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Abstract. One way of improving efficiency of Gentry’s fully homomorphic encryption from ideal
lattices is controlling the number of operations, but our recollection is that any scheme which controls
the bound has not proposed. In this paper, we propose a key generation algorithm for Gentry’s
scheme that controls the bound of the circuit depth by using the relation between the circuit depth
and the eigenvalues of a basis of a lattice. We present experimental results that show that the
proposed algorithm is practical. We discuss security of the basis of the lattices generated by the
algorithm for practical use.
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1. Introduction

Some encryption schemes such as the RSA, Paillier [17],
and Okamoto-Uchiyama [16] schemes have a homomorphic
property. The homomorphic property provides a feature
which enables us to deal with encrypted data without be-
ing able to decrypt the data. This property has various
applications such as to secure voting systems or cross ta-
ble generation. Many homomorphic encryption schemes
incorporate the homomorphic property for only one oper-
ation, i.e., no encryption scheme is capable of evaluating
any function. Constructing a fully homomorphic encryp-
tion scheme that could evaluate all functions is an impor-
tant open problem in cryptography that has persisted for
many years. In 2009, Gentry [6] solved this problem by
using ideal lattices. Gentry showed that a fully homomor-
phic encryption scheme can be constructed in three stages:
First, he proposed an abstract construction of homomor-
phic encryption schemes for some functions. Second, he
embodied the idea with ideal lattices. We call this scheme
Gentry’s basic scheme. Third, he proposed how to extend
the scheme so that it has a fully homomorphic property.
We call this scheme Gentry’s full scheme.

Here, we concentrate on the basic scheme. This is
because the efficiency of the full scheme is much lower
than that of the basic scheme. We consider that we can
construct a practical full scheme by improving the basic
scheme.

The key generation algorithm of Gentry’s basic scheme
generates random basis of ideal lattices as the private key.
A bound for the number of operations depends on these ba-
sis. Then, it is difficult to handle the number of executable
operations in advance. Therefore, we must repeat the key
generation until the scheme can handle the desired num-
ber of operations. In other words, controlling the bound

enables us to construct efficient Gentry’s scheme. Then,
the problem naturally arises regarding how to handle the
number of operations before generating the keys.

In this paper, we address this problem by proposing a key
generation algorithm that controls the bound of the circuit
depth by using the relation between the circuit depth and
the eigenvalues of a basis of a lattice. That is, the proposed
key generation algorithm enables us to create a practical
homomorphic encryption scheme for a given number of op-
erations. We discuss security of the basis of the lattices
generated by the algorithm for practical use. Also, we de-
scribe an efficient implementation of Gentry’s scheme and
show that the proposed algorithm is practical based on ex-
perimental results.

Note that an extended abstract of this paper appears
in Proceedings of IWSEC2010 Lecture Notes in Computer
Science Vol. 6432, Springer-Verlag, 2010 [15]. This is the
full version.

This paper is organized as follows. In Section 2, we
briefly describe the ideal lattices and Gentry’s scheme. In
Section 3, we discuss the problem that is dealt with in this
paper. In Section 4, we propose an algorithm to address
the problem. In Section 5, we explain the efficiency and
the security analysis of the proposed algorithm. In Section
6, we present our conclusions.

2. Preliminaries

In this section, we explain some basic definitions and facts.

2.1. Definitions on lattices

Gentry [6] used ideal lattices for constructing a homomor-
phic encryption scheme. In this section, we briefly review
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ideal lattices.
Definition 1 (Ideal Lattices). Let R be a residue class
ring of the integer univariate polynomial ring Z[x] modulo
the ideal (f(x)), where f(x) is a monic integer univariate
polynomial with degree n. Then, R is isomorphic to Zn as a
Z-module. We define an ideal lattice (on f) as a sublattice
of Zn isomorphic to an ideal of R.

This isomorphism enables us to introduce multiplication
over Zn by using that over R. So ideal lattices have two op-
erations: addition as a sublattice of Zn and multiplication
corresponding to polynomial multiplication modulo f .

One of the most simple ideals of R is a principal ideal.
Sublattices corresponding to principal ideals fulfill impor-
tant roles in constructing practical encryption schemes.
Definition 2 (Rotation Basis).
For vector v = (v0, v1, . . . , vn−1)

t ∈ Zn, we define v̄ :=
v0 + v1x + · · · + vn−1x

n−1 mod f in R. Any element of
principal ideal (v̄) can be written as a linear combination
of generators v̄, v̄x, · · · , v̄xn−1. By rot(v), we denote a
matrix consisting of these generators.1

For example, if f(x) = xn − 1, rot(v) is the circulant
matrix as: 

v0 vn−1 · · · v2 v1

v1 v0 · · · v3 v2

...
...

. . .
...

...
vn−2 vn−3 · · · v0 vn−1

vn−1 vn−2 · · · v1 v0

 .

We refer to the lattice corresponding to the basis as the
cyclic lattice.

We can see for f(x) = xn +an−1x
n−1 + · · ·+a0, rot(v) =

(bij)i,j satisfies the following recurring formula,

bij =

 vi−1 (1 ≤ i ≤ n, j = 1)
−bn j−1a0 (i = 1, 2 ≤ j ≤ n)

bi−1 j−1 − bn j−1ai−1 (2 ≤ i ≤ n, 2 ≤ j ≤ n)
.

Definition 3 (Half-Open Parallelepiped). Let L be a
sublattice of Zn, regardless of whether or not it is an
ideal lattice. There are some linear independent vectors
b1, b2, · · · , bm of L such that all elements of L can be writ-
ten as linear combinations of these vectors. We define a
basis as the n × m-matrix B := (b1 b2 · · · bm).2 For ba-
sis B = (b1 b2 · · · bm), we define half-open parallelepiped
P (B) := {

∑m
i=1 xibi | − 1

2 ≤ xi < 1
2}.

Note that a basis is not uniquely defined for a lattice and
so an infinite number of half-open parallelepipeds exist for
a specific ideal lattice.

We define the modulo operation by using a half-open
parallelepiped.
Definition 4 (Modulo Operation by a Lattice).
Let L(B) be a lattice with basis B. For vector t ∈ Zn,
we can find a unique vector t′ that satisfies the following
conditions:

1Gentry[6] refers to such a basis a “rotation basis.”
2The terminology “basis” is typically defined as not a matrix but

a set of vectors. In this paper, we follows Gentry’s notation about it.

• t′ is equivalent to t: t − t′ ∈ L(B)

• t′ is a reduced vector: t′ ∈ P (B)

We refer to t′ as the remainder of t by B. It is written as
t′ ≡ t (mod B).

We can compute t mod B as

t mod B = t − B · ⌊B−1t⌉ ,

where for v ∈ Rn, ⌊v⌉ is a vector of Zn after each element
of v is rounded to an integer.

2.2. Gentry’s scheme

In [6], a homomorphic encryption scheme over an abstract
ring is discussed, and then ideal lattices are proposed as
a realization of the ring. In this subsection, we explain
Gentry’s basic scheme, which has a bound for the circuit
depth. We concentrate on the basic scheme since we believe
that progress in the basic scheme will lead us to improve
the full scheme.

First, we select monic integer polynomial f(x) ∈ Z[x] of
degree n. Then, we set residue ring R = Z[x]/(f(x)). Also,
let BI be a basis for some ideal I ⊂ R and define plaintext
space P as (a subset of) P (BI) ∩ Zn. For example, P =
{(b0, b1, . . . , bn−1)

t | bi ∈ {0, 1} for i = 0, 1, . . . , n − 1}
for the scalar diagonal basis BI = 2En corresponding to
I = (2), where En is the identity matrix of size n. More-
over, we select short vector s ∈ L(BI), where L(BI) is
the sublattice with basis BI .3 For instance, we can use
s = (2, 0, 0, . . . , 0)t for BI = 2En. For ϕ1, ϕ2 ∈ Zn, we
define ϕ1 +I ϕ2 := (ϕ1 + ϕ2) mod BI . Similarly, we define
ϕ1 ×I ϕ2 := (ϕ1 × ϕ2) mod BI , ϕ1 +J ϕ2 := (ϕ1 + ϕ2)
mod Bpk

J , and so on.
[KeyGen]
Generate two basic matrices Bpk

J and Bsk
J corresponding

to ideal J relatively prime to I. Then, the public-key is
Bpk

J and the secret-key is Bsk
J . Typically, we can use Bsk

J

as rot(v) for random vector v with the corresponding poly-
nomial prime to I. Also, we may set Bpk

J as the Hermite
normal form4 of Bsk

J . We propose a more concrete key gen-
eration algorithm for improving the homomorphic property
later.
[Encrypt]
For a plaintext π, output ϕ := (π+r×s) mod Bpk

J , where
r ∈ Zn is chosen randomly such that ∥r∥ ≤ ℓ. Note that ℓ
is a security parameter that we determine later.
[Decrypt]
For a ciphertext ϕ, output π := (ϕ mod Bsk

J ) mod BI .
[Evaluate]
For circuit CI and tuple (ϕ1, . . . , ϕt) of ciphertexts, output
CJ(ϕ1, . . . , ϕt), where CJ is the circuit replaced by CI using
gate +J , ×J instead of gate +I , ×I .

3As described in [6], we can also select s randomly for every en-
cryption. In the current situation, we select s in advance to improve
the homomorphic property.

4The Hermite normal form for a lattice is a unique basis and can
be efficiently computed. See [14] for more information.
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Gentry discussed the validity of Evaluate. See [6] and [7]
for more information.
Definition 5 (ρEnc). ρEnc is value

ρEnc := max
π∈P, ∥r∥≤l

∥π + r × s∥ .

For example, ρEnc ≤
√

n + 2ℓ for I = (2), s =
(2, 0, 0, · · · , 0)t. In this paper, we use ℓ satisfying ρEnc ≤ n
for the sake of simplicity.

The following value expresses the size of P (B).
Definition 6 (ρDec). ρDec is value

ρDec := sup{ρ ∈ R>0 | Bρ ⊂ P (B)} ,

where Bρ := {t ∈ Rn | ∥t∥ < ρ}.
In fact, ρDec can be determined by basis Bpk

J . In what
follows, we set B = Bpk

J for simplicity.
Lemma 1 ([6, Lemma 1]).
For (b1

⋆ b2
⋆ · · · bn

⋆) := (B−1)t,

ρDec =
1

2maxj∥bj
⋆∥

.

Then, we quote the following important theorem. The
theorem states that the bound of the circuit depth depends
on value ρDec. Note that lg denotes the logarithm function
to base 2.
Theorem 1 ([6, Theorem 8]).

Set γ := max

{
2, sup

u, v ̸=0

∥u × v∥
∥u∥∥v∥

}
.

Assume that the depth of a circuit C is less than or equal
to

lg
lg ρDec

lg(γρEnc)
.

Then, Evaluate for C (and any tuple of ciphertexts) is
valid.

3. Bound of the circuit depth

In this section, we raise some questions that are related to
the bound of the circuit depth.

3.1. Reasoning for considering the bound of the
circuit depth

Gentry achieved a construction of a bootstrappable scheme
by using a server aided cryptographic technique. Roughly
speaking, the bootstrappable property is such that we can
validly execute Evaluate for the decryption circuit. If we
have a bootstrappable scheme, we can construct a homo-
morphic encryption scheme for any given operation bound
by using Gentry’s technique.

In this subsection, we discuss the potential to improve
Gentry’s scheme. As mentioned earlier, the bound of the
depth of circuits is connected to ρDec, which is determined
by the basis of a lattice. If we selected the basis randomly
as Gentry suggested, we cannot predict the bound of the

circuit depth before generating keys. Then, we must in-
crease the key size or repeat the key generation until the
scheme can handle the bound of the circuit depth. Thus,
the complexities of encryption/decryption or key genera-
tion are increased. Conversely, if we can control the bound
of the circuit depth, we can minimize the key size and
time-complexity. We may use a homomorphic encryp-
tion scheme to construct particular cryptographic proto-
cols where the number of involved parties is bounded. In
this case, we can estimate the bound of the circuit depth.
Then, the problem naturally arises of how to handle the
number of operations before generating the keys. In this
paper, we address this problem.

Note that we can construct a homomorphic encryption
that has any bound for the circuit depth by using the full
scheme. However, the full Gentry scheme requires an ad-
ditional security requirement to the basic scheme. That
is, the full scheme is based on the difficulty of not only the
problem corresponding to the basic scheme but also a prob-
lem associated with server aided cryptography. Also, since
the full scheme is constructed by applying the bootstrap-
ping technique to the basic scheme, the efficiency of the full
scheme is much lower than that of the basic scheme. By
improving the basic scheme, we can consequently increase
the efficiency of the full scheme through a reduction in the
number of times the bootstrapping technique is applied.
So we concentrate on the basic scheme.

3.2. Circuit depth and eigenvalue

The bound of the circuit depth is connected to ρDec, which
is determined by the basis of a lattice as shown in Theo-
rem 1. In this subsection, we show that the value is closely
related to the eigenvalues of the basis. In what follows,
elements of matrices are in the complex field.

At first we define the notion called matrix norms.

Definition 7. Let A be an n-dimensional square matrix.
Then, the spectral norm of A is the value

∥A∥ := max
∥x∥=1

∥Ax∥ .

Also, for A = (aij), the Frobenius norm of A is the value

∥A∥F :=
√∑

i,j

|aij |2 .

As is well known, ∥A∥ =
√

λ|max|(A∗A), where A∗ is
the complex conjugate matrix of the transpose matrix At

of A. Also, we denote the maximum and minimum of the
absolute eigenvalues of A by λ|max|(A) and λ|min|(A), re-
spectively. We can easily see ∥A∥ ≤ ∥A∥F . Then, we
deduce the following theorem from these properties.

Theorem 2. For a real non-singular matrix B,√
λ|min|(B∗B)

2
≤ ρDec ≤

n
√

λ|min|(B∗B)
2

.
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Proof. We denote column vectors of (B−1)∗ by
(b1

⋆ b2
⋆ · · · bn

⋆). Then,

max
j

∥bj
⋆∥ ≤ max

∥x∥=1
∥(B−1)

∗
x∥ = ∥(B−1)

∗∥ .

So we have

max
j

∥bj
⋆∥ ≥ 1

n

∑
j

∥bj
⋆∥

≥ 1
n
∥(B−1)

∗∥F

≥ 1
n
∥(B−1)

∗∥ .

Thus, the following equation and Lemma 1 imply the the-
orem.

∥(B−1)
∗∥ =

√
λ|max|(B−1(B−1)∗)

= 1/
√

λ|min|(B∗B) .

The theorem says that the bound of the circuit depth is
linked to the eigenvalues of B∗B. Also, for B = (bij), we
have

max
i,j

|bij | ≤ ∥B∥ =
√

λ|max|(B∗B) .

So the eigenvalues are also involved in the size of each ele-
ments of B.

3.3. Handling the eigenvalues

Gentry [6] says that we may generate keys as rot(v) for
some random vector v. So we analyze eigenvalues of rot(v).
Theorem 3. Set B = rot(v) for v = (v0, v1, · · · , vn−1)

t

on f(x) with degree n. We denote all roots (over the field)
of f(x) = 0 by α1, α2, · · · , αn (counted up to its multiplic-
ity).

Then, if all roots αi are distinct, the eigenvalues of B
are

λi :=
n−1∑
k=0

vkαi
k ,

and B can be diagonalized. More precisely, for P =
(αi

j−1)1≤i,j≤n, PBP−1 = Λ, where Λ represents the di-
agonal matrix each diagonal element Λi,i for which is λi.

Proof. For B = (bij), it is only necessary to prove equation

n∑
k=1

bkjαi
k−1 = λiαi

j−1,

for any 1 ≤ i, j ≤ n. Note that P is invertible if all αi’s are
distinct. The equation can be easily proved by induction
on j for any (fixed) i.

Note that it is not always true that eigenvalues of BtB
can be determined by eigenvalues of real matrix B. How-
ever, if P t = P , that is, P is symmetric, then the statement
is always true. Especially, if B is a circulant matrix, that is,
f(x) = xn − 1, invertible matrix P equals discrete Fourier

transformation matrix W = (ωij), where ω is a primitive
n-th root of unity. Then, W is a symmetric matrix.

Note that if |vi| is bounded by some constant c and |αi| ̸=
1, λi is bounded as follows.

|λi| = |
n−1∑
k=0

vkαi
k|

≤
n−1∑
k=0

|vk||αi|k

≤ c
|αi|n − 1
|αi| − 1

.

This means that c must be large if |αi| ∼ 1. Especially,
for f(x) = xn − 1, λi ∼ 0 in the case that αi ̸= 1 and
v1, v2, · · · , vn ∼ c. Thus, it is expected that ρDec take a
small value if vi’s are generated randomly. We can also
generate vi by selecting vectors that are almost parallel
to ei := (0, 0, · · · , 0, 1, 0, · · · , 0). A similar way may
also be used in key generation for GGH cryptosystems [9].
In [9], two key generation methods were proposed. One
method is to generate keys randomly and the other is to
generate values by adding short random vectors to a vector
which equals the multiplication of ei by a large constant.
Goldreich et al. comment that attackers may obtain a clue
into breaking the scheme if the latter is used.

Note that it is not easy to generate a secure key, i.e.
basis, that does not correspond to rot(v) for some v. This
is because ideal lattices have a special construction. Let
v̄1, v̄2, . . . , v̄k be generators of ideal I ⊂ R. Also, we denote
the integer vector corresponding to v̄i by vi. Then, a basis
of the ideal lattice for I should generate the column vectors
of rot(vi). So the size of the basis would be small compared
to the size of vi.

Thus it would seem that we cannot predict the bound of
the circuit depth if we use usual key-generating methods
such as random generation. Therefore, we propose another
algorithm to address this problem. We approach the prob-
lem by controlling the eigenvalues in advance.

4. How to control the circuit depth

In this section, we describe the proposed algorithm.

4.1. Key idea

The proposed strategy for solving the problem is to take a
basis where the sizes of the eigenvalues for which are en-
sured instead of generating keys randomly. However, there
is a problem in implementing this strategy: elements of B
can be in the complex field. We address this problem by
considering each element of B as an element in an integer
residue ring in which f(x) can be completely factored.

Here, we describe the main points of the algorithm.
First, for circuit depth bound d, we estimate ρ by using
Theorem 1. We recall that we assume ρEnc ≤ n. Sec-
ond, we select a suitable m for regarding roots of f(x)
as elements of integer residue ring Z/mZ. We provide
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an algorithm for selecting m by using a splitting field of
f(x) over Q. Third, we select randomly λi such that
|λi|/2 ≥ ρ. If λi’s are eigenvalues of rotation basis B,
the relation between ρDec and λi shown by Theorem 2 en-
sures that ρDec ≥ ρ. That is, the bound of the circuit
depth is greater than d. Finally, we have B with the rela-
tion between eigenvalues λi and B derived using Theorem
3. Note that we can obtain v such that B = rot(v) by
v = (rot(v))1 = B1 = (P−1ΛP )1 = P−1ΛP1.

4.2. Proposed algorithm

Here we show key generation algorithm that preserves the
homomorphic property for the circuit where the depth is
bounded by a given value in Table 1.

Table 1: Key Generation Algorithm for Gentry’s Scheme
Input: d: Bound of the circuit depth,

f(x): Monic integer univariate polynomial
such that n = deg(f)

Output: (Bpk, Bsk): the pair of keys for
Gentry’s scheme

1. Compute ρ := (nγ)2
d

for

γ := max

{
2, sup

u, v ̸=0

∥u × v∥
∥u∥∥v∥

}
.

2. Compute a (not necessarily minimal) splitting
field Q(θ) of f(x) over Q.

3. Compute the minimal polynomial g(x) of θ.
4. Compute m = |g(i)| for randomly generated integer i.
5. If the denominator of a root of f(x) over Q is

not prime to m, then Goto 4.
6. Call the function GenKeyWithρ(f(x), m, ρ) and

output the returned values.

Table 2: GenKeyWithρ (function)
Input: f(x): Monic polynomial, m and ρ: Integers
Output: (Bpk, Bsk): the pair of keys for

Gentry’s scheme
1. Select λ1, λ2, · · · , λn randomly such that

2ρ ≤ |λi| < m.
2. Construct P = (αi

j−1) over Z/mZ,
where f(x) =

∏n
i=1(x − αi) mod m.

3. Compute v = P−1ΛP1, where P1 is
the first column vector of P .

4. Compute B = rot(v).
5. Output the integer matrix Bsk corresponding to B.
6. Compute the Hermite normal form of Bsk and

output the matrix as Bpk.

For the selection of m, we execute steps 2 to 5 in Table 1.
In our algorithm, we must have all roots αj of f(x) over
Z/mZ. The following proposition ensures that f(x) splits
in Z/mZ.
Proposition 1. Let f(x) ∈ Z[x] be a monic polynomial
of degree n. Also, let K = Q(θ) be a number field where

θ is a root of a monic irreducible polynomial g(y) ∈ Z[y].
We define h1(y), h2(y), . . . , hn(y) ∈ Q[y] such that f(x) =∏n

j=1(x − hj(θ)). Let d =
∏k

j=1 dj where the dj ∈ Z>0 is
chosen so that the djhj(y) have integer coefficients and are
primitive. Then, we have the following congruence equa-
tion.

d

f(x) −
n∏

j=1

(x − hj(y))

 ≡ 0 (mod g(y))

Proof. Because of the definition of d, we have

d

f(x) −
n∏

j=1

(x − hj(y))

 ∈ Z[x, y] .

By using Euclidean division over (Z[x])[y], there are some
u(x, y), v(x, y) ∈ Z[x, y] such that

d

f(x) −
n∏

j=1

(x − hj(y))

 = g(y)u(x, y) + v(x, y), (1)

where degy u(x, y) > degy v(x, y). By substituting y = θ
for the equation (1), we obtain

0 = v(x, θ) .

The minimality of g(y) implies that all coefficients of
v(x, y) ∈ (Z[y])[x] are divisible by g(y). Thus, we have
v(x, y) = 0 owing to the condition of the degree. There-
fore, the equation (1) gives the proposition.

For m = |g(i)| (∃i ∈ Z), Proposition 1 shows that the
roots of (

∏k
j=1 dj)f(x) are h1(i), h2(i), . . . , hn(i). If the

denominator dj of hj(y) is prime to m, hj(i)’s are roots of
f(x) over Z/mZ.

Here we refer to the computation of the splitting field.
We may compute the splitting field of f(x) as the following.

1. Factor f(x) over Q. We put f(x) =
∏k

j=1 fj(x).

2. Define the number field Kj corresponding to fj(x),
and compute the Galois closure K̄i of Ki.

3. Compute the compositum K of K̄1, K̄2, . . . , K̄k.

This algorithm works well if the sizes of the related Galois
groups are small.

If we know the minimal splitting field of f in advance,
we can skip the computation of the splitting field. For
example, the splitting field of f(x) = xn − 1 is known as
the cyclotomic field, which is generated by a primitive n-
th root of unity. The following proposition shows that a
primitive root of unity can be expressed over an integer
residue ring.

Proposition 2. Let n be a power of 2. Set m := ωn/2 + 1
for a power ω of 2. Then, ω is a primitive n-th root of
unity over Z/mZ.
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Proof. The theorem follows immediately from the following
congruent equation.

ωn/2 ≡ −1 (mod m) .

Next, we propose another algorithm in Table 3. Note
that we do not input f(x) but n in the algorithm.

Table 3: Another Key Generation Algorithm for Gentry’s
Scheme
Input: d: Bound of circuit depth, n: Integer
Output: (Bpk, Bsk): the pair of keys for

Gentry’s scheme, f(x): Monic integer polynomial

1. Compute ρ := (nγ)2
d

for

γ := max

{
2, sup

u, v ̸=0

∥u × v∥
∥u∥∥v∥

}
.

2. Generate randomly m such that m ≥ 2ρ.
3. Generate integers αi ∈ Z for i = 1, 2, . . . , n.
4. Compute f̃(x) =

∏n
i=1(x − αi).

5. Compute f(x) such that f(x) ≡ f̃(x) (mod m).
by adding random multiples of m to each coefficients
of f̃ except for the term xn.

6. Output f(x).
7. Call the function GenKeyWithρ(f(x), m, ρ) and

output the returned values.

For creating f(x), we execute steps 3 to 6 in Table 3.
In this algorithm, we define f(x) for randomly chosen m,
instead of selecting m for given f(x).

If we use the second algorithm (Table 3), on the other
hand it is not necessary to compute the splitting field of
f(x), but encryption or decryption algorithms may be slow,
because these algorithms are affected by the form of f(x).
So we recommend the first algorithm if the form of f(x)
is fixed or selected in a limited way. We should use the
second algorithm if the form of f(x) ought to be randomly
chosen because, for example, an attacker could find a way
of exploiting a security hole related with the form of f(x).

4.3. Feasible bound of the circuit depth

In this subsection, we estimate a feasible bound for the
circuit depth. Considering the security requirements, we
could not use too large a circuit depth. As mentioned in
Section 5.2, the condition that

√
n2ρ < 2n1−δ

must be sat-
isfied, where δ ∈ [0, 1) is a security parameter. Thus, we
can estimate the maximum circuit depth as follows.

Proposition 3. Assume that ρ satisfies the condition√
n2ρ < 2n1−δ

. Then, the bound of circuit depth d is less
than ⌊

lg
(

n1−δ − lg(2
√

n)
lg(nγ)

)⌋
.

For example, if δ = 1
8 , we can construct Gentry’s scheme

with the circuit depth of 3 for f(x) = x256 − 1.

5. Analysis of the proposed algorithm

In this section, we analyze the efficiency and the security
of the proposed algorithm.

5.1. Practicality of the proposed algorithm

First, we consider f(x) = xn − 1 in terms of efficiency. As
noted in Section 3.3, if f(x) = xn − 1, then P is a dis-
crete Fourier transformation matrix. So techniques for fast
Fourier transformation can be applied to the algorithm.
Since ΛP1 = (λ1, λ2, · · · , λn)t, we can compute vector
v = P−1ΛP1 by applying fast Fourier transformation tech-
niques (on P−1 = ( 1

nω−ij)) to (λ1, λ2, · · · , λn)t. Note that
the fast Fourier transformation is efficient if n is a power
of 2.

Next, we describe implementation techniques for Gen-
try’s scheme. Since the modulo operation by a lattice is
the most time-consuming in Gentry’s scheme, we consider
how to improve its operation. If we take BI as scalar ma-
trix 2En, A = (aij) mod BI can be easily computed using
(aij mod 2). Also, to speed up the encryptions, the inverse
matrix of Bpk

J is precomputed. Moreover, Bsk
J = rot(v) can

be computable efficiently by using

rot(v) · ⌊rot(v)−1
ϕ⌉ = v × ⌊w × ϕ⌉ ,

where w ∈ Qn 5 satisfies v × w = (1, 0, 0, . . . , 0)t. Note
that v1 × v2 = rot(v1)v2 for v1, v2 ∈ Zn and v1 × v2 can
be computed with a polynomial multiplication. Also, el-
ement w̄ ∈ Z[x]/(f(x)) corresponding to w is the inverse
in Q[x]/(f(x)) of the element v̄ corresponding to v. So w
(or w̄) is computable by applying the extended Euclidean
algorithm to v̄ and f(x).

Here, we present the experimental results of Gentry’s
scheme using the proposed algorithm. Before that, we
briefly summarize the key generation algorithm. First we
generate integers λi’s for the given number of operations.
Then, we obtain the matrix corresponding to a rotation ba-
sis with the eigenvalues of λi by executing operations over
an integer residue ring.

Table 4 shows the experimental results of Gentry’s
scheme with the proposed algorithm on f(x) = xn −1. We
used a computer with 2-GHz CPU (AMD Opteron 246), 4
GB memory, and a 160 GB hard disk. Note that we used
at most 1 GB memory to execute the program. Magma
[23] was used as the software for writing the program. We
measured the computation times and the amount of mem-
ory used for each step, including key generation, encryp-
tion, decryption and d times multiplications of ciphertexts.
Note that we show the average run time for the multiplica-
tion. The number of iterations is 10. We take the average
values except the maximum and minimum for each item.

Comparing the experimental results to those of [8], it ap-
pears that the proposed algorithm is not very efficient. We
used Magma on the computer with 4 GB of memory, while

5The isomorphism between Zn and Z[x]/(f(x)) is naturally ex-
tended to the isomorphism between Qn and Q[x]/(f(x)).
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Table 4: Experimental Results for Gentry’s Scheme on
f(X) = Xn − 1

n 64 128 256
d 1 3 1 3 1 3

Keygen [s] 0.93 1.54 20.12 28.21 416.82 416.48
Encrypt [s] 0.000 0.001 0.007 0.007 0.031 0.029
Decrypt [s] 0.030 0.055 0.38 0.61 7.87 7.83
Multiply [s] 0.001 0.002 0.006 0.008 0.047 0.048

Memory [MB] 9.39 10.11 20.61 20.31 77.87 78.79

Gentry et al. used NTL/GMP libraries on a computer with
24 GB of memory. Based on the current experiments, im-
plementations with C seem to be much faster than those
for the Magma implementation. To obtain more accurate
results, we must compare the experimental results in the
same experimentation environment.

Here, we comment regarding the differences between the
proposed algorithm and other related schemes.

5.1.1. Smart and Vercauteren’s scheme

In [20], an efficient fully homomorphic encryption scheme
is proposed. They use a specific lattice inspired with
some prime ideals over an algebraic number field. So their
scheme is based on the hardness of a strong problem com-
pared to that for the full Gentry scheme. Also, their exper-
imental results show that their scheme has the homomor-
phic property for circuits but with a depth that would not
be deep enough to enable a fully homomorphic encryption
scheme. We expect that since the proposed algorithm uses
eigenvalues it can be applied to their scheme.

5.1.2. Stehlé and Steinfeld’s scheme

In [21], an efficient fully homomorphic encryption scheme
is proposed. They give a security analysis of the Sparse
Subset Sum Problem, which is one of the hard problems
underlying the security of the full scheme. The analysis
leads us to smaller parameter choices. Also they improve
the decryption algorithm for the full scheme. In contrast,
we concentrate on the basic scheme, and the key gener-
ation algorithm in particular. In this way, the proposed
algorithm is an improvement to Gentry’s scheme regarding
this specific part and their algorithm focuses on another
part. The proposed algorithm would be applied to gener-
ate a basis for their scheme.

5.2. Security analysis of the proposed algo-
rithm

Attackers may break Gentry’s scheme with a lattice re-
duction algorithm by finding short vectors. The following
well-known theorem yields a bound for the length of the
shortest vector with the determinant of the basis.

Theorem 4 (Minkowski). Let α(B) be the length of the
shortest vector in an n-dimensional full lattice with the ba-
sis B. Then,

α(B) <
√

n det(B)1/n .

Note that det(B) equals the multiplication of all eigen-
values of B. So we can control α(B) by selecting the eigen-
values. Various lattice reduction algorithms were proposed,
for example, in [13] or [19]. The most efficient algorithm
was proposed by Ajtai et al. [1]. The algorithm can find a
vector of length at most 2O(n lg lg n/ lg n) times the length of
the shortest non-zero vector. Also, Gama and Nguyen [5]
provide assessments of the practical hardness of the short-
est vector problem based on many experimental results.
Especially, they explain why the 334-dimensional NTRU
lattices [11] have not been solved. Since the NTRU lattice
is an ideal lattice, we recommend using n > 334.

We analyze the key generation algorithm assuming that
we can compute short vectors with the approximate factor
2n1−δ

. Because we take the size of eigenvalues as almost
2ρ, the condition that

√
n2ρ < 2n1−δ

should be satisfied.
In fact, if α(B)/ℓ ≥ 2n, Gentry’s scheme is broken. For
more information, refer to [7].

Of course, the proposed algorithm generates more
specially-configured keys than simple random generation.
So the security level would decrease by restricting the keys.
Investigating the security is for future work.

6. Conclusion

We proposed an efficient key generation algorithm that con-
trols the bound of the circuit depth by using the relation
between the circuit depth and eigenvalues of a basis of a
lattice. The key generation algorithm enables us to create a
homomorphic encryption scheme for a given number of op-
erations. Also, we described an efficient implementation of
Gentry’s scheme and showed that the proposed algorithm
is practical based on experimental results.

The algorithm is summarized as follows. First we gener-
ate eigenvalues for the given number of operations. Then,
we obtain the matrix corresponding to a rotation basis by
using eigenvalues over an integer residue ring.

Although the experimental results show that the algo-
rithm is practical, the efficiency of the algorithm remains
a matter of research. Especially, we should improve the
bound of the circuit depth. Improving the quality of the
algorithm is for future work. For specific lattices such as
cyclic lattices, we continue investigating the security of the
scheme with the proposed method.
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