
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Preprocessing for Approximate String Matching

Baba, Kensuke
Kyushu University

Nakatoh, Tetsuya
Kyushu University

Yamada, Yasuhiro

Ikeda, Daisuke
Kyushu University

https://hdl.handle.net/2324/20275

出版情報：Informatics Engineering and Information Science, 2011-11. Springer-Verlag
バージョン：
権利関係：

A Preprocessing for Approximate String Matching∗

Kensuke Baba† Tetsuya Nakatoh Yasuhiro Yamada Daisuke Ikeda

Abstract

Approximate string matching is a basic and important
concept in many applications of information retrieval.
This paper proposes an algorithm for the problem of
approximate string matching. The algorithm solves
the match-count problem as a preprocessing. For in-
put strings of each length n, the time complexities
of the approximate string matching problem and the
match-count problem are O(n2) and O(n logn), re-
spectively. Therefore, the computation time of the
algorithm is expected to be short when the scope of
search is drastically restricted by the preprocessing.
This paper makes clear the relation between the solu-
tions of the two problems.
Keywords: Algorithm, approximate string matching,
FFT.

1 Introduction

Similarity on strings is one of the most important con-
cepts in many applications of information retrieval.
Especially for mining on a huge database such as
homology search in biology, the process of pattern
matching is required to be fast and flexible.

The aim of this paper is to speed up the process of
approximate string matching [7]. Exact string match-
ing is the problem to find the occurrences of a (short)
string, called a “pattern”, in another (long) string,
called a “text”. The problem of approximate string
matching is defined to be the string matching prob-
lem which allows some errors with a threshold based
on the edit distance [11]. The edit distance is the mini-
mal number of the edit operations which transform one
string to the other, where the permitted operations are
“insertion”, “deletion”, and “replacement” of a char-
acter. The generalizations in the sense of weight [11]
and local similarity [10] are the essence of some pop-
ular systems for sequence analysis in biology [9]. It
is significant for many applications to speedup solving
the approximate string matching problem.

∗An edited version of this report was published in: Infor-
matics Engineering and Information Science, Communications
in Computer and Information Science, vol. 252, pp. 610–615,
Springer-Verlag, Nov, 2011.
†Research and Development Division, Kyushu University Li-

brary, baba@lib.kyushu-u.ac.jp

An approach to the speedup is parallel computation
which depends on the performance of a computer. If
we assume a computational model which corresponds
to a computer with a multi-core processor, a straight-
forward method is to part the text with overlaps, and
then solve the problem for each parted text separately.
Another simple parallel computation is “wavefront”
which computes the matrix for the dynamic program-
ming approach. Myers [7] proposed an efficient algo-
rithm based on the idea of “bit-parallel [8]” for the
approximate string matching problem. The speedup
method of this paper is to compute another problem
which can be solved faster than the original problem
as a preprocessing, that is, the proposed method can
be applied with the previous speedup methods simul-
taneously.

In this paper, the match-count problem [6] is con-
sidered as the preprocessing. The problem allows only
replacement as the edit operation for the idea of dis-
tance. Although this approach makes no improvement
of the computation time in the worst case, there ex-
ist significant speedup methods for this problem and a
practical speedup is expected in some applications in
which the occurrences of the pattern are not so many.
While the time complexity of the standard algorithm
for the approximate string matching problem is O(n2)
for input strings of length n, the match-count problem
is solved by the first Fourier transformation (FFT) in
O(n logn) [5, 6], and moreover, some improvements
for the computation time were proposed [1, 3, 2].
This paper makes clear the relation between the solu-
tions of the approximate string matching problem and
the match-count problem, and proposes an algorithm
which solves the match-count problem as a prepro-
cessing for solving the approximate string matching
problem.

2 Formalization

Let Σ be a finite set of characters. For an integer
n > 0, Σn denotes the set of the strings of length
n over Σ. Σ∗ denotes the set of the strings of finite
length over Σ and by ε the empty string. For a string
u, |u| denotes the length of u and ui denotes the ith
element of u for 1 ≤ i ≤ |u|. The string uiui+1 · · ·uj
is a substring of u, and denoted by ui,j . In particular,
ui,j is called a prefix if i = 1 and a suffix if j = |u|.

1

Baba Lab. Technical Report 2

Let Aa = {ua | u ∈ A} for A ⊆ Σ∗ and a ∈ Σ.
An edit transcript from u ∈ Σ∗ to v ∈ Σ∗ is a string
on {I,D,R,M}, such that, the set T (u, v) of the edit
transcripts from u to v is

• T (u, v) = {ε} if uv = ε;

• T (u, v) = T (u, v′)I if u = ε and v = v′a for a ∈ Σ;

• T (u, v) = T (u′, v)D if u = u′a and v = ε for
a ∈ Σ;

• T (u, v) = T (u, v′)I+T (u′, v)D+T (u′, v′)R if u =
u′a, v = v′b, and a 6= b for a, b ∈ Σ;

• T (u, v) = T (u, v′)I + T (u′, v)D + T (u′, v′)M if
u = u′a, v = v′b, and a = b for a, b ∈ Σ.

An edit transcript from u to v is optimum if the num-
ber of occurrences of I, D, and R in the edit transcript
is minimum in T (u, v). The edit distance d(u, v) be-
tween u and v is the number of occurrences of I, D,
and R in an optimum edit transcript.

Definition 1 For p, t ∈ Σ∗ and an integer `, the ap-
proximate string matching problem is to find the sub-
strings t′ of t, such that, d(p, t′) ≤ `.

The score vector S(p, t) between p ∈ Σm and t ∈ Σn

(assume m < n) is the vector whose ith element si is
the number of matches between p and the substring
ti,i+m−1 of t for 1 ≤ i ≤ n−m+1. Let δ be a function
from Σ×Σ to {0, 1}, such that, for a, b ∈ Σ, δ(a, b) is 1
if a = b, and 0 otherwise. Then, for 1 ≤ i ≤ n−m+1,
the ith element of the score vector is

si =
m∑

j=1

δ(pj , ti+j−1). (1)

Definition 2 For p, t ∈ Σ∗, the match-count problem
is to compute S(p, t).

3 Standard Algorithms

3.1 Approximate String Matching
Problem

The edit distance between u ∈ Σm and v ∈ Σn is
computed in O(mn) time by the dynamic program-
ming approach [11]. In this approach, the cost matrix
C(u, v) is evaluated, whose (i, j)-element ci,j is the
edit distance between the prefix u1,i of u and the pre-
fix v1,j of v. By the definition of the edit distance,

ci,j = min{ci−1,j−1 +1−δ(ui, vj), ci−1,j+1, ci,j−1 +1}

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The base conditions
are ci,0 = i and c0,j = j. The (m,n)-element of the
cost matrix is the edit distance between u and v and

obtained by computing the m×n elements of the cost
matrix.

The approximate string matching problem is solved
also in O(mn) time by the previous approach on the
base conditions ci,0 = i and c0,j = 0, which is clear
from the idea of the Smith-Waterman algorithm [10].
c′i,j denotes the (i, j)-element of the cost matrix on
these base conditions.

In the strict sense, the previous method finds the
positions which the target substrings start (or end),
and moreover there can exist more than two target
substrings which start at one position. These prob-
lems are solved by a linear-time operation called a
“traceback [6]”. In the rest of this paper, we focus
on finding the positions of the target substrings in the
approximate string matching problem.

3.2 Match-count Problem

A naive method for the match-count problem is, for
p ∈ Σm and t ∈ Σn, to make the m×n matrix D(p, t)
whose (i, j)-element is δ(pi, tj) and compute each sk
by Eq. 1 for 1 ≤ k ≤ n −m + 1. Therefore, S(p, t) is
obtained by m×(n−m+1) comparisons and (m−1)×
(n−m+1) add operations. Thus, the time complexity
of this naive algorithm is O(mn).

The most straightforward method of parallel com-
putation for the match-count problem is to part t or
p into substrings. Intuitively, in this method, using
k computers (processors, or cores) yields a k-times
speedup. Clearly, by ti,j and p, C(t, p) is obtained
from the ith element to the (j − m + 1)th element.
Therefore, by parting t into k substrings with over-
laps of length m−1 and combining the results, C(t, p)
is obtained by k distinct computations. If p is parted,
the following is clear in general. Let cpi be the ith
element of the score vector C(t, p) and cqi the ith el-
ement of C(t, q). Then, the ith element of C(t, pq) is
cpi + cqm+i, where m is the length of p. Therefore, we
can also expect straightforward speedup except for the
overhead.

Additionally, for the match-count problem, there
exists an efficient algorithm using the fast Fourier
transform (FFT) [6]. The convolution

wi =
m∑

j=1

uj · vi−j (1 ≤ i ≤ m)

of two m-dimensional vectors u and v can be com-
puted in O(m logm) time by FFT [4]. Therefore, the
score vector between two strings each of length m is
computed in O(m logm) time. By parting t into over-
lapping substrings and padding p with a never-match
character, we obtain an O(n logm) algorithm.

Baba Lab. Technical Report 3

4 Relation between Score Vec-
tor and Edit Distance

We make clear the relation between the score vector
and the edit distance, and then propose an algorithm
for the approximate string matching problem using the
result of the match-count problem for a speedup.

We consider the score vector between p ∈ Σm and
t ∈ Σn and the edit distances between p and the sub-
strings of t. Now we extend the definition of the score
vector. For k ≤ 0 and n+ 1 ≤ k, we assume that tk is
a never-match character, that is, δ(pj , tk) = 0 for any
1 ≤ j ≤ m. Then, si in Eq. 1 is extended for i ≤ 0
and n−m+ 1 ≤ i.

Lemma 1 If there exists a pair of i and j such that
d(p, ti,j) ≤ `, then there exists r such that

∑r+`
k=r sk ≥

m− ` and i− ` ≤ r ≤ i.

Proof. Let g = |ti,j | − |p|. By the definition of the
edit distance, if d(p, ti,j) ≤ `, then |g| ≤ ` and there
exist at least m − ` matches. Therefore, d(p, ti,j) ≤ `
implies

i+b(`+g)/2c∑

k=i−b(`−g)/2c
sk ≥ m− `.

Since b(`+g)/2c ≤ ` and b(`−g)/2c ≤ ` by−` ≤ g ≤ `,
we have only to consider the summation

∑r+`
k=r sk for

i− ` ≤ r ≤ i.

By the previous lemma, if
∑r+`
k=r sk < m − ` for

i − ` ≤ r ≤ i, then there is no pair of i and j such
that d(p, ti,j) ≤ `. That is, the candidates of the ap-
proximate string matching problem is reduced by the
result of the match-count problem. The outline of an
algorithm based on this idea is the following.

Algorithm A:
Input: p ∈ Σm, t ∈ Σn, `
Output: P = {i | 1 ≤ i ≤ n,∃k.d(p, tk,i) ≤ `}

for (2−m ≤ i ≤ n) compute si ;

R := 0 ; Q := ∅ ;
for (3−m− ` ≤ i ≤ 1−m) si := 0 ;
for (2−m ≤ i ≤ n) {

R := R+ si − si−`+1 ;
if (R ≥ m− `)

Q := Q ∪ {i− `+ 1, i− `+ 2, . . . , i} ;
}

for (i ∈ Q) compute c′m,i and find P .

In the algorithm, si and c′m,i are computed by the
standard algorithms for the match-count problem

and the approximate string matching problem, re-
spectively. Then, the following theorem is clear by
Lemma 1.

Theorem 1 Algorithm A solves the problem of ap-
proximate string matching.

Intuitively, Q in Algorithm A is the set of the po-
sitions which can be the target of approximate string
matching after the screening by match-count. There-
fore, the algorithm is effective when the size of Q is
extremely small compared with n. In the worst case,
the number of positions is not decreased by the pre-
processing, hence the time complexity of the algorithm
is O(mn).

5 Conclusion

An algorithm for the approximate string matching
problem which uses the result of the match-count
problem as a preprocessing was proposed. We made
clear the relation between the results of the two prob-
lems, and thereby constructed the algorithm. The
computation time of the algorithm is expected to be
short in the case where the number of the occurrences
of the pattern is small compared to the length of the
text.

References

[1] M. J. Atallah, F. Chyzak, and P. Dumas. A ran-
domized algorithm for approximate string match-
ing. Algorithmica, 29:468–486, 2001.

[2] K. Baba. String matching with mismatches by
real-valued FFT. In Computational Science and
Its Applications - ICCSA 2010, Part IV, volume
6019 of Lecture Notes in Computer Science, pages
273–283, 2010.

[3] K. Baba, A. Shinohara, M. Takeda, S. Inenaga,
and S. Arikawa. A note on randomized algorithm
for string matching with mismatches. Nordic
Journal of Computing, 10(1):2–12, 2003.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms, Second Edition. MIT
Press, 2001.

[5] M. J. Fischer and M. S. Paterson. String-
matching and other products. In Complexity of
Computation (Proceedings of the SIAM-AMS Ap-
plied Mathematics Symposium, New York, 1973),
pages 113–125, 1974.

[6] D. Gusfield. Algorithms on Strings, Trees, and
Sequences. Cambridge University Press, 1997.

Baba Lab. Technical Report 4

[7] G. Myers. A fast bit-vector algorithm for approxi-
mate string matching based on dynamic program-
ming. J. ACM, 46(3):395–415, 1999.

[8] G. Navarro. A guided tuor to approximate string
matching. ACM Comput. Surv., 33(1):31–88,
2001.

[9] W. R. Pearson and D. J. Lipman. Improved tools
for biological sequence comparison. In Proc. Natl.
Acad. Sci. USA, volume 85, pages 2444–2448,
1988.

[10] T. F. Smith and M. S. Waterman. Identification
of common molecular subsequences. J. Mol. Biol.,
147:195–197, 1981.

[11] R. A. Wagner and M. J. Fischer. The string-to-
string correction problem. J. ACM, 21(1):168–
173, 1974.

