Emotion colors time perception unconsciously

Yamada, Yuki
Faculty of Human-Environment Studies, Kyushu University | NTT Communication Science Laboratories

Kawabe, Takahiro
Faculty of Human-Environment Studies, Kyushu University | NTT Communication Science Laboratories

http://hdl.handle.net/2324/19910
Emotion colors time perception unconsciously

Yuki Yamada, Takahiro Kawabe

Abstract

Emotion modulates our time perception. So far, the relationship between emotion and time perception has been examined with visible emotional stimuli. The present study investigated whether invisible emotional stimuli affected time perception. Using continuous flash suppression, which is a kind of dynamic interocular masking, supra-threshold emotional pictures were masked or unmasked depending on whether the retinal position of continuous flashes on one eye was consistent with that of the pictures on the other eye. Observers were asked to reproduce the perceived duration of a frame stimulus that was concurrently presented with a masked or unmasked emotional picture. As a result, negative emotional stimuli elongated the perceived duration of the frame stimulus in comparison with positive and neutral emotional stimuli, regardless of the visibility of emotional pictures. These results suggest that negative emotion unconsciously accelerates an internal clock, altering time perception.

1. Introduction

A major interest of investigators of emotion is how emotion affects various kinds of mental information processing (Dolan, 2002; Phelps, 2006). Previous studies have suggested that exogenously evoked (especially fear-related) emotion enhances visual processing of emotional stimuli themselves in terms of detection (e.g., Anderson & Phelps, 2001; Dijksterhuis & Aarts, 2003; Hansen & Hansen, 1988; Öhman, Flykt, & Esteves, 2001) and memory (e.g., Adolphs, Cahill, Schul, & Babinsky, 1997; Bradley, Greenwald, Petry, & Lang, 1992; Brown & Kulik, 1977; De Houwer & Hermans, 1994; Harris & Pashler, 2005; Loftus, 1979; Rubin & Friendly, 1986). In addition, viewing emotional stimuli influences visual processing of subsequently presented stimuli. For example, the prior presentation of emotional stimuli yields a faster or slower reaction time to a subsequent target depending on the emotional congruency between the prime and target stimuli (the affective priming effect: Fazio, Sanbonmatsu, Powell, & Kardes, 1986; Hermans, De Houwer, & Eelen, 2001; Murphy & Zajonc, 1993) and the impairment of subsequent target identification (Anderson, 2005; Most, Chun, Widders, & Zald, 2005; Most, Smith, Cooter, Levy, & Zald, 2007; Smith, Most, Newsome, & Zald, 2006). The prior presentation of emotional stimuli also affects low-level visual processing of subsequent stimuli (Bocanegra & Zeelenberg, 2009b; Phelps, Ling, & Carrasco, 2006). These findings suggest that emotional stimuli attract visual attention and modulate sensory processing at their location as long as processing of the emotional stimuli holds the attention (Bocanegra & Zeelenberg, 2009a; Mathewson, Arnell, & Mansfield, 2008).

A number of studies have demonstrated that emotional information is processed unconsciously (for a review see Tsuchiya & Adolphs, 2007). It is known that the affective priming effect occurs even when the prime emotional stimuli are subliminally presented (Ghuman & Bar, 2006; Murphy & Zajonc, 1993; Rotteveel, de Groot, Geutskens, & Phaf, 2001; Sweeny, Grabowecky, Suzuki, & Paller, 2009). Likewise, a previous study (Jiang, Costello, Fang, Huang, & He, 2006) found that erotic images captured spatial attention at their position even though these images were rendered subjectively invisible by using continuous flash suppression. Continuous flash suppression is a strong interocular masking in which dynamic random patterns continuously presented to one eye suppress the visibility of an image presented to the other eye (Tsuchiya & Koch, 2005). In addition, face stimuli with a fearful expression resulted in conscious perception faster than those with happy and neutral expressions, while they were rendered invisible by continuous flash suppression (Yang, Zald, & Blake, 2007). Continuous flash suppression can render visual stimuli invisible for a long period (for several tens of seconds). By exploiting continuous flash suppression, a previous study demonstrated that invisible information was integrated with visible information (e.g., Kawabe & Yamada, 2009). Thus, it is possible to investigate how ongoing processing for visible information is affected by invisible emotional stimuli.

Emotion also affects our time perception (Droit-Volet & Gil, 2009; Droit-Volet & Meck, 2007; Wittmann, 2009). Previous studies have revealed that visible emotional stimuli modulated time perception. To achieve this result these studies used emotional facial expression stimuli (Bar-Haim, Kerem, Lamy, & Zakay, 2010; Droit-Volet, Brunot, & Niedenthal, 2004; Effron, Niedenthal, Gil, & Droit-Volet, 2006; Gil,
and the refresh rate was 100 Hz. The presentation resolution of the monitor was 1024 x 768 pixels, and the refresh rate was 100 Hz. The presentation of stimuli and collection of data were computer-controlled (Mac Pro; Apple). Using a photometer (3298F; Yokogawa, Japan), we linearized the luminance emitted from the monitor with gamma correction. The observers viewed the stimuli through a mirror stereoscope (Screenscope; Stereoaids, Australia).

2.3. Stimuli

The stimuli were generated by MATLAB (Mathworks Inc.) with the Psychtoolbox extension (Brainard, 1997; Pelli, 1997). Fig. 1 shows the stimuli used in the experiment. The stimuli consisted of two fixation marks, two square outlines, continuous flashes, a frame stimulus, and pictures displayed on a gray background (43.5 cd/m²). Each fixation mark was composed of two concentric rings with a radius of 0.24° and 0.48° in visual angle, respectively. The luminance of each ring was 91.0 cd/m². To ensure a binocular fusion, we presented a square outline to each eye. The square outlines had a side of 14.4°, and a border width of 0.19°. The luminance of the border was 91.0 cd/m². Four lines (length: 0.96°) were attached perpendicularly to each square outline at midpoints of each side. Its luminance and border width was the same as the square outlines. There were two conditions of mask in terms of the correspondence of the retinal location between continuous flashes on one eye and stimulus images on the other eye. In the masked condition, continuous flashes consisted of a clutter of approximately two hundred colorful rectangles. The center of each rectangle was randomly located within the square outline, and the luminance of the center was 10.9 cd/m². The luminance of the background was 43.5 cd/m².

Fig. 1. (a) Schematic representation of the stimuli used in the experiment (not scaled). One eye viewed a frame stimulus and continuous flashes, while the other eye viewed a picture which contrast was linearly ramped up to the maximum during the first 500 ms. (b) Examples of masks in the masked and unmasked conditions. (c) Time course of the stimulus presentation.

2. Method

2.1. Observers

Twenty-six observers participated in the experiment, and they were randomly assigned to masked (N = 11) and unmasked (N = 14) conditions (See subsequent subsections for details of the conditions). One observer did not complete the experiment because he/she could not binocularly fuse fixation marks presented to each eye. The observers reported normal or corrected-to-normal visual acuity. They were naive as to the purpose of the experiment.

2.2. Apparatus

Stimuli were presented on a 19-in. CRT monitor (RDF193H, Mitsubishi, Japan). The resolution of the monitor was 1024 x 768 pixels, and the refresh rate was 100 Hz. The presentation of stimuli and collection of data were computer-controlled (Mac Pro; Apple). Using a photometer (3298F; Yokogawa, Japan), we linearized the luminance emitted from the monitor with gamma correction. The observers viewed the stimuli through a mirror stereoscope (Screenscope; Stereoaids, Australia).

2.3. Stimuli

The stimuli were generated by MATLAB (Mathworks Inc.) with the Psychtoolbox extension (Brainard, 1997; Pelli, 1997). Fig. 1 shows the stimuli used in the experiment. The stimuli consisted of two fixation marks, two square outlines, continuous flashes, a frame stimulus, and pictures displayed on a gray background (43.5 cd/m²). Each fixation mark was composed of two concentric rings with a radius of 0.24° and 0.48° in visual angle, respectively. The luminance of each ring was 91.0 cd/m². To ensure a binocular fusion, we presented a square outline to each eye. The square outlines had a side of 14.4°, and a border width of 0.19°. The luminance of the border was 91.0 cd/m². Four lines (length: 0.96°) were attached perpendicularly to each square outline at midpoints of each side. Its luminance and border width was the same as the square outlines. There were two conditions of mask in terms of the correspondence of the retinal location between continuous flashes on one eye and stimulus images on the other eye. In the masked condition, continuous flashes consisted of a clutter of approximately two hundred colorful rectangles. The center of each rectangle was randomly located within the square outline, and the luminance of the center was 10.9 cd/m². The luminance of the background was 43.5 cd/m².

Fig. 1. (a) Schematic representation of the stimuli used in the experiment (not scaled). One eye viewed a frame stimulus and continuous flashes, while the other eye viewed a picture which contrast was linearly ramped up to the maximum during the first 500 ms. (b) Examples of masks in the masked and unmasked conditions. (c) Time course of the stimulus presentation.
positioned within an imaginary square with sides of 9.6°. On the other hand, in the unmasked condition, continuous flashes consisted of two clutters of approximately 100 colorful rectangles. The center of each rectangle was randomly positioned within an imagery rectangle with sides of $4.8^\circ \times 9.6^\circ$. The side lengths of the rectangles were randomly varied from 0.05° to 1.4°. The color, position and side length of each rectangle were randomly altered at 12.5 Hz. In the masked condition, the center of continuous flashes corresponded to one of the fixation marks. In the unmasked condition, each center of continuous flashes was 6.2° above and below the center of the fixation marks, respectively so that the retinal location of continuous flashes on one eye never covered that of stimulus images on the other eye. The fixation and the square outline were dichoptically presented to both eyes without binocular disparity. One of the pictures was presented to one eye while continuous flashes were presented to the other eye. The frame stimulus was presented to the same eye receiving the continuous flashes. The frame stimulus had a side of 12.5°, and a border width of 0.38°. The luminance of the frame stimulus was 91.0 cd/m2.

Thirty pictures were chosen from the International Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 2005) (Appendix A). The size of each picture was $9.0^\circ \times 12.0^\circ$. The picture was centered at either of the fixation marks. Ten pictures each were used as positive (mean valence rating 7.93; mean arousal rating 6.15), negative (2.74; 6.14), and neutral stimuli (4.94; 6.13). For valence rating scores of each picture, a one-way-between-groups analysis of variance (ANOVA) with emotional valence (positive, negative, and neutral) as a factor showed a significant main effect [$F(2, 27) = 875.14$, $p < .0001$]. Multiple comparisons using Ryan’s method (Ryan, 1960) revealed that the rating score of positive stimuli was higher than that of negative $[t(27) = 24.02, p < .0001]$ and neutral stimuli $[t(27) = 41.68, p < .0001]$. Moreover, the rating score of neutral stimuli was higher than that of negative stimuli $[t(27) = 17.66, p < .0001]$. For arousal rating scores of each pictures, a one-way-between-groups ANOVA with emotional valence as a factor did not show a significant main effect [$F(2, 27) = 0.01, p > .99$]. Thus, we confirmed that the three types of emotional stimuli significantly differed in valence but not in arousal.

2.4. Procedure

Observers were individually tested in a dark room and they viewed stimuli through a mirror stereoscope. The viewing distance was 40 cm. The square outlines and fixation marks were presented throughout the experiment. Observers pressed the space bar to start each trial. After 300 ms, the presentation of continuous flashes was started. Five hundred milliseconds after pressing the space bar, a picture was presented at the center of a square outline of one eye. The contrast of the picture increased linearly at a rate of 2.5% every 10 ms up to full contrast. This was done so that visual transients due to the abrupt onset of the picture would not help access to consciousness (Yang et al., 2007). At the same time as the picture appeared, the frame stimulus was presented with full contrast from the start. The picture and the frame stimulus were presented for 2700 ms, and they disappeared abruptly. Then, 1000 ms afterwards, only the frame stimulus reappeared and this lasted until the observers made their response. The observers were asked to reproduce the perceived duration of the first frame stimulus by pressing the space bar when they thought that the second frame stimulus had been presented for the same duration as the first one. Additionally, in the masked condition, when the picture was consciously seen, the observers were asked to press an assigned key instead of the space bar.

On the other hand, in the unmasked condition, the observers were asked to press the key when the picture was not consciously seen. Each observer performed 30 trials: three emotion conditions (positive, negative, and neutral) x 10 stimuli. The trial order was randomized across observers.

3. Results

We focused on the following two indices: (1) A T-corrected score provided by the formula
t

\[T_{\text{corrected}} = \frac{T_{\text{reproduced}} - T_{\text{actual}}}{T_{\text{actual}}} \]

(Angrilli et al., 1997; Brown, 1985; Noulhiane et al., 2007)
and (2) the coefficient of variation (CV) computed by dividing the standard deviation by the mean (Brown, 1997; Noulhiane et al., 2007) for each observer. Due to machine downtime, the presentation duration in some trials became longer than 2700 ms (in 9.1% of the trials), and we did not submit these data to further analysis. Moreover, we analyzed the data from trials in which the picture was invisible in the masked condition and visible in the unmasked condition. Specifically, 19.1% and 0% of the data in the masked and unmasked conditions, respectively, were also excluded from further analysis.

A two-way mixed between-within subjects analysis of variance (ANOVA) on the T-corrected scores with mask (masked vs. unmasked) as a between-subjects factor and emotion (positive, negative, and neutral) as a within-subject factor was performed (Fig. 2). The ANOVA showed a significant main effect of emotion [$F(2, 44) = 8.39, p < .0009$] and a marginally significant main effect of mask [$F(1, 22) = 3.26, p < .09$]. However, there was no significant interaction [$F(2, 44) = 0.75, p > .48$]. Multiple comparisons using Ryan’s method revealed that the frame duration in the negative condition was significantly overestimated compared to that in the positive [$t(44) = 3.60, p < .0009$] and neutral [$t(44) = 3.60, p < .0009$] conditions.

Moreover, to test the difference from zero (actual duration), we conducted individual one-sample t-tests (two-tailed) which revealed that the mean T-corrected score in each condition was significantly smaller than zero ($p < .03$), except for that in the masked-negative condition ($p > .23$).

A two-way mixed between-within subjects ANOVA on CV with mask as a between-subjects factor and emotion as a within-subject factor showed no significant main effects [mask: $F(1, 22) = 2.03, p > .16$; emotion: $F(2, 44) = 0.26, p > .77$] and interaction [$F(2, 44) = 2.44, p > .09$].

4. Discussion

The objective of the present study was to examine whether invisible emotional stimuli affected concurrent time perception. We controlled the visibility1 of emotional stimuli by using continuous flash suppression (Tsuchiya & Koch, 2005). As a result, time perception with negative emotional stimuli was significantly longer than with positive and neutral emotional stimuli, while there was no interaction between mask and emotion. These results suggest that time perception is affected by emotion regardless of the visibility of emotional stimuli. On the other hand, the variability of temporal estimation was affected by neither the presence/absence of mask nor emotional valences. The pattern of these results was consistent with previous studies pertaining to the effect of visible emotional stimuli on time perception (e.g., Angrilli et al., 1997; Grommet et al., 2011; Noulhiane et al., 2007), suggesting that unconscious emotional processing as well as conscious emotional processing alters time perception.

The elongation of time perception with the masked presentation of negative stimuli compared to positive or neutral stimuli suggests that unconscious preferential processing of negative emotion affected conscious time perception. A number of studies have documented that negative stimuli could be processed even when the stimuli were subjectively invisible (e.g., Dijksterhuis & Aarts, 2003; Öhman & Soares, 1994.). Moreover, previous studies on subliminal affective priming have reported that invisible negative stimuli influenced subsequent emotional processing (e.g., Murphy & Zajonc, 1993), sometimes more than invisible positive stimuli do (Murphy, Monahan, & Zajonc, 1995; Sato & Aoki, 2006). Consistent with these studies, the present study provided novel evidence indicating that unconscious emotional processing is linked to ongoing

Fig. 2. The T-corrected score [$T_{corrected} = (T_{reproduced} - T_{actual})/T_{actual}$] in each condition. Error bars denote standard errors of the mean.
temporal processing.

The general tendency of temporal underestimation found in the present study may be related to attentional modulation of the internal clock. Researchers on time perception have frequently referred to a hypothetical internal clock that produces subjective duration by counting physical stimulus duration with variable pacemaker pulses and accumulating the pulses (e.g., Droit-Volet & Wearden, 2002; Gibbon, 1977; Treisman, 1963). The accumulator sums the pulses, and the number of pulses in a given period represents subjective duration. If attention is diverted to non-temporal information, the number of pulses sent to the accumulator is reduced, resulting in time underestimation. Hence, in our experiment, it is likely that attention oriented to salient signals of dynamic changes in the continuous flashes caused the general underestimation. Furthermore, attention to spatial properties (i.e. salient color distribution) or semantic information of pictures might have led to the somewhat greater underestimation in perceived durations in the unmasked condition compared to that in the masked condition, though the main effect of mask was marginal.2

The difference in the effects between the negative emotion pictures and positive emotion pictures possibly reflects the influence of emotional factors on temporal processing. The results showed that the temporal estimates in the negative condition were longer than in the positive and neutral conditions. The time elongation by negative emotion has been reported in previous studies. Angrilli et al. (1997) found that durations of negative pictures were overestimated than positive pictures at a high level of arousal, while durations of negative pictures were underestimated than positive pictures at a low level of arousal. The researchers explained that attentional and emotional mechanisms were differently involved in time perception depending on low and high arousal, respectively. That is, at the low arousal level, attentional engagement to negative pictures induced a reduction of pulses that were sent to accumulator, leading to the temporal underestimation of the negative pictures, as we mentioned earlier. On the other hand, at the high arousal level, emotional mechanism was important for time perception. An increase of arousal increases the clock speed of the pacemaker (Angrilli et al., 1997; Droit-Volet & Meck, 2007), and this acceleration caused the temporal overestimation. In particular, negative emotion is linked to avoidance reactions (Duckworth, Bargh, Garcia, & Chaiken, 2002). Because the aversive reactions are ecologically urgent adaptive behaviors for survival (e.g., attack or withdrawal), especially at the high arousal level, negative emotion may accelerate the internal clock, resulting in the time elongation in the negative condition compared to the positive and neutral conditions. The present study used pictures with relatively high arousal, therefore Angrilli et al.’s explanation is applicable to our finding. Importantly, our results suggest that the acceleration of the pacemaker by negative emotion occur regardless of the visibility of stimuli.

In sum, the present study demonstrated that emotion affects time perception unconsciously. The presentation of invisible as well as visible negative pictures elongated the perceived duration of a visible target stimulus. The results suggest that conscious and unconscious emotional processing have an impact on the internal clock mechanism. Moreover, the present study provided a new technique to test the effect of invisible stimulus information on time perception. For example, effects of properties of invisible stimuli (size, luminance, number, and motion), spatial attention driven by invisible visual transients, and invisible facial expressions can be tested by means of this technique. A limitation of our study is lack of stimulus variation. Previous studies used high- and low-arousal pictures with several duration lengths in order to provide a better description of the temporal judgments (mean accuracy) and explore the mechanisms underlying the emotional effects (attention vs. arousal) (Angrilli et al., 1997; Noulhiane et al., 2007). However, we used only high-arousal pictures with the presentation duration of 2700 ms, and hence there were not ample data for testing the interactive effects among emotional valences, arousal levels, and presentation duration. These important parameters have to be elaborated by further investigation.

Acknowledgments

This work was supported by a Grant-in-Aid for JSPS Fellows from the Japan Society for the Promotion of Science (Y.Y.) and the Kyushu University Research Superstar Program (T.K.).

2 To further test the effect of visibility of a picture, we performed the comparison between T-corrected scores in ‘invisible trials’ and ‘visible trials’ in the masked condition. Data from two observers were excluded because there was no visible or invisible trial. A two-tailed, paired t-test revealed that the presentation duration of the target frame in the invisible trials (mean T-corrected score = -0.06) was significantly overestimated compared to that in the visible trials (mean T-corrected score = -0.50) \(t(8) = 4.49, p < .003\).
Appendix A
See Table A1.

References

<table>
<thead>
<tr>
<th>Table A1</th>
<th>List of pictures (APS number)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>1710</td>
<td>2683</td>
</tr>
<tr>
<td>4220</td>
<td>6200</td>
</tr>
<tr>
<td>5833</td>
<td>6570.1</td>
</tr>
<tr>
<td>5910</td>
<td>6830</td>
</tr>
<tr>
<td>7502</td>
<td>8485</td>
</tr>
<tr>
<td>8190</td>
<td>9424</td>
</tr>
<tr>
<td>8370</td>
<td>9620</td>
</tr>
<tr>
<td>8470</td>
<td>9622</td>
</tr>
<tr>
<td>8499</td>
<td>9630</td>
</tr>
<tr>
<td>8501</td>
<td>9902</td>
</tr>
</tbody>
</table>