Faster Subsequence and Don＇t－Care Pattern Matching on Compressed Texts

Yamamoto，Takanori九州大学

Bannai，Hideo
九州大学
Inenaga，Shunsuke
九州大学
Takeda，Masayuki
九州大学
https：／／hdl．handle．net／2324／19882

出版情報：Lecture Notes in Computer Science．6661／2011，pp．309－322，2011－06．Springer バージョン：
権利関係：The original publication is available at www．springerlink．com

Faster Subsequence and Don't-Care Pattern Matching on Compressed Texts

Takanori Yamamoto ${ }^{1}$, Hideo Bannai ${ }^{1}$, Shunsuke Inenaga ${ }^{2}$, and Masayuki Takeda ${ }^{1}$
${ }^{1}$ Department of Informatics, Kyushu University
${ }^{2}$ Graduate School of Information Science and Electrical Engineering, Kyushu University
744 Motooka, Nishiku, Fukuoka 819-0395, Japan
takanori.yamamoto@i.kyushu-u.ac.jp
\{bannai,takeda\}@inf.kyushu-u.ac.jp
inenaga@c.csce.kyushu-u.ac.jp

Abstract

Subsequence pattern matching problems on compressed text were first considered by Cégielski et al. (Window Subsequence Problems for Compressed Texts, Proc. CSR 2006, LNCS 3967, pp. 127-136), where the principal problem is: given a string T represented as a straight line program (SLP) \mathcal{T} of size n, a string P of size m, compute the number of minimal subsequence occurrences of P in T. We present an $O(n m)$ time algorithm for solving all variations of the problem introduced by Cégielski et al.. This improves the previous best known algorithm of Tiskin (Towards approximate matching in compressed strings: Local subsequence recognition, Proc. CSR 2011), which runs in $O(n m \log m)$ time. We further show that our algorithms can be modified to solve a wider range of problems in the same $O(n m)$ time complexity, and present the first matching algorithms for patterns containing VLDC (variable length don't care) symbols, as well as for patterns containing FLDC (fixed length don't care) symbols, on SLP compressed texts.

1 Introduction

A straight-line program (SLP) [6] is a context free grammar in the Chomsky normal form that derives a single string. SLPs are a widely accepted abstract model of various text compression schemes, since texts compressed by any grammarbased compression algorithm (e.g. [12, 8]) can be represented as SLPs, and those compressed by the LZ-family (e.g., $[16,17]$) can be quickly transformed to SLPs. An SLP of a string of size N can be as small as $O(\log N)$. SLPs are a promising representation of a given string, not only for reducing the storage size of the data, but for efficiently conducting various string processing operations [13, 5]. Recently, self indices based on SLPs have also appeared [4].

Subsequence pattern matching [1] and its related problems have extensively been studied. Window subsequences are also known as serial episodes in data mining applications [10]. Now our interest is: Can we efficiently solve subsequence
matching problems on compressed strings? When both text and pattern are given as SLPs, subsequence matching is NP-hard [9]. Therefore, in the sequel we only consider the case where the text is given as an SLP, while the pattern is given as an uncompressed string.

Subsequence problems on SLP-compressed texts were first considered in [3]. The principal problem considered is to compute the number of minimal subsequence occurrences of P in T. They presented $O\left(n m^{2} \log m\right)$ time algorithms for solving the problems for an SLP of size n and subsequence pattern of length m. Later, an improved algorithm running in time $O\left(n m^{1.5}\right)$ was presented by Tiskin [14]. Later, Tiskin improved the running time to $O(n m \log m)$ [15]. In this paper, we further reduce the time complexities to $O(n m)$.

The contribution of this paper is twofold. Firstly, we improve the algorithm for building the L and R arrays of [3], from $O\left(n m^{2} \log m\right)$ to $O(n m)$, therefore reducing the overall time complexity of the algorithms for the subsequence pattern matching problems to $O(n m)$. Following the ideas of [3], we give a simpler presentation of these algorithms.

Secondly, we show that the algorithm can be extended to cope with patterns that contain don't care symbols, and give $O(n m)$-time matching algorithms for patterns containing VLDC (variable length don't care) symbols, as well as an $O(n m)$-time matching algorithm for patterns containing FLDC (fixed length don't care) symbols. There has been work on pattern matching for patterns containing FLDC symbols on a compressed representation of Sturmian words [2]. On the other hand, our algorithms can search arbitrary SLPs for patterns containing don't cares, and hence are applicable to more practical compressed texts.

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet. An element of Σ^{*} is called a string. The length of a string T is denoted by $|T|$. The empty string ε is a string of length 0 , namely, $|\varepsilon|=0$. For a string $T=X Y Z, X, Y$ and Z are called a prefix, substring, and suffix of T, respectively. The i-th character of a string T is denoted by $T[i]$ for $0 \leq i \leq|T|-1$, and the substring of a string T that begins at position i and ends at position j is denoted by $T[i: j]$ for $0 \leq i \leq j \leq|T|-1$. For convenience, let $T[i: j]=\varepsilon$ if $j<i$.

A string P of length m is a subsequence of string T, if there exist indices $0 \leq i_{0}<\cdots<i_{m-1} \leq|T|-1$ such that $P[0]=T\left[i_{0}\right], \ldots, P[m-1]=T\left[i_{m-1}\right]$. The pair $\left(i_{0}, i_{m-1}\right)$ is called an occurrence of subsequence P in T. Let $\operatorname{Occ}(T, P)$ denote the set of all occurrences of subsequence P in T. An occurrence $(u, v) \in$ $\operatorname{Occ}(T, P)$ is minimal if P is not a subsequence of $T[u+1: v]$ nor $T[u: v-1]$. For strings X, Y, if an occurrence $(u, v) \in O c c(X Y, P)$ satisfies $0 \leq u<|X|$ and $|X| \leq v<|X Y|$, we say that this occurrence crosses X and Y.

2.2 Straight Line Programs

In this paper, we treat strings described in terms of straight line programs ($S L P s$). A straight line program \mathcal{T} is a sequence of assignments such that $X_{1}=$ expr $_{1}, X_{2}=$ expr $_{2}, \ldots, X_{n}=$ expr $_{n}$, where each X_{i} is a variable and each expr $_{i}$ is an expression, where expr $r_{i}=a(a \in \Sigma)$, or expr $r_{i}=X_{\ell} X_{r}(\ell, r<i)$.

Denote by T the string derived from the last variable X_{n} of the pro$\operatorname{gram} \mathcal{T}$. The size of the program \mathcal{T} is the number n of assignments in \mathcal{T}. Note that $|T|=O\left(2^{n}\right)$.

Let $\operatorname{val}\left(X_{i}\right)$ represent the string derived from X_{i}. When it is not confusing, we identify a variable X_{i} with $\operatorname{val}\left(X_{i}\right)$. Then, $\left|X_{i}\right|$ denotes the length of the string X_{i} derives. For assignment $X_{i}=X_{\ell} X_{r}$, if an occurrence (u, v) of subsequence P in $\operatorname{val}\left(X_{i}\right)$ crosses $\operatorname{val}\left(X_{\ell}\right)$ and $\operatorname{val}\left(X_{r}\right)$, we say that (u, v) is a crossing subsequence occurrence of P in X_{i}.

Fig. 1. An example of an SLP $X_{1}=\mathrm{a}$, $X_{2}=\mathrm{b}, X_{3}=X_{1} X_{1}, X_{4}=X_{1} X_{2}, X_{5}=$ $X_{3} X_{4}, X_{6}=X_{5} X_{4}, X_{7}=X_{5} X_{6}$, that derives string aaabaaabab.

3 Subsequence Matching Problems on Compressed Texts

This section is organized as follows: We first review an $O(n m)$ time algorithm for calculating tables Q^{L} and Q^{R}, which can determine whether a string P of length m is a subsequence of the string derived from an SLP \mathcal{T} of size n (Subsequence Recognition). A brief description of the algorithm appears in [14], where it is noted that the algorithm "has been known in folklore", which was pointed out by Y. Lifshits. We then describe how to efficiently compute auxiliary tables L and R using Q^{L} and Q^{R}. Following the ideas in [3], we use L and R to give straightforward descriptions of $O(n m)$ time algorithms for solving the problem of finding all minimal subsequence occurrences of a pattern in a SLP-compressed text (Subsequence Matching), and its window-accumulated version (Window Subsequence Matching).

3.1 Subsequence Recognition

For $i=1, \ldots, n, j=0, \ldots, m$, let $Q^{L}(i, j)$ denote the length of the longest prefix of $P[j: m-1]$ which is a subsequence of X_{i}. We have that P is a subsequence of T, if and only if $Q^{L}(n, 0)=m$.

Lemma 1 ([14]). Given a pattern P of length m and an SLP \mathcal{T} of size n representing text $T, Q^{L}(i, j)$ for $i=1, \ldots, n, j=0, \ldots, m$ can be calculated in $O(n m)$ time and space.

Proof. $Q^{L}(i, j)$ can be defined recursively, as follows. For the base case, if $X_{i}=a$ for some $a \in \Sigma$, then

$$
Q^{L}(i, j)= \begin{cases}1 & \text { if } j<m \text { and } P[j]=a \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

If $X_{i}=X_{\ell} X_{r}$, then

$$
\begin{equation*}
Q^{L}(i, j)=Q^{L}(\ell, j)+Q^{L}\left(r, j^{\prime}\right) \tag{2}
\end{equation*}
$$

where $j^{\prime}=j+Q^{L}(\ell, j)$, because $P\left[j: j+Q^{L}(\ell, j)-1\right]$ is the longest prefix of $P[j: m-1]$ that is a subsequence of X_{ℓ}, and the rest is the longest prefix of $P\left[j+Q^{L}(\ell, j): m-1\right]$ that is a subsequence of X_{r}. Since each $Q^{L}(i, j)$ can be calculated in constant time, $Q^{L}(i, j)$ for $i=1, \ldots, n, j=0, \ldots, m$ can be calculated in $O(n m)$ time and space.

Thus we can test whether a pattern P is a subsequence of an SLP \mathcal{T} in $O(n m)$ time.

We similarly define $Q^{R}(i, j)$ as the length of the longest suffix of $P[0$: $m-j-1]$ that is a subsequence of X_{i}, which can also be calculated in $O(n m)$ time and space.

Fig. 2. Lemma 1. $Q^{L}(i, j)=Q^{L}(\ell, j)+$ $Q^{L}\left(r, j^{\prime}\right)$ where $j^{\prime}=j+Q^{L}(\ell, j) . Q^{L}(\ell, j)$ is the length of the prefix of $P[j: m-1]$ which is a subsequence of X_{ℓ}, and $Q^{L}\left(r, j^{\prime}\right)$ is the length of the prefix of the rest of it.

3.2 Subsequence Matching

Auxiliary Tables. We next define $L(i, j)$ and $R(i, j)$ that are central to the algorithm presented in [3]. We define $L(i, j)$ as the length of the shortest prefix of X_{i}, for which $P[j: m-1]$ is a subsequence. When there is no such prefix of $X_{i}, L(i, j)$ is defined as ∞. We similarly define $R(i, j)$ as the length of the shortest suffix of X_{i}, for which $P[0: m-j-1]$ is a subsequence. When there is no such suffix of $X_{i}, R(i, j)$ is defined as ∞. Only these values for L (resp. R) corresponding to suffixes (resp. prefixes) of P are required in the algorithms which follow. However, the algorithm presented in [3] required the values for L and R corresponding to all substrings of P to compute these values, therefore making the running time of the algorithm $O\left(n m^{2} \log m\right)$. We improve their algorithm by showing that we can calculate $L(i, j)$ (resp. $R(i, j)$) using only values corresponding to suffixes (resp. prefixes) of P with support from $Q^{L}(i, j)$ (resp. $\left.Q^{R}(i, j)\right)$, and reduce the running time to $O(n m)$.

Lemma 2. Given a pattern P of length m, an $S L P \mathcal{T}$ of size n representing text T, and $Q^{L}(i, j)$ (resp. $Q^{R}(i, j)$) for $i=1, \ldots, n, j=0, \ldots, m, L(i, j)$ (resp. $R(i, j)$) for all $i=1, \ldots, n, j=0, \ldots, m$ can be calculated in $O(n m)$ time and space.

Proof. We shall only describe how to calculate $L(i, j)$ using $Q^{L}(i, j)$, since the case for $R(i, j)$ and $Q^{R}(i, j)$ is essentially the same. $L(i, j)$ can be defined recursively as follows: For the base case, if $X_{i}=a$ for some $a \in \Sigma$, then

$$
L(i, j)= \begin{cases}0 & \text { if } j=m \\ 1 & \text { if } j=m-1 \text { and } P[j: m-1]=a \\ \infty & \text { otherwise }\end{cases}
$$

If $X_{i}=X_{\ell} X_{r}$, then

$$
L(i, j)= \begin{cases}L(\ell, j) & \text { if } L(\ell, j) \neq \infty \\ \left|X_{\ell}\right|+L\left(r, j^{\prime}\right) & \text { if } L(\ell, j)=\infty\end{cases}
$$

where $j^{\prime}=j+Q^{L}(\ell, j)$. This is because: When $L(\ell, j) \neq \infty, P[j: m-1]$ is a subsequence of X_{ℓ}, and $L(\ell, j)$ is the length of the shortest prefix of X_{ℓ} for which $P[j: m-1]$ is a subsequence. Since X_{ℓ} is a prefix of X_{i}, the length of the shortest prefix of $X_{i}=X_{\ell} X_{r}$ for which $P[j: m-1]$ is a subsequence is clearly equal to $L(\ell, j)$. When $L(\ell, j)=\infty, P[j: m-1]$ is not a subsequence of X_{ℓ}. This implies that the value of $L(i, j)$ is at least $\left|X_{\ell}\right|$. The exact value of $L(i, j)$ can be efficiently computed from $Q^{L}(\ell, j)$, as follows. Since $L(i, j)-\left|X_{\ell}\right|$ equals to the shortest prefix of X_{r} for which $P\left[j^{\prime}: m-1\right]$ is a subsequence, we have $L(i, j)-\left|X_{\ell}\right|=L\left(r, j^{\prime}\right)$ where $j^{\prime}=j+Q^{L}(\ell, j)$.

Therefore, given the Q^{L} table, each $L(i, j)$ can be computed in constant time. Hence $L(i, j)$ for all $i=1, \ldots, n, j=0, \ldots, m$ can be computed in $O(n m)$ time and space.

Counting Minimal Occurrences. For text T represented by an SLP \mathcal{T} of size n, we show how to calculate the number of minimal occurrences of subsequence P of length m in T in time $O(n m)$, using $L(i, j)$ and $R(i, j)$. Let M_{i} denote the number of minimal occurrences of P in $\operatorname{val}\left(X_{i}\right)$. Since $\operatorname{val}\left(X_{n}\right)=T$, the desired output is the value of M_{n}.

Our algorithm is based essentially on the same ideas as described in [3]. However, we note that they did not provide a rigorous proof of correctness, and the pseudo-code shown in their paper seems to contain some errors. Below, we give a simple presentation of the algorithm and a proof of correctness.

For any variable $X_{i}=X_{\ell} X_{r}$, let $C(\ell, r)$ denote the number of minimal occurrences of P in X_{i} that cross X_{ℓ} and X_{r}.

Lemma 3. Given a pattern P of length m, an $S L P \mathcal{T}$ of size n, and $C(\ell, r)$ for all variables of form $X_{i}=X_{\ell} X_{r}$, the values M_{i} for $i=1, \ldots, n$ can be calculated in $O(n)$ time.

Proof. M_{i} is recursively computable as follows. For the base case, if $X_{i}=a$ for some $a \in \Sigma$, then $M_{i}=0$ if $P \neq a$ and $M_{i}=1$ if $P=a$. If $X_{i}=X_{\ell} X_{r}$, then $M_{i}=M_{\ell}+M_{r}+C(\ell, r)$. Hence we can compute M_{i} for all $i=1, \ldots, n$ recursively, in total of $O(n)$ time.

What remains is how to calculate $C(\ell, r)$ for all variables of type $X_{i}=X_{\ell} X_{r}$. For $k=0, \ldots, m$, consider the following pairs $\left(u_{k}, v_{k}\right)$ where u_{k} is the beginning position in X_{i}, of the shortest suffix of X_{l} for which $P[0: m-1-k]$ is a subsequence (or $-\infty$ if such a suffix does not exist), and v_{k} is the ending position in X_{i}, of the shortest prefix of X_{r} for which $P[m-k: m-1]$ is a subsequence (or ∞ if such a prefix does not exist), i.e., $u_{k}=\left|X_{\ell}\right|-R(\ell, k)$ and $v_{k}=\left|X_{\ell}\right|+$ $L(r, m-k)-1$ (see also Fig. 3 (Left)). Clearly u_{k} and v_{k} are monotonically non-decreasing, that is, $u_{k-1} \leq u_{k}<\left|X_{\ell}\right|=u_{m}$, and $v_{0}=\left|X_{\ell}\right|-1<v_{k} \leq v_{k+1}$ for $k=1, \ldots, m-1$. When both $0 \leq u_{k}<\left|X_{\ell}\right|$ and $\left|X_{\ell}\right| \leq v_{k}<\left|X_{i}\right|$ hold, then $\left(u_{k}, v_{k}\right)$ is a crossing subsequence occurrence of P in X_{i}. Note that neither $\left(u_{0}, v_{0}\right)$ nor $\left(u_{m}, v_{m}\right)$ are crossing occurrences. Let $O c c^{S S}(\ell, r)=\left\{\left(u_{k}, v_{k}\right) \mid k=\right.$ $1, \ldots, m-1\}$. It is easy to see that every minimal crossing subsequence occurrence of P in X_{i} must be an element of $O c c{ }^{S S}(\ell, r)$, and it remains to identify them.

Lemma 4. $\left(u_{k}, v_{k}\right) \in O c c^{S S}(\ell, r)$ is a minimal occurrence if and only if $\nexists k^{\prime} \in$ $\{0, \ldots, m\}$ s.t. $\left(u_{k}, v_{k}\right) \neq\left(u_{k^{\prime}}, v_{k^{\prime}}\right)$, and $u_{k} \leq u_{k^{\prime}}$ and $v_{k^{\prime}} \leq v_{k}$.

Proof. (\Longrightarrow) If for some $k^{\prime} \in\{0, \ldots, m\}$ s.t. $\left(u_{k^{\prime}}, v_{k^{\prime}}\right) \neq\left(u_{k}, v_{k}\right)$ we have $u_{k} \leq$ $u_{k^{\prime}}$ and $v_{k^{\prime}} \leq v_{k}$, then $\left(u_{k}, v_{k}\right)$ cannot be a minimal occurrence by definition.
(\Longleftarrow) We show the contraposition. Assume $\left(u_{k}, v_{k}\right)$ is not a minimal occurrence. If $u_{k}=-\infty$ (or resp. $v_{k}=\infty$), then $u_{k} \leq u_{0}=-\infty$ (resp. $v_{m} \leq v_{k}=\infty$) and from the monotonicity of $u_{k} \mathrm{~s}$ and $v_{k} \mathrm{~s}$, we can choose $k^{\prime}=0$ (resp. $k^{\prime}=m$). If $u_{k} \neq-\infty$ and $v_{k} \neq \infty$, there exist some occurrence $(u, v) \neq\left(u_{k}, v_{k}\right)$ s.t. $u_{k} \leq u$ and $v \leq v_{k}$. If (u, v) is a crossing occurrence, then a minimal occurrence $\left(u_{k^{\prime}}, v_{k^{\prime}}\right)$ can be chosen from $O c c^{S S}(\ell, r)$ s.t. $u \leq u_{k^{\prime}}$ and $v_{k^{\prime}} \leq v$. If it is not, then $v \leq\left|X_{l}\right|-1$ or $u \geq\left|X_{l}\right|$, and we can choose $\left(u_{0}, v_{0}\right)$ or $\left(u_{m}, v_{m}\right)$.

Lemma 5. Consider $\left(u_{k}, v_{k}\right) \in O c c^{S S}(\ell, r)$, and let $K=\left\{k^{\prime} \mid\left(u_{k}, v_{k}\right)=\right.$ $\left.\left(u_{k^{\prime}}, v_{k^{\prime}}\right), k^{\prime}=1, \ldots, m-1\right\}, k_{s}=\min K$ and $k_{e}=\max K$. Then, $\left(u_{k}, v_{k}\right)$ is minimal if and only if $u_{k_{s}-1}<u_{k}$ and $v_{k}<v_{k_{e}+1}$.

Proof. From the monotonicity of u_{k} and v_{k}, and from Lemma 4, we have that $\left(u_{k}, v_{k}\right)$ is minimal if and only if

$$
\begin{aligned}
& \nexists k^{\prime} \in\{0, \ldots, m\} \text { s.t. }\left(u_{k}, v_{k}\right) \neq\left(u_{k^{\prime}}, v_{k^{\prime}}\right), \quad\left(u_{k} \leq u_{k^{\prime}}\right) \wedge\left(v_{k^{\prime}} \leq v_{k}\right) \\
& \Longleftrightarrow \not k^{\prime} \in\{0, \ldots, m\} \text { s.t. }\left(u_{k^{\prime}}, v_{k^{\prime}}\right) \neq\left(u_{k}, v_{k}\right), \quad\left(u_{k^{\prime}}<u_{k}\right) \vee\left(v_{k}<v_{k^{\prime}}\right) \\
& \Longleftrightarrow\left(\left(u_{k_{s}-1}<u_{k}\right) \vee\left(v_{k}<v_{k_{s}-1}\right)\right) \wedge\left(\left(u_{k_{e}+1}<u_{k}\right) \vee\left(v_{k}<v_{k_{e}+1}\right)\right) \\
& \Longleftrightarrow\left(u_{k_{s}-1}<u_{k}\right) \wedge\left(v_{k}<v_{k_{e}+1}\right) .
\end{aligned}
$$

Lemma 6. Given a pattern P of length m, an $S L P \mathcal{T}$ of size n, and $L(i, j)$, $R(i, j)$ for $i=1, \ldots, n, j=0, \ldots, m, C(\ell, r)$ for all variables of form $X_{i}=X_{\ell} X_{r}$, can be computed in total of $O(n m)$ time.

Proof. A pseudo-code of our algorithm which computes $C(\ell, r)$ is shown in Algorithm 1 (see also Fig. 3 (Right)). The time complexity is clearly $O(m)$ for each $X_{i}=X_{\ell} X_{r}$, and hence $O(n m)$ in total. The correctness is due to Lemma 5.

Fig. 3. (Left) If $R(\ell, k) \neq \infty$ and $L(r, m-k) \neq \infty$, there is a crossing subsequence occurrence of $P . P[0: k-1]$ is a subsequence of $X_{\ell}\left[\left|X_{\ell}\right|-R(\ell, k):\left|X_{\ell}\right|-1\right]$, and $P[k:$ $m-1]$ is a subsequence of $X_{r}[0: L(r, m-k)-1]$. (Right) Illustration of Algorithm 1. When r min $>R(\ell, k)$ and $L(r, m-k)<L(r, m-k-1)$, then $\left(\left|X_{\ell}\right|-R(\ell, k),\left|X_{\ell}\right|+\right.$ $L(r, m-k)-1)$ is a crossing minimal occurrence. We then update $r \min \leftarrow R(\ell, k)$ to find the next crossing minimal occurrence.

```
Algorithm 1: Counting Minimal Crossing Subsequence Occurrences.
    Input: SLP variable \(X_{i}=X_{\ell} X_{r}\), pattern \(P\), auxiliary tables \(L, R\).
    Output: The number of minimal crossing subsequence occurrences \(C(\ell, r)\).
    \(C \leftarrow 0 ; r \min \leftarrow R(\ell, 0)\);
    for \(k \leftarrow 1\) to \(m-1\) do
        if rmin \(>R(\ell, k)\) and \(L(r, m-k)<L(r, m-k-1)\) then
            \(C \leftarrow C+1 ; r \min \leftarrow R(\ell, k) ;\)
    return \(C\);
```

Finally, we obtain the main result of this section.

Theorem 1. Given a pattern P of length m and an $S L P \mathcal{T}$ of size n representing text T, the number of minimal subsequence occurrences of P in T can be calculated in $O(n m)$ time.

Window Subsequence Matching. Cégielski et al. [3] introduced several window-accumulated variants of subsequence pattern matching on compressed texts. The principal problem is: Given an SLP \mathcal{T} generating text T, a pattern P, and non-negative integer w, count the number of minimal subsequence occurrences (u, v) of P in T such that $v-u+1 \leq w$.

Our algorithm for counting minimal occurrences can readily be extended to this window-accumulated variant. See Algorithm 1. By simply adding " $R(\ell, k)+$ $L(r, m-k) \leq w$ " in the if-condition of line 3 , we can solve the problem in the same complexity $O(n m)$. We remark that the other variants considered in [3] can also be solved in the same complexity. Details are omitted due to lack of space.

4 Don't-Care Pattern Matching Problems on Compressed Texts

In this section we show that the ideas of Section 3 can be extended to solve pattern matching problems for patterns with fixed length don't care (FLDC) and variable length don't care (VLDC) symbols, in the same complexity $O(n m)$.

4.1 FLDC Pattern Matching on Compressed Texts

We can find substrings of X_{i} matching P, the same way as counting minimal subsequence occurrences. If a subsequence P of T occurs in $\left(i_{0}, i_{m-1}\right)$ and $i_{m-1}-$ $i_{0}+1=m$, obviously the substring $T\left[i_{0}: i_{m-1}\right]$, is equal to P.

The above idea can be extended to a pattern matching problem where the pattern includes fixed length don't care (FLDC) symbols. Let the symbol ' 0 ' denote a don't care character that can match an arbitrary character in Σ. We call $P \in(\Sigma \cup\{0\})^{*}$ an $F L D C$ pattern. An FLDC pattern P of length m occurs in string T at position i_{0}, if $T\left[i_{0}+i\right]=P[i]$ or $P[i]=\circ$ for all $0 \leq i \leq m-1$.

To count the occurrences of an FLDC pattern P using our window subsequence matching algorithms, we only need to count minimal subsequence occurrences of P that fit in a window of size $|P|$ with the exception that o can match any single character. We can do this by simply modifying the base cases of $Q^{L}(i, j)$ and $L(i, j)$ as follows: If $X_{i}=a$ for some $a \in \Sigma$, then

$$
\begin{aligned}
Q^{L}(i, j) & = \begin{cases}1 & \text { if } j<m \text { and }(P[j]=a \text { or } P[j]=0) \\
0 & \text { otherwise. }\end{cases} \\
L(i, j) & = \begin{cases}0 & \text { if } j=m, \\
1 & \text { if } j=m-1 \text { and }(P[j: m-1]=a \text { or } P[j: m-1]=0) \\
\infty & \text { otherwise } .\end{cases}
\end{aligned}
$$

The base cases of $Q^{R}(i, j)$ and $R(i, j)$ should be modified similarly as well.

4.2 VLDC Pattern Matching on Compressed Texts

Let the symbol ' \star ' denote a variable-length don't care character that can match an arbitrary string in Σ^{*}. We call $P \in(\Sigma \cup\{\star\})^{*}$ a variable-length don't care ($V L D C$) pattern. In the sequel, we only consider VLDC patterns that start and end with \star, and the \star 's do not occur consecutively. Consider any VLDC pattern $P=\star s_{1} \star s_{2} \star \cdots \star s_{m^{\prime} \star}$, where each $s_{j} \in \Sigma^{+}$. The length of P is $m=\sum_{j=1}^{m^{\prime}}\left|s_{j}\right|$. Each s_{j} is called the j-th segment of P. VLDC pattern P is said to match a string $T \in \Sigma^{*}$ if there exist indices $0 \leq i_{0}<i_{0}+\left|s_{1}\right| \leq i_{1}<i_{1}+\left|s_{2}\right| \leq \cdots<$ $i_{m^{\prime}-1}+\left|s_{m^{\prime}}\right| \leq|T|-1$ such that $s_{1}=T\left[i_{0}: i_{0}+\left|s_{1}\right|-1\right], \ldots, s_{m^{\prime}}=T\left[i_{m^{\prime}-1}:\right.$ $\left.i_{m^{\prime}-1}+\left|s_{m^{\prime}}\right|-1\right]$. The pair $\left(i_{0}, i_{m^{\prime}-1}+\left|s_{m^{\prime}}\right|-1\right)$ is called an occurrence of VLDC pattern P in T. An occurrence (u, v) of VLDC pattern P in T is minimal if neither $(u+1, v)$ nor $(u, v-1)$ is an occurrence of P in T. Note that if each
segment is a single character, then the above notion is equivalent to that of subsequences.

In what follows, we present how to compute minimal occurrences of a VLDC pattern in an SLP-compressed text. We will extend the notion of the auxiliary tables L, R, Q^{L}, and Q^{R} to cope with VLDC pattern matching. In so doing, we firstly introduce some new notion.

For any $X_{i}=X_{\ell} X_{r}$ and s_{j}, let

$$
\begin{aligned}
& O c c^{\ddagger}\left(X_{i}, s_{j}\right)= \\
& \left\{\begin{array}{l}
\left.k \left\lvert\, \begin{array}{l}
X_{\ell}\left[\left|X_{\ell}\right|-k:\left|X_{\ell}\right|-1\right]=s_{j}[0: k-1], \\
X_{r}\left[0:\left|s_{j}\right|-k-1\right]=s_{j}\left[k:\left|s_{j}\right|-1\right], k=1, \ldots, \min \left\{\left|s_{j}\right|-1,\left|X_{\ell}\right|\right\}
\end{array}\right.\right\} .
\end{array}\right.
\end{aligned}
$$

Namely, values in $\operatorname{Occ}{ }^{\ddagger}\left(X_{i}, s_{j}\right)$ correspond to lengths of overlap with X_{ℓ}, for all crossing substring occurrences of s_{j} in X_{i}. We can compute $\operatorname{Occ}^{\ddagger}\left(X_{i}, s_{j}\right)$ for all $i=1, \ldots, n, j=1, \ldots, m^{\prime}$ in total of $O(n m)$ time and space, as follows: Let h be the length of the longest segment of P. We decompress the prefix and suffix of length h of each variable X_{i}, i.e., we compute strings $A_{i}=X_{i}\left[\left|X_{i}\right|-\right.$ $\left.\min \left\{h,\left|X_{i}\right|\right\}:\left|X_{i}\right|-1\right]$ and $B_{i}=X_{i}\left[0: \min \left\{h,\left|X_{i}\right|\right\}-1\right]$. This can be done in total of $O(n m)$ time and space. Let $X_{i}=X_{\ell} X_{r}$. We can then compute $O c c^{\ddagger}\left(X_{i}, s_{j}\right)$ in $O\left(\left|s_{j}\right|\right)$-time by using any standard linear-time pattern matching algorithm (e.g. [7]) for text $A_{\ell} B_{r}$ and pattern s_{j}. Moreover, $O c c^{\ddagger}\left(X_{i}, s_{j}\right)$ forms a single arithmetic progression [11], and can thus be represented as the first element, the last element, and the number of elements, which require only $O(1)$ space. Overall it takes $O(n m)$ time and space to compute $O c c^{\ddagger}\left(X_{i}, s_{j}\right)$ for all $i=1, \ldots, n, j=1, \ldots, m^{\prime}$.

Let $\operatorname{LCP}\left(X_{i}, s_{j}, k\right)$ denote the length of the longest common prefix of X_{i} and $s_{j}\left[k:\left|s_{j}\right|-1\right]$. We can also compute $\operatorname{LCP}\left(X_{i}, s_{j}, k\right)$ in $O(n m)$ time and space for all $i=$ $1, \ldots, n, j=1, \ldots, m^{\prime}, k=0, \ldots,\left|s_{j}\right|$, by the following recursion: For the base case, if $X_{i}=a$ for some $a \in \Sigma$, then $\operatorname{LCP}\left(X_{i}, s_{j}, k\right)=0$ if $X_{i} \neq s_{j}[k]$, and $\operatorname{LCP}\left(X_{i}, s_{j}, k\right)=1$ if $X_{i}=s_{j}[k]$.

Fig. 4. Illustration of the recursion for $\operatorname{LCP}\left(X_{i}, s_{j}, k\right)$. If $L C P(\ell, j, k)=\left|X_{\ell}\right|$, then $L C P(i, j, k)=\left|X_{\ell}\right|+L C P\left(r, j, k+\left|X_{\ell}\right|\right)$. If $X_{i}=X_{\ell} X_{r}$, then
$L C P\left(X_{i}, s_{j}, k\right)= \begin{cases}\left|X_{\ell}\right|+\operatorname{LCP}\left(X_{r}, s_{j}, k+\left|X_{\ell}\right|\right) & \text { if } L C P\left(X_{\ell}, s_{j}, k\right)=\left|X_{\ell}\right|, \\ L C P\left(X_{\ell}, s_{j}, k\right) & \text { otherwise. }\end{cases}$
Let $\operatorname{LCS}\left(X_{i}, s_{j}, k\right)$ denote the length of the longest common suffix of X_{i} and $s_{j}\left[0:\left|s_{j}\right|-k-1\right] . \operatorname{LCS}\left(X_{i}, s_{j}, k\right)$ can also be computed similarly in $O(n m)$ time and space.

For any VLDC pattern $P=\star s_{1} \star s_{2} \star \cdots \star s_{m^{\prime}} \star$, we define a sub-pattern $\operatorname{segsub}^{L}(P, j, k, q)$ of P, for $j=1, \ldots, m^{\prime}+1, k=0, \ldots,\left|s_{j}\right|-1, q=0, \ldots, m^{\prime}-$
$j+1$, as follows:

$$
\operatorname{segsub}^{L}(P, j, k, q)= \begin{cases}\varepsilon & \text { if } q=0 \text { or } j>m^{\prime} \\ \star s_{j} \star \cdots \star s_{j+q-1^{\star}} & \text { if } q>0, j \leq m^{\prime}, k=0 \\ s_{j}\left[k:\left|s_{j}\right|-1\right] \star \cdots \star s_{j+q-1 \star} & \text { if } q>0, j \leq m^{\prime}, k>0\end{cases}
$$

Let $Q^{L}(i, j, k)$ denote the maximum number of segments in the sub-patterns $\operatorname{segsub}^{L}(P, j, k, q)$ that match $\operatorname{val}\left(X_{i}\right)$, i.e.,

$$
Q^{L}(i, j, k)=\max \left\{q \mid \operatorname{segsub}^{L}(P, j, k, q) \text { matches } \operatorname{val}\left(X_{i}\right)\right\}
$$

Also, we define $L(i, j, k)$ as the length of the shortest prefix of $\operatorname{val}\left(X_{i}\right)$ that matches the sub-pattern giving $Q^{L}(i, j, k)$, i.e.,

$$
L(i, j, k)=\min \left\{p \mid \operatorname{segsub}^{L}\left(P, j, k, Q^{L}(i, j, k)\right) \text { matches } X_{i}[0: p-1]\right\}
$$

We define $Q^{R}(i, j, k)$ and $R(i, j, k)$ similarly, but be careful that $\operatorname{segsu}^{R}(P, j, k, q)$ for $j=0, \ldots, m^{\prime}, k=0, \ldots,\left|s_{j}\right|-1, q=0, \ldots, j$ is defined as follows:

$$
\operatorname{segsub}^{R}(P, j, k, q)= \begin{cases}\varepsilon & \text { if } q=0 \text { or } j=0 \\ \star s_{j-q+1} \star \cdots \star s_{j} \star & \text { if } q>0, j>0, k=0 \\ \star s_{j-q+1} \star \cdots \star s_{j}\left[0:\left|s_{j}\right|-k-1\right] & \text { if } q>0, j>0, k>0\end{cases}
$$

Lemma 7. Given an SLP \mathcal{T} and VLDC pattern $P=\star s_{1} \star \cdots \star s_{m^{\prime}}, Q^{L}(i, j, k)$ (resp. $\left.Q^{R}(i, j, k)\right)$ and $L(i, j, k)$ (resp. $R(i, j, k)$) can be also computed in $O(n m)$ time and space for all $i=1, \ldots, n, j=1, \ldots, m^{\prime}+1$ (resp. $j=0, \ldots, m^{\prime}$) and $k=0, \ldots,\left|s_{j}\right|-1$.

Proof. $Q^{L}(i, j, k)$ and $L(i, j, k)$ can be defined recursively as follows. For the base case, $X_{i}=a,(a \in \Sigma)$, then

$$
\begin{align*}
& Q^{L}(i, j, k)= \begin{cases}1 & \text { if } 1 \leq j \leq m^{\prime} \text { and } k=\left|s_{j}\right|-1 \text { and } s_{j}\left[\left|s_{j}\right|-1\right]=a, \\
0 & \text { otherwise. }\end{cases} \\
& \qquad L(i, j, k)= \begin{cases}1 & \text { if } Q^{L}(i, j, k)>0, \\
0 & \text { otherwise. }\end{cases} \\
& \text { If } X_{i}=X_{\ell} X_{r},\left|s_{j}\right|-k>\left|X_{\ell}\right| \text { and } k>0, \text { then }
\end{aligned} \begin{aligned}
& Q^{L}(i, j, k)= \begin{cases}Q^{L}\left(r, j, k+\left|X_{\ell}\right|\right) & \text { if } L C P\left(X_{\ell}, s_{j}, k\right)=\left|X_{\ell}\right|, \\
0 & \text { if } L C P\left(X_{\ell}, s_{j}, k\right)<\left|X_{\ell}\right| .\end{cases} \\
& L(i, j, k)= \begin{cases}\left|X_{\ell}\right|+L\left(r, j, k+\left|X_{\ell}\right|\right) & \text { if } Q^{L}(i, j, k)>0 \\
0 & \text { if } Q^{L}(i, j, k)=0\end{cases} \tag{3}
\end{align*}
$$

(See also Fig 5 (Left).)

Fig. 5. (Left) Illustration of Equations (3) and (4) of Lemma 7. If $\left|s_{j}\right|-k>\left|X_{\ell}\right|$ and $L C P(i, j, k)=\left|X_{\ell}\right|$, then $Q^{L}(i, j, k)=Q^{L}\left(r, j, k+\left|X_{\ell}\right|\right)$ and $L(i, j, k)=\left|X_{\ell}\right|+$ $L\left(r, j, k+\left|X_{\ell}\right|\right)$. (Right) Illustration of Equation (5) of Lemma 7. j^{\prime} and k^{\prime} can be computed in $O(1)$ time. Then, $Q^{L}(i, j, k)$ and $L(i, j, k)$ can be also computed in $O(1)$ time. Since $s_{j^{\prime}}$ and $s_{j^{\prime}-1}$ cannot overlap, k^{\prime} must satisfy $k^{\prime}+L(\ell, j, k) \leq\left|X_{\ell}\right|$.

If $X_{i}=X_{\ell} X_{r}$ and, $\left|s_{j}\right|-k \leq\left|X_{\ell}\right|$ or $k=0$, then let $j^{\prime}=j+Q^{L}(\ell, j, k)$ and $k^{\prime}=\max \left\{x\left|x \in O c c^{\ddagger}\left(X_{i}, s_{j^{\prime}}\right) \cup\{0\}, x+L(\ell, j, k) \leq\left|X_{\ell}\right|\right\} . Q^{L}(i, j, k)\right.$ and $L(i, j, k)$ can be computed as follows: If $k=0$ or $Q^{L}(\ell, j, k)>0$, then $Q^{L}(i, j, k)=Q^{L}(\ell, j, k)+Q^{L}\left(r, j^{\prime}, k^{\prime}\right)$ and

$$
L(i, j, k)= \begin{cases}\left|X_{\ell}\right|+L\left(r, j^{\prime}, k^{\prime}\right) & \text { if } Q^{L}\left(r, j^{\prime}, k^{\prime}\right)>0 \tag{5}\\ L(\ell, j, k) & \text { if } Q^{L}\left(r, j^{\prime}, k^{\prime}\right)=0\end{cases}
$$

(See also Fig 5 (Right).)
Otherwise $\left(k>0\right.$ and $\left.Q^{L}(\ell, j, k)=0\right), Q^{L}(i, j, k)=0$ and $L(i, j, k)=0$.
j^{\prime} and k^{\prime} can be computed in $O(1)$ time if $Q^{L}(\ell, j, k), L(\ell, j, k)$ and $O c c^{\ddagger}\left(X_{i}, s_{j^{\prime}}\right)$ are already computed, and $O c c^{\ddagger}$ is represented as an arithmetic progression. Hence $Q^{L}(i, j, k)$ and $L(i, j, k)$ for all $i=1, \ldots, n, j=1, \ldots, m^{\prime}$, and $k=$ $0, \ldots,\left|s_{j}\right|-1$ can be computed in $O(n m)$ time and space. $Q^{R}(i, j, k)$ and $R(i, j, k)$ can be computed similarly using $L C S\left(X_{i}, s_{j}, k\right)$.

An occurrence (u, v) of VLDC pattern P is a crossing occurrence in $X_{i}=$ $X_{\ell} X_{r}$ if $0 \leq u<\left|X_{\ell}\right|$ and $\left|X_{\ell}\right| \leq v<\left|X_{i}\right|$. Let M_{i} and $C(\ell, r)$ denote the number of minimal occurrences and the number of minimal crossing occurrences of VLDC pattern P in $X_{i}=X_{\ell} X_{r}$, respectively.

Lemma 8. Given a VLDC pattern P of length m, an $S L P \mathcal{T}$ of size n, and $C(\ell, r)$ for all variables of form $X_{i}=X_{\ell} X_{r}$, the values M_{i} for $i=1, \ldots, n$ can be calculated in $O(n)$ time.

Proof. M_{i} can be defined recursively as follows. For the base case ($X_{i}=a \in$ $\Sigma)$, if $P=\star a \star$ then $M_{i}=1$, otherwise $M_{i}=0$. For the case $X_{i}=X_{\ell} X_{r}$, $M_{i}=M_{\ell}+M_{r}+C(\ell, r)$. Thus M_{i} can be computed for all $i=1, \ldots, n$, in $O(n)$ total time and space, if $C(\ell, r)$ for all variables of form $X_{i}=X_{\ell} X_{r}$ are already computed.

In what follows we describe how to compute $C(\ell, r)$ for each $X_{i}=X_{\ell} X_{r}$ in $O(m)$ time. Algorithm 2 shows a pseudo-code of our algorithm to compute
$C(\ell, r)$. For convenience, for $i=1, \ldots, n, j=0, \ldots, m^{\prime}$ and $k \in O c c^{\ddagger}\left(X_{i}, s_{j}\right) \cup$ $\{0\}$, let

$$
\begin{aligned}
\mathbf{L}(i, j, k) & = \begin{cases}0 & \text { if } j=0 \\
L(i, j, k) & \text { if } j>0 \text { and } Q^{L}(i, j, k)=m^{\prime}-j+1, \\
\infty & \text { otherwise }\end{cases} \\
\mathbf{R}(i, j, k) & = \begin{cases}0 & \text { if } j=0 \\
R(i, j, k) & \text { if } j>0 \text { and } Q^{R}(i, j, k)=j, \\
\infty & \text { otherwise } .\end{cases}
\end{aligned}
$$

Note that conceptually, the tables L and R for subsequences correspond to \mathbf{L} and \mathbf{R} defined above, and when $\operatorname{segsub}^{L}\left(P, j, k, m^{\prime}-j+1\right)$ does not match X_{i}, then $\mathbf{L}(i, j, k)=\infty$, and when $\operatorname{segsub}^{R}(P, j, k, j)$ does not match X_{i}, then $\mathbf{R}(i, j, k)=\infty$. Hence we can compute the number of crossing VLDC pattern occurrences in a similar way to the case of subsequence patterns.

Care is taken for possible crossing occurrences when a segment is crossing X_{i}. For any j and $k>0$, only occurrences $\left(\left|X_{\ell}\right|-\mathbf{R}\left(\ell, j,\left|s_{j}\right|-k\right),\left|X_{\ell}\right|+\mathbf{L}(r, j, k)-1\right)$ for which $k \in O c c^{\ddagger}\left(X_{i}, s_{j}\right)$ can be crossing occurrences of P in X_{i} (see also Fig. 6 (Left)). For $j=2, \ldots, m^{\prime}$ and $k=0$, occurrences $\left(\left|X_{\ell}\right|-\mathbf{R}(\ell, j-1,0),\left|X_{\ell}\right|+\right.$ $\mathbf{L}(r, j, 0)-1)$ can be crossing occurrences of P in X_{i} (see also Fig. 6 (Right)). By checking these possible crossing occurrences in decreasing order of j and k, we can compute the number of crossing occurrences as described in Algorithm 2. Since the number of candidates is $d=\Sigma_{j=1}^{m^{\prime}}\left|O c c^{\ddagger}\left(X_{i}, s_{j}\right)\right|+m^{\prime}+1=O(m)$, we can compute all the crossing occurrences in a total of $O(n m)$ time and space.

Fig. 6. Illustration of Algorithm 2. (Left) If $k \in O c c^{\ddagger}\left(X_{i}, s_{j}\right), \mathbf{R}\left(\ell, j,\left|s_{j}\right|-k\right) \neq \infty$ and $\mathbf{L}(r, j, k) \neq \infty$, then $\left(\left|X_{\ell}\right|-\mathbf{R}\left(\ell, j,\left|s_{j}\right|-k\right),\left|X_{\ell}\right|+\mathbf{L}(r, j, k)-1\right)$ is a candidate of a crossing occurrence. (Right) If $k=0, \mathbf{R}(\ell, j-1,0) \neq \infty$ and $\mathbf{L}(r, j, 0) \neq \infty$, then $\left(\left|X_{\ell}-\mathbf{R}(\ell, j-1,0),\left|X_{\ell}\right|+\mathbf{L}(r, j, 0)-1\right)\right.$ is a candidate of a crossing occurrence.

Consequently, we obtain the main result of this section:

```
Algorithm 2: Counting Minimal Crossing VLDC Occurrences.
    Input: SLP variable \(X_{i}=X_{\ell} X_{r}\), pattern \(P\), auxiliary tables \(L(i, j, k), R(i, j, k)\).
    Output: The number of minimal crossing VLDC occurrences \(C(\ell, r)\).
    \(d \leftarrow 0 ;(R[0], L[0]) \leftarrow\left(\mathbf{R}\left(\ell, m^{\prime}, 0\right), 0\right) ;\)
    for \(j \leftarrow m^{\prime}\) to 1 do
        forall the \(k \in O c c^{\ddagger}\left(X_{i}, s_{j}\right)\) in descending order do
            \(d \leftarrow d+1 ;(R[d], L[d]) \leftarrow\left(\mathbf{R}\left(\ell, j,\left|s_{j}\right|-k\right), \mathbf{L}(r, j, k)\right) ;\)
        \(d \leftarrow d+1 ;(R[d], L[d]) \leftarrow(\mathbf{R}(\ell, j-1,0), \mathbf{L}(r, j, 0)) ;\)
    \(C \leftarrow 0 ;\) rmin \(\leftarrow R[0]\);
    for \(d^{\prime} \leftarrow 1\) to \(d-1\) do
        if rmin \(>R\left[d^{\prime}\right]\) and \(L\left[d^{\prime}\right]<L\left[d^{\prime}+1\right]\) then
            \(C \leftarrow C+1 ; r \min \leftarrow R\left[d^{\prime}\right] ;\)
    return \(C\);
```

Theorem 2. Given a VLDC pattern P of length m and an $S L P \mathcal{T}$ of size n representing text T, the number of minimal occurrences of P in T can be calculated in $O(n m)$ time.

Window VLDC Pattern Matching. This algorithm for VLDC patterns can be also extended to window-accumulated problems by adding the condition $" R\left[d^{\prime}\right]+L\left[d^{\prime}\right] \leq w "$.

5 Conclusion

All algorithms we presented in this paper run in $O(n m)$ time and space. A natural open problem is if this can be reduced further. Other open problems are mixing variable and fixed length don't care symbols, and constraining the minimum and maximum lengths of strings that variable-length don't care symbols can match.

Acknowledgments

This work was supported by KAKENHI 22680014.

References

1. Baeza-Yates, R.A.: Searching subsequences. Theoretical Computer Science 78(2), 363-376 (1991)
2. Baturo, P., Rytter, W.: Compressed string-matching in standard sturmian words. Theoretical Computer Science 410(30-32), 2804-2810 (2009)
3. Cégielski, P., Guessarian, I., Lifshits, Y., Matiyasevich, Y.: Window subsequence problems for compressed texts. In: Proc. CSR 2006. LNCS, vol. 3967, pp. 127-136 (2006)
4. Claude, F., Navarro, G.: Self-indexed text compression using straight-line programs. In: Proc. MFCS 2009. LNCS, vol. 5734, pp. 235-246 (2009)
5. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for accelerating edit-distance computation via text-compression. In: Proc. STACS 2009. pp. 529-540 (2009)
6. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm for strings with short descriptions. Nordic Journal of Computing 4, 172-186 (1997)
7. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323-350 (1977)
8. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proc. Data Compression Conference 1999. pp. 296-305. IEEE Computer Society (1999)
9. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: MFCS 2006. LNCS, vol. 4162, pp. 681-692 (2006)
10. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1(3), 259-289 (1997)
11. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm for strings in terms of straight-line programs. In: Proc. CPM 1997. LNCS, vol. 1264, pp. 1-11. Springer-Verlag (1999)
12. Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of hierarchical grammars. In: Data Compression Conference 1994. pp. 244-253. IEEE Computer Society (1994)
13. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with implicit input. In: Proc. ICALP 2004. LNCS, vol. 3142, pp. 15-27 (2004)
14. Tiskin, A.: Faster subsequence recognition in compressed strings. J. Math. Sci. 158(5), 759-769 (2009)
15. Tiskin, A.: Towards approximate matching in compressed strings: Local subsequence recognition. In: Proc. CSR 2011 (2011), to appear
16. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23(3), 337-349 (1977)
17. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Transactions on Information Theory 24(5), 530-536 (1978)
