ® — RP« @ R4, Wh! : R x ® — RP8 @ (R ® R¥), and Wh2 :
R? x ® — R?#. This may be called a GQMLE as well, for we are still solely fitting the local mean vectors
and covariance matrices. This setting allows us to deal with, for example, the parametric model

dXt = a(Xt,Q)dt + b(Xt,Q)du)t + C(Xt_,e)d.],

with possibly degenerateandc, the resulting GQMLE},, still being asymptotically normal at ratg/7,, under
suitable conditions. To avoid unnecessarily messy notation and regularity conditions without losing essence,
we have decided to treai)in this paper.

For later use, we here introduce some convention and recall a couple of basic facts that we will make use
often without notice.

o We will often suppress(bp)” from the notation:a; _; := a;_1(a), G5 = G%(6p), and so forth.

e J; denotes a shorthand fgf/ .

o M]_(0) := daaj—1 () TV} (B) € RP» @ R,

o M () :=—0pV\(B) ={V;Ih(0pVi—1)0p V2 }(B) e R?# @ RY @ RY.
o di—1(B) = V-1 (B~ HdplVi-1(B)I} € RP.

e Given real sequence, and random variableg, possibly depending ofl, we write Y, = O, (ayn) if
sup,.g Eo [la, ' Ya|X] < oo for everyK > 0.

e R denotes a generic function @f possibly depending on and 6, for which there exists a constant
C > 0 such that sup, | R(x)| < C(1 + |x|)€ for everyx € RY.
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o Burkholder’s inequality: for a martingale difference arf@y;); <, and everyp > 1,

S I e

j<k j<n i<n

|: max

Moreover, ifc is a sufficiently integrable predictable process, then
T
E0|: / Cs_d.]s
0

for everyT > 0 andg > 2.
e Sobolev inequality (e.g. Friedman, [Section 10.2]):

q T
} < VT)q/z_I/ Eolles|?]ds
0

Ey [SUDIM(G)I} S / {Eo[[u(0)?] + Eo[l0gu(6)|?]} d6 < SUp{Eo[|u(0)|7] + Eol|dgu(0)|?]}
0e® (C] fe®

forg > p and arandom field € C'(®); recall that we are presupposing the boundedness and convexity
of ®. We will make use of this type of inequality to derive some uniforn:imoment estimates for
martingale terms.

We now turn to the proof of Theoregh7 by verifying the conditions of Theoref5.

4.1.2 \Verification of the conditions onG,,

We rewriteG,, as follows:

GZ(0) = > M/ (O] —ha Y M]_1(0) [a;-1(x) —aj1]. (25)
Jj=1 Jj=1

GHO) = Y (ML B —hudi1 (B

j=1
+2hnZM" 1Bty aj-1 —aj- 1<a>1+hZZM” (B [{aj—1 —aj—1(@)}®?].  (26)
Jj=1 Jj=1

We havey; = {; + rj, where
= aj_ ds + | b(X;, dwg + X, dJy, 27
: /ja“(s)s /,-( Bo)du /jc( o) (27)
rj ::/{E({_l[a(XS,OlO)]—aj_l}ds, (28)

J

with a; 1 (s) := a(Xs, o) — E({_l [a(Xs,0)]. Obviously,(¢;);<» forms a martingale difference array with
respect to the discrete-time filtratio#;, ) ;< -
Ité’s formula and the present integrability condition lead to

E 7 a(Xs,a0)] — ajo1 = f EJ ™ [ Aa(Xu, a0)ldu = hRj—1. (29)
J

where.A denotes the (extended) generator associatedXvitimder Py, that is, for f € C2(R?)
Af(x) = df(x)a(x.a0)] + %32f(X)[b(x,ﬁo)®2]
+ / {f(x + c(x, Bo)z) — f(x) = df (X)e(x, Bo)zjv(dz).
Putting @8) and @9) together gives; = h2R;_;, therefore

X =8 +haRi. (30)

Assumption3.1 obviously holds under the present differentiability conditions. We begin with verifying
Assumption3.2.
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Lemma 4.2. For everyK > 0, we have

SUpEy

1
neN |:‘\/_T_nGn(90)

K
1
:| + SUpEy |:sup —G,(0)
neN 9ee | Tn

K
< 0.

Proof. By substituting 80) in (25) and @6) and then rearranging the resulting terms, we have
n n n
Cr(0) = D M{_ ()¢ +hn ) Mj_(0){aj—1 —aj—1 (@)} + iy ) M]_ (O)R;1, (31)
j=1 j=1 j=1

GEO) = D M/ BIEE?] — hudi—1(B)} + 20 ) M (B ajm1 — @y @)] + 2 D Rj-i. (32)

J=1 J=1 Jj=1

To achieve the proof, we will separately look B /2G®, T,, '/*GE, T71G%(6), and T 'GE (6). Fix any
integerK > (2 Vv p) in the sequel.
First we proveT, '/>G2 = O}(1). Observe that

1 I I, R
—TnG;’ = Zl —TnMj_lz,- + ,/Tnhﬁ; Z;Mj_l = Zl —T_nMj_lzj +0; (,/Tnhg).
J= J= J=

By (27),
(o ) ot o)

P ATEUES
\/IT_M]’ X / ¢(Xs—, Bo)dJs. (33)
n J

MR

=s|

+
J

Il
-

Burkholder’s inequality implies that the first and second term on the right-hand sid&at¢ and O, (v/hn),
respectively. As for the last term, by writiny : (0,00) — {0, 1} for the identity function of the interval

(tj-1. 4],
]

n K
5 Tn*K/2TnK/271/O EO[(Z1j(S)|Mj{_1C(Xs_,,3())|) i|dS
j=1

n

Tn
= —/ Zl (s)Eo[|M 1C(Xsf ﬁO)lK]ds

n

Ty
[etxo-.pora, / LMyt o

} <T K/zE()I:

1 n
5—2/ds=1, (34)
T = j

hence we are done.

We now proveT, l/zGﬂ O, (1). In the sequel, we may and do suppose that pg = r' = r" = 1
this reduction is possible because of the the polarization identity

[S,, SI/] — i([sl + S//] _ [SI _ S//]) ,

which is valid for any two semimartingales and.S”. Substituting 80) in (26) gives

1 =~ 1 .
m@f => T (M} — hadj—1) + O (\/Tnh,%),
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so that it remains to verify

S

M” 1(&F = ha Vi) = 05 (D). (35)
]=1

Defineg;(¢) fort € (tj—1,t;] by

&) = / G (s)ds + / b(Xs. Bo)dws + / ¢(Xo_. Bo)dJs.

J J j—1

Let N(ds, dz) denote the Poisson random measure associated/wte. J; = fot sz(ds, dz)), andN its
compensated version. The quadratic variation at tirisethen given as follows (cf. Jacod and Shiryaéy, [
1.4.49(d), 1.4.55(b))):

GOl = [ Ppods+ [ [ 0 po sz

=t —t;-1)Vj_1 +/z- /cz(Xs_,ﬂo)N(ds,dz)—i—/ gj—1(s)ds,

ti—1

where we used the assumptigfrzzv(dz) = 1 (with the temporary assumptiorf = 1) andg;_(s) :=

b%(Xs, Bo) — b2 |+ ¢*(Xs—, fo) — ¢?_,. Applying the integration-by-parts formula, we get
= hnvims = {2 [ 61050+ [ [ 0 poz2Nds.a)
J J
+ [ (om0 =B o) ds) + [ B emods
J J

_. #0 (1)

=17+, say.
We can deduce that7_, 7, /> M7 ¢¥ = 07(1), as is the case in the proof 8F7_, T, "> M!_¢; =
0, (1) via the expression3@). Moreover, we can apply Itd’s formula to gé D = h2 Ri—1 under the
02 property ofx > (b(x. Bo).c(x. Bo)), from which it follows that sup Eo[| Y-7—, T, /> M £V 1K) <

sup, (T,h2)K/2 < co. We thus get35).
Let us turn to prove sya 7, 'G%(0)| = 0, (1). In the same way as in the proofﬁfl/zG“ = 0,(1),

we can provez;’=1 1/2M’ 10 =0, (T_l/z) for eachf € O, since the explicit dependence 6ris
only through the predlctable pard;_, (6); S|m|Iar arguments will apply in some places below. Therefore, it
follows from (31) that, for eact¥ € ©,

1 1 . | n
Tn Gfll(e) = /Tn (]Zl ,—Tn Alj/—l(e)é‘]) hn ( E 1(9)) j: 1:]‘4]/ 1(9){aj_1 aj_l( )}
1 1 2’1: — o
0; (an th) + ;j——l M;—l(e){aj—l aj 1( )}

1 1 &
=0, (ﬁ) + ;; M _(0)aj-1 —aj-1(2)}, (36)

so thatT,, 19,G%(0) = 0, (1), and in a quite similar manner we obtain (s&6)(and ©1) below)
1 . *
LasG50) = 0] ( ) Zae L)y —aj(@)] = 030, (37)

Therefore, we arrive at syp7,, 'G%(9)| = 0, (1) by means of the Sobolev inequality.
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It remains to prove syp Tn—le (0)] = O, (1); remind we are supposing thét= pg = r'=r"=1.As
in the proof of 85), we can prove

ZfakM”l(ﬁ)(z, haVim1) = 05(1)

for eachk = 0,1 and, so that the Sobolev inequality givs7_, 7, /> M, (B)(&? — haVj-1) = O3 (1).
Therefore, it follows from §2) and simple manipulation that

%G5<9)= \/_(Z fM”l(ﬁ)(§2 hnv,-_o) Z J—M”l(ﬂ){a, 1—aj1(@)} g

hy I ¢ "
+ 7 ZRj_l + E ZMj_l(IB) {Vj—l - V]—I(IB)}
j=1 j=1

1 JT, |
= ;(mv . vhn)+n]2_le LB Vi1 = Vi (B))
* 1 1 - "
=0, (—ﬂ_) + 5_,2:1: M (B) Vi1 = Viea(B)} - (38)

ThusT,'G} () = 0 (1). Similarly, we getT, ' 3,Gh () = 07 (1) (see 62) and 63) below)

TiaeG£<9)=0;( ) Zae 1B Vit — Vi (B)] = 021, (39)
completing the proof. O

Next we turn to verifying the uniform moment estimates in Assumpti®is To this end, we prove a
preliminary lemma.

Lemma4.3.Let f : RY x ® - Randg : R — [I, o0) be measurable functions and suppose the following
conditions:

e 0 — f(x,0)is differentiable for eachr, andsup{| f(x,0)| Vv |dg f(x,0)|} < g(x) fork =0, 1;
e sup Eolg(X;)] < oo;

o ||Pi(x,)) —mo()]lg S e g(x) for some constant > 0 and a probability measurey;
e
Proof. Let Ay, (f:0) = n™' 37 {fi—1(0) — Eolfj—1(O)]} and A, (f560) = n~' 37 {Eo[fj-1(0)] —
[ f(x,0)mo(dx)}, sothan™' Y7, fi-1(0)— [ f(x,0)mo(dx) = A, (f:6)+ A, (f;6). Under the present
assumptions, we can apply Yoshidal[Lemma 4] to getE0[|8’5A;,(9)|K] < T,,_K/2 + T17K < T,,_K/2 for

k = 0,1, yielding that max—o,; Sup sup, E0[|«/T,,8’5A;1(f; 0)|X] < co. Therefore, the Sobolev inequality
gives

Then we have

( Zf, - [ 1 em(dx))

supEo[ sup
neN 6e®

SUpEy [sup‘\/_A’ (f; 9)‘ }<oo

neN

As for All(f;0), we have fok = 0, 1:

VT NL(1:0)] = ( S ([ #hr0-0r2s v dvmian - [ 0 9)ﬂ0(dy)7)(dx))‘
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ey [ ([ #70.0) (- (5.5 = motd0} ) i
j=1

n
VT +
=2 / [Py, () = 70 ()] ()
j=1
VT v 1
S — —atj—1) < .
j=1
This ends the proof. O

Corollary 4.4. Assumptior8.3(a) holds true.

Proof. Again we may and do suppose that= pg = r’ = r” = 1. Recalling 86), (37), (38), and @9), we
apply Lemmat.3with f(x,0) = M’ (x, 0){a(x,ap)—a(x,a)}and f(x,0) = M"(x, B){V(x, Bo)—V(x, B)}
to conclude
K
} < oo

for everyK > 0, whereG, (0) := (G%, (). Gfo(e)) are given by §) and (7), the integrals in which are finite
by the assumptions. Triviall§f,(6p) = 0, and Assumptior3.3(a) is verified withy = yo A xg. O

VT (Tian) . Goo<9))

SUpEy | sup
neN 0O

Let us mention the fundamental fact concerning conditional siZ€®fncrements. For the convenience of
reference we include a sketch of the proof.

Lemma4.5. Letg(x) := |a(x,a0)| V|b(x, Bo)| V |c(x, Bo)|, and fix anyy > 2 such thatE[|J;|?] < co. Then

he?g9(X,,_,) ife=0,

EI7' sup [Xo— X, 17| < )
0 |:SE[ up  [Xs tj—1| :|N{ hngq(th_l) otherwise

1j—15t]
In particular, the left-hand side is essentially bounded if sg.is

Proof. We only mention the case of# 0. Given anM > 0, we letzj_; p :=inf{s > ;1 : |Xs| > M} and
E-im(s) = EJ " [sup| Xy — Xy, 119 u € [tji—1.5 A tj—1,m]}]. We can make use of the Lipschitz property
of the coefficients and Masuda/, Lemma E.1] to derivé;_; » (1;) < fttf,l Ei—1,m(s)ds+h,g9(X,;_,), the
upper bound being’,-a.s. finite according to the definition of_; 3s. Hence the claim follows on applying
Gronwall's inequality and then lettinyf 1 co. The case of = 0 is similar. O

We now prove the central limit theorem required in Assumpfich

Lemma 4.6. We have :
7= Cn(00) =% N} (0,V(6o)) .

whereV(6y) is given by {2).

Proof. We begin with extracting the leading martingale terms of the sequeiicEdG® andT;, /G5 recall
the expressions3() and 82). Let us rewrite 27) as¢; = m; + r]’-, where

mj .= bj_lAjw + Cj_lAjJ,

= /j & 1(s)ds + /, (b(Xy. Bo) — bj—1)dw, + /, Xy Bo) — ¢j-1)dJ.

We claim that it suffices to prove that

> 1 ( )j]/; ) - Np (0.V(6o)) . (40)
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wherey¥ := M]_,m; and )7]'.3 = M]f’_l[m}m] — hnd;—1, both of which form martingale difference arrays
with respect ta ¢, );<x; We can verify thatE({_l[?j’.g [u]] = 0 for eachu € R?8, making use of the identity
tracg A(x) 10, A(x)} = 9x|A(x)|/|A(x)| for a differentiable square-matrix functioh In fact, recalling what
we have seen in the proof of Lemma, we observe the following.

o \We have

1 G
—G® = —M!_ ( b(Xs, B )dws—i—/c(Xs_,ﬂ )de) +o0,(1)
Ty ;\/Tn /=1 j ° J ’ 7
1 "1
= Z _?(x + Z _M{—l /(b(Xs,ﬂo) —bj_l)dws
P e RV

1
DMy [ €Cbo) — 0, + 01
By means of Burkholder’s inequality and Lemm& combined with the conditioning argument,

2 n
l !
E0|: } < EO[ZF|M,_I|2|R,-_1| [hnds] <.
i Jj

E —=M | | (b(X;,Bo) —bj—1)dws
e e N s J
j=1 T 7 j=1""

Following the same line as i{), we also gef,[| >}, Tn_l/zMj_l Ji(e(Xs, Bo)—cj-1)dJs|*] < ha.
Therefore, it follows that

1 G|
=G = 7% +0p(D). 41
VT, " j=1\/Tan o) (1)

o PUtB, =23"_ T, '/>M}_[m;.r/] and B} = Y7_, T, "> M/, [r/.r/], then we see that

72+ By + By + 0,(1).

G|
M [68%] = hndj) + 0p,(1) = )
j=1

1 21
Gt =
T T L T,

Since sup, Eo[|r}|7] < h; for everyg > 2 and E{7'Im; 2] S |Rj-1|*hn, the Cauchy-Schwarz
inequality leads to

1< n i 1/2 1/2
EollByl) S = Y \/ 5= Eo [ IR PE] iy )] Eo [1rj 2] < \Jnh — 0.
j=1 17"
Moreover, for any € (0, 1/3) Hélder’s inequality gives
| — n
EollBY1 S~ /i Eo[IRi-1llrfI?]
n i hy
1l [n e/(1+e) 1/(1+e)
< - Z —E, [|Rj_l|(l+e)/€] Eo I:lr]{|2(1+e)]
n - hy
j=1
1 " n 1/(1+¢) 4/(146)—1
< 5,; [ Eo [1rjPa+e] < kOO < k2 — o,

Hence we have derived

(42)

1 "1
GE = 7P+ 0,(1).
VT, " ; JT,7 P

Having 41) and @2) in hand, it remains to verify4(0). We are going to apply the classical martingale central
limit theorem (e.g. Dvoretzky/]).
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Puty; = (7¢.7%). Itis easy to verify the Lyapunov condition: in fact, we ha¥¢™"[|7;|X] < hu|R; 1|
forany K > 2, so thatZ,_1 Eo[|T, 125 71K < T,~ K72 _, 0. It remains to compute the convergence of the

quadratic charactensuci — E’ 1[ 2] -2 V(6y). By means of the Cramér-Wold device, it suffices to
prove that for each’, v, € RP« andv1 v, € RP8,

n
| T
PIE e (/R A G B AR (43)
-_ n
Vapalvh. vi] Z =B [ @ 78] vk i) 7 Vel of) (44)
j=1 T
Vipalvf vl i= Y —E) [ 7)%2] o] v3) =7 Vgglvf. v5). (45)
j=1°"

First, 43) readily follows on notingE({_l[mj@Z] = h,V;—; and applying the ergodic theoreis) ( Next,
oo _l - LEj—l M’ . M ®2 roon
Vapnulvy, vi] = " Zh 0 i—1lmj] ® j—l[mj 1 [vy. v
j=1 n

= _Z Z El” l[m(k)m(l)mj(s)]{ M@ M”(k”}[ . (46)

kls

For later use, we here note that,/as> 0,

(il) @im) hvlllzlg, (3) m = 3
£ [Jh J :I { hvlllzlzl4(4) + O(hz) m =4,

this can be easily seen through the relation between the mixed moments and cumufgntstedre the latter
can be computed as the value$ af the partial derivatives of the cumulant function— log E[exp(i J,[u])] =
h [{exp(iu[z]) — 1 —iu[z]}v(dz). In view of the expression

(k) Zb(kk )A ) 4 Z (kk")A J&
k//
together with the orthogonalities between the increments afidJ, we get

EI [m](k)m m(s)] 3 (EO) ]‘”"E[A JEA TN, J(s/)]
k'l s

Z (kk) (ll;) ](SS£)E [J(k)J(l’)J(S)]
ks
kk’) (Il 4
=hn Y e vy (3). (47)
k'l s’

(SinceE[J;] = 0, the3rd mixed cumulants and tHgd mixed moments o, coincides.) Substitutingi{)
in (46), we get ¢4):

kk 1 4 -kl
Vap vy v]] = = Z Z Z c]( l)c]( 1) ](ssl)kalm(?)) { /(s) ® MN( )} [v, v
j=1k,lsk’l,s

55 I e et 2 )

l—lk/l/ 4

/ 1
—P Vopvi. v
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Finally, we look atVgg ,,. Direct computation gives

[N R
Vpalofovs] = = 3" B [(M]Ly ® M]L) o m P 0g.m ]
j=1""

e~ i
=3B | (der ® M) o] vgm P
j=1

_%ZE‘{_I (-1 ® M},) g o) m 2] + Zd W, ol

- Z —E’ M o] m @M 5. m 21| + Op ()

_ Z Z M//(kl) //(k 4 )[ ]E({_l I:m](k)m](l)m](k) (l )] + O (h ) (48)
ARG

Using the orthgonality as before and noting the fact #fitv,, |*] = O(h2), we get

B PP m®] = 5 el E 1050 5050 4 R
s,t,8’,t/

=hn Y eI ED D 0 (@) + Ohn)} + Rj—1h2

s,t,8",t/
k l k/ / l/ ’
=hn Y e T v (4) + Ry k2. (49)
s,t,8",t/

By putting @8) and @9) together, we get4’):

Vppalvf.vy] = Z > v @) M7 ] e O M [0, ¢80 e + 0 ()

] 1s,t,s,t/

—P Vﬁﬂ [vl, v2

The proof is thus complete. O

4.1.3 \Verification of the conditions ond% G,

Based onZ5) and 6), we derive the following bilinear forms:

3Gy (0) = D 8o M]_1(O)xj] —hn ) daM]_(O)aj—1() —aj—1] = hy ) Mj_(0)daaj—1(a), (50)

j=1 j=1 j=1
9pGr(0) = ilaﬁM;_lw)[xj] ~hy iaﬂM;_l(m[aJ-l(a) —ajl, (51)
- =
8.1 (6) = 2y Z M} (B)daaj-1(@)} [t — hntaj-1(@) = aj1}], (52)
i
%GS(@)=fl{a,sM;’_mﬂ)[x;-@z]—hnaﬂdj—l(ﬂ)}—miaﬂM” 1B aj-1(@) — aj1]
P P
+hZZaﬁM" 1(B) [faj—1(a) —a;j—1}®%]. (53)

We can prove the following lemma in a similar way to the proof of Lemihta

22



Lemma 4.7. For everyK > 0,

) K
SUpE, |:sup T—E)’;G,,(@)’ :| <00, k=1,2,3.
n 0 n

Recall that the matritc, (6y) = diag{G% (6o), G2 (6o)} is given by 8) and Q).
Lemma 4.8. For everyK > 0,

K
supE Uﬁ (TiaeGn(eo) - Ggowo))' } < 0.

neN

Proof. First, concerning the off-diagonal parts we have

- aﬁG“— J_ZJ_ pM;_i 1] = (Jlrj)

ot =2 3 M v ] = 05 ().

where the moment estimates for the martingale terms will be proved in an analogous way to the proof of Lemma
4.2. Next, we observe

1
T—aaG‘,’j—G“" = ZM _10qa;—1 — G2 (6))

\/_Z\/_a oM [x]—
1 I oo
=9 (F)W_T_{ ("Z e W(QO))}

-oi(x)

where we used Lemmé. 3 for the last equality. It remains to look a’;,—laﬂGf. Plugging in the identity
Xj =mj+r;+ h%R;_, and making use of what we have seen in the first half of the proof of Lemfave
proceed as follows:

n

1 1 7 *
Tnaﬂ@,ﬁ = Fn];(a,gM/ mj + )2 = hydgdi—1) + O (hn)
_ _Z(aﬂM” [m®2) = hydpd; 1) +0r <\/h_)
j=1

(5 o s o )|
nolj=1 Vo

+ TL Z (Eg_l [35M” 1[m ]] —h,,aﬂd,-_l) + 0, (\/E)
n i

N

e e ()

=1

" 1
[trace{(~05,35, V=) Vi—1} — 05,05, log |V 1|]”/ +0; (JT) (54)
n

.

§|»—A
=5

1

J

The (I, 1’)th component of the first term ib{) tends in probability to

/ [trace{—dp,dp, V' V(x.Bo)} — 0,08, 10g|V|(x, Bo)] mo(dx)
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= / trace{(V " (3, V)V "' (3p, V) (x. Bo)} mo(dx),

which equals thé/, /")th component on,"Z(@o). Accordingly, a reduced version of Lemma&8with ©® = {6y}
applies to conclude tha, ' 95G} (6y) — G&(8p) = O (T, /). The proof is complete. O

4.2 Proof of Corollary 2.8

Sincea, = /Tu(@, — ag) = O,(1) and B = «/Tn(B,, — Bo) = Op(1), it is easy to see from Taylor
expansion thaf’® —? G2 (6) andG? —7 G£(6p). As for Vs, and¥ g4, we can substitutg; (&,) =
Xi + vhn/nRj_1][a,] in their definitions and apply Taylor expansion as before to derive

n

A~ 1 1
/4 o —1 . / . —l 82
Vapnlvy, vyl = /; T, {Vj—l[aaa]_l[vlL XJ]} {3/3 V1—1[U1’X] ]} + Op (m) ) (55)
“1 1
<) "o — — (9 V_—l 9 V_—l " @2 //’ @2 0 ) 56
Vp.nlvy. vy ; T (9V,Zy ® 3V, 20) [, 7% 05, 1571 + Op JT, (56)

We only show thal/ g , [}, v4] =2 Vg [v}, v"], for the case o¥ g, is similar.
Write Z;'l=1 n; for the first term in the right-hand side d#%). In view of the Lenglart domination prop-

erty for martingale}_7_, (n; — Eé’l[n‘,-]) (cf. Jacod and Shiryaevip, 1.3.30]), it suffices to show that
i EJ 7' )] =7 Vagv},v}] and 371 Eoln;] — 0. But the former can be similarly derived as in
what we have seen in the proof of Lemi&. Likewise, noting thalEg_l[|X,-|‘1] < hpRj_, for everyqg > 2,
we getdi_, Eoln] S T,' — 0, whenceVeg , [v], v]] =7 Vyp[v], vf].

5 Appendix: A criterion for the exponential ergodicity in dimension
one

Here we setl = r' = r” = 1, and suppress dependence on the parameter from the notation:
dX; = a(Xy)dt + b(X;)dw, + c(X,-)dJ,. (57)
We introduce the following set of conditions.
El. (a,b,c)is of clasC! (R) and globally Lipschitz, an¢b, ¢) is bounded.
E2. Either one of the following conditions holds true:

(i) b(x’) # 0for somex’, and there exists a constant> 0 such thatv(—e¢, 0) A v(0, €) > 0 for every
€ € (0,¢);

(i) b=0,c(x") # 0foreveryx”, and we have the decomposition
V= Ve + vy

for two Lévy measures, andvy, where the restriction of, to some open set of the forwe, 0) U
(0, €) admits a continuously differentiable positive dengity

E3. (i) E[/1]=0 andf| |7v(dz) < oo for someg > 1, and

a(x)

limsup—— < 0.
lx|>o00 X

z|>1 |Z

(i) E[J1]=0 and]| exp(g|z))v(dz) < oo for someg > 0, and

z|>1

lim supsgnx)a(x) < 0.

|x|—00
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The next proposition gives a pretty simple criterion for Assumpfich
Proposition 5.1. The following holds true.

(a) Suppose E1, E2, and E3(i). Then, there exist a probability measarel a constant > 0 such that 8)
and () hold true for aC?-functiong such thatg(x) = 1 + |x| outside a neighborhood of the origin.

(b) Suppose E1, E2, and E3(ii). Then, there exist a probability measamd constanta, ¢ > 0 such that
(3) and @) hold true for aC?-functiong such thatg(x) = 1 + exp(e|x|) outside a neighborhood of the
origin.

Proof. The Lipschitz continuity implies that the SDEY) admits a unique strong solution. We consider the
following conditions:

(I) Every compact sets are petite for some skeleton chak @hat is, the Markov chaitX;a);ez, );

(I The exponential Lyapunov-drift criterion (to be fulfilled for some
Ap < —cp +d, (58)

where A denotes the extended generatotXgfthe functionp : R — R belonging to the domain ofl
satisfies that li}|— . ¢(x) = oo, andc, d > 0 are constants.

As in the proof of Masuda’ls, The proof of Theorem 2.2], in each of (a) and (b) the exponential ergod)ity (
follows from (1) and (1), and the moment bound)(from (II). In order to prove (I), we will here first verify
the Local Doeblin (LD) conditionsee Kulik [L6, Appendix A.1] for details); we note that the LD condition
implies (1) for anyA > 0. Then, we will derive the drift conditiorb@) in (1) with different choices ofp under
E3(i) and E3(ii).

Verification of (1): the LD condition.

First, we verify the LD condition when E2(i) is in force. LB, (A4) := v({z € R: c(x)z € A}). By Kulik
[16, Proposition A.2 and Proposition 4.7]), it suffices to verify the following condition:

VxeRVve{-1,1}3pe(0,)V6>0: TII,{y e R:yv=ply|} N{y eR:|y| <§}) > 0.

Simple manipulation shows that this conditions is equivalent to the following: for everyR ands > 0 we
havev ({zeR:0<c(x)z <)) Av({zeR: -6 <c(x)z <0}) > 0. Sincev(R) > 0, it suffices to look at
x such that (x) # 0. However, for suchx, the condition obviously holds true under E2(i).

Next we verify the LD condition under E2(ii). i is constant, then we can apply Kulikq, Proposition
0.1] to verify the LD condition. Hence we suppose that = 0 in what follows. First, we smoothly truncate
the support ob, as follows: pick any € (0,€), lety : R — [0, 1] be given by*

_Jepl-C-9 ' -E-27"} (e<z<?9,
V)= { 0 : } (otherwise,

and set
v1(dz) = {Y(2) + ¥ (-2)}g«(2)dz.

Then we have the decomposition= v, 4 v,, wherev, (dz) := [1—{y(z) + ¥ (—2)}]v«(dz) + vy(dz) defines
a Lévy measure. The functian— {y(z) + ¥ (—z)}g«(z) is smooth and supported pye, —¢] U [¢, €]. With

this truncation, we can apply KulikL.p, Proposition A.1]: we have already verified Kulik’s conditiSnn the

previous paragraph, and it suffices to prove that

Ix" eR3It">0: Px”[gt” = R] > 0,

whereS; := {uEic(Xr_); ueR, €Dy N, t)}, with D; and(€!)o<s<: respectively denoting the domain
of the point proces®/; associated witlv; and the right-continuous solution to

t t
=1+ / dca(Xy)Eldu + / dxc(Xy)EXd .

1The author owes Professor A. M. Kulik for this clear-cut choicejof
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The stochastic-exponential formula leads to

gl =explY,—Y) [] 1+ AY)exp-AYy). s <1,

S<u=<t
whereYy := [ 0xa(Xy)dv + [, dxc(Xy—-)dJ,. We now introduce the two auxiliary sets:
A1) :={w € Q:DyN(0,1) # B},
A"(t) :={w e Q: u((0,1].{z € R; |z| = 1/]|9xclsc}) = O},
whereu(dt, dz) denotes the Poisson random measure associatedwalecording to the implications

{|AJM| < [|9xc| u € (0, t]} CH{loxc(Xy=)AJy| <1, u € (0,1]}

={|AYy| <1, u € (0,¢]}
c{& #0,se0.1]}.

-1
00

the process|E!|)o<s<: Stays positive a.s. oA”(r). SinceP[A'(r) N A”(t)] > 0 for everyr > 0 andc is
supposed to be non-vanishing Bnwe observe that for every € R andr > 0,

PoSi =Rl = P [(Si =Rb N A'@0) N A" (0)]
> Py [{€Lc(Xs-) # 0 for somes € (0,1)} N A'(t) N A" (1)]

= Py [{c(X,-) # 0 for somes € (0,7)} N A'(r) N A" (1)]
= P [A0)n A" (1)] >0,

whence we have verified the LD condition.

Verification of (11): the drift condition.

Now we turn to the verification o). For verification under E3(i), one can refer to Kulikj] and Masuda
[25, 26]; in this case, we may sef(x) = |x|? outside a sufficiently large neighborhood of the origin. It remains
to prove £8) under E3(ii), and we will achieve this in a somewhat similar manner to the proof of Mastida [
Theorem 1.2].

Fix anye € (0,¢||c|lz} A 1) and pick ap € C?(R) such that the following three conditions are in force: (i)
@(x) = exple|x|) for |x| > €71; (ii) p(x) < exp(e|x|) for everyx; and (iii) [02¢(x)| < Ce?gp(x) for everyx.

We can writedgp = Go + J¢, where

Go(x) = dep()atx) + 300D (),
o0 1= [ ox +c2) - p0) — Bapx)c0)2) v(d2)

According to the local boundednessxof— Ap(x), we may and do concentrate srwith |x| large enough.
Direct algebra gives

Go(x) < ep(x) {sgn(x)a(x) + Ce}. (59)
Also, by means of Taylor's theorem and the property of

1700 < eGP / 122 (03“51 1920(x + sc(x)z)i) v(d2)
< € explelx) / 1212 explellc oolz]) v(d2)
< o). (60)

By putting 69) and ©0) together and by taking small enough, we can find a constagt > 0 for which
Ap(x) < —cop(x) for every|x| large enough. The proof of Propositiérilis complete. O

Remark 5.2. If the condition orv in E2(i) fails to hold, ther/ is necessarily a compound-Poisson process. In
this case, we can utilize the criteria given in Masudaé][

26



Remark 5.3. Comparing E3(ii) with E3(i), we may say thatq) follows from a weaker condition on the drift
functiona in compensation for a stronger moment conditiorvon

Remark 5.4. By combining the results of the LD-condition argument and general stability theory for Markov
processes, it is possible to formulate subexponential- and polynomial-ergodicity versions, as well as the ergod-
icity version (without rate specification): see e.g. Meyn and Tweédjeahd Fort and Roberts{]. Especially,

as in Masuda P6], the conditions on(a, b, ¢) in Proposition5.1 can be considerably relaxed in case of the
ergodicity version.
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