Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

Inoguchi, Jun-ichi
Department of Mathematical Sciences, Yamagata University

Kajiwara, Kenji
Faculty of Mathematics, Kyushu University

Matsuura, Nozomu
Department of Applied Mathematics, Fukuoka University

Ohta, Yasuhiro
Department of Mathematics, Kobe University

http://hdl.handle.net/2324/19911
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

Jun-ichi Inoguchi,
Kenji Kajiwara,
Nozomu Matsuura and
Yasuhiro Ohta

MI 2011-14

(Received August 5, 2011)
Explicit Solutions to the Semi-discrete Modified KdV Equation and Motion of Discrete Plane Curves

Jun-ichi Inoguchi1, Kenji Kajiwara2, Nozomu Matsuura3 and Yasuhiro Ohta4

1: Department of Mathematical Sciences, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan. inoguchi@sci.kj.yamagata-u.ac.jp
2: Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Fukuoka 819-8581, Japan. kaji@imi.kyushu-u.ac.jp
3: Department of Applied Mathematics, Fukuoka University, Nanakuma, Fukuoka 814-0180, Japan. nozomu@fukuoka-u.ac.jp
4: Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan. ohta@math.sci.kobe-u.ac.jp

August 5, 2011

Abstract

We construct explicit solutions to continuous motion of discrete plane curves described by a semi-discrete potential modified KdV equation. Explicit formulas in terms the \(\tau\) function are presented. Bäcklund transformations of the discrete curves are also discussed. We finally consider the continuous limit of discrete motion of discrete plane curves described by the discrete potential modified KdV equation to motion of smooth plane curves characterized by the potential modified KdV equation.

2010 Mathematics Subject Classification: 53A04, 37K25, 37K10, 35Q53.

Keywords and Phrases: discrete curves; discrete motion; discrete potential mKdV equation; discrete integrable systems; \(\tau\) function; Bäcklund transformation.

1 Introduction

As is well known, many integrable partial differential equations (integrable systems) have close relationship to differential geometry. In fact, surfaces of specific curvature property in 3-dimensional space forms have sine-Gordon type equation as the integrability condition of surfaces. More generally, harmonic maps of conformal 2-manifolds into semi-Riemannian symmetric spaces are constructed by solutions to 2-dimensional Toda lattice equation (2DTL).

Transformation of solutions to integrable systems have origins in classical differential geometry. The Bäcklund transformation of the sine-Gordon equation are originally formulated as transformations of pseudo-spherical surfaces in Euclidean 3-space.

On the other hand, substantial progress has been made in the study of discretization of integrable systems preserving “integrable structure”. Motivated by extensive study on discrete integrable systems, discretizations of curves and surfaces have been recently studied actively.

1
This paper concerns with geometry of discrete curves in terms of semi-discrete integrable systems. In [3–5], Doliwa and Santini introduced continuous motion of discrete curves in 3-sphere described by the Ablowitz-Ladik hierarchy [2]. The semi-discrete potential mKdV equation was deduced as the simplest case. Hoffmann and Kutz [13] introduced the notion of discrete curvature for plane discrete curves. Using the discrete curvature, they deduced the semi-discrete mKdV equation from continuous motion of plane discrete curves.

In our previous works [14, 17], we have studied discrete motions of plane discrete curves in purely Euclidean geometric manner. The compatibility condition of a discrete motion is the discrete potential mKdV equation proposed by Hirota [8]. In discrete differential geometric setting, the primal geometric object is the potential function rather than curvature (see [17]). Note that potential function coincides with the turning angle function in smooth curve theory. We have constructed explicit solutions of discrete motions of plane discrete curves in [14].

As a continuation of the previous works, in this paper we study continuous motions of plane discrete curves in terms of potential function. The purpose of the present paper is to construct explicit solutions to continuous motions of plane discrete curves by using the so-called \(\tau \) function. Moreover we shall give Bäcklund transformations of continuous motions of plane discrete curves. The discrete curvature functions and the semi-discrete mKdV equation discussed in [13] are recovered from our results.

We have been working on three categories of curves motions: (1) continuous motions of plane smooth curves, (2) continuous motions of plane discrete curves and (3) discrete motions of plane discrete curves. In this paper we investigate the relationship of these three motions, and show that these motions are connected by appropriate continuous limiting procedure.

This paper is organized as follows. After recalling the requisite facts on the geometry of plane discrete curves and their continuous motion in Section 2, we prepare a representation formula for continuous motion of plane discrete curves in terms of potential function. This representation enable us to give explicit parametrization of motions determined by multi-solitons as well as multi-breathers in the next Section 4.

As we have mentioned before, Bäcklund transformation is a fundamental and effective tool for construction of solutions. In Section 5, we extend Bäcklund transformations of plane discrete curves studied in our previous work [14] to those of continuous motions. In particular, we give a new formula for Bäcklund transformations on the semi-discrete potential mKdV equation.

In the final section, we shall discuss continuous limits of motions of plane discrete curves. More precisely, first we shall investigate continuous limits of discrete motions of plane discrete curves to continuous motion of those. Next we study continuous limits of continuous motions of plane discrete curves to continuous motions of plane smooth curves. It should be emphasized that these limiting procedure preserve solutions of equations. More precisely, we shall show that these limiting procedure preserve soliton type solutions. This is confirmed by careful analysis of \(\tau \) functions. Appendix will be devoted to detailed computations of bilinear equations for our use.

In a separate publication [6], we study discrete hodograph transformations and apply those to obtain discretizations of some integrable systems associated with continuous motions of plane smooth curves.
2 Continuous Motion of Plane Discrete Curves

We start with the following definition.

Definition 2.1 A map $\gamma: \mathbb{Z} \to \mathbb{R}^2; \ l \mapsto \gamma_l$ is said to be a *discrete curve* of constant segment length ϵ if

$$\frac{|\gamma_{l+1} - \gamma_l|}{\epsilon} = 1.$$ \hspace{1cm} (2.1)

We introduce the *angle function* ψ_l of a discrete curve γ by

$$\frac{\gamma_{l+1} - \gamma_l}{\epsilon} = \begin{bmatrix} \cos \psi_l \\ \sin \psi_l \end{bmatrix}.$$ \hspace{1cm} (2.2)

A discrete curve γ satisfies

$$\frac{\gamma_{l+1} - \gamma_l}{\epsilon} = R(K_l) \frac{\gamma_l - \gamma_{l-1}}{\epsilon},$$

for $K_l = \psi_l - \psi_{l-1}$, where $R(K_l)$ denotes the rotation matrix given by

$$R(K_l) = \begin{bmatrix} \cos K_l & -\sin K_l \\ \sin K_l & \cos K_l \end{bmatrix}.$$ \hspace{1cm} (2.3)

We consider the following motion of discrete curves:

$$\frac{d\gamma_l}{ds} = \frac{1}{\cos \frac{K_l}{2}} R\left(-\frac{K_l}{2}\right) \frac{\gamma_{l+1} - \gamma_l}{\epsilon}.$$ \hspace{1cm} (2.4)

Then from the compatibility condition of (2.3) and (2.5), there exists a potential function θ_l such that

$$\psi_l = \frac{\theta_{l+1} + \theta_l}{2}, \quad K_l = \frac{\theta_{l+1} - \theta_{l-1}}{2},$$

and it follows that from the isoperimetric condition (2.1) that θ_l satisfies

$$\frac{d\theta_l}{ds} = \frac{2}{\epsilon} \tan \left(\frac{\theta_{l+1} - \theta_{l-1}}{4}\right).$$ \hspace{1cm} (2.6)

Equation (2.7) is called the *semi-discrete potential modified KdV (mKdV) equation.*

Hoffmann and Kutz [12, 13] introduced (2.5) as the edge tangential flow of discrete plane curves, which was deduced by discretizing the curvature function of motion of plane smooth curves. We note that Doliwa and Santini formulated in [3–5] the integrable motion of discrete curves in 3-sphere described by the Ablowitz-Ladik hierarchy, where the semi-discrete potential mKdV equation (2.7) arises as the simplest case. Their formulation includes the motion of plane curves as a limiting case.
3 Representation Formula in terms of \(\tau \) Function

In this section, we present a representation formula for curve motions in terms of \(\tau \) function. We also give explicit \(\tau \) functions which correspond to soliton and breather solutions.

Let \(\tau_{l} = \tau_{l}(s; y) \) be a complex function dependent on the discrete variable \(l \) and two continuous variables \(s \) and \(y \), satisfying the following system of bilinear equations:

\[
D s \tau_{l} \cdot \tau_{l}^{*} = \frac{1}{2 \epsilon} (\tau_{l+1}^{*} \tau_{l+1}^{*} - \tau_{l+1}^{*} \tau_{l+1}^{*}),
\]

(3.1)

\[
\tau_{l} \tau_{l}^{*} = \frac{1}{2} (\tau_{l+1}^{*} \tau_{l+1}^{*} + \tau_{l+1}^{*} \tau_{l+1}^{*}),
\]

(3.2)

\[
\frac{1}{2} D_{s} D_{y} \tau_{l} \cdot \tau_{l} = -\tau_{l+1}^{*} \tau_{l+1}^{*},
\]

(3.3)

\[
D_{y} \tau_{l+1} \cdot \tau_{l} = -\epsilon \tau_{l+1}^{*} \tau_{l+1}^{*}.
\]

(3.4)

Here, \(\tau \) denotes the complex conjugate, \(D_{s}, D_{y} \) are the Hirota’s bilinear differential operators (\(D \)-operators) defined by

\[
D_{i} \cdot f = (\partial_{s} - \partial_{s}'')(\partial_{y} - \partial_{y}'') f(s, y) g(s', y') \big|_{s'=y'=0}.
\]

(3.5)

We refer to [9] for calculus of \(D \)-operators. The functions satisfying the bilinear equations are called the \(\tau \) functions.

Theorem 3.1 Let \(\tau_{l} \) be a solution to eqs.(3.1)–(3.4). Define a real function \(\theta_{l}(s; y) \) and an \(\mathbb{R}^{2} \)-valued function \(\gamma_{l}(s; y) \) by

\[
\theta_{l}(s; y) := \frac{2}{\sqrt{-1}} \log \frac{\tau_{l}}{\tau_{l}^{*}},
\]

(3.6)

\[
\gamma_{l}(s; y) := \begin{bmatrix}
-\frac{1}{2} (\log \tau_{l} \tau_{l}^{*})
\frac{1}{2} \sqrt{-1} \left(\log \frac{\tau_{l}}{\tau_{l}^{*}} \right)
\end{bmatrix}.
\]

(3.7)

Then for any \(s, y \in \mathbb{R} \) and \(l \in \mathbb{Z} \), the functions \(\theta_{l} = \theta_{l}(s; y) \) and \(\gamma_{l} = \gamma_{l}(s; y) \) satisfy (2.1), (2.3) (2.5) and (2.7).

Proof. Express \(\gamma_{l} = \gamma(X_{l}, Y_{l}) \). From (3.4) and its complex conjugate we have

\[
\left(\log \left(\frac{\tau_{l+1}}{\tau_{l}} \right) \right)_{y} = -\epsilon \left(\frac{\tau_{l+1} \tau_{l}^{*}}{\tau_{l+1} \tau_{l}^{*}} \right), \quad \left(\log \left(\frac{\tau_{l+1}^{*}}{\tau_{l}^{*}} \right) \right)_{y} = -\epsilon \left(\frac{\tau_{l+1} \tau_{l}^{*}}{\tau_{l+1} \tau_{l}^{*}} \right).
\]

(3.8)

Adding these two equations we obtain

\[
\left(\log \left(\tau_{l+1} \tau_{l}^{*} \right) \right)_{y} - \left(\log \tau_{l} \tau_{l}^{*} \right)_{y} = -\epsilon \left(\frac{\tau_{l+1} \tau_{l}^{*}}{\tau_{l+1} \tau_{l}^{*}} + \frac{\tau_{l+1} \tau_{l}^{*}}{\tau_{l+1} \tau_{l}^{*}} \right),
\]

(3.9)

which yields

\[
\frac{X_{l+1} - X_{l}}{\epsilon} = \cos \psi_{l}, \quad \psi_{l} = \frac{1}{\sqrt{-1}} \log \left(\frac{\tau_{l+1} \tau_{l}}{\tau_{l+1} \tau_{l}^{*}} \right) = \frac{\theta_{l+1} + \theta_{l}}{2}.
\]

(3.10)
Subtracting the second equation from the first equation in eq. (3.8) we have
\[\frac{Y_{l+1} - Y_l}{\epsilon} = \sin \psi_l. \]

Therefore we obtain
\[\frac{\gamma_{l+1} - \gamma_l}{\epsilon} = \left[\begin{array}{c} \cos \psi_l \\ \sin \psi_l \end{array} \right], \quad (3.11) \]

which gives eq. (2.1). Next, from eq. (3.11) we see that
\[\frac{\gamma_{l+1} - \gamma_l}{\epsilon} = R(\psi_l - \psi_{l-1}) \frac{\gamma_l - \gamma_{l-1}}{\epsilon}, \quad \psi_l - \psi_{l-1} = \frac{\theta_{l+1} - \theta_{l-1}}{2} = K_l, \quad (3.12) \]

which is nothing but eq. (2.3). In order to show (2.5), we identify \(\mathbb{R}^2 \) as \(\mathbb{C} \). Then by using (2.2) and (2.6), we see that (2.5) is rewritten as
\[\cos \frac{K_l}{2} \gamma_l = e^{-\sqrt{-1} \gamma_0} \frac{\gamma_{l+1} - \gamma_l}{\epsilon} = e^{\sqrt{-1} \frac{\theta_{l+1} + \theta_{l-1}}{2}}. \quad (3.13) \]

We have
\[\cos \frac{K_l}{2} = \frac{1}{2} \left[e^{\sqrt{-1} \frac{\theta_{l+1} + \theta_{l-1}}{4}} + e^{\sqrt{-1} \frac{\theta_{l+1} - \theta_{l-1}}{4}} \right] = \frac{1}{2} \left[\left(\frac{\tau_{l+1} \tau_{l-1}}{\tau_{l+1}^{*} \tau_{l-1}^{*}} \right)^{1/2} + \left(\frac{\tau_{l+1}^{*} \tau_{l-1}^{*}}{\tau_{l+1} \tau_{l-1}} \right)^{1/2} \right] \]
\[= \frac{1}{2} \frac{\tau_{l+1} \tau_{l-1} + \tau_{l+1}^{*} \tau_{l-1}^{*}}{|\tau_{l+1} \tau_{l-1}|} = \frac{\tau_{l} \tau_{l}^{*}}{|\tau_{l+1} \tau_{l-1}|}, \quad (3.14) \]

where we have used (3.2). Noticing that
\[\gamma_l = X_l + \sqrt{-1} Y_l = -(\log \tau_l^{*}), \quad (3.15) \]

the left hand side of (3.13) can be rewritten by using (3.3) as
\[\cos \frac{K_l}{2} \frac{dy_l}{ds} = \frac{\tau_l \tau_l^{*}}{|\tau_{l+1} \tau_{l-1}|} \times (-1)(\log \tau_l^{*}) = \frac{\tau_l \tau_l^{*}}{|\tau_{l+1} \tau_{l-1}|} \frac{1}{2} D_s D_y \tau_l^{*} \cdot \frac{\tau_l^{*}}{|\tau_{l+1} \tau_{l-1}|} \tau_l^{*} = \frac{\tau_{l+1} \tau_{l-1}}{|\tau_{l+1} \tau_{l-1}|} \tau_l^{*} \]
\[= e^{\sqrt{-1} \frac{\theta_{l+1} + \theta_{l-1}}{2}}, \]

which implies (3.13). Finally, the semi-discrete potential mKdV equation (2.7) can be derived by dividing (3.1) by (3.2). \(\square \)

4 Explicit Solutions

We now present explicit formulas for the \(\tau \) function which correspond to multi-soliton and multi-breather solutions to the bilinear equations, respectively.

Theorem 4.1 For \(N \in \mathbb{Z}_{\geq 0} \), consider the \(\tau \) function
\[\tau_l(s; y) = \exp[-(s + \epsilon l) y] \det \left(f^{(i)}_{j-1} \right)_{i,j=1,...,N}, \quad (4.1) \]
\[f^{(i)}_j = \alpha_i p_i^{\mu} (1 - \epsilon p_i)^{-1} e^{\frac{1}{\mu} - \frac{1}{\mu} s + \frac{1}{\mu} y} + \beta_i (-p_i)^{\nu} (1 + \epsilon p_i)^{-1} e^{-\frac{1}{\nu} - \frac{1}{\nu} s - \frac{1}{\nu} y}, \quad (4.2) \]

where \(\alpha_i, \beta_i \) and \(p_i \) \((i = 1, \ldots, N) \) are parameters.
(1) Choosing the parameters as
\[p_i, \alpha_i \in \mathbb{R}, \quad \beta_i \in \sqrt{-1} \mathbb{R} \quad (i = 1, \ldots, N), \]
then \(\tau_i \) satisfies the bilinear equations (3.1)–(3.4). This gives the \(N \)-soliton solution to (2.7).

(2) Taking \(N = 2M \), and choosing the parameters as
\[p_i, \alpha_i, \beta_i \in \mathbb{C} \quad (i = 1, \ldots, 2M), \quad p_{2r} = p_{2r-1}^* \quad (r = 1, \ldots, M), \]
\[\alpha_{2r} = \alpha_{2r-1}^*, \quad \beta_{2r} = -\beta_{2r-1}^* \quad (r = 1, \ldots, M), \]
then \(\tau_i \) satisfies the bilinear equations (3.1)–(3.4). This gives the \(M \)-breather solution to (2.7).

In order to prove Theorem 4.1, we first consider the following “generic” \(\tau \) function and system of bilinear equations. Then Theorem 4.1 is derived by applying the reduction.

Proposition 4.2 Let \(\sigma_{l,m}^k = \sigma_{l,m}^k(u,v;y) \) is a function depending on three discrete independent variables \(k, l, m \in \mathbb{Z} \) and three continuous independent variables \(u, v, y \in \mathbb{R} \) defined by
\[\sigma_{l,m}^k(u,v;y) = \det \left(f^{(i)}_{k+j-1}(l,m) \right)_{i,j=1,\ldots,N}, \]
where \(a, b, \alpha_i, \beta_i, p_i \) and \(q_i \) \((i = 1, \ldots, N)\) are parameters. Then \(\sigma_{l,m}^k \) satisfies the following bilinear equations:

\begin{align*}
(D_u - 1) \sigma_{l,m}^{k-1} \cdot \sigma_{l,m}^k &= -\sigma_{l+1,m}^{k} \sigma_{l-1,m}^{k-1}, \quad (4.7) \\
(D_v - 1) \sigma_{l,m}^{k-1} \cdot \sigma_{l,m}^k &= -\sigma_{l,m+1}^{k} \sigma_{l,m-1}^{k-1}, \quad (4.8) \\
bo \sigma_{l+1,m+1}^{k+1} \sigma_{l+1,m}^{k} - a \sigma_{l+1,m}^{k+1} \sigma_{l,m+1}^{k} + (a - b) \sigma_{l+1,m+1}^{k} \sigma_{l,m}^{k} &= 0, \quad (4.9) \\
\frac{1}{2} D_u D_v \sigma_{l,m}^{k} \cdot \sigma_{l,m}^{k} &= a(\sigma_{l,m}^{k})^2 - a \sigma_{l+1,m}^{k+1} \sigma_{l-1,m}^{k-1}, \quad (4.10) \\
\frac{1}{2} D_u D_v \sigma_{l,m}^{k} \cdot \sigma_{l,m}^{k} &= b(\sigma_{l,m}^{k})^2 - b \sigma_{l+1,m+1}^{k+1} \sigma_{l+1,m-1}^{k-1}, \quad (4.11) \\
(D_v - a) \sigma_{l+1,m}^{k} \cdot \sigma_{l+1,m}^{k} &= -a \sigma_{l+1,m}^{k+1} \sigma_{l+1,m}^{k-1}. \quad (4.12)
\end{align*}

Proof of Theorem 4.1 We show that Theorem 4.1 holds from Proposition 4.2. We impose the reduction conditions on \(\sigma_{l,m}^k \) as

\begin{align*}
\sigma_{l+1,m+1}^{k+1} &= Bo \sigma_{l,m}^{k}, \quad (4.13) \\
\sigma_{l,m}^{k+1} &= Ca \sigma_{l,m}^{k}, \quad C \in \mathbb{R} \quad (4.14)
\end{align*}
where B, C are constants. Then putting $b = -a$, the bilinear equations (4.7)–(4.12) are reduced to

\begin{align}
(D_u - 1) \sigma^*_i \cdot \sigma_i &= -\sigma^*_{i+1} \sigma^*_{i-1}, \\
(D_v - 1) \sigma^*_i \cdot \sigma_i &= -\sigma^*_{i-1} \sigma^*_{i+1}, \\
\sigma^*_{i-1} \sigma^*_{i+1} + \sigma^*_i \sigma^*_{i-1} - 2 \sigma^*_i \sigma_i &= 0, \\
\frac{1}{2} D_u D_y \sigma_i \cdot \sigma_i &= a(\sigma_i)^2 - a \sigma^*_{i+1} \sigma^*_i, \\
\frac{1}{2} D_y D_y \sigma_i \cdot \sigma_i &= -a(\sigma_i)^2 + a \sigma^*_{i-1} \sigma^*_i, \\
(D_y - a) \sigma^*_{i+1} \cdot \sigma_i &= -a \sigma^*_{i+1} \sigma^*_i,
\end{align}

respectively. Here we have used (4.13) and (4.14) to eliminate the m- and k-dependence, respectively, and denoted $\sigma^k_{l,m} = \sigma_l$. We next consider the specialization of continuous independent variables

\begin{align}
u = c s, \quad v = -c s, \quad c \in \mathbb{R}.
\end{align}

Then, subtracting (4.16) from (4.15) we have

\begin{align}D_y \sigma^*_i \cdot \sigma_i &= c(\sigma^*_{i-1} \sigma^*_{i+1} - \sigma^*_i \sigma^*_{i-1} - \sigma^*_i \sigma^*_{i+1}).\end{align}

Similarly, we get from (4.18) and (4.19)

\begin{align}D_y D_y \sigma_i \cdot \sigma_i &= 4ac\{(\sigma_i)^2 - \sigma^*_{i-1} \sigma^*_{i+1}\}.
\end{align}

Putting

\begin{align}a = \epsilon, \quad c = \frac{1}{2\epsilon},
\end{align}

and introducing τ_i by

\begin{align}\tau_i = e^{-(s+\epsilon)y} \sigma_i,
\end{align}

the bilinear equations (4.22), (4.17), (4.23), (4.20) are reduced to (3.1), (3.2), (3.3), (3.4), respectively. Let us next realize the reduction conditions (4.13) and (4.14) by imposing suitable restriction on parameters of solution. We put

\begin{align}q_i = -p_i \quad (i = 1, \ldots, N), \quad b = -a.
\end{align}

Then it is easy to verify that the entries of the determinant satisfy

\begin{align}f_k^{(i)}(l + 1, m + 1) = \frac{1}{1 - a^2 p_i^2} f_k^{(i)}(l, m),
\end{align}

so that the condition (4.13) is realized as

\begin{align}\alpha^k_{l+1,m+1} = \prod_{i=1}^N \frac{1}{1 - a^2 p_i^2} \alpha^k_{l,m}.
\end{align}
As for the condition (4.14), we have to consider the cases (1) and (2) in Theorem 4.1 separately: Case (1). We impose the condition (4.3). Then we see that

\[f^{(l)}_{k+1}(l, m) = p_l f^{(m)}_k(l, m), \]

(4.29)

and so

\[\sigma_{lm}^{k+1} = C \sigma_{lm}^k, \quad C = \prod_{i=1}^N p_i \in \mathbb{R}. \]

(4.30)

Case (2). We impose the condition (4.4). Then we see that

\[f^{(2r)}_{k+1}(l, m) = p_{2r-1} f^{(2r-1)}_k(l, m), \quad f^{(2r-1)}_{k+1}(l, m) = p_{2r} f^{(2r)}_k(l, m), \]

(4.31)

and so

\[\sigma_{lm}^{k+1} = C \sigma_{lm}^k, \quad C = (-1)^M \prod_{i=1}^M |p_{2r}| \in \mathbb{R}. \]

(4.32)

Finally, putting \(m = 0 \) without loss of generality and applying the specialization (4.21) and (4.24), (4.6) is rewritten as

\[f^{(l)}_k(l, 0) = \alpha_1 p^k_l (1 - \epsilon \rho_i)^{-1} e^{\frac{k}{2} \rho_i} \left(\frac{1}{1 - \rho_i} - \frac{1}{1 + \rho_i} \right)^{\frac{1}{2} \rho_i} + \beta_1 (-\rho_i)^k (1 + \epsilon \rho_i)^{-1} e^{\frac{k}{2} \rho_i} \left(\frac{1}{1 - \rho_i} - \frac{1}{1 + \rho_i} \right)^{\frac{1}{2} \rho_i} \]

\[= \alpha_1 p^k_l (1 - \epsilon \rho_i)^{-1} e^{\frac{k}{2} \rho_i} \left(\frac{1}{1 - \rho_i} + \frac{1}{1 + \rho_i} \right)^{\frac{1}{2} \rho_i} + \beta_1 (-\rho_i)^k (1 + \epsilon \rho_i)^{-1} e^{\frac{k}{2} \rho_i} \left(\frac{1}{1 - \rho_i} + \frac{1}{1 + \rho_i} \right)^{\frac{1}{2} \rho_i}, \]

which is equivalent to (4.2). Therefore we have derived Theorem 4.1 from Proposition 4.2. \(\Box \)

The bilinear equations in Proposition 4.2 are reduced to the quadratic identities of determinants (Plücker relations). In particular, (4.9) and (4.12) have already appeared in [14]. Moreover, by the symmetry between the set of variables \((l, u)\) and \((m, v)\) in \(\sigma_{lm}^k\), it suffices to show only (4.7) and (4.10). These bilinear equations will be proved in the Appendix.

Remark 4.3 In the \(\tau\) function in Theorem 4.1, the parameter dependence of the time evolution in entries of the Casorati determinant have singularities different from 0 and \(\infty\). These types of singularities can be seen in the solutions of equation of principal chiral fields, *i.e.*, harmonic maps of conformal 2-manifolds into compact Lie groups [15, 23, 24] and Maxwell-Bloch equation [16].

Remark 4.4 By introducing \(u_t := \frac{e}{2 \delta s} \), the semi-discrete potential mKdV equation (2.7) can be transformed to the semi-discrete mKdV equation

\[\frac{d u_t}{d s'} = (1 + u_{t}^2)(u_{t+1} - u_{t-1}), \]

(4.33)

where we put \(s = 2 \epsilon s' \) for convenience. An auxiliary linear problem for (4.33) is given by [3]

\[\Phi_{t+1} = \frac{1}{\sqrt{1 + u_t^2}} \begin{bmatrix} \lambda & \lambda^{-1} u_t \\ -\lambda u_t & \lambda \end{bmatrix} \Phi_t, \quad \frac{d}{d s'} \Phi_t = \begin{bmatrix} \frac{u_t^2 - u_{t-1}^2}{2} & u_t + \lambda^{-2} u_{t-1} \\ -u_t - \lambda^2 u_{t-1} & -\frac{u_t^2 - u_{t-1}^2}{2} \end{bmatrix} \Phi_t. \]

(4.34)
Apparently, the dispersion relation suggested from the linear problem is different from the one in Theorem 4.1. However, putting
\[p_i = \frac{1}{\varepsilon} \frac{\lambda_i^2}{\lambda_i^2 + 1} - 1 \] (4.35)
in (4.2), then \(f_n^{(0)} \) can be rewritten as
\[f_n^{(0)} = \alpha_i \left(\frac{1}{\varepsilon} \frac{\lambda_i^2}{\lambda_i^2 + 1} - 1 \right)^n \lambda_i^2 e^{\frac{\lambda_i^2}{\lambda_i^2 + 1} s_{i+1} \gamma y} + \beta_i \left(\frac{1}{\varepsilon} \frac{\lambda_i^2}{\lambda_i^2 + 1} - 1 \right)^n \lambda_i^2 e^{\frac{\lambda_i^2}{\lambda_i^2 + 1} s_{i+1} \gamma y}, \]
in which the dispersion relation with respect to \(l \) and \(s' \) is consistent with (4.34). We have chosen the parametrization as in (4.2) so that the continuous limits explained in Section 6 become simpler.

5 Bäcklund Transformations

In this section we discuss the Bäcklund transformation of the continuous motion of plane discrete curves. The Bäcklund transformation of the plane discrete curves has already been formulated in [14]:

Proposition 5.1 Let \(\gamma_i \) be a discrete curve of segment length \(\varepsilon \). Let \(\theta_i \) be the potential function defined by
\[\frac{\gamma_{i+1} - \gamma_i}{\varepsilon} = \cos \psi_i \begin{bmatrix} \cos \psi_i & \sin \psi_i \end{bmatrix}, \quad \psi_i = \frac{\theta_{i+1} + \theta_i}{2}. \] (5.1)

For a nonzero constant \(\lambda \), take a solution \(\tilde{\theta}_n \) to the following equation
\[\tan \left(\frac{\tilde{\theta}_{i+1} - \tilde{\theta}_i}{4} \right) = \frac{\lambda + \varepsilon}{\lambda - \varepsilon} \tan \left(\frac{\theta_{i+1} - \theta_i}{4} \right), \] (5.2)
then
\[\tilde{\gamma}_i = \gamma_i + \frac{1}{\lambda} R \left(\frac{\tilde{\theta}_{i+1} - \tilde{\theta}_i}{2} \right) \left(\frac{\gamma_{i+1} - \gamma_i}{\varepsilon} \right) \] (5.3)
is a discrete curve with the potential function \(\tilde{\theta}_i \).

We next extend the Bäcklund transformation to that of motion of discrete curves. In order to do so, we first present the Bäcklund transformation to the semi-discrete potential mKdV equation:

Lemma 5.2 Let \(\theta_i \) be a solution to the semi-discrete potential mKdV equation (2.7). A function \(\tilde{\theta}_i \) satisfying the following system of equations
\[\left(\frac{1}{\lambda} - \varepsilon \right) \tan \left(\frac{\tilde{\theta}_{i+1} - \tilde{\theta}_i}{4} \right) = \left(\frac{1}{\lambda} + \varepsilon \right) \tan \left(\frac{\theta_{i+1} - \theta_i}{4} \right), \] (5.4)
\[\left(\frac{1}{\lambda} + \varepsilon \right) \cos^2 \left(\frac{\theta_{i+1} - \theta_i}{4} \right) - \left(\frac{1}{\lambda} - \varepsilon \right) = \tan \left(\frac{\theta_{i+1} - \theta_i}{4} \right) - \tan \left(\frac{\tilde{\theta}_{i+1} - \tilde{\theta}_i}{4} \right) \] (5.5)
gives another solution to eq.(2.7). We call \(\tilde{\theta}_i \) a Bäcklund transform of \(\theta_i \).
Proof. First compute addition of \((5.5)_{l-1}\) and the derivative of \((5.5)_{l-1}\). Then, by using \((5.4)\), eliminate \(\lambda\) from this equation and \((5.5)\) respectively. Adding those two equations yields

\[
\left(\frac{\varepsilon}{2} \theta'_l \cos \frac{\theta_{l+1} - \theta_{l-1}}{4} - \sin \frac{\theta_{l+1} - \theta_{l-1}}{4}\right) \sin \frac{\theta_{l+1} + \theta_{l-1} - 2\theta_l}{4} = \left(\frac{\varepsilon}{2} \theta'_l \cos \frac{\theta_{l+1} - \theta_{l-1}}{4} - \sin \frac{\theta_{l+1} - \theta_{l-1}}{4}\right) \sin \frac{\theta_{l+1} + \theta_{l-1} - 2\theta_l}{4},
\]

which implies Lemma 5.2. \(\Box\)

Proposition 5.3 Let \(\gamma_l\) be a motion of discrete curve. Take a Bäcklund transform \(\tilde{\theta}_l\) of \(\theta_l\) defined in Lemma 5.2. Then

\[
\tilde{\gamma}_l = \gamma_l + \frac{1}{\lambda} R \left(\frac{\theta_l - \theta_{l+1}}{2}\right) \frac{\gamma_{l+1} - \gamma_l}{\varepsilon} \tag{5.7}
\]

is a motion of discrete curve with potential function \(\tilde{\theta}_l\). We call \(\tilde{\gamma}_l\) a Bäcklund transform of \(\gamma_l\).

Proof. It suffices to show that \(\tilde{\gamma}_l\) satisfies eqs.\((2.1)\), \((2.3)\) and \((2.5)\) with potential function \(\tilde{\theta}_l\), but eqs.\((2.1)\) and \((2.3)\) follow from Proposition 5.1 immediately. Because the system \((5.4)-(5.5)\) yields

\[
\left(1 - \sqrt{-1} \frac{\varepsilon}{2} \tilde{\theta}'_l\right) e^{\sqrt{-1} \tilde{\theta}_{l+1} - \tilde{\theta}_l} = \left(1 - \sqrt{-1} \frac{\varepsilon}{2} \theta'_l\right) e^{\sqrt{-1} \theta_{l+1} - \theta_l} = \frac{\sqrt{-1} \tilde{\theta}'_l + \theta'_l}{\lambda} \frac{\sqrt{-1} \tilde{\theta}_{l+1} - \theta_{l+1}}{2},
\]

we identify \(\mathbb{R}^2\) with \(\mathbb{C}\), so that the motion \(\tilde{\gamma}_l\) satisfies

\[
\tilde{\gamma}'_l = e^{\sqrt{-1} \tilde{\theta}_{l+1} - \tilde{\theta}_l} \left(1 - \sqrt{-1} \frac{\varepsilon}{2} \tilde{\theta}'_l\right) \frac{\tilde{\gamma}_l - \tilde{\gamma}_{l+1}}{\varepsilon} = \frac{\tilde{\gamma}_{l+1} - \tilde{\gamma}_l}{\varepsilon} \left(1 - \sqrt{-1} \tan \frac{\tilde{\theta}_{l+1} - \tilde{\theta}_{l-1}}{4}\right),
\]

which implies \((2.5)\) with \(2\tilde{K}_l = \tilde{\theta}_{l+1} - \tilde{\theta}_{l-1}\). \(\Box\)

Remark 5.4 In [12, 13], the Bäcklund transformation of the motions of discrete plane curves described in this paper is characterized by the cross ratio of the four points \(\gamma_l, \gamma_{l+1}, \tilde{\gamma}_l\) and \(\tilde{\gamma}_{l+1}\) being constant. In fact, we can verify by direct computation that for the Bäcklund transformation given in Proposition 5.3, the cross ratio of those four points is \(-\lambda^2 \varepsilon^2\).

6 Continuous Limits

In [14], the discrete motion of discrete plane curves and the continuous motion of smooth plane curves have been formulated, together with the Bäcklund transformations and the explicit formulas in terms of the \(\tau\) functions. They are described by the discrete potential modified KdV equation and the potential modified KdV equation, respectively. In this section, we present the two continuous limits: one from the discrete motion of discrete plane curves to their continuous motion discussed in the preceding sections, another one from the continuous motion of discrete plane curves to the continuous motion of smooth plane curves.

We first summarize the formulations of three kinds of curve motions and explicit solutions. For convenience, we identify Euclidean plane \(\mathbb{R}^2\) with complex plane \(\mathbb{C}\).
(1) Discrete motion of discrete plane curves.

Motion of curves:

\[
\frac{\gamma_{n+1} - \gamma_n}{a_n} = 1, \quad (6.1)
\]

\[
\frac{\gamma_{n+1} - \gamma_n}{a_n} = e^{\sqrt{-1}K_n} \frac{\gamma_n - \gamma_{n-1}}{a_{n-1}}, \quad (6.2)
\]

\[
\frac{\gamma_{n+1} - \gamma_n}{b_m} = e^{\sqrt{-1}W_n} \frac{\gamma_{n+1} - \gamma_n}{a_n}. \quad (6.3)
\]

Here, \(n, m \in \mathbb{Z} \) denote the discrete independent variables corresponding to space and time, respectively. Moreover, \(a_n, b_m \) are real arbitrary functions of the indicated variables, which correspond to the segment length of the curves and time interval, respectively.

Potential function:

\[
K_n^m = \frac{\theta_n^{m+1} - \theta_{n+1}^m}{2}, \quad W_n^m = \frac{\theta_n^{m+1} - \theta_{n+1}^m}{2}. \quad (6.4)
\]

Compatibility condition:

\[
\tan \left(\frac{\theta_{n+1}^m - \theta_n^m}{4} \right) = \frac{b_m + a_n}{b_m - a_n} \tan \left(\frac{\theta_n^{m+1} - \theta_{n+1}^m}{4} \right). \quad (6.5)
\]

Explicit formula in terms of \(\tau \) function:

\[
\theta_n^m = \frac{2}{\sqrt{-1}} \log \frac{\tau_n^m}{\tau_m^n}, \quad \gamma_n^m = \begin{bmatrix}
-\frac{1}{2} \left(\log \frac{\tau_n^m}{\tau_{n-1}^m} \right) \\
\frac{1}{2} \sqrt{-1} \left(\log \frac{\tau_n^m}{\tau_{n-1}^m} \right)
\end{bmatrix} y. \quad (6.6)
\]

Soliton type solutions:

\[
\tau_n^m = \exp \left[\left(\sum_{n'} a_{n'} + \sum_{m'} b_{m'} \right) y \right] \det \left(f_{j-1}^{(i)} \right)_{i,j = 1, \ldots, N}. \quad (6.7)
\]

\[
f_k^{(i)} = \alpha_i \pi^k \prod_{n'} (1 - a_{n'} p_i)^{-1} \prod_{m'} (1 - b_{m'} p_i)^{-1} e^{\frac{1}{2} k_i} (1 + a_{n'} p_i)^{-1} \prod_{m'} (1 + b_{m'} p_i)^{-1} e^{-\frac{1}{2} k_i}. \quad (6.8)
\]

(2) Continuous motion of discrete plane curves.

Motion of curves:

\[
\left| \frac{\gamma_{l+1} - \gamma_l}{\epsilon} \right| = 1, \quad (6.9)
\]

\[
\frac{\gamma_{l+1} - \gamma_l}{\epsilon} = e^{\sqrt{-1} K_l} \frac{\gamma_l - \gamma_{l-1}}{\epsilon}, \quad (6.10)
\]

\[
\frac{d\gamma_l}{ds} = e^{-\sqrt{-1} K_l} \frac{\gamma_{l+1} - \gamma_l}{\epsilon} \frac{\gamma_{l+1} - \gamma_l}{\epsilon}. \quad (6.11)
\]
Potential function:
\[K_l = \frac{\theta_{l+1} - \theta_{l-1}}{2}. \]
(6.12)

Compatibility condition:
\[\frac{d\theta_l}{ds} = \frac{2}{\epsilon} \tan \left(\frac{\theta_{l+1} - \theta_{l-1}}{4} \right). \]
(6.13)

Explicit formula in terms of \(\tau \) function:
\[\theta_l = \frac{2}{\sqrt{-1}} \log \frac{\tau_i}{\tau_i^*}, \quad \gamma_i = \begin{bmatrix} -\frac{1}{2} (\log (\tau_i \tau_i^*)_x) \\ \frac{1}{2} \sqrt{-1} \left(\log (\tau_i \tau_i^*)_y \right) \end{bmatrix}. \]
(6.14)

Soliton type solutions:
\[\tau_i = \exp \left[-(s + \epsilon t) \gamma \right] \det \left(f_{j-1}^{(i)} \right)_{j=x}, \]
(6.15)
\[f_k^{(i)} = \alpha_i p_i^k (1 - \epsilon p_i)^{-\epsilon} e^{\frac{\pi}{2p_i} - \frac{1}{2} p_i y_1} + \beta_i (1 + \epsilon p_i)^{-\epsilon} e^{\frac{\pi}{2p_i} - \frac{1}{2} p_i y_1}. \]
(6.16)

(3) Continuous motion of smooth plane curves.

Motion of curves:
\[|\gamma'| = 1, \]
(6.17)
\[\frac{\partial}{\partial x} \gamma' = \sqrt{-1} \kappa \gamma', \]
(6.18)
\[\frac{\partial}{\partial t} \gamma' = -\sqrt{-1} \left(\kappa'' + \frac{\kappa^3}{2} \right) \gamma'. \]
(6.19)

Here \(\gamma = \gamma(x, t) \in \mathbb{R}^2 \approx \mathbb{C} \) is arc-length parametrized curve, \(x \) and \(t \) denote arc-length and time, respectively, and \(' = \frac{\partial}{\partial s} \). Moreover, \(\kappa = \kappa(x, t) \) is the curvature.

Potential function:
\[\kappa = \theta'. \]
(6.20)

Compatibility condition:
\[\theta_t + \frac{1}{2} (\theta_x)^3 + \theta_{xxx} = 0. \]
(6.21)

Explicit formula in terms of \(\tau \) function:
\[\theta = \frac{2}{\sqrt{-1}} \log \frac{\tau}{\tau^*}, \quad \gamma = \begin{bmatrix} -\frac{1}{2} (\log (\tau \tau^*)_x) \\ \frac{1}{2} \sqrt{-1} \left(\log (\tau \tau^*)_y \right) \end{bmatrix}. \]
(6.22)

Soliton type solutions:
\[\tau = e^{-\gamma y} \det \left(f_{j-1}^{(i)} \right)_{j=x}, \]
(6.23)
\[f_k^{(i)} = \alpha_i p_i^k e^{p_i x - \frac{1}{2} p_i y_1} + \beta_i (1 + \epsilon p_i)^{-\epsilon} e^{\frac{\pi}{2p_i} - \frac{1}{2} p_i y_1}. \]
(6.24)
Similarly, we have
\[a_n = a \text{ (const.)}, \quad b_m = b \text{ (const.)}, \quad \delta = \frac{a + b}{2}, \quad \epsilon = \frac{a - b}{2}, \]
(6.25)
and taking the limit \(\delta \to 0 \), the discrete motion of discrete plane curves yields the continuous motion of discrete plane curves.

(2) Putting
\[x = e l + s, \quad t = -\frac{e^2}{6} s, \]
(6.26)
and taking the limit \(\epsilon \to 0 \), the continuous motion of discrete plane curves yields the continuous motion of smooth plane curves.

Theorem 6.1 can be verified by tedious but straightforward calculations. In fact, the statement (1) can be checked by substituting the parametrization (6.25) into (6.1)–(6.8), expanding in terms of powers of \(\delta \) and taking the limit \(\delta \to 0 \). The statement (2) is also checked by a similar manner.

We note that the limiting procedures presented in (6.25) and (6.26) have been obtained in [7] and [8] on the level of the equations for \(\theta \). Theorem 6.1 claims that the procedure applies to the curve motions and solutions. Also, it should be noted that limiting procedure also applies to the Bäcklund transformations.

In order to demonstrate the calculation, we here discuss the limits of the \(\tau \) functions corresponding to the soliton type solutions. Substituting (6.25) into (6.8), we have
\[
(1 - ap_i)^{-n}(1 - bp_i)^{-m} = (1 - ap_i)^{-1/2}(1 - bp_i)^{-1/2} = e^{-\frac{s}{a} \log \left[1 - 2\epsilon p_i + (\epsilon^2 - 2\epsilon) p_i \right]} \left(\frac{1 - \epsilon p_i - \delta p_i}{1 + \epsilon p_i - \delta p_i} \right)^{1/2}.
\]
Noticing that
\[
\log \left[1 - 2\delta p_i + (\delta^2 - \epsilon^2) p_i^2 \right] = \log \omega_i - \frac{2p_i}{\omega_i} \delta + O(\delta^2), \quad \omega_i = 1 - \epsilon^2 p_i^2,
\]
we get
\[
(1 - ap_i)^{-n}(1 - bp_i)^{-m} \sim e^{-\frac{\log \omega_i}{2\epsilon} \pm} \times e^{\frac{p_i}{\omega_i}} \left(1 - \epsilon p_i \right)^{1/2}.
\]
Similarly, we have
\[
(1 + ap_i)^{-n}(1 + bp_i)^{-m} \sim e^{-\frac{\log \omega_i}{2\epsilon} \pm} \times e^{-\frac{p_i}{\omega_i}} \left(1 + \epsilon p_i \right)^{1/2}.
\]
Therefore \(f_k^{(i)} \) yields
\[
f_k^{(i)} \sim \alpha_i p_i^k e^{-\frac{\log \omega_i}{2\epsilon} \pm} e^{\frac{p_i}{\omega_i} \pm} \left(1 - \epsilon p_i \right)^{-1/2} e^{\frac{1}{p_i}} + \beta_i (-p_i)^k e^{-\frac{\log \omega_i}{2\epsilon} \pm} e^{-\frac{p_i}{\omega_i} \pm} \left(1 + \epsilon p_i \right)^{-1/2} e^{-\frac{1}{p_i}}.
\]
(6.27)
as $\delta \sim 0$. The prefactors of the entries in (6.27) can be factored out of the determinant, and it is easily seen that the overall factor does not affect the solutions, namely, if we remove overall factor from the τ functions, it gives the same θ and γ, as seen from (6.6). This implies that the determinant in (6.7) yields that in (6.15) up to this trivial multiplicative factor. Also, the exponential factor in (6.6) becomes that in (6.14) under the parametrization (6.25). Therefore, we have shown that (6.7) is reduced to (6.15) as $\delta \rightarrow 0$.

Similarly, substituting (6.26) into (6.16), we have

$$(1 - \epsilon p_i)^{-l} e^{\frac{p_i}{1 - \epsilon^2 p_i^2}} = \exp \left[\left(\frac{x}{\epsilon} + \frac{6t}{\epsilon^3} \right) \log (1 - \epsilon p_i) + \frac{p_i}{1 - \epsilon^2 p_i^2} \right] = \exp \left[\frac{3 p_i^2}{\epsilon^3} t + \left(p_i x - 4 p_i^3 t \right) + O(\epsilon) \right],$$

and

$$(1 + \epsilon p_i)^{-l} e^{\frac{p_i}{1 - \epsilon^2 p_i^2}} = \exp \left[\frac{3 p_i^2}{\epsilon^3} t - \left(p_i x - 4 p_i^3 t \right) + O(\epsilon) \right],$$

from which we obtain as $\epsilon \sim 0$

$$f_k^{(i)} \sim e^{-\frac{3 p_i^2}{\epsilon^3} t} \left[\alpha_k p_i^k e^{p_i x - 4 p_i^3 t + \frac{1}{p_i} x} + \beta_k (-p_i)^k e^{-p_i x + 4 p_i^3 t - \frac{1}{p_i} x} \right]. \quad (6.28)$$

The prefactor in (6.28) does not affect the solutions. Also, the exponential factor in (6.14) becomes that in (6.22) under the parametrization (6.26). Therefore, we have shown that (6.15) is reduced to (6.23) as $\epsilon \rightarrow 0$.

A Derivation of bilinear equations (4.7) and (4.10)

In this appendix we prove Proposition 4.2. As mentioned in Section 3, it suffices to show that the τ function given in (4.5) and (4.6) actually satisfies the bilinear equations (4.7) and (4.10).

A.1 Equation (4.7)

We define the τ function $\sigma_{lm} (u, v; y)$ by

$$\sigma_{lm} (u, v; y) = \det \left(f_{k+j-1}^{(i)} (l, m) \right)_{i,j=1,...,N}, \quad (A.1)$$

where the entries of determinant satisfy the linear relations

$$\frac{f_k^{(i)} (l, m) - f_k^{(i)} (l - 1, m)}{a} = f_{k+1}^{(i)} (l, m), \quad \frac{f_k^{(i)} (l, m) - f_k^{(i)} (l, m - 1)}{b} = f_{k+1}^{(i)} (l, m), \quad (A.2)$$

$$\partial_u f_k^{(i)} (l, m) = f_k^{(i)} (l + 1, m), \quad \partial_v f_k^{(i)} (l, m) = f_k^{(i)} (l, m + 1), \quad \partial_y f_k^{(i)} (l, m) = f_k^{(i)} (l - 1, m). \quad (A.3)$$

Note that $f_k^{(i)} (l, m)$ given in (4.6) satisfy the above relations. In order to prove (4.7), it is convenient to consider $\rho_{lm} (u, v; y)$ defined by

$$\rho_{lm} (u, v; y) = \det \left(f_{k}^{(i)} (l - j + 1, m) \right)_{i,j=1,...,N}, \quad (A.4)$$
instead of \(\sigma_{l,m}^k \). Here, \(\sigma_{l,m}^k \) and \(\rho_{l,m}^k \) are related as

\[
\rho_{l,m}^k = (-a)^{N(N-1)/2} \sigma_{l,m}^k, \quad (A.5)
\]

which can be easily verified by manipulating the columns of determinant with the first equation in \((A.2) \). We also introduce a notation

\[
\rho_{l,m}^k = \begin{vmatrix}
0^k_m, 1^k_m, \cdots, N - 2^k_m, N - 1^k_m
\end{vmatrix}, \quad j_m^k = \begin{bmatrix}
f_k^{(1)}(l - j, m) \\
f_k^{(2)}(l - j, m) \\
\vdots \\
f_k^{(N)}(l - j, m)
\end{bmatrix}. \quad (A.6)
\]

It is possible to reduce \((4.7) \) to one of the Plücker relations which are quadratic identities of determinants whose columns are appropriately shifted. To this end, we construct such formulas that express the determinants in the Plücker relations in terms of derivative or shift of discrete variable of \(\rho_{l,m}^k(u, v; y) \) by using the linear relations of the entries. For details of the technique, we refer to [9, 18–21].

Lemma A.1 The following formulas hold:

\[
\partial_u \rho_{l,m}^k = \begin{vmatrix}
-1, 1, \cdots, N - 2, N - 1
\end{vmatrix}, \quad (A.7)
\]

\[
\rho_{l,m}^{k-1} = a^{N-1} \begin{vmatrix}
0, 1, \cdots, N - 2, N - 1^{k-1}
\end{vmatrix}, \quad (A.8)
\]

\[
\rho_{l,m}^{k-1} = a^{N-1} \begin{vmatrix}
0, 1, \cdots, N - 2, N - 2^{k-1}
\end{vmatrix}, \quad (A.9)
\]

\[
(\partial_u - 1) \rho_{l,m}^{k-1} = a^{N-1} \begin{vmatrix}
-1, 1, \cdots, N - 2, N - 1^{k-1}
\end{vmatrix}. \quad (A.10)
\]

Note that the superscripts of column vectors are shown only when \(k \) is shifted for notational simplicity.

Proof. Equation \((A.7) \) follows from the differential rule of determinants and the fist equation of \((A.2) \). Next, applying the first equation of the difference rule \((A.3) \) to the first column of \(\rho_{l,m}^{k-1} \), we have

\[
\rho_{l,m}^{k-1} = \begin{vmatrix}
k^{k-1}, 1^{k-1}, \cdots, N - 1^{k-1}
\end{vmatrix} = \begin{vmatrix}
k^{k-1} - 1^{k-1}, 1^{k-1}, \cdots, N - 1^{k-1}
\end{vmatrix} = a \begin{vmatrix}
k^{k-1}, 1^{k-1}, \cdots, N - 1^{k-1}
\end{vmatrix}.
\]

Repeating this procedure for the \(j \)-th column \((j = 2, 3, \ldots, N - 1) \), we get

\[
\rho_{l,m}^{k-1} = a^{N-1} \begin{vmatrix}
k^k, 1^k, \cdots, N - 2^k, N - 1^{k-1}
\end{vmatrix},
\]

which is \((A.8) \). Applying \((A.9) \) by \(u \) yields

\[
\partial_u \rho_{l,m}^{k-1} = a^{N-1} \begin{vmatrix}
-1^k, 1^k, \cdots, N - 2^k, N - 1^{k-1}
\end{vmatrix} + a^{N-1} \begin{vmatrix}
k^k, 1^k, \cdots, N - 2^k, N - 2^{k-1}
\end{vmatrix} = a^{N-1} \begin{vmatrix}
-1^k, 1^k, \cdots, N - 2^k, N - 1^{k-1}
\end{vmatrix} + \rho_{l,m}^{k-1}.
\]
which is equivalent to (A.10). Thus we have proved Lemma A.1.

Now consider the Plücker relation (see, for example, [21])

\[
0 = | -1, 0, 1, \ldots, N - 2 | \times | 1, \ldots, N - 2, N - 1, N - 1^{k-1} | \\
+ | 0, 1, \ldots, N - 2, N - 1 | \times | -1, 1, \ldots, N - 2, N - 1^{k-1} | \\
- | 0, 1, \ldots, N - 2, N - 1^{k-1} | \times | -1, 1, \ldots, N - 2, N - 1 | .
\]

(A.11) is rewritten by using Lemma A.1 as

\[
0 = \rho^k_{l+1,m} \alpha^{-N-1} \rho^k_{l,m} \times \alpha^{-N-1} (\partial_u - 1) \rho^k_{l,m} - \alpha^{-N-1} \rho^k_{l,m} \times \partial_u \rho^k_{l,m} \\
= \alpha^{-N-1} \left((D_u - 1) \rho^k_{l,m} \times \rho^k_{l,m} + \rho^k_{l+1,m} \rho^k_{l-1,m} \right),
\]

which implies (4.7).

A.2 Equation (4.10)

We derive (4.10) from (4.7) and (4.12). We first introduce $F^k_{l,m}$ by the subtraction of the right hand side of (4.10) from the left hand side

\[
F^k_{l,m} := \frac{1}{2} D_u D_y \sigma^k_{l,m} \cdot \sigma^k_{l,m} - a(\sigma^k_{l,m})^2 + a \sigma^k_{l+1,m} \sigma^k_{l-1,m},
\]

and consider

\[
P := F^k_{l,m} \left(\sigma^k_{l,m} \right)^2 - F^k_{l,m} \left(\sigma^k_{l,m} \right)^2 \\
= \left[\frac{1}{2} D_u D_y \sigma^k_{l,m} \cdot \sigma^k_{l,m} - a(\sigma^k_{l,m})^2 + a \sigma^k_{l+1,m} \sigma^k_{l-1,m} \right] \left(\sigma^k_{l,m} \right)^2 \\
- \left(\sigma^k_{l,m} \right)^2 \left[\frac{1}{2} D_u D_y \sigma^k_{l,m} \cdot \sigma^k_{l,m} - a(\sigma^k_{l,m})^2 + a \sigma^k_{l+1,m} \sigma^k_{l-1,m} \right].
\]

Equation (A.14) can be rewritten as

\[
P = D_y \left(D_x \sigma^k_{l,m} \cdot \sigma^k_{l,m} \right) \cdot \sigma^k_{l,m} \sigma^k_{l,m} + a \sigma^k_{l+1,m} \sigma^k_{l-1,m} \sigma^k_{l,m} \sigma^k_{l,m} - a \sigma^k_{l+1,m} \sigma^k_{l-1,m} \sigma^k_{l,m} \sigma^k_{l,m},
\]

where we have used the exchange formula of the D-operator [9]

\[
(D_u D_y f \cdot f) g^2 - f^2 \left(D_u D_y g \cdot g \right) = 2 D_y \left(D_u f \cdot g \right) \cdot fg,
\]

for arbitrary functions f and g. We manipulate the first term of (A.15) as follows. Using (4.7) and noticing $D_y f \cdot f = 0$, we have

\[
D_y \left(D_x \sigma^k_{l,m} \cdot \sigma^k_{l,m} \right) \cdot \sigma^k_{l,m} \sigma^k_{l,m} = D_y \left(-\sigma^k_{l-1,m} \sigma^k_{l,m} + \sigma^k_{l+1,m} \sigma^k_{l-1,m} \sigma^k_{l,m} \sigma^k_{l,m} \sigma^k_{l,m} \sigma^k_{l,m} \right) = D_y \sigma^k_{l+1,m} \sigma^k_{l-1,m} \sigma^k_{l,m} \sigma^k_{l,m}.
\]

Then applying another exchange formula

\[
D_y \alpha \beta \cdot \gamma \delta = (D_y \alpha \cdot \gamma) \beta \delta + (D_y \beta \cdot \delta) \alpha \gamma,
\]

(A.17)
for arbitrary functions $\alpha, \beta, \gamma, \delta$, we get

$$D_x \sigma_{i+1,m}^{k} \sigma_{i-1,m}^{k-1} \sigma_{l,m}^{k} \sigma_{l,m}^{k-1} = \left(D_x \sigma_{i+1,m}^{k} \cdot \sigma_{l,m}^{k-1}\right) \sigma_{i-1,m}^{k-1} \sigma_{l,m}^{k-1} + \left(D_x \sigma_{i-1,m}^{k-1} \cdot \sigma_{l,m}^{k}\right) \sigma_{i+1,m}^{k} \sigma_{l,m}^{k}$$

$$= \left(\sigma_{i+1,m}^{k} - a \sigma_{i+1,m}^{k+1}\right) \sigma_{i-1,m}^{k-1} \sigma_{l,m}^{k-1} + \left(-\sigma_{i-1,m}^{k-1} \sigma_{l,m}^{k-1} + a \sigma_{l,m}^{k} \sigma_{i-1,m}^{k-2}\right) \sigma_{i+1,m}^{k} \sigma_{l,m}^{k}$$

$$= -a \sigma_{i+1,m}^{k+1} \sigma_{i-1,m}^{k-1} \sigma_{l,m}^{k-1} + a \sigma_{i-1,m}^{k} \sigma_{l,m}^{k} \sigma_{i-1,m}^{1} \sigma_{i+1,m}^{1}$$

where we have used (4.12) in the second equality. Substituting the above result into (A.15), we see that $P = 0$. Therefore, it follows from (A.14) that

$$\frac{1}{2}D_x D_y \sigma_{l,m}^{k} \cdot \sigma_{l,m}^{k} - a(\sigma_{l,m}^{k})^2 + a \sigma_{i+1,m}^{k+1} \sigma_{i-1,m}^{k-1} = A(u, y, l)(\sigma_{l,m}^{k})^2,$$

(A.18)

where $A(u, y, l)$ is an arbitrary function. Since $\sigma_{l,m}^{k} = 1$ (the case of $N = 0$) satisfies (4.7) and (4.12), it should satisfy (A.18) as well. Therefore we see that A must be 0, which implies (4.10).

Acknowledgements

This work is partially supported by JSPS Grant-in-Aid for Scientific Research No. 19340039, 21540067, 21656026, 22656027 and 23340037.

References

List of MI Preprint Series, Kyushu University
The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost
Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hiroyumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-
curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-
adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTsu & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric \mathbb{F}_q-functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain
MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_0^2-projection
MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine’s property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type$(A_2 + A_1)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map
MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments
MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA & Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions
MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide FUKUMOTO & Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki KONDO, Shingo SAITO & Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA & Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi INOUE, Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing

MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property

MI2011-6 Daeju KIM & Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO & Sadanori KONISHI
Group variable selection via relevance vector machine
MI2011-8 Jan BREZINA & Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine

MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK & Sylvain PROLHAC
Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle

MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA & Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ & Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves