Two-Dimensional Analysis of Nitrate Nitrogen Movement under Drip Irrigation

Nomura, Koichi
Laboratory of Irrigation and Water Management, Division of Bioproduction Environmental Sciences, Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University

Yuge, Kozue

Shinogi, Yoshiyuki

野村, 浩一
九州大学大学院農学研究院環境農学部門生産環境科学講座灌漑利水学研究室

他

http://hdl.handle.net/2324/20336

出版情報：九州大学大学院農学研究院紀要. 56 (2), pp.389-393, 2011-09. Faculty of Agriculture, Kyushu University
バージョン: published
権利関係：
Two-Dimensional Analysis of Nitrate Nitrogen Movement under Drip Irrigation

Koichi NOMURA1, Kozue YUGE* and Yoshiyuki SHINOGI

Laboratory of Irrigation and Water Management, Division of Bioproduction Environmental Sciences, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan

(Received April 27, 2011 and accepted May 9, 2011)

The objective of this paper was to clarify the temporal and spatial two-dimensional variations of volumetric water content and NO3–N concentration in soil under drip irrigation. A numerical model was used for estimating temporal and spatial movements of water and NO3–N in soil. Laboratory experiments were conducted to estimate the physical properties such as soil water retentivity and conductivity. A field observation was conducted to evaluate the model accuracy. The temporal and spatial changes of volumetric water content and NO3–N concentration in soil were measured in a 1 m × 1 m × 1 m lysimeter where NH4NO3 solution was supplied in a row. The results of simulation calculated by the model agreed well with observed data. By using the model, temporal and spatial variations of soil water content and NO3–N concentration were calculated. The results described simultaneous movements of water and NO3–N spreading in a soil profile. The numerical model introduced here can be effective to estimate variations of water and NO3–N in soil.

INTRODUCTION

Drip irrigation is a method that saves water and fertilizer by allowing water to drip slowly onto the soil surface or directly to the root zone. In this irrigation system, fertilization, the application of dissolved fertilizers with water, has been used. A variety of chemicals are dissolved in the water. NO3–N, which is one of the common chemicals of fertilizers, can easily leach to the ground water table because it is eluvial at moderate pH (Jury and Horton, 2006). NO3–N in drinking water can cause low oxygen levels in the blood of infants, which is a potentially fatal condition (Bernard et al., 1997). Clarifying simultaneous transport of water and NO3–N in soil is important and the proposition of effective irrigation methods is necessary to prevent NO3–N from reaching the ground water table.

Numerous studies have been conducted to estimate the movements of NO3–N in soil. Nakamura et al. (2004) studied temporal and vertical variations of NO3–N and NH4–N concentrations including nitrification in root zone. Some models describing temporal and spatial multidimensional movement of solute, such as HYDRUS (2D/3D) (Šimůnek et al., 2008), have been developed. However, there have been few papers published on the investigation of two-dimensional changes of water and NO3–N in soil under drip irrigation.

The goal of the current study was to clarify temporal and spatial two-dimensional variations of volumetric water content and NO3–N concentration in soil under drip irrigation by using a combination of experiments and modeling.

METHODOLOGY

Governing equation of water and NO3–N transfer in soil

A numerical model describing water flow and NO3–N transport in soil was used to predict the temporal and spatial variations of NO3–N concentration with water flow.

Two-dimensional water movement in isotropic soil can be computed by solving Richards’ equation as follows:

\[\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(k_w \frac{\partial \psi}{\partial x} \right) + \frac{\partial}{\partial z} \left(k_m \frac{\partial \psi}{\partial z} \right) + \frac{\partial k_w}{\partial z} \]

where \(\psi \) is the pressure head (cmH2O), \(C_w \) is the water capacity function (cm/m), \(k_w \) is the unsaturated hydraulic conductivity (cm s⁻¹), \(\theta_c \) is the saturated volumetric water content (cm³ cm⁻³), \(\theta_r \) is the residual volumetric water content (cm³ cm⁻³), and \(\alpha \) and \(n \) are parameters.

The relationship between the volumetric water content, \(\theta \) (cm³ cm⁻³) and \(\phi \), is represented by the following equation (van–Genuchten, 1980):

\[\theta(\phi_c) = \theta_c + (\theta_r - \theta_c) \left[1 + (\alpha \phi)^n \right]^{-\frac{1-n}{n}} \]

where \(\theta_c \) is the saturated volumetric water content (cm³ cm⁻³), \(\theta_r \) is the residual volumetric water content (cm³ cm⁻³), and \(\alpha \) and \(n \) are parameters.

The unsaturated hydraulic conductivity is defined as follows (van–Genuchten, 1980):

\[k_w(\phi_c) = k_\infty \left[\frac{1}{1+(\alpha \phi)^n} \right]^{\frac{n-1}{n}} \left[1 - \frac{1}{1+(\alpha \phi)^n} \right]^{\frac{n-1}{n}} \]

where \(k_\infty \) is the saturated hydraulic conductivity (cm s⁻¹).

Two-dimensional soluble NO3–N movement in isotropic soil can be computed by solving convection–diffusion equation described below:

1 Laboratory of Irrigation and Water Management, Division of Bioproduction Environmental Sciences, Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University

* Corresponding author (E-mail: yuge@bpes.kyushu-u.ac.jp)
\[
\frac{\partial}{\partial t} (\theta C) = \frac{\partial}{\partial x} \left(\theta D_c \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial z} \left(\theta D_z \frac{\partial C}{\partial z} \right) - \frac{\partial}{\partial x} (q_w C) - \frac{\partial}{\partial z} (q_w C) \tag{4}
\]

where \(C \) is the soluble NO\(_3\)-N concentration (mgN cm\(^{-3}\)), \(D_c \) is the dispersion coefficient (cm\(^2\) s\(^{-1}\)), and \(q_w \) is the water flux (cm\(^3\) s\(^{-1}\)). Sorption of NO\(_3\)-N was negligible. The dispersion coefficient of soluble substance can be estimated as follows:

\[
\theta D_c = D_0 a \exp(b \theta) + \lambda |q_w| \tag{5}
\]

where \(D_0 \) is the molecular diffusion coefficient in free water (cm\(^2\) s\(^{-1}\)), \(\lambda \) is the longitudinal dispersivity (cm), and \(a \) and \(b \) are the parameters.

Initial and Boundary Conditions

For the simulation of the field experiment described in the following section, initial conditions of volumetric water content and soluble NO\(_3\)-N were obtained by linear interpolation of measured profile values just prior to irrigation. The boundary condition of water movement at soil surface was given by specified irrigation rates \(q_{w,irr} \), and a constant evaporation rate \(q_{w,eva} \). The boundary condition of NO\(_3\)-N at soil surface was given by the NO\(_3\)-N flux \(q_{c,irr} \) with irrigation. Boundary conditions at the walls and the bottom were set as fluxes equal to zero in both water and NO\(_3\)-N simulation.

Model Description

To solve the governing equations shown in eqs.(1) and (4), the finite-differential method was used. The numerical model for estimating water and NO\(_3\)-N movements are shown in Fig. 1 with the boundary conditions. The 1 m×1 m domain was divided into 60×60 grids. The time step was 0.05 second during irrigation and 1 second after the irrigation.

EXPERIMENTS

Laboratory Experiments

Laboratory experiments were conducted to determine some soil physical properties, including the soil water retentivity and conductivity, to apply the numerical model shown in Fig. 1. Granite soil was used in the experiments; this was also used in the field observation.
described below. The saturated water conductivity, \(k_{sw} \), in eq.(3), was obtained by the falling head method. The water retention curve was obtained by the hanging water column method and the centrifuge method. The residual volumetric water content, \(\theta_r \), and the parameters, \(\alpha \) and \(n \) in eqs.(2) and \(\alpha \) are determined by the least squares method for the data. The retention curve calculated by eq.(2) and observed values are represented in Fig. 2. The values used in eqs.(2) and (3) are represented in Table 1.

Field Observation

The accuracy of the numerical model for estimating water flow and \(\text{NO}_3^-\text{N} \) transport in soil was verified by a field observation using 1 m x 1 m x 1 m lysimeters. The lysimeters were filled with the granite soil. To simulate a condition of drip irrigation with dissolved fertilizer, 1 L of \(\text{NH}_4\text{NO}_3 \) solution with a concentration of 500 mgN L\(^{-1}\) was supplied at the center row of the lysimeter (Fig. 3). Irrigation intensity was 6.2 mm h\(^{-1}\). Soil samplings were conducted at the points shown in Fig. 4 to investigate the volumetric water content and the \(\text{NO}_3^-\text{N} \) concentration at 0, 0.5, 1, 2, 4, and 6 hours after the irrigation.

RESULTS AND DISCUSSION

Model Validation

Simulated and observed values of volumetric water content and \(\text{NO}_3^-\text{N} \) concentration in soil are shown in Figs. 5 and 6, respectively. The sampling points of Figs. 5 and 6 are shown in Fig. 4. The simulated values have relatively good agreement with the observed values. The results indicate that the model is valid. Differences between the simulated and the observed values might be caused by non-uniformity of soil physical characteristics and initial distribution of water and \(\text{NO}_3^-\text{N} \).

Spatial distributions of water and \(\text{NO}_3^-\text{N} \) concentration in soil

The temporal and spatial variations of the soil water content and \(\text{NO}_3^-\text{N} \) concentration simulated by the use of the numerical model are shown in Figs. 7 and 8. The assumed conditions in this simulation are represented in Table 2. The soil properties in the simulation are the same as those in the laboratory experiments above. As shown in Figs. 7 and 8, \(\text{NO}_3^-\text{N} \) is transferred with soil water by convection. The area of \(\text{NO}_3^-\text{N} \) distribution is larger than the area of water distribution because the dispersivity \(\lambda \) used in the simulation is relatively large (Jury and Horton, 2004) and diffusion also occurs even if there is no water flow.

<table>
<thead>
<tr>
<th>Table 2. Initial and boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial volumetric water content (cm(^3) cm(^{-3}))</td>
</tr>
<tr>
<td>Initial (\text{NO}_3^-\text{N}) concentration (mgN cm(^{-3}))</td>
</tr>
<tr>
<td>Water flux of irrigation (cm s(^{-1}))</td>
</tr>
<tr>
<td>(\text{NO}_3^-\text{N}) concentration of irrigation water (mgN cm(^{-3}))</td>
</tr>
<tr>
<td>Evaporation rate (cm s(^{-1}))</td>
</tr>
<tr>
<td>Dispersivity (cm)</td>
</tr>
</tbody>
</table>

Fig. 5. Calculated and measured values of volumetric water content \(\theta \) in soil.

Fig. 6. Calculated and measured values of \(\text{NO}_3^-\text{N} \) concentration \(C \) in soil.
CONCLUSIONS

To clarify temporal and spatial two-dimensional variations of volumetric water content and \(\text{NO}_3^- \)-N concentration in soil under drip irrigation, a numerical model for estimating temporal and spatial movements of water and \(\text{NO}_3^- \)-N in soil was used. Laboratory experiments were conducted to estimate the physical properties including soil water retentivity and conductivity. A field observation was conducted to verify the model accuracy. The temporal and spatial changes of volumetric water content and \(\text{NO}_3^- \)-N concentration in soil were measured in a 1 m\(\times \)1 m\(\times \)1 m lysimeter where \(\text{NH}_4\text{NO}_3 \) solution was supplied in a row. The results of simulation calculated by the model had good agreement with observed data. By using the model, temporal and spatial variations of soil water content and \(\text{NO}_3^- \)-N concentration were calculated. The results described the simultaneous movement of water and \(\text{NO}_3^- \)-N spreading in a soil profile. The numerical model introduced here can be effective to estimate the variations of water and \(\text{NO}_3^- \)-N in soil. This model can contribute to the prevention of groundwater contamination by \(\text{NO}_3^- \)-N, and to plan proper fertilizer application in drip irrigation fields.

REFERENCES

Nakamura, K., T. Harter, Y. Hirono, H. Horino and T. Mitsuno
Nitrate Nitrogen Movement in Drip Irrigated Field

