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1 Main result

In this note, we prove a certain dulality-type result for height 1 multiple zeta-star
values and discuss its possible generalization.

For an index set (k1, ko, ..., ky,) of positive integers with k1 > 1, the multiple
zeta-star value (*(k1, ko, ..., ky) is defined by

1
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If we remove the equality signs in the summation, we obtain the usual multiple
zeta value:

1
Ck1 ko, ky) = E: TN TR
my>ma>--->my, >0 T ilin

The height of the multiple zeta or zeta-star value is the number of k; in the
index set which is greater than 1. The following theorem can be regarded as a
kind of duality for multiple zeta-star values of height 1.

Theorem 1 For any integers k,n > 1, we have
(=DF¢C(k+1,1,...,1) = (=1)"¢C(n+1,1,...,1) € Q[¢(2),¢(3),¢(5), - - ],
N—— S~——
n k

the right-hand side being the algebra over Q generated by the values of the Rie-
mann zeta function at positive integer arguments (> 1).

Remark For multiple zeta values, there is a well-known duality formula [9],
and the height 1 case of the formula reads as

C(k+1,1,...,1)=C(n+1,1,...,1)
—— ——
n—1 k—1

for k,n > 1. No such simple formula has been known for multiple zeta-star
values. It should be noted that the pair of indices

(k+1,1,...,1) « (n+1,1,...,1)
— ——

n k



in Theorem 1 is different from that in the duality formula for multiple zeta
values above.
We can also compute the generating function of the quantity

(—D)F¢(k+1,1,...,1) = (=1)"¢*(n+1,1,...,1)

in Theorem 1.

Theorem 2 We have

_ 1\k —(=1)"C*(n L Ik n
S DR+, 1) = (1) (n+ 1,1, 1))aby

kn>1 n L

= (z) — Y(y) + 7 (cot(mz) — cot(my)) F(li(l i)g(_l y)y) '

Here, ¢(z) = T'(z)/T'(x) is the digamma function, the logarithmic derivative of
the gamma function.

2 Proof of Theorems

We prove the following basic identity, from which follow both Theorem 1 and

Theorem 2. !

Proposition For k,n > 1, we have

(~DFC(k+1,1,...,1) = (=D"¢*(n+1,1,...,1)

n k
= kC(k+2,1,...,1)=nC(n+2,1,...,1)
n—1 k—1
k—2
HEDRY (D= )+ 1,1, 1)
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(=" ) _(=1)¢n—j)¢(k+1,1,...,1),
) N——

J
where we understand an empty sum to be 0.

Proof. We use two formulas for the special value of the function & (s) defined
for K > 1 by
€u(s) = —— /OO T i1 — et (1)
PTG Sy et—1 T E '

IRecently, C. Yamazaki ([8]) gave another proof of them. Tt uses a generating function of
certain sums of multiple zeta-star values which was introduced in [1].




In [3], we studied this function and obtained among others the formula

&n+1) = (_1)"'—1[C(n+1,2,17...,1)+C(n+1,1,271,...71)+---
k—1 k—1
e Cn+ 11,0, 1L,2)+ (n+1) - ¢(n+2,1,...,1)]
N—— —_——

) (-1 =) C(n+1,1,...,1), (2)

where k,n are integers > 1.
On the other hand, we showed in [6] that the value &;(n) is nothing but the
multiple zeta-star value of hetight 1, i.e., we have the formula

Gn+1)=Ch+1,1,...,1). 3)
——
Since the index sets (k+ 1,1,...,1) and (n+ 1,1,...,1) are dual (in the
N—— ——

n—1 k—1
context of multiple zeta values) with each other, the main theorem in [6] applied
to these index sets with [ = 1 gives the identity

Ck+2,1,....,0)+¢(k+1,2,1,..., )+ C(k+1,1,2,1,...,1) +---
N—_—— N—— N——

n—1 n—1 n—1
e Ck+1,1,...,1,2)
1
= (n+2,1,....0)+{(n+1,2,1,...., ) +{(n+1,1,2,1,..., 1)+ ---
—— — —_———
k—1 k—1 k—1
e+ C(n+1,1,...,1,2). (4)
—_——
k—1
Combining (2), (3) and (4), we obtain the proposition. O
Proof of Theorems 1 and 2. Recall the formula of Aomoto [2] and Drinfeld
[4]
Il -2 -y)
k+1,1,..., DaFym =1 — . 5
>« )ty s o)

kn>1 n—1

This together with the standard Taylor expansion of the (logarithm of) gamma
function

'l+z) = exp(—’yx + Z(—l)”C(nn)m") (Jx| < 1,7 : Euler’s constant) (6)
n=2

shows that all multiple zeta values of height 1 (= of type ((m,1,...,1)) can
be expressed as polynomials over Q in the Riemann zeta values. Theorem 1
therefore follows from the formula in Proposition.



As for the generating series, we start with the formula (5). Replace k& with
k+ 1 in (5) and divide the both-hand sides out by zy, and then differentiate
with respect to z and multiply zy. Then we obtain

> kC(k+2,1,..., aty"
kn>1 ne1
1 TA-2)I(1-y)

and hence by interchanging x and y and subtracting, we have

S| Rk+2,1,..,1) = n¢(n+2,1,...,1) | aFy"
N—— N——

n—1 k—1

11 F(l—ch(l—y)(;+¢(1—x)—;—w(1—y)>~ (7)

T ey ey
Next, by the formula
SO = (1 + @)+
i=2

(take the logarithmic derivative of (6)) and by (5), we have

k—

N

(DRSO (=1¢(k — )¢+ 1,1, Dabyn
kél Jgo ! HJ/—/ y
= Y (DA L L Dty

i>2,5,n>1 j—1

Z(—l)%(i)xiil Z Cn41,1,...,D)ziy"

i>2 jn>1 T
= a4 (1- ),

and thus we obtain

k—2

Mo EDEY =1k =)+ 1,1, 1)

kn>1 =0 Hj’_’
n—2 )




By Proposition, Theorem 2 follows from (7), (8), and the standard identities

Pl +2a)= % +¢(x) and 7cot(rz) = é +¢(1—z)—Y(1l+ ).

3 Possible generalization

In this section, we propose a possible generalization of Theorem 1 for arbitrary
heights.

First, we recall a few notations which are used in [1]. The weight and the
depth of multiple zeta-star values (*(k1, ko, ..., ky) are the sum ky +ko+- - -+ kj,
and the length n of its index, respectively. We denote by Xo(k,n,s) the sum
of all multiple zeta-star values of weight k, depth n and height s, for k > n+ s
andn > s > 1.

Based on the numerical experiments up to weight 11, we conjecture the
following.

Conjecture For any integers k,n > s > 1, we have

(—1)kX0(k—|—’I’L—|—]_7 TL+]., S) - (_1)nX0(k+n+]—v k+]-7 8) € Q[<(2)7 4(3)7 C(5)7 .. ]
Remark Theorem 1 is nothing but the case when s = 1 of the above conjecture.
Examples When the weight is 8 and the height is 2 or 3, we can show (using the

double shuffle relations of multiple zeta values) the following identities, which
are in favor of the conjecture.

876

X0(8,3,2) + X(8,6,2) = ﬁ<(2)4—<(2)<(3)2—34(3)4(5)
Xo(8,4,2) + Xo(8,5,2) = % (2)" +¢(2)¢(3)” +2¢(3)¢(5)
Xo(8,4,3) + X0(8,5.3) = % (2>4—%<<2><<3)2—<<3><(5)
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