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Speeding-up q-gram mining on grammar-based compressed texts

Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda

Department of Informatics, Kyushu University
{keisuke.gotou,bannai,inenaga,takeda}@inf.kyushu-u.ac.jp

Abstract. We present an efficient algorithm for calculating q-gram frequencies on strings represented
in compressed form, namely, as a straight line program (SLP). Given an SLP T of size n that represents
string T , the algorithm computes the occurrence frequencies of all q-grams in T , by reducing the problem
to the weighted q-gram frequencies problem on a trie-like structure of size m = |T | − dup(q, T ), where
dup(q, T ) is a quantity that represents the amount of redundancy that the SLP captures with respect to
q-grams. The reduced problem can be solved in linear time. Since m = O(qn), the running time of our
algorithm is O(min{|T |−dup(q, T ), qn}), improving our previous O(qn) algorithm when q = Ω(|T |/n).

1 Introduction

Many large string data sets are usually first compressed and stored, while they are decompressed
afterwards in order to be used and analyzed. Compressed string processing (CSP) is an approach
that has been gaining attention in the string processing community. Assuming that the input is given
in compressed form, the aim is to develop methods where the string is processed or analyzed without
explicitly decompressing the entire string, leading to algorithms with time and space complexities
that depend on the compressed size rather than the whole uncompressed size. Since compression
algorithms inherently capture regularities of the original string, clever CSP algorithms can be
theoretically [12, 4, 10, 7], and even practically [17, 9], faster than algorithms which process the
uncompressed string.

In this paper, we assume that the input string is represented as a Straight Line Program (SLP),
which is a context free grammar in Chomsky normal form that derives a single string. SLPs are a
useful tool when considering CSP algorithms, since it is known that outputs of various grammar
based compression algorithms [15, 14], as well as dictionary compression algorithms [22, 20, 21, 19]
can be modeled efficiently by SLPs [16]. We consider the q-gram frequencies problem on compressed
text represented as SLPs. q-gram frequencies have profound applications in the field of string mining
and classification. The problem was first considered for the CSP setting in [11], where an O(|Σ|2n2)-
time O(n2)-space algorithm for finding the most frequent 2-gram from an SLP of size n representing
text T over alphabet Σ was presented. In [3], it is claimed that the most frequent 2-gram can be
found in O(|Σ|2n log n)-time and O(n log |T |)-space, if the SLP is pre-processed and a self-index is
built. A much simpler and efficient O(qn) time and space algorithm for general q ≥ 2 was recently
developed [9].

Remarkably, computational experiments on various data sets showed that the O(qn) algorithm
is actually faster than calculations on uncompressed strings, when q is small [9]. However, the
algorithm slows down considerably compared to the uncompressed approach when q increases.
This is because the algorithm reduces the q-gram frequencies problem on an SLP of size n, to the
weighted q-gram frequencies problem on a weighted string of size at most 2(q−1)n. As q increases,
the length of the string becomes longer than the uncompressed string T . Theoretically q can be as
large as O(|T |), hence in such a case the algorithm requires O(|T |n) time, which is worse than a
trivial O(|T |) solution that first decompresses the given SLP and runs a linear time algorithm for
q-gram frequencies computation on T .



In this paper, we solve this problem, and improve the previous O(qn) algorithm both theo-
retically and practically. We introduce a q-gram neighbor relation on SLP variables, in order to
reduce the redundancy in the partial decompression of the string which is performed in the pre-
vious algorithm. Based on this idea, we are able to convert the problem to a weighted q-gram
frequencies problem on a weighted trie, whose size is at most |T | − dup(q, T ). Here, dup(q, T ) is a
quantity that represents the amount of redundancy that the SLP captures with respect to q-grams.
Since the size of the trie is also bounded by O(qn), the time complexity of our new algorithm
is O(min{qn, |T | − dup(q, T )}), improving on our previous O(qn) algorithm when q = Ω(|T |/n).
Preliminary computational experiments show that our new approach achieves a practical speed up
as well, for all values of q.

2 Preliminaries

2.1 Intervals, Strings, and Occurrences

For integers i ≤ j, let [i : j] denote the interval of integers {i, . . . , j}. For an interval [i : j] and
integer q > 0, let pre([i : j], q) and suf ([i : j], q) represent respectively, the length-q prefix and suffix
interval, that is, pre([i : j], q) = [i : min(i+ q − 1, j)] and suf ([i : j], q) = [max(i, j − q + 1) : j].

Let Σ be a finite alphabet. An element of Σ∗ is called a string. For any integer q > 0, an element
of Σq is called a q-gram. The length of a string T is denoted by |T |. The empty string ε is a string
of length 0, namely, |ε| = 0. For a string T = XY Z, X, Y and Z are called a prefix, substring, and
suffix of T , respectively. The i-th character of a string T is denoted by T [i], where 1 ≤ i ≤ |T |. For
a string T and interval [i : j](1 ≤ i ≤ j ≤ |T |), let T ([i : j]) denote the substring of T that begins
at position i and ends at position j. For convenience, let T ([i : j]) = ε if j < i. For a string T and
integer q ≥ 0, let pre(T, q) and suf (T, q) represent respectively, the length-q prefix and suffix of T ,
that is, pre(T, q) = T (pre([1 : |T |], q)) and suf (T, q) = T (suf ([1 : |T |], q)).

For any strings T and P , let Occ(T, P ) be the set of occurrences of P in T , i.e., Occ(T, P ) =
{k > 0 | T [k : k + |P | − 1] = P}. The number of elements |Occ(T, P )| is called the occurrence
frequency of P in T .

2.2 Straight Line Programs
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Fig. 1. The derivation tree of SLP T = {X1 → a,
X2 → b, X3 → X1X2, X4 → X1X3, X5 → X3X4,
X6 → X4X5, X7 → X6X5}, representing string T =
val(X7) = aababaababaab.

A straight line program (SLP) is a set of
assignments T = {X1 → expr1, X2 →
expr2, . . . , Xn → exprn}, where each Xi is a
variable and each expri is an expression, where
expri = a (a ∈ Σ), or expri = Xℓ(i)Xr(i) (i >
ℓ(i), r(i)). It is essentially a context free gram-
mar in the Chomsky normal form, that derives
a single string. Let val(Xi) represent the string
derived from variable Xi. To ease notation, we
sometimes associate val(Xi) with Xi and de-
note |val(Xi)| as |Xi|, and val(Xi)([u : v]) as
Xi([u : v]) for any interval [u : v]. An SLP T represents the string T = val(Xn). The size of the
program T is the number n of assignments in T . Note that |T | can be as large as Θ(2n). However,
we assume as in various previous work on SLP, that the computer word size is at least log |T |,
and hence, values representing lengths and positions of T in our algorithms can be manipulated in
constant time.



The derivation tree of SLP T is a labeled ordered binary tree where each internal node is labeled
with a non-terminal variable in {X1, . . . , Xn}, and each leaf is labeled with a terminal character
in Σ. The root node has label Xn. Let V denote the set of internal nodes in the derivation tree.
For any internal node v ∈ V, let ⟨v⟩ denote the index of its label X⟨v⟩. Node v has a single child
which is a leaf labeled with c when (X⟨v⟩ → c) ∈ T for some c ∈ Σ, or v has a left-child and right-
child respectively denoted ℓ(v) and r(v), when (X⟨v⟩ → X⟨ℓ(v)⟩X⟨r(v)⟩) ∈ T . Each node v of the tree
derives val(X⟨v⟩), a substring of T , whose corresponding interval itv(v), with T (itv(v)) = val(X⟨v⟩),
can be defined recursively as follows. If v is the root node, then itv(v) = [1 : |T |]. Otherwise, if
(X⟨v⟩ → X⟨ℓ(v)⟩X⟨r(v)⟩) ∈ T , then, itv(ℓ(v)) = [bv : bv + |X⟨ℓ(v)⟩| − 1] and itv(r(v)) = [bv + |X⟨ℓ(v)⟩| :
ev], where [bv : ev] = itv(v). Let vOcc(Xi) denote the number of times a variable Xi occurs in the
derivation tree, i.e., vOcc(Xi) = |{v | X⟨v⟩ = Xi}|. We assume that any variable Xi is used at least
once, that is vOcc(Xi) > 0.

For any interval [b : e] of T (1 ≤ b ≤ e ≤ |T |), let ξT (b, e) denote the deepest node v in the
derivation tree, which derives an interval containing [b : e], that is, itv(v) ⊇ [b : e], and no proper
descendant of v satisfies this condition. We say that node v stabs interval [b : e], and X⟨v⟩ is called
the variable that stabs the interval. If b = e, we have that (X⟨v⟩ → c) ∈ T for some c ∈ Σ, and
itv(v) = b = e. If b < e, then we have (X⟨v⟩ → X⟨ℓ(v)⟩X⟨r(v)⟩) ∈ T , b ∈ itv(ℓ(v)), and e ∈ itv(r(v)).
When it is not confusing, we will sometimes use ξT (b, e) to denote the variable X⟨ξT (b,e)⟩.

SLPs can be efficiently pre-processed to hold various information. |Xi| and vOcc(Xi) can be
computed for all variables Xi(1 ≤ i ≤ n) in a total of O(n) time by a simple dynamic programming
algorithm. Also, the following Lemma is useful for partial decompression of a prefix of a variable.

Lemma 1 ([8]). Given an SLP T = {Xi → expr i}ni=1, it is possible to pre-process T in O(n) time
and space, so that for any variable Xi and 1 ≤ j ≤ |Xi|, Xi([1 : j]) can be computed in O(j) time.

The formal statement of the problem we solve is:

Problem 1 (q-gram frequencies on SLP). Given integer q ≥ 1 and an SLP T of size n that represents
string T , output (i, |Occ(T, P )|) for all P ∈ Σq where Occ(T, P ) ̸= ∅, and some i ∈ Occ(T, P ).

Since the problem is very simple for q = 1, we shall only consider the case for q ≥ 2 for the rest of
the paper. Note that although the number of distinct q-grams in T is bounded by O(qn), we would
require an extra multiplicative O(q) factor for the output if we output each q-gram explicitly as a
string. In our algorithms to follow, we compute a compact, O(qn)-size representation of the output,
from which each q-gram can be easily obtained in O(q) time.

3 O(qn) Algorithm [9]

In this section, we briefly describe the O(qn) algorithm presented in [9]. The idea is to count
occurrences of q-grams with respect to the variable that stabs its occurrence. The algorithm reduces
Problem 1 to calculating the frequencies of all q-grams in a weighted set of strings, whose total
length is O(qn). Lemma 2 shows the key idea of the algorithm.

Lemma 2. For any SLP T = {Xi → expr i}ni=1 that represents string T , integer q ≥ 2, and P ∈ Σq,
|Occ(T, P )| =

∑n
i=1 vOcc(Xi) · |Occ(ti, P )|, where ti = suf (val(Xℓ(i)), q − 1)pre(val(Xr(i)), q − 1).

Proof. For any q ≥ 2, v stabs the interval [u : u + q − 1] if and only if [u : u + q − 1] ⊆ [sv :
fv] = suf (itv(ℓ(v)), q− 1)∪ pre(itv(r(v)), q− 1). (See Fig. 2.) Also, since an occurrence of Xi in the



derivation tree always derives the same string val(Xi), ti = T ([sv : fv]) for any node v such that
X⟨v⟩ = Xi. Therefore,

|Occ(T, P )| =
∣∣{u > 0 | T ([u : u+ q − 1]) = P}

∣∣
=

∑
v∈V

∣∣{u > 0 | ξT (u, u+ q − 1) = v, j = u− sv + 1, X⟨v⟩([j : j + q − 1]) = P}
∣∣

=

n∑
i=1

∑
v∈V:X⟨v⟩=Xi

∣∣{u > 0 | ξT (u, u+ q − 1) = v, j = u− sv + 1, X⟨v⟩([j : j + q − 1]) = P}
∣∣

=
n∑

i=1

∑
v∈V:X⟨v⟩=Xi

Occ(T ([sv : fv]), P ) =
n∑

i=1

vOcc(Xi) ·Occ(ti, P ).

⊓⊔

q - 1q - 1

q

Xi

Xℓ(i) Xr(i)ti

T

Fig. 2. Length-q intervals where
X⟨ξT (u,u+q−1)⟩ = Xi, and (Xi → Xℓ(i)Xr(i)) ∈
T .

From Lemma 2, we have that occurrence frequen-
cies in T are equivalent to occurrence frequencies in ti
weighted by vOcc(Xi). Therefore, the q-gram frequencies
problem can be regarded as obtaining the weighted fre-
quencies of all q-grams in the set of strings {t1, . . . , tn},
where each occurrence of a q-gram in ti is weighted by
vOcc(Xi). This can be further reduced to a weighted q-
gram frequency problem for a single string z, where each
position of z holds a weight associated with the q-gram
that starts at that position. String z is constructed by
concatenating all ti’s with length at least q. The weights
of positions corresponding to the first |ti|−(q−1) charac-
ters of ti will be vOcc(Xi), while the last (q−1) positions
will be 0 so that superfluous q-grams generated by the
concatenation are not counted. The remaining is a simple
linear time algorithm using suffix and lcp arrays on the weighted string, thus solving the problem
in O(qn) time and space.

4 New Algorithm

We now describe our new algorithm which solves the q-gram frequencies problem on SLPs. The new
algorithm basically follows the previous O(qn) algorithm, but is an elegant refinement. The reduc-
tion for the previous O(qn) algorithm leads to a fairly large amount of redundantly decompressed
regions of the text as q increases. This is due to the fact that the ti’s are considered independently
for each variableXi, while neighboring q-grams that are stabbed by different variables actually share
q − 1 characters. The key idea of our new algorithm is to exploit this redundancy. (See Fig. 3.)
In what follows, we introduce the concept of q-gram neighbors, and reduce the q-gram frequencies
problem on SLP to a weighted q-gram frequencies problem on a weighted tree.

4.1 q-gram Neighbor Graph

We say that Xj is a right q-gram neighbor of Xi (i ̸= j), or equivalently, Xi is a left q-gram neighbor
of Xj , if for some integer u ∈ [1 : |T | − q], X⟨ξT (u,u+q−1)⟩ = Xi and X⟨ξT (u+1,u+q)⟩ = Xj . Notice
that |Xi| and |Xj | are both at least q if Xi and Xj are right or left q-gram neighbors of each other.
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Fig. 3. q-gram neighbors and redundancies. (Left) Xj is a right q-gram neighbor of Xi, and Xi is a left q-gram
neighbor of Xj . Note that the right q-gram neighbor of Xi is uniquely determined since |Xr(i)| ≥ q and it must
be a descendant on the left most path rooted at Xr(i), However, Xj may have other left q-gram neighbors, since
|Xℓ(j)| < q, and they must be ancestors of Xj . ti (resp. tj) represents the string corresponding to the union of
intervals [u : u+ q− 1] where X⟨ξT (u,u+q−1)⟩ = Xi (resp. X⟨ξT (u,u+q−1)⟩ = Xj). The shaded region depicts the string
which is redundantly decompressed, if both ti and tj are considered independently. (Right) Shows the reverse case,
when |Xr(i)| < q.

Definition 1. For q ≥ 2, the right q-gram neighbor graph of SLP T = {Xi → expri}ni=1 is the
directed graph Gq = (V,Er), where

V = {Xi | i ∈ {1, . . . , n}, |Xi| ≥ q}
Er = {(Xi, Xj) | Xj is a right q-gram neighbor of Xi }

Note that there can be multiple right q-gram neighbors for a given variable. However, the total
number of edges in the neighbor graph is bounded by 2n, as will be shown below.

Lemma 3. Let Xj be a right q-gram neighbor of Xi. If, |Xr(i)| ≥ q, then Xj is the label of the
deepest variable on the left-most path of the derivation tree rooted at a node labeled Xr(i) whose
length is at least q. Otherwise, if |Xr(i)| < q, then Xi is the label of the deepest variable on the
right-most path rooted at a node labeled Xℓ(j) whose length is at least q.

Proof. Suppose |Xr(i)| ≥ q. Let u be a position, whereX⟨ξT (u,u+q−1)⟩ = Xi andX⟨ξT (u+1,u+q)⟩ = Xj .
Then, since the interval [u + 1 : u + q] is a prefix of itv(Xr(i)), Xj must be on the left most path
rooted at Xr(i). Since Xj = X⟨ξT (u+1,u+q)⟩, the lemma follows from the definition of ξT . The case
for |Xr(i)| < q is symmetrical and can be shown similarly. ⊓⊔

Lemma 4. For an arbitrary SLP T = {Xi → expri}ni=1 and integer q ≥ 2, the number of edges in
the right q-gram neighbor graph Gq of T is at most 2n.

Proof. Suppose Xj is a right q-gram neighbor of Xi. From Lemma 3, we have that if |Xr(i)| ≥ q, the
right q-gram neighbor of Xi is uniquely determined and that |Xℓ(j)| < q. Similarly, if |Xr(i)| < q,
|Xℓ(j)| ≥ q and the left q-gram neighbor of Xj is uniquely Xi. Therefore,

n∑
i=1

|{(Xi, Xj) ∈ Er | |Xr(i)| ≥ q}|+
n∑

i=1

|{(Xi, Xj) ∈ Er | |Xr(i)| < q}|

=

n∑
i=1

|{(Xi, Xj) ∈ Er | |Xr(i)| ≥ q}|+
n∑

i=1

|{(Xi, Xj) ∈ Er | |Xℓ(j)| ≥ q}| ≤ 2n.

⊓⊔



Lemma 5. For an arbitrary SLP T = {Xi → expri}ni=1 and integer q ≥ 2, the right q-gram
neighbor graph Gq of T can be constructed in O(n) time.

Proof. For any variable Xi, let lmq(Xi) and rmq(Xi) respectively represent the index of the label
of the deepest node with length at least q on the left-most and right-most path in the derivation
tree rooted at Xi, or null if |Xi| < q. These values can be computed for all variables in a total
of O(n) time based on the following recursion: If (Xi → a) ∈ T for some a ∈ Σ, then lmq(Xi) =
rmq(Xi) = null . For (Xi → Xℓ(i)Xr(i)) ∈ T ,

lmq(Xi) =


null if |Xi| < q,

i if |Xi| ≥ q and |Xℓ(i)| < q,

lmq(Xℓ(i)) otherwise.

rmq(Xi) can be computed similarly. Finally,

Er = {(Xi, Xlmq(Xr(i))) | lmq(Xr(i)) ̸= null , i = 1, . . . , n}
∪{(Xrmq(Xℓ(i)), Xi) | rmq(Xℓ(i)) ̸= null , i = 1, . . . , n}.

⊓⊔

Lemma 6. Let Gq = (V,Er) be the right q-gram neighbor graph of SLP T = {Xi = expri}ni=1

representing string T , and let Xi1 = X⟨ξT (1,q)⟩. Any variable Xj ∈ V (i1 ̸= j) is reachable from Xi1,
that is, there exists a directed path from Xi1 to Xj in Gq.

Proof. Straightforward, since any q-gram of T except for the left most T ([1 : q]) has a q-gram on
its left. ⊓⊔

4.2 Weighted q-gram Frequencies Over a Trie

From Lemma 6, we have that the right q-gram neighbor graph is connected. Consider an arbitrary
directed spanning tree rooted at Xi1 = X⟨ξT (1,q)⟩ which can be obtained in linear time by a depth
first traversal on Gq from Xi1 . We define the label label(Xi) of each node Xi of the q-gram neighbor
graph, by

label(Xi) = ti[q : |ti|]

where ti = suf (val(Xℓ(i)), q−1)pre(val(Xr(i)), q−1) as before. For convenience, let Xi0 be a dummy
variable such that label(Xi0) = T ([1 : q − 1]), and Xr(i0) = Xi1 (and so (Xi0 , Xi1) ∈ Er).

Lemma 7. Fix a directed spanning tree on the right q-gram neighbor graph of SLP T , rooted at Xi0.
Consider a directed path Xi0 , . . . , Xim on the spanning tree. The weighted q-gram frequencies on the
string obtained by the concatenation label(Xi0)label(Xi1) · · · label(Xim), where each occurrence of a
q-gram that ends in a position in label(Xij ) is weighted by vOcc(Xij ), is equivalent to the weighted
q-gram frequencies of strings {ti1 , . . . tim} where each q-gram in tij is weighted by vOcc(Xij ).

Proof. Proof by induction: for m = 1, we have that label(Xi0)label(Xi1) = ti1 . All q-grams in ti1
end in ti1 and so are weighted by vOcc(Xi1). When label(Xij ) is added to label(Xi0) · · · label(Xij−1),
|label(Xij )| new q-grams are formed, which correspond to q-grams in tij , i.e. |tij | = q−1+|label(Xij )|,
and tij is a suffix of label(Xij−1)label(Xij ). All the new q-grams end in label(Xij ) and are thus
weighted by vOcc(Xij ). ⊓⊔



Algorithm 1: Constructing weighted trie from SLP

1 Construct right q-gram neighbor graph G = (V,Er);
2 Calculate vOcc(Xi) for i = 1, . . . , n;
3 Calculate |label(Xi)| for i = 1, . . . , n;
4 for i = 0, . . . , n do visited[i] = false;
5 Xi1 = X⟨ξT (1,q)⟩ = lmq(Xn);
6 Define Xi0 so that Xr(i0) = Xi1 and |label(Xi0)| = q − 1;
7 root ← new node; // root of resulting trie

8 BuildDepthFirst(i0, root);
9 return root

Procedure BuildDepthFirst(i, trieNode)

// add prefix of r(i) to trieNode while right neighbors of i are unique

1 l← 0; k ← i;
2 while true do
3 l← l + |label(Xk)|;
4 visited[k]← true;

// exit loop if right neighbor is possibly non-unique or is visited

5 if |Xr(k)| < q or visited[lmq(Xr(k))] = true then break;
6 k ← lmq(Xr(k));

7 add new branch from trieNode with string Xr(i)([1 : l]);
8 let end of new branch be newTrieNode;

// If |Xr(k)| < q, there may be multiple right neighbors.

// If |Xr(k)| ≥ q, nothing is done because it has already been visited.

9 for Xc ∈ {Xj | (Xk, Xj) ∈ Er} do
10 if visited[c] = false then
11 BuildDepthFirst (Xc, newTrieNode);

From Lemma 7, we can construct a weighted trie Υ based on a directed spanning tree of Gq

and label(), where the weighted q-grams in Υ (represented as length-q paths) correspond to the
occurrence frequencies of q-grams in T . 1

Lemma 8. Υ can be constructed in time linear in its size.

Proof. See Algorithm 1. Let G be the q-gram neighbor graph. We construct Υ in a depth first
manner starting at Xi0 . The crux of the algorithm is that rather than computing label() separately
for each variable, we are able to aggregate the label()s and limit all partial decompressions of
variables to prefixes of variables, so that Lemma 1 can be used.

Any directed acyclic path on G starting at Xi0 can be segmented into multiple sequences of
variables, where each sequenceXij , . . . , Xik is such that j is the only integer in [j : k] such that j = 0
or |Xr(ij−1)| < q. From Lemma 3, we have that Xij+1 , . . . , Xik are uniquely determined. If j > 0,
label(Xij ) is a prefix of val(Xr(ij)) since |Xr(ij−1)| < q (see Fig. 3 Right), and if j = 0, label(Xi0)
is again a prefix of val(Xr(i0)) = val(Xi1). It is not difficult to see that label(Xij ) · · · label(Xik) is
also a prefix of Xr(ij) since Xij+1 , . . . , Xik are all descendants of Xr(ij), and each label() extends the
partially decompressed string to consider consecutive q-grams in Xr(ij). Since prefixes of variables
of SLPs can be decompressed in time proportional to the output size with linear time pre-processing
(Lemma 1), the lemma follows. ⊓⊔
1 A minor technicality is that a node in Υ may have multiple children with the same character label, but this does
not affect the time complexities of the algorithm.



We only illustrate how the character labels are determined in the pseudo-code of Algorithm 1.
It is straightforward to assign a weight vOcc(Xk) to each node of Υ that corresponds to label(Xk).

Lemma 9. The number of edges in Υ is (q − 1) +
∑

{|ti| − (q − 1) | |Xi| ≥ q, i = 1, . . . , n} =
|T | − dup(q, T ) where

dup(q, T ) =
∑

{(vOcc(Xi)− 1) · (|ti| − (q − 1)) | |Xi| ≥ q, i = 1, . . . , n}}

Proof. (q − 1) +
∑

{|ti| − (q − 1) | |Xi| ≥ q, i = 1, . . . , n} is straight forward from the definition of
label(Xi) and the construction of Υ . Concerning dup, each variable Xi occurs vOcc(Xi) times in the
derivation tree, but only once in the directed spanning tree. This means that for each occurrence
after the first, the size of Υ is reduced by |label(Xi)| = |ti| − (q− 1) compared to T . Therefore, the
lemma follows. ⊓⊔

To efficiently count the weighted q-gram frequencies on Υ , we can use suffix trees. A suffix tree
for a trie is defined as a generalized suffix tree for the set of strings represented in the trie as leaf
to root paths. 2 The following is known.

Lemma 10 ([18]). Given a trie of size m, the suffix tree for the trie can be constructed in O(m)
time and space.

With a suffix tree, it is a simple exercise to solve the weighted q-gram frequencies problem on
Υ in linear time. In fact, it is known that the suffix array for the common suffix trie can also be
constructed in linear time [6], as well as its longest common prefix array [13], which can also be
used to solve the problem in linear time.

Corollary 1. The weighted q-gram frequencies problem on a trie of size m can be solved in O(m)
time and space.

From the above arguments, the theorem follows.

Theorem 1. The q-gram frequencies problem on an SLP T of size n, representing string T can be
solved in O(min{qn, |T | − dup(q, T )}) time and space.

Note that since each q ≤ |ti| ≤ 2(q − 1), and |label(Xi)| = |ti| − (q − 1), the total length of
decompressions made by the algorithm, i.e. the size of the reduced problem, is at least halved and
can be as small as 1/q (when all |ti| = q, for example, in an SLP that represents LZ78 compression),
compared to the previous O(qn) algorithm.

5 Preliminary Experiments

We first evaluate the size of the trie Υ induced from the right q-gram neighbor graph, on which
the running time of the new algorithm of Section 4 is dependent. We used data sets obtained from
Pizza & Chili Corpus, and constructed SLPs using the RE-PAIR [14] compression algorithm. Each
data is of size 200MB. Table 1 shows the sizes of Υ for different values of q, in comparison with
the total length of strings ti, on which the previous O(qn)-time algorithm of Section 3 works. We
cumulated the lengths of all ti’s only for those satisfying |ti| ≥ q, since no q-gram can occur in ti’s
with |ti| < q. Observe that for all values of q and for all data sets, the size of Υ (i.e., the total
number of characters in Υ ) is smaller than those of ti’s and the original string.
2 When considering leaf to root paths on Υ , the direction of the string is the reverse of what is in T . However, this
is merely a matter of representation of the output.



Table 1. A comparison of the size of Υ and the total length of strings ti for SLPs that represent textual data from
Pizza & Chili Corpus. The length of the original text is 209,715,200. The SLPs were constructed by RE-PAIR [14].

XML DNA ENGLISH PROTEINS
q

∑
|ti| size of Υ

∑
|ti| size of Υ

∑
|ti| size of Υ

∑
|ti| size of Υ

2 19,082,988 9,541,495 46,342,894 23,171,448 37,889,802 18,944,902 64,751,926 32,375,964
3 37,966,315 18,889,991 92,684,656 46,341,894 75,611,002 37,728,884 129,449,835 64,698,833
4 55,983,397 27,443,734 139,011,475 69,497,812 112,835,471 56,066,348 191,045,216 93,940,205
5 72,878,965 35,108,101 185,200,662 92,516,690 148,938,576 73,434,080 243,692,809 114,655,697
6 88,786,480 42,095,985 230,769,162 114,916,322 183,493,406 89,491,371 280,408,504 123,786,699
7 103,862,589 48,533,013 274,845,524 135,829,862 215,975,218 103,840,108 301,810,933 127,510,939
8 118,214,023 54,500,142 315,811,932 153,659,844 246,127,485 116,339,295 311,863,817 129,618,754
9 131,868,777 60,045,009 352,780,338 167,598,570 273,622,444 126,884,532 318,432,611 131,240,299
10 144,946,389 65,201,880 385,636,192 177,808,192 298,303,942 135,549,310 325,028,658 132,658,662
15 204,193,702 86,915,492 477,568,585 196,448,347 379,441,314 157,558,436 347,993,213 138,182,717
20 255,371,699 104,476,074 497,607,690 200,561,823 409,295,884 162,738,812 364,230,234 142,213,239
50 424,505,759 157,069,100 530,329,749 206,796,322 429,380,290 165,882,006 416,966,397 156,257,977
100 537,677,786 192,816,929 536,349,226 207,838,417 435,843,895 167,313,028 463,766,667 168,544,608

The construction of the suffix tree or array for a trie, as well as the algorithm for Lemma 1,
require various tools such as level ancestor queries [5, 2, 1] for which we did not have an efficient
implementation. Therefore, we try to assess the practical impact of the reduced problem size using
a simplified version of our new algorithm. We compared three algorithms (NSA, SSA, STSA) that
count the occurrence frequencies of all q-grams in a text given as an SLP. NSA is the O(|T |)-time
algorithm which works on the uncompressed text, using suffix and LCP arrays. SSA is our previous
O(qn)-time algorithm [9], and STSA is a simplified version of our new algorithm. STSA further
reduces the weighted q-gram frequencies problem on Υ , to a weighted q-gram frequencies problem on
a single string as follows: instead of constructing Υ , each branch of Υ (on line 7 of BuildDepthFirst)
is appended into a single string. The q-grams that are represented in the branching edges of Υ can
be represented in the single string, by redundantly adding suf (Xr(i)([1 : l]), q − 1) in front of the
string corresponding to the next branch. This leads to some duplicate partial decompression, but
the resulting string is still always shorter than the string produced by our previous algorithm [9].
The partial decompression of Xr(i)([1 : l]) is implemented using a simple O(h+ l) algorithm, where
h is the height of the SLP which can be as large as O(n).

All computations were conducted on a Mac Pro (Mid 2010) with MacOS X Lion 10.7.2, and 2 x
2.93GHz 6-Core Xeon processors and 64GB Memory, only utilizing a single process/thread at once.
The program was compiled using the GNU C++ compiler (g++) 4.6.2 with the -Ofast option for
optimization. The running times were measured in seconds, after reading the uncompressed text
into memory for NSA, and after reading the SLP that represents the text into memory for SSA
and STSA. Each computation was repeated at least 3 times, and the average was taken.

Table 2 summarizes the running times of the three algorithms. SSA and STSA computed
weighted q-gram frequencies on ti and Υ , respectively. Since the difference between the total length
of ti and the size of Υ becomes larger as q increases, STSA outperforms SSA when the value of q is
not small. In fact, in Table 2 SSA2 was faster than SSA for all values of q > 3. STSA was even faster
than NSA on the XML data whenever q ≤ 20. What is interesting is that STSA outperformed NSA
on the ENGLISH data when q = 100.
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