九州大学学術情報リポジトリ Kyushu University Institutional Repository

On conjugacy classes of the Pro-\$ell\$ braid group of degree \$2\$

Kaneko, Masanobu Department of Mathematics, Faculty of Science, University of Tokyo

 $\verb|https://hdl.handle.net/2324/20418|$

出版情報: Proceedings of the Japan Academy. Ser. A, Mathematical sciences. 62 (7), pp.274-277,

1986. 日本学士院バージョン:

権利関係:

77. On Conjugacy Classes of the Pro-1 braid Group of Degree 2th

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1986)

By Masanobu KANEKO
Department of Mathematics, Faculty of Science, University of Tokyo

- O. Introduction. In [2], Y. Ihara studied the "pro-l braid group" of degree 2 which is a certain big subgroup $\Phi \subset \operatorname{Out} \mathfrak{F}$ of the outer automorphism group of the free pro-l group \mathfrak{F} of rank 2. There is a canonical representation $\varphi_q: G_q \to \Phi$ of the absolute Galois group $G_q = \operatorname{Gal}(\overline{Q}/Q)$ which is unramified outside l, and for each prime $p \neq l$, the Frobenius of p determines a conjugacy class C_p of Φ which is contained in the subset $\Phi_p \subset \Phi$ formed of all elements of "norm" p (loc. cit. Ch. I). In this note, we shall prove that Φ_p contains infinitely many Φ -conjugacy classes, at least if p generates \mathbf{Z}_l^{\times} topologically. It is an open question whether one can distinguish the Frobenius conjugacy class from other norm-p-conjugacy classes.
- 1. The result. Let l be a rational prime. We denote by \mathbf{Z}_l , \mathbf{Z}_l^{\times} and \mathbf{Q}_l , respectively, the ring of l-adic integers, the group of l-adic units and the field of l-adic numbers. As in [2], let $\mathfrak{F} = \mathfrak{F}^{(2)}$ be the free pro-l group of rank 2 generated by x, y, z, xyz = 1, $\Phi = \operatorname{Brd}^{(2)}(\mathfrak{F}; x, y, z)$ be the pro-l braid group of degree 2, $\operatorname{Nr}(\sigma) \in \mathbf{Z}_l^{\times}$ be the norm of $\sigma \in \Phi$, and for $\alpha \in \mathbf{Z}_l^{\times}$, Φ_{α} be the "norm- α -part", i.e., $\Phi_{\alpha} = \{\sigma \in \Phi \mid \operatorname{Nr}(\sigma) = \alpha\}$.

Theorem. If $\alpha \in \mathbb{Z}_{l}^{\times}$ generates \mathbb{Z}_{l}^{\times} , then the set Φ_{α} contains infinitely many Φ -conjugacy classes.

Remarks. 1) In [2], it is proved under the same assumption, that Φ_{α} contains at least two Φ -conjugacy classes. (Corollary of Proposition 8, Ch. I.)

- 2) In [1], M. Asada and the author studied the "pro-l mapping class group" and obtained a result similar to 1).
- **2.** Proof. Our method of proof is to consider the projection of Φ to the group $\Psi = \operatorname{Brd}^{(2)}(\mathfrak{F}/\mathfrak{F}''; x, y, z)$, where $\mathfrak{F}'' = [\mathfrak{F}', \mathfrak{F}']$, $\mathfrak{F}' = [\mathfrak{F}, \mathfrak{F}]$ and we use the same symbols x, y, z for their classes mod \mathfrak{F}'' . By Theorem 3 in [2] Ch. II, the group Ψ is explicitly realized as follows. Define the group Θ by

$$\Theta = \{(\alpha, F) \mid \alpha \in \mathbf{Z}_l^{\times}, \ F \in \mathcal{A}^{\times}, \ F + uvw\mathcal{A} = \theta_{\alpha}\}$$

with the composition law $(\alpha, F)(\beta, G) = (\alpha\beta, F \cdot G^{j\alpha})$, where

$$\mathcal{A} = Z_{l}[[u, v, w]]/((1+u)(1+v)(1+w)-1) \simeq Z_{l}[[u, v]],$$

^{†)} This is a part of the master's thesis of the author at the University of Tokyo (1985). He wishes to express his sincere gratitude to Professor Y. Ihara for his advice and encouragement.

 θ_{α} is certain class mod uvw determined by α , and j_{α} is a unique automorphism of the Z_i -algebra \mathcal{A} determined by

$$(1+u) \longrightarrow (1+u)^{\alpha}, \quad (1+v) \longrightarrow (1+v)^{\alpha}, \quad (1+w) \longrightarrow (1+w)^{\alpha}.$$

Then, $\Psi \simeq \Theta$ and $\Psi_1 \simeq 1 + uvw \mathcal{A}$. Here, for $\alpha \in \mathbb{Z}_l^{\times}$, Ψ_{α} is the norm- α -part. Henceforth, we identify $\Psi(\text{resp. } \Psi_1)$ with $\Theta(\text{resp. } 1 + uvw \mathcal{A})$ by this isomorphism.

Now, we shall prove that if α generates Z_l^{\times} , Ψ_{α} contains infinitely many Ψ -conjugacy classes.

We fix an element $(\alpha, F_a) \in \Psi_a$. For any $(\alpha, H) \in \Psi_a$, write $H = F_a(1 + uvwH_0)$, $H_0 \in \mathcal{A}$.

Since α generates Z_l^{\times} , the centralizer of (α, H) in Ψ contains an element with arbitrary norm. Thus, in Ψ_a , Ψ -conjugacy is equivalent to Ψ_1 -conjugacy. Let

$$G=1+uvwG_0\in \Psi_1,\qquad G_0\in \mathcal{A}.$$

Then

(1)
$$G^{-1}(\alpha, H)G = (\alpha, HG^{j\alpha}G^{-1}) \in \Psi_{\alpha}$$

and

(2)
$$HG^{j\alpha}G^{-1} = F_{\alpha}(1 + uvwH_0)(1 + uvwG_0)^{j\alpha}(1 + uvwG_0)^{-1}.$$

If we write

(3)
$$HG^{j\alpha}G^{-1}=F_{\alpha}(1+uvwJ), \qquad J\in\mathcal{A},$$

we get

$$(4) J \equiv H_0 + (uvw)^{j_{\alpha}-1}G_0^{j_{\alpha}} - G_0 \quad \text{mod } uvw.$$

Now, identify \mathcal{A} with $\mathbf{Z}_{l}[[u, v]]$ and write

$$G_0 \mod u = b_0 + b_1 v + b_2 v^2 + \cdots, \qquad b_i \in \mathbf{Z}_l \ (i \ge 0).$$

We view b_i $(i \ge 0)$ as variables over Z_l . Direct calculation shows that we can write

(5) $(uvw)^{j_{\alpha}-1}G_0^{j_{\alpha}}-G_0 \mod u=\sum_{i=0}^{\infty}\{(\alpha^{i+3}-1)b_i+Q_i(b_0,\,b_1,\,\cdots,\,b_{i-1})\}v^i$ where Q_i is a linear form determined alone by α with coefficients in Z_l in i variables. (Put $Q_0=0$.) For (α,H) , $(\alpha,H')\in \mathscr{V}_{\alpha}$, write

$$H = F_{\alpha}(1 + uvwH_0), \quad H' = F_{\alpha}(1 + uvwH'_0), \quad H_0, H'_0 \in \mathcal{A},$$

$$H_0 \mod u = h_0 + h_1 v + h_2 v^2 + \cdots, \quad H'_0 \mod u = h'_0 + h'_1 v + h'_2 v^2 + \cdots, \quad h_i, \ h'_i \in \mathbf{Z}_l, \\ h(H) = (h_0, \ h_1, \ h_2, \ \cdots), \qquad h(H') = (h'_0, \ h'_1, \ h'_2, \ \cdots).$$

Then by (1)–(5), if (α, H) and (α, H') are Ψ_1 -conjugate to each other, there exist $b_i \in \mathbb{Z}_l$, $i=0, 1, 2, \cdots$, such that

(6)
$$h_i = h'_i + (\alpha^{i+3} - 1)b_i + Q_i(b_0, b_1, \dots, b_{i-1})$$
 for all i .

In view of this, we shall define an equivalence relation in $Z_l^{\infty} = \{h = (h_0, h_1, h_2, \cdots) | \forall h_i \in Z_l \}$. For $h = (h_0, h_1, h_2, \cdots) \in Z_l^{\infty}$ and $i \geq 3$, define an element $R_i(h) \in Q_l$ inductively by

(7)
$$R_i(h) = \frac{1}{\alpha^i - 1} \{ h_{i-3} - Q_{i-3}(R_3(h), R_4(h), \dots, R_{i-1}(h)) \}.$$

It follows from (6) that, for $h=(h_0,h_1,\cdots)$, $h'=(h'_0,h'_1,\cdots)\in Z_l^{\infty}$ corresponding to H_0 , H'_0 ,

(8)
$$b_i = R_{i+3}(h) - R_{i+3}(h') \qquad (i \ge 0).$$

(Note that Q_i is a linear form.) Since α generates $\boldsymbol{Z}_l^{\times}$, $\alpha^i - 1 \in \boldsymbol{Z}_l^{\times}$ unless

So, for any integer $k \geq 1$, define

$$h \stackrel{(k)}{\sim} h'$$
 if and only if $R_{i(l-1)}(h) - R_{i(l-1)}(h') \in \mathbf{Z}_l$ for any i satisfying $1 < i < k$.

This is an equivalence relation in ${m Z}_I^{\scriptscriptstyle\infty}$. We call its equivalence class (k)equivalence class. Therefore $(\alpha, H) \sim (\alpha, H')$ (Ψ_i -conjugate to each other) implies $h(H) \stackrel{(k)}{\sim} h(H')$ for all $k \geq 1$.

We shall show that the number of (k)-equivalence classes in Z_I^{∞} tends to infinity as $k\to\infty$. Let $k\geq 2$ and $l^{\nu}||k$, i.e., l^{ν} is the exact power of ldividing k. Then $(\alpha^{k(l-1)}-1)Z_l = l^{\nu+1}Z_l$. We claim that a (k-1)-equivalence class consists of $l^{\nu+1}$ distinct (k)-equivalence classes. To see this, we fix a manner of "l-adic expansion" of an element in Q_l , i.e., for $a \in Q_l$, we write $a = \sum_{i=-m}^{\infty} a_i l^i \in \mathbf{Q}_l$, $a_i \in \mathbf{Z}$, $0 \le a_i \le l-1$, $m \in \mathbf{Z}$. We define the "fractional part" $\{a\}$ of a as $\sum_{i=-m}^{-1} a_i l^i$. Then $h \stackrel{(k)}{\sim} h'$ is equivalent to

 $\{\overline{R_{i(l-1)}}(h)\} = \{R_{i(l-1)}(h')\}$ for all i, $1 \le i \le k$.

Put

$$\tilde{R}_i(h) = \{R_{i(j-1)}(h)\}$$

 $\tilde{R}_i(h)\!=\!\{R_{i(l-1)}(h)\}.$ If h runs through a (k-1)-equivalence class, $Q_{k(l-1)-3}(0,\cdots,0,\tilde{R}_1(h),0,\cdots,0,$ $\tilde{R}_2(h), 0, \dots, 0, \tilde{R}_{k-1}(h), 0, \dots, 0$ is independent of h and the sum of this element and $(\alpha^{k(l-1)}-1)R_{k(l-1)}(h)$ belongs to Z_l . By the definition of $R_{k(l-1)}(h)$, we see easily that this sum takes every value mod $l^{\nu+1}$ ($l^{\nu}||k$) as h varying in a (k-1)-equivalence class. Therefore, a (k-1)-equivalence class consists of $l^{\nu+1}$ distinct (k)-equivalence classes and hence the number of (k)equivalence class in Z_l^{∞} tends to infinity as $k\to\infty$. By definition, the map $\Psi_{\alpha} \ni (\alpha, H) \rightarrow h(H) \in \mathbb{Z}_{l}^{\infty}$ is surjective. Therefore, we have shown that, if $\alpha \in Z_I^{\times}$ generates Z_I^{\times} , the set Ψ_{α} contains infinitely many Ψ -conjugacy classes.

Next, we shall deduce the theorem from this. Let

$$\Psi^{-} = \{(\alpha, F) \in \Theta \mid F\overline{F} = \alpha (uvw)^{j_{\alpha}-1}\}, \quad \Psi_{\alpha}^{-} = \Psi^{-} \cap \Psi_{\alpha} \quad (\alpha \in \mathbf{Z}_{l}^{\times}),$$

where $\overline{F} = F^{j-1}$ for $F \in \mathcal{A}$. Let $\gamma : \Phi \to \Psi$ be the natural map induced from Aut $\mathfrak{F} \rightarrow \text{Aut} (\mathfrak{F}/\mathfrak{F}'')$. Then, by Theorem 8 in [2] Ch. IV, the image of \mathfrak{I} coincides with Ψ^- . So, it suffices to show that there are infinitely many elements in Ψ_{α}^- which are not Ψ_{α} -conjugate to each other. We may choose our (α, F_{α}) from the minus part Ψ_{α}^- of Ψ_{α} . Let $(\alpha, H) \in \Psi_{\alpha}^-$ and write $H = F_{\alpha}(1 + uvwH_0), H_0 \in \mathcal{A}$. Then $1 + uvwH_0 \in \mathcal{V}_1^-$. It follows from this that $H_0 \equiv \overline{H}_0 \mod u$. Conversely, for $H_0 \in \mathcal{A}$ satisfying $H_0 \equiv \overline{H}_0 \mod u$, there exists $1+uvwH_0' \in \Psi_1^-$ such that $H_0' \equiv H_0 \mod u$. This can be seen in the same way as in the proof of Proposition 1 (ii), Ch. III, [2]. Therefore, when H runs through Ψ_{α}^{-} , i.e., $1+uvwH_{\alpha}$ runs through Ψ_{1}^{-} , H_{α} mod u runs through every element satisfying $H_0 \equiv \overline{H}_0 \mod u$. Now let

$$H_0 \mod u = h_0 + h_1 v + h_2 v^2 + \cdots$$

The condition $H_0 \equiv \overline{H}_0 \mod u$ is satisfied if and only if h_{2i} , $i=0,1,2,\cdots$, are arbitrary and h_{2i+1} , $i=0,1,2,\cdots$, are determined inductively by the relations

(9) $h_1=0$, $h_{2i+1}+{}_{i}C_{1}\cdot h_{2i}+{}_{i}C_{2}\cdot h_{2i-1}+\cdots+{}_{i}C_{i-1}\cdot h_{i+2}+h_{i+1}=0$ ($i\geq 1$). This can be seen easily by expanding

 $\overline{H}_0 \mod u = h_0 - h_1 v (1 - v + v^2 - \cdots) + h_2 v^2 (1 - v + v^2 - \cdots)^2 - \cdots$ and comparing the coefficient of v^i for $i = 0, 1, 2, \cdots$. So, to prove the theorem, it suffices to show that when h_0, h_2, h_4, \cdots , vary freely in Z_l and h_1, h_3, h_5, \cdots , are determined by (9), the number of (k)-equivalence classes to which k belongs tends to infinity as $k \to \infty$. As before, this can be checked by a lengthy but straightforward calculation of the quantity

$$(\alpha^{k(l-1)}-1)R_{k(l-1)}(h) + Q_{k(l-1)-3}(0, \cdots, 0, \tilde{R}_1(h), 0, \cdots, 0, \tilde{R}_2(h), 0, \cdots, 0, \tilde{R}_{k-1}(h), 0, \cdots, 0) \bmod l^{\nu+1}.$$

References

- [1] M. Asada and M. Kaneko: On the automorphism group of some pro-l fundamental group (to appear in Advanced Studies in Pure Math.).
- [2] Y. Ihara: Profinite braid groups, Galois representations and complex multiplications. Ann. of Math., 123, 43-106 (1986).