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Abstract. A fast analysis method is proposed to obtain time-periodic nonlinear fields in the
presence of extremely slow decay fields. First, the analysis variables are time-averaged to reduce
effects of the harmonic wave components, and next, second order time-derivatives of the time-
averaged values are used to correct the variables toward the time-periodic steady-state field. The
time width in time-averaging operation can be set much shorter than one half period, and so the
variables can be corrected in early stage of time evolution. The presented method was validated
in two-variable simultaneous equations as a simple problem and a magnetic field simulation by the
finite element method as a multivariable problem. Furthermore, harmonic TDC and a serial usage
of (harmonic) TDC and TP-EEC are proposed for the case that higher order time-harmonic waves
are included in the corrected objectives. In addition, the conventional simplified three-phase AC
TP-EEC method is expanded to a general form for the three-phase AC system.
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1. INTRODUCTION 2.

PRINCIPLE AND FORMULATIONS OF TDC

A highly accurate time-periodic solution of nonlinear time-
differential equation can be derived in several ways. As
a standard technique, the shooting method [1, 2] is more
commonly used in a case of a small-scale system like an
electric circuit. The time-periodic finite element method
[3, 4] can be powerfully used in the two-dimensional finite
element analysis of electromagnetic field. The harmonic
balance finite element method [5] uses nonlinear analysis
in frequency domain where a large-scale matrix equation
must be analyzed.

A step-by-step solution in the transient analysis is cor-
rected toward a steady-state one-half periodic solution ev-
ery one half period in TP-EEC (Time periodic explicit error
correction) method [6, 7], while every one sixth of period
in three-phase AC TP-EEC method [8, 9] which is gen-
erally proposed by Tokumasu as the polyphase AC TP-
EEC method. The TP-EEC and three-phase AC TP-EEC
methods are very powerful techniques to secure periodic
solutions in several corrections. In other words, however,
the TP-EEC and three-phase AC TP-EEC methods re-
quire one half and one sixth period of calculations for one
correction, respectively. In this paper, a new correction
method named as TDC (Time Differential Correction) is
presented with requiring only transient calculation much
shorter than one half period with no or a little of higher
time-harmonic waves. Furthermore, the simplified three-
phase AC TP-EEC is expanded to a general form in this

paper.

The principle of TDC is clearly described here. The vari-
ables have harmonic wave components and a decay term
as well as a basic wave component. The variable x(6) can
be written as follows:

2(0) = age ™+ 2, (0) + > wn, (0). (1)
k=1

£k

In the right hand side of the above equation, the first term
indicates a decay term, the second term is composed of
main harmonic wave components including basic one, and
the last term has the other additional harmonic wave com-
ponents. The variable 6 is an electric angle working as
a time variable. To reduce the harmful effect of the ad-
ditional harmonic wave components, the variable x() is
averaged over the angle width 2¢ to become y(0) = (x(0)).
The averaged variable y(6) is approximated by g,(6) de-
fined as

p(0) == age "’ + Zynk (), (2)
k=1
where
~a _(sinngo . B
a0) = (o 0) = (Yo 00 ()

The 2m-th order derivative of Eq. (2) is approximated by
952™) () defined by

GE(0) =Y (= 1) 0y, (6). (4)
k=1
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Using the derivatives of the order of even-number up to
2p, we obtain the harmonic wave components y,, (6) (k =
1,2,...,p). Equations (3) and (4) generate the following
equation to correct x(6) toward a one-half periodic steady
state field,

P
xnew 6 ¢ Zgnkynk Iny, = % (5)
A 2p-th order derivative can be obtained by 2p + 1 steps
calculation, and therefore the variable x(6) is more accu-
rately corrected at the time point with the electric angle
0—¢p—pA0l where Af is the electric angle width correspond-
ing to the time step width in the step-by-step calculation.
The higher order derivative is used, the more the accuracy
of calculation is reduced. Therefore, a large value of p is
not of practical use for the TDC method, and so it is useful
that p =1,2,3,0r 4.

In this paper, the name “TDC” is used in the case that
p =1, i.e., for only use of basic wave component, while the
name “n-harmonic TDC” is used in the case that p =1+n
(n=1,2,0r 3).

When the corrected variables have no time-harmonics,
TDC is used. On the other hand, n-harmonic TDC is used
when n is the number of main time-harmonic wave compo-
nents included in the corrected variables.

2.1. FormuLATION OF TDC

Using one basic wave component, we will derive the TDC
formula. In this case, Eq. (2) becomes

91(0) = ape ™" + 1(0). (6)
The second derivative of Eq. (6) is approximately written
as
(2
i (6) = —y1(9). (7)
Then, we obtain the following correction formula,
xnew(a - (Z)) =4g1y1 (0) (8)
2.2.  FORMULATION OF 1-HARMONIC TDC

Using one harmonic wave component added to one basic
wave one, we will derive the 1-harmonic TDC formula. In
this case, Eq. (2) becomes

92(0) = age ™" +y1(6) + ya(6). 9)

The second and forth derivatives of Eq. (9) are approxi-
mately written as

35(0) = —1(0) — n?yn(0), (10)
957 (0) = y1(0) + n'yn(6). (11)
Then, we have
%@:iﬁﬁﬂw+ﬁmn amd  (12)
-1 ’
() = B0 35 0) a3)

n?(n? —1)
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Thus, we obtain the following correction formula,

2.3. FORMULATION OF 2-HARMONIC TDC
Using two harmonic wave components added to one basic
wave one, we will derive the 2-harmonic TDC formula. In
this case, Eq. (2) becomes

73(0) = age™ ™" + y1(0) + yn(0) + ym(0).  (15)
The second, forth and sixth order derivatives of Eq. (15)
are approximately written as

9(0) = —y1(6) — n®yn(8) — m3yn(6),  (16)
957(0) = y1(8) + n*yn(8) + m*ym (0), (17)
90(0) = —y1(6) — n®yn(8) — mOy,n(6),  (18)

respectively. Then, we have

~(2)

nm%w>mum%?@+@w
o == 02— ) 1) /
(19)
2.4(2) 0 2.1 ~(4) 0 (6) 0
Yn (0) _ _m y3 ( i;gn(;n_ B(T)ng_ fng; yS ( )’ (20)
_ 22 0) + (02 + 135" (0) + 957 (6)
ym(0) = = m2(m?2 —1)(m2 — n2) - @
Thus, we obtain the following correction formula,
Tnew (0 — @) = g1y1(0) + gn¥n(0) + gmym(0).  (22)

2.4. FORMULATION OF 3-HARMONIC TDC

Using three harmonic wave components added to one basic
wave one, we will derive the 3-harmonic TDC formula. In
this case, Eq. (2) becomes

94(0) = ape™ " + y1(0) + yn(0) + ym (0) + yx(0).  (23)

The second, forth, sixth and eighth order derivatives of
Eq. (23) are approximately written as
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Then, we have
1(0) = —[*m*k252 (0) + (n>m?® + m*k + k*n2)g" (6)
+ (n® +m2 + k2350 (9) + 9V ()]

/(n® = 1)(m* = 1)(k* - 1),
k252 (6) + (m*k +m? + k)35 (60)
+(m2+ K+ 1)92(0) + 57 (0)]
/n*(n® = 1)(n® —m?)(n® - k*),
_ [k2n2g)4(12)(9) (k2n2+k2+n ) 514)( 0)
(k2+n + 1) 0) + 957 (9)]
Jm*(m? — 1)(m? — k?)(m? — n?),
[m?3(0) + (nm? + n® + m?)g{" (0)
+(n? +m? + 1) (0) + 357 (0))
JE2(k? — 1)(k* — n?)(k* —m?).

(28)
yn(0) =

(0
) (29)
Ym(0)

(30)
yk(0) =

(31)
Thus, we obtain the following correction formula,

Tnew (0 —0) = 9191(0) + 9nYn (0) + gmym (0) + gryx (0). (32)

When the initial field is far from the final steady-state one,
the field may fluctuate drastically at the initial stage of
calculation; e.g. eddy current field in electromagnetic field.
The similar fluctuation may occur immediately after the
TDC or harmonic TDC correction. In these cases, the
above operation of TDC or harmonic TDC may as well
execute after the fluctuation cools down in order to get a
larger correction effect.

3.  GENERALIZED SIMPLIFIED THREE-PHASE
AC TP-EEC

In a third order symmetric system driven by a three-phase
alternating current, the simplified three-phase AC TP-EEC
is applied as a fast steady-state analysis method. The sim-
plified three-phase AC TP-EEC proposed in Refs. [8, 9]
is derived by the theory of EEC [10, 11]. In this section,
the simplified three-phase AC TP-EEC is expanded to a
general form.

We introduce the three-phase variables Uy, Vi, and W;
which become Us, V5, and W5, respectively, after one-sixth
period. Then, we define dU, dV, and dW where dU =
U2 - U1, dVv = ‘/2 — V1, dW = W2 — Wl. In a phaser
diagram drawing the behavior of the three-phase variables,
we directly obtain the following correction formula,

Uncw = 7dVV, Vncw = 7dUa Wncw = 7dv7 (33)

for Case A with (6n+1)-th order harmonic waves in normal
phase and (6n — 1)-th order harmonic waves in reversed
phase,

Uncw = _dV7 Vncw = _dW» Wncw = —dU, (34)

for Case B with (6n—1)-th order harmonic waves in normal
phase and (6n + 1)-th order harmonic waves in reversed

133

phase, and

Unew = AU /2, View = dV/2, Wyew =dW/2,  (35)

for Case C with (6n+3)-th order harmonic waves in normal
or reversed phase. Using a condition equation satisfied in
a steady state:

dU +dV +dW = 0, (36)
the correction formula (33)—(35) are generalized to
new = (dU +dV + dW) — dVV,
Vaew = ao(dU + dV + dW) — dU, (37)
Whew = a3(dU 4+ dV 4+ dW) — dV,
for Case A,
new 61 (dU +dV + dW) dV
Vaew = B2(dU + dV + dW) — dW, (38)
Whew = B3(dU + dV + dW) — dU,
for Case B, and
Unew = 7 (dU + dV 4+ dW) 4 dU/2,
Vaew = Y2(dU +dV + dW) + dV/2, (39)

Whew = 73(dU + dV + dW) + dW/2,

for Case C. A condition that U + V + W = 0, satisfied in
the steady state, can not be introduced into the correction
formula, because of including a slow decay term contrary
to the condition that dU + dV + dW = 0. Case A is the
most important to which the basic wave in normal phase
belongs. For Case A, we set a; = as = a3 = 1/2 to get
the correction formula

Unew = (dU + dV — dW) /2,
Vnew = (dV + dW — dU)/2,
Wiew = (dW +dU — dV') /2,

(40)

which can be changed to the equations proposed in Refs.
[7, 8] using the variable Z = —W.

We have no correction formula effective for all Cases A,
B, and C. When using Eq. (37) for Case A, the harmonics
in Cases B and C are not effectively corrected to the time-
harmonic steady-state fields, and therefore the correction
of harmonics in Case A is disturbed by the harmonics in
Cases B and C. The zero phase harmonics are also not
effectively corrected by Eq. (37) and slightly disturb the
correction of the harmonics in Case A.

4. NUMERICAL SIMULATION OF 2-VARIABLE
MODELS

The correction effect of TDC/harmonic TDC can be vali-
dated in simple 2-variable models written in the following
simultaneous equations,

G20 ) = (o i)

41)
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Figure 1: Waveform of source term in Case II.

The theoretical solution is written as follows
Tp = Zakxka Yp = Zakykv
k k

where

T = a1k sin kO + by cos k6,
Yr = Qo sin k6 + boy cos k6,

3—¢? 4
alk:Tkgka blk:*Di:}
b 28400, (5 aR)
2k Dk ) 2k Dk; B
Dp=Q1+g0)9+g),  gr=kr

As the test model, we set that 7 = 10 with the initial
condition that x = y = 1, and two cases will be shown
in the following. One case (Case I) includes no harmonic
wave; a1 = 1, ag, = 0 (k > 1), while the other case (Case IT)
includes harmonic waves; a; = 1, ag = 0.1, a5 = —0.02,
a7y =0.01, a, =0 (k > 7) as shown in Fig. 1.

In Case I, the time-averaging operation is not required
with only basic wave component, and so 3-step calcula-
tion gives 2nd time differential coefficients for TDC. In
Case II, time-averaging operation should be executed be-
side 3-harmonic TDC. The main order of harmonic waves
is 3 for TDC, 5 for 1-harmonic TDC, and 7 for 2-harmonic
TDC. The number of time-divisions in one period is 96 for
Case I, and 360 for Case II to accurately calculate the sev-
enth order harmonic wave. The number of time steps for
time-averaging operation are 120 (= 360/3), 72 (= 360/5)
and 51 (= 360/7) for TDC, 1l-harmonic TDC, and 2-
harmonic TDC, respectively, because the orders of main
harmful harmonic wave are 3, 5, and 7 for TDC, 1-harmonic
TDC, and 2-harmonic TDC, respectively. Time-averaging
operation is not required for 3-harmonic TDC.

The results of calculation are shown in Figs. 2-5 with
Figs. 2 and 3 for Case I, and with Figs. 4 and 5 for Case II.
In Figs. 3-5, the error § indicates the difference from the
theoretical solution as mentioned above, which is defined
as

5=/l — 1)+ (y — )2

The number of time-steps indicates a time itself in Fig. 2,
while the number of steps indicate the total steps including

(43)
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Figure 2: Waveform of y on the 2-variable model (Case I).
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Figure 3: Comparizon of convergence among various cor-
rection methods on the 2-variable model. (Case I, Number
of divisions per one period: 90)
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Figure 4: Comparison of convergence among various cor-
rection methods on the 2-variable model. (Case IT, Number
of divisions per one period: 360)
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1.E+00 No correction
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00
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Figure 5: Comparison among various correction methods
on the 2-variable model. (Case II, Number of divisions per
one period: 180)

the number of stepping back corresponding to the electric
angle width ¢+pA6f in TDC and harmonic TDC in Figs. 3—
5.

In Case I, the number of corrections for all the correction
methods is 10. Figures 2 and 3 indicate that TDC has the
best performance of correction in the case of no harmonic
wave.

On the other hand, in Case II, 2-harmonic and 3-
harmonic TDC largely surpass TDC as shown in Fig. 4,
because harmonic waves depress the performance of TDC.
The TDC and 1-harmonic TDC have weak power of cor-
rections, and negative effects after the second correction
so that the number of corrections is 2 for TDC and 1-
harmonic TDC. The TP-EEC and simplified TP-EEC al-
low successive correction in the presence or absence of har-
monic waves, and so surpass TDC and 1-harmonic TDC
after about 400 steps.

Since the harmonic TDC uses higher order time deriva-
tives, the performance of correction depend on the number
of time-divisions. Figure 5 shows the result with the num-
ber of time-divisions in one period 180. The number of
time-divisions in one period is about 26 (= 180/7) for 7th
order harmonic wave which can be almost exactly described
in the simulation.

The number of corrections is 8 for TP-EEC and simpli-
fied TP-EEC, while 1 for TDC and 1-harmonic TDC, 2 for
2-harmonic TDC, and 4 for 3-harmonic TDC. In TDC and
harmonic TDC, the corrections over the above values have
negative effects.

As shown in Fig. 5, 3-harmonic TDC has a maximum
performance of correction. However, TP-EEC and sim-
plified TP-EEC surpass 3-harmonic TDC under the error
level of 1 x 10~% since the 3-harmonic TDC does not allow
successive corrections.

The initial performances of TDC and harmonic TDC are
superior to the TP-EEC and simplified TP-EEC. However,
it is a problem that TDC and harmonic TDC do not allow
a large number of corrections due to harmful effects by
harmonic wave components.
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Figure 6: Convergence in the serial use of (harmonic) TDC
and TP-EEC. (Number of divisions per one period: 180)
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18400 No correction
1.E-01 TDC+
f i E=o2 1-harmonic TDC+
E 2-harmonic TDC+
== 1.E-03
= TP-EEC
1.E-04 Simplified TP-EEC
1.E-05
1.E-06
3-harmonic TD
1.E-07
0 300 600 900 1200 1500

Number of steps

Figure 7: Convergence in the serial use of (harmonic) TDC
and simplified TP-EEC. (Number of divisions per one pe-
riod: 180)

5. SERIAL USAGE OF TDC anD TP-EEC

When neither TDC nor harmonic TDC can provide a
highly precise steady-state solution due to time-harmonics,
the following serial use of TDC and TP-EEC or simplified
TP-EEC is very useful. When TDC or harmonic TDC is
used for initial one or two corrections with subsequent use
of TP-EEC or simplified TP-EEC, we can get the best per-
formance of both the correction methods. Figure 6 shows
the calculation result of the serial usage of TDC (harmonic
TDC) and TP-EEC, while Fig. 7 shows one of the serial us-
age of TDC (harmonic TDC) and simplified TP-EEC. Here
TDC+ and n-harmonic TDC+ (n = 1,2,and 3) indicate
the serial usage with subsequent use of TP-EEC or simpli-
fied TP-EEC. The calculation results shown in Figs. 6 and
7 indicate that the serial usage of TDC (harmonic TDC)
and (simplified) TP-EEC is very powerful compared with
the single usage of each correction method.
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Figure 8: Static apparatus model. (Number of elements:
41,650, Number of nodes: 45,360; The mesh of air region
is not visualized.)

6. NUMERICAL SIMULATION OF EDDY
CURRENT FIELD OF STATIC APPARATUS

The model in Eq. (41) is a very simple model of 2 vari-
ables. Next, the performance of TDC and harmonic TDC
should be validated in the system of a very large number
of variables. We have applied the correction methods to
a nonlinear magnetic field analysis by the finite element
method. This section presents a numerical simulation of
static apparatus, and Section 7 presents a numerical simu-
lation of synchronous motor coupled with an electric circuit
energized by an external voltage.

An apparatus model is shown in Fig. 8. Two plates
stacked with a conducting plate and a magnetic mate-
rial one are arranged at the top and bottom apart from
four rectangular parallelepiped coils with rectangular holes.
Each part of the four lateral sides is all in the same size.
The conductivity of the conducting plate is 3.6 x 107 S/m.
The basic wave current is 100 cos(27 ft) kAT with the fre-
quency f of 200 Hz with no higher time-harmonics, and the
all coils have the same currents in the same direction. The
magnetic plate has the same initial magnetization curve
as the magnetic steel sheet 35A300. Only one-eighth of
the entire analysis region was analyzed for the symmetry
of the analyzed model. The number of elements is 41,650
where all the elements are hexahedrons for highly accurate
calculation.
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Figure 9: Comparison among TDC and simplified TP-EEC
methods in eddy current analysis of the static apparatus
model with no higher time-harmonics in coil currents.

The number of time-divisions over one period of the basic
wave is 40 to calculate the basic wave in high accuracy
(time width: 125 us).

The correction results by the simplified TP-EEC and
TDC are displayed in Fig. 9 with respect of the z and y
directional components of magnetic field at the point of x =
y = 42mm and z = 35 mm and the eddy current loss in the
conducting plates. The number of corrections is 3 both for
TDC and simplified TP-EEC. The time-averaging process
is not required because of no higher time-harmonics.

As shown in Fig. 9, a steady state field is obtained at
about a 80th time-step for simplified TP-EEC, while 14th
time-step for TDC in consideration of stepping back in time
by the second time derivative operation.

Next, the case including higher time-harmonics in the
coil currents will be shown here. The wave form of coil
current is the same as shown in Fig. 1. The number of



Kenji Miyata

Table 1: Parameters of the synchronous motor.

Diameter of rotor 54.8 mm
Inner diameter of stator 56.0 mm
Outer diameter of stator 103 mm
Minimum air gap length 0.6 mm
Motor length 55 mm

time-divisions over one period of the basic wave is 360 to
calculate the harmonic waves up to the seventh-order in
high accuracy (time width: 13.89 us). The correction re-
sults by the simplified TP-EEC, TDC and harmonic TDC
are displayed in Fig. 10 with respect of the x and y direc-
tional components of magnetic field at the same point as
Fig. 9 and the eddy current loss in the conducting plates.
The number of corrections is 4 only for the simplified TP-
EEC and 2 for the others. The number of time-averaging
steps is 120 for TDC, 72 for 1-harmonic TDC, and 51 for
2-harmonic TDC. The correction by 3-harmonic TDC has
failed due to a large error for the 8th order time derivative.

As shown in Fig. 10, a steady state field is obtained at
about a 200th time step for TDC and 1-harmonic TDC.
The number of time steps required for time average process
of 1-harmonic TDC is smaller than one of TDC by 45 steps.
The 2-harmonic TDC is relatively less precise presumably
because the 6th order time derivative can not be obtained
precisely.

7. NUMERICAL SIMULATION OF
SYNCHRONOUS MOTOR COUPLED WITH AN
ELECTRIC CIRCUIT

The TDC and harmonic TDC are applied to a numerical
simulation of magnetic field of a permanent magnet syn-
chronous motor coupled with an electric circuit to verify
the performances by comparing with simplified TP-EEC.
The discretized model of the synchronous motor is shown
in Fig. 11, where the number of elements is 8,682. The
parameters of the motor are listed in Table 1. The motor
with 4 poles and 6 slots has a 2-electric-period structure,
and therefore a half model was analyzed in one electric pe-
riod. The slide surface between the rotor and the stator is
divided by 180 in the circumferential direction. In the ro-
tor moving simulation, the rotor is stepwisely rotated with
the step width the minimum mesh size, and so the number
of time-divisions in one electric period is 180.

The stator coils are connected to a three-phase star con-
nection through electric resistances of 0.2ohm including
coil resistances.

The motor model in a three-phase AC system has a third
order symmetric configuration so that the simplified three-
phase AC TP-EEC can be applied in order to obtain a fast
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Figure 12: External electric circuit connected with coils
embedded in the FEM region.
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Figure 13: Comparison among TDC, simplified TP-EEC
and simplified three-phase TP-EEC methods in torque
analysis of the synchronous motor with no higher time-
harmonics of external applied voltage.

converged steady state solution.

Now, the three-phase external applied voltage has only a
basic wave component with no higher time-harmonics. The
RMS value of external applied voltage is 200 V. The torque
analysis results by TDC, simplified TP-EEC and simplified
three-phase TP-EEC are shown in Fig. 13. In the case,
time averaging operation is not required for TDC because
of very few harmonics in the magnetic field. The number
of corrections is 2 for TDC, while 4 both for simplified TP-
EEC and simplified three-phase TP-EEC. For obtaining
the steady state, simplified TP-EEC and simplified three-
phase AC TP-EEC require about 380 time-steps and 130
time-steps, respectively, while TDC requires only about 15
time-steps in consideration of stepping back in time by the
second time derivative operation. In the standard motor
analysis, higher time-harmonics are not included in the ex-
ternal applied voltage with the exception of inverter driven
motors, and so TDC is a very powerful method obtaining
the steady-state performance of synchronous motors.

Next, the case including higher time-harmonics in the
external applied voltage will be shown here. The three-
phase external applied voltage has 7th, 9th, and 11th order
harmonics, the relative amplitudes of which are 0.1, 0.04,
—0.05 with a unit amplitude of basic wave. All the waves
have the same phase at the initial time. The amplitudes of
harmonics are intentionally large in order to clearly validate
harmonic TDC and the serial usage of (harmonic) TDC and
simplified TP-EEC.

The results by TDC, 1-harmonic TDC, and 3-harmonic
TDC are shown in Fig. 14 as poorly effective correction
methods with the number of corrections are all 3 and with
the number of time-steps for averaging 26 (nearly equals
to 180/7) for TDC depressing the 7th order harmonic and
16 (nearly equals to 180/11) for the others depressing the
11th order harmonic. The steady state solution can not be
obtained by these corrections until 800 time steps.

Next, the results by 2-harmonic TDC, simplified TP-
EEC, and simplified three-phase AC TP-EEC are shown in
Fig. 15 in a close-up scale as relatively effective correction
methods in this case with the number of corrections are
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Figure 14: Comparison among TDC and 1, 3-harmonic
TDC methods in torque analysis of the synchronous motor.
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Figure 15: Comparison among 2-harmonic TDC, simplified
TP-EEC, and simplified three-phase TP-EEC in torque
analysis of the synchronous motor.

3, 6, and 4, respectively. The simplified three-phase AC
TP-EEC gave the same results for « = 0, 1/2, and 1 in
Eq. (37) with ay = a2 = a3 = a. Figure 15 indicates that
the steady state can be obtained after 400th time-step in
all the cases using the three correction methods.

The 2-harmonic TDC and simplified three-phase AC TP-
EEC work effectively as methods for fast obtaining an ap-
proximate steady state solution. The successive simplified
TP-EEC can provide a precious steady state solution, while
the simplified three-phase AC TP-EEC can not provide
precious one due to time-harmonic waves in Cases B and
C described in Section 3.

Finally, the results by the serial use of (harmonic) TDC
and simplified TP-EEC are shown in Fig. 16 where the se-
rial use is indicated as “TDC+" or “(n-harmonic) TDC +”.
The serial use can fast provide a precious steady state solu-
tion. In the serial use, the simplified TP-EEC is executed
2 times after one time of (harmonic) TDC. The four torque
curves obtained by TDC and 1, 2, and 3-harmonic TDCs
are in good agreement with each other after 200th time
step showing a precious steady state periodic curve with a
180-time-step period. These curves are in good agreement
with the steady state curve obtained by simplified TP-EEC
after 400th time-step shown in Fig. 16. The result indicates
that the serial usage of (harmonic) TDC and simplified TP-
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Figure 16: Comparison among serial uses of (harmonic)
TDC and simplified TP-EEC methods in torque analysis
of the synchronous motor.

EEC can provide a steady solution faster than simplified
TP-EEC by a factor of 2 in this case.

8. CONCLUSIONS

As a fast analysis method to obtain a steady state solu-
tion of nonlinear magnetic field, we have proposed TDC
and harmonic TDC methods using the second and higher
order time-derivatives of the time-averaged variables hav-
ing a time-derivative term in the transient analysis. The
computational cost of TDC is very low like simplified TP-
EEC. In the case of no higher order time-harmonic waves
in the driving source term, the correction effect of TDC
is very large surpassing the conventional methods. In the
case that time-harmonic waves are included in the driv-
ing source term, the harmonic TDC and the serial usage
of (harmonic) TDC and (simplified) TP-EEC have a pro-
found effect to provide a steady-state field. In addition,
the simplified three-phase AC TP-EEC has been expanded
to a general form for the three-phase AC system where the
three-phase AC field is corrected every one sixth period
toward the steady state field.
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