Catalytic Asymmetric Hydrolysis：Asymmetric Hydrolytic Protonation of Enol Esters Catalyzed by Phase－Transfer Catalysts

Yamamoto，Eiji
Department of Chemistry，Kyushu University

Nagai，Ayano
Department of Chemistry，Kyushu University
Hamasaki，Akiyuki
Department of Chemistry，Kyushu University
Tokunaga，Makoto
Department of Chemistry，Kyushu University
https：／／hdl．handle．net／2324／19809

出版情報：Chemistry ：A European Journal． 17 （26），pp．7178－7182，2011－05－12．WILEY－VCH Verlag バージョン：
権利関係：

Asymmetric Ester Hydrolysis: Catalytic Asymmetric Protonation of Enolesters Catalyzed by Phase Transfer Catalysts

Eiji Yamamoto, Ayano Nagai, Akiyuki Hamasaki, Makoto Tokunaga*
Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 812-8581, Japan
E-mail: mtok@chem.kyushu-univ.jp

Supporting Information

1. General Page S2
2. Material Page S2
3. Preparation and characterization of enolesters
3-1. Synthesis of 2-substituted ketones Page S2
3-2. Synthesis of enolesters Page S3
4. General procedure for asymmetric hydrolysis of enolesters catalyzed by PTC Page S6
5. Preliminary results of asymmetric hydrolysis of the acetyl enolate (2a) Page S6
6. Mechanistic studies
6-1. Effects of alcohols Page S7
6-2. Confirmation of mass balance of reaction products Page S7
6-3. Asymmetric hydrolysis of enolesters with the in situ generated stoichiometric $\mathrm{Q}^{+} \mathrm{OH}$ reagent Page S7
6-4. Asymmetric hydrolysis of enolesters with the in situ generated stoichiometric $\mathrm{Q}^{+} \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$ reagent Page S8
6-5. NOE experiment of N-9-anthracenylmethyl cinchonidinium 2, 2, 2trifluoroethanoxide. Page S8
6-6. Asymmetric Hydrolysis of the acetyl ester bearing biphenyl backbone
6-6-1. Synthesis of the catalyst and substrate. Page S12
6-6-2. Asymmetric Hydrolysis of the acetylester Page S13
7. Formal synthesis of the biologically-active natural product Page S15
8. Derivatization of ketones to the corresponding alcohols and Mosher's esters Page S16
9. Analysis of hydrolyzed products Page S18
10. Reactivity of enolesters bearing chloroacetyl group and PNP amino acid esters Page S23
11. References Page S23
12. Spectroscopic data Page S25

1. General.

Unless otherwise stated, all the reactions were performed in flame-dried glassware under a nitrogen atmosphere using dry solvents. Commercial reagents were used as received. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL spectrometer ECS-400, ECS-600 and AL-400. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift $(\delta \mathrm{ppm})$, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{ap}=$ apparent, sex $=$ sextet, sep $=$ septet), integration, coupling constant (Hz) and assignment. The enantiomeric excesses were determined by GC or HPLC analysis employing a chiral stationary phase column specified in the individual experiment, by comparing the samples with the appropriate racemic mixtures. GC analysis was carried out using Agilent GC 6850 series II equipped with InertCap CHIRAMIX Column (length 30 m , i.D. 0.25 mm , df. $0.25 \mu \mathrm{~m}$) from GL Sciences Inc. and CHIRASIL-DEX CB (length 25 m , i.D. 0.25 mm , df. $0.25 \mu \mathrm{~m}$) from Varian using helium as a carrier gas. GC yields were determined by employing HP-1 (length 30 m , i.D. 0.320 mm , df. $0.25 \mu \mathrm{~m}$) or HP-INNOWAX (length 30 m , i.D. 0.320 mm , df. $0.25 \mu \mathrm{~m}$) column from Agilent Technologies using helium as a carrier gas. FAB-MS analysis was performed with an Ultrahigh Performance Mass Spectrometer JMS-HX110A in Institute for Materials Chemistry and Engineering (IMCE). HPLC analysis was performed on a JASCO LC-2000 Plus Series equipped with a variable wavelength detector using chiral stationary columns (Chiracel AD-H, $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) from Daicel. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. Chromatography was performed on silica-gel (Kanto Chemicals, Silica gel 60N, spherical, neutral; particle size $40-100 \mu \mathrm{~m}$). Abbreviations; $\mathrm{Bn}=$ benzyl, conversion $=$ conv, enantiomeric excess $=\mathrm{ee}, \mathrm{eq}=$ equiv, er $=$ enantiomer ratio, DMAP $=N, N$-dimethylaminopyridine, $\mathrm{MTPACl}=$ Methoxy-1-(trifluoromethyl)phenylacetyl chloride, piv $=$ pivaloyl, product $=$ pro, $\mathrm{RT}=$ room temperature, substrate $=$ sub .

2. Material.

$\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ were used as solvents for NMR analyses. Chloroform was purified prior to use following the guidelines of Perrin and Armarego ${ }^{1}$. Pyridine (anhydrous), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (anhydrous) and THF (anhydrous, stabilizer free) were used as anhydrous solvents. N-9-anthracenylmethyl-cinchonidinium chloride (1a, Sigma-Aldrich), N-benzylcinchonidinium chloride (1d, TOKYO CHEMICAL INDUSTRY CO., LTD.), N-benzylcinchoninium chloride (1e, TOKYO CHEMICAL INDUSTRY CO., LTD.) and cinchonidine (Wako Pure Chemical Industries, Ltd.) were used as received. All other chemical reagents were used in commercial grade. Catalyst $\mathbf{1 b}^{2}, \mathbf{1 c}^{3}$, 2-isopropyl-cycloheptanone ${ }^{4}$ (3h), 2-allyl-4,4-dimethyl-cyclohexanone ${ }^{5}$ and 2-cycloheptylidene-1,1-dimethylhydrazine ${ }^{6}$ were prepared according to the reported procedures.

3. Preparation and Characterization of enolesters

3-1. Synthesis of 2 -substituted ketones

4,4-dimethyl-2-propylcyclohexanone ${ }^{7}$ (3d)

2-allyl-4,4-dimethylcyclohexanone ($570 \mathrm{mg}, 3.43 \mathrm{mmol}, 1$ equiv) in ${ }^{t}$ butanol (3.43 mL) was placed in a glass tube with a magnetic stirring bar. $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(16.4 \mathrm{mg}, 0.017$ $\mathrm{mmol}, 0.5 \mathrm{~mol} \%$) was added and the tube was placed in an autoclave. Hydrogen was introduced into the autoclave at a pressure of 2 MPa after hydrogen replacement, then stirred for 11 h at $30{ }^{\circ} \mathrm{C}$. The resultant solution was purified by silica-gel column chlomatography (Hexane : $\mathrm{Et}_{2} \mathrm{O}=10: 1$) to give $3 \mathbf{d}(566 \mathrm{mg}, 3.36 \mathrm{mmol}, 98 \%)$ as yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.44(\mathrm{td}, J=6.4,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dt}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dt}, J=3.2$, $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{tq}, 6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 3$ $\mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=214.1,46.8,45.8,40.2,38.6,31.6,31.2$, 30.9, 24.7, 20.3, 14.3. Anal. Calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 78.51 ; \mathrm{H}, 11.98$. Found: C, 78.24; H, 11.98.

2-propylcycloheptanone ${ }^{8}$ (3f)

BuLi (1.67 M in hexane, $5.25 \mathrm{mmol}, 3.14 \mathrm{~mL}, 1.05$ equiv) was added dropwise to a stirred solution of 2-cycloheptylidene-1,1-dimethylhydrazine ($771 \mathrm{mg}, 5.0 \mathrm{mmol}, 1$ equiv) in THF (anhydrous, 20 mL) at $-5^{\circ} \mathrm{C}$ under a nitrogen atmosphere and stirred for 1 h . After that, propyl iodide ($893 \mathrm{mg}, 512 \mu \mathrm{~L}, 5.25 \mathrm{mmol}, 1.05$ equiv) was added dropwise to the solution, and then the resulting solution was allowed to warm to RT and stirred for 4 h . Distilled water was added to the resultant solution and cooled to $0{ }^{\circ} \mathrm{C}$. Then the solution was acidified with 1 N HCl aq to reach pH 1-2 (The mixture was homogenized by adding THF and methanol). After stirring at $45^{\circ} \mathrm{C}$ for another 2 h , the solution was extracted with diethylether. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resultant crude product was purified by silica-gel chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}=20: 1$) to give $3 \mathrm{f}(560 \mathrm{mg}, 3.63 \mathrm{mmol}, 73 \%$) as pale yellow oil ${ }^{13} \mathrm{C}$ NMR was in agreement with the literature ${ }^{8} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.54-$ $2.34(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.17(\mathrm{~m}, 6 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=216.8,52.3,42.7,34.6,31.3,29.7,28.5,24.8,20.5,14.2$. Anal. Calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 77.87 ; \mathrm{H}, 11.76$. Found: C, 78.01; H, 11.83.

2-butylcycloheptanone ${ }^{9,10}$ (3g)

BuLi (1.67 M in hexane, $5.25 \mathrm{mmol}, 3.14 \mathrm{~mL}, 1.05$ equiv) was added dropwise to a
 stirred solution of 2-cycloheptylidene-1,1-dimethylhydrazine ($771 \mathrm{mg}, 5.0 \mathrm{mmol}, 1$ equiv) in THF (anhydrous, 20 mL) at $-5^{\circ} \mathrm{C}$ under a nitrogen atmosphere and stirred for 1 h . After that, butyl bromide ($719 \mathrm{mg}, 564 \mu \mathrm{~L}, 5.25 \mathrm{mmol}, 1.05$ equiv) was added dropwise to the solution, and then the resulting solution was allowed to warm to RT and stirred for 4 h . Distilled water was added to the resultant solution and cooled to $0^{\circ} \mathrm{C}$. Then the solution was acidified with 1 N HCl aq to reach pH 1-2 (The mixture was homogenized by adding THF and methanol). After stirring at $45^{\circ} \mathrm{C}$ for another 2 h , the solution was extracted with diethylether. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resultant crude product was purified by silica-gel chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}=20: 1$) to give 3 g ($643 \mathrm{mg}, 3.82 \mathrm{mmol}, 77 \%$) as pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=2.53-2.32(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.50(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.14(\mathrm{~m}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=216.9,52.5,42.7$, 32.2, 31.3, 29.7, 29.5, 28.5, 24.8, 22.9, 14.1. Anal. Calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 78.51 ; \mathrm{H}, 11.98$. Found: C, 78.44; H, 11.96.

3-2. Synthesis of enolesters

Procedures: A typical experimental procedure for the preparation of enolesters is described below. Aqueous HClO_{4} solution ($60 \%, 106.8 \mu \mathrm{~L}, 5 \mathrm{~mol} \%$) was added to a mixture of 2-propylcyclohexanone $3 \mathrm{c}\left(2.80 \mathrm{~g}, 20 \mathrm{mmol}, 1\right.$ equiv) and chloroacetic acid anhydride ($6.84 \mathrm{~g}, 40 \mathrm{mmol}, 2$ equiv) in CCl_{4} (12 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ under air. The reaction mixture was stirred for 14 h at $30^{\circ} \mathrm{C}$. Then, $\mathrm{Et}_{2} \mathrm{O}(50$ $\mathrm{mL})$ and saturated NaHCO_{3} aq $(50 \mathrm{~mL})$ were added to the reaction mixture and stirred for a few minutes. After that, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. Organic layers were combined and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by evaporation. The resultant crude product was purified by silica-gel column chromatography ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{Hexane}$) to give 2 c ($3.73 \mathrm{~g}, 17.2 \mathrm{mmol}$, 86%) as pale yellow oil.

2-ethylcyclohex-1-en-1-yl 2-chloroacetate (2b)

85% yield, yellow oil (4 equiv of 2-chloroacetic anhydride was used.)

${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.12(\mathrm{~s}, 2 \mathrm{H}), 2.15-2.12(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{q}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.7,141.4,126.7,40.9,27.3,26.9,23.2,23.1,22.4,12.0$. Anal. Calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClO}_{2}$: C, 59.26; H, 7.46. Found: C, 59.49; H, 7.47.

2-propylcyclohex-1-en-1-yl 2-chloroacetate (2c)

86% yield, yellow oil (2 equiv of chloroacetic anhydride was used.)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.11(\mathrm{~s}, 2 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.00(\mathrm{~m}$, 2 H), 1.89 (t, $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.74-1.66 (m, 2 H), 1.66-1.56 (m, 2 H), 1.36 (sex, 6.0 $\mathrm{Hz}, 2 \mathrm{H}), 0.85(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7,142.2$, 125.2, 40.9, 32.1, 27.8, 26.9, 23.1, 22.4, 20.5, 14.1. Anal. Calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ClO}_{2}$: C, 60.97; H, 7.91. Found: C, 61.25; H, 8.00.

4,4-dimethyl-2-propylcyclohex-1-en-1-yl 2-chloroacetate (2d)

94 \%yield, pale yellow oil (3 equiv of 2-chloroacetic anhydride was used.)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.12(\mathrm{~s}, 2 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 4$ H), 1.49-1.42 (m, 2 H), 1.39-1.28 (m, 2 H), 0.97-0.92 (m, 6 H), 0.88-0.80 (m, 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.8,141.2,123.9,41.8,40.9,35.6,32.1,29.4$, 27.9 (2 carbons), 24.5, 20.4, 14.0. Anal. Calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{ClO}_{2}: \mathrm{C}, 63.79 ; \mathrm{H}$, 8.65. Found: C, 64.06; H, 8.79.

[1,1'-bi(cyclohexan)]-1-en-2-yl 2-chloroacetate (2e)

82% yield, yellow oil (2 equiv of chloroacetic anhydride was used.)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.11(\mathrm{~s}, 2 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.10(\mathrm{~m}$, 2 H), 2.03-2.00 (m, 2 H), 1.73-1.55 (m, 7 H), 1.46-1.40 (m, 2 H), 1.29-1.03 (m, 5 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.8,140.8,129.7,41.0,38.1,30.3$ (2 carbons), 27.0, 26.6 (2 carbons), 26.2, 23.8, 22.9, 22.5. Anal. Calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClO}_{2}$: C, 65.49; H, 8.24. Found: C, 65.64; H, 8.29.

2-propylcyclohept-1-en-1-yl 2-chloroacetate (2f)

84% yield, pale yellow oil (4 equiv of chloroacetic anhydride was used.)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.09(\mathrm{~s}, 2 \mathrm{H}), 2.30-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.08(\mathrm{~m}$, 2 H), 1.92 (t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.72-1.50 (m, 6 H), 1.34 (tq, $7.4 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $0.84(\mathrm{t}, 7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.9$, 146.6, 129.9, 40.9, 34.5, 33.0, 31.5, 31.1, 26.4, 25.3, 20.5, 14.0. Anal. Calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClO}_{2}: \mathrm{C}$, 62.47; H, 8.30. Found: C, 62.51; H, 8.26.

2-butylcyclohept-1-en-1-yl 2-chloroacetate (2g)

85% yield, pale yellow oil (4 equiv of chloroacetic anhydride was used.)

2-isopropylcyclohept-1-en-1-yl 2-chloroacetate (2h)

56% yield, yellow oil (2 equiv of chloroacetic anhydride was used.)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.12(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{sep}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.24$ (m, 2H), 2.08-2.01 (m, 2 H), 1.75-1.65 (m, 2H), 1.65-1.55 (m, 2 H), 1.55-1.45 (m, 2 H), $0.88(\mathrm{~d}, 6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.9,144.9,134.8$, 40.9, 33.2, 32.0, 28.2, 26.9, 25.2, 25.1, 20.0(2 carbons). Anal. Calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClO}_{2}$: C, 62.47; H, 8.30. Found: C, 62.58; H, 8.28.

2-cyclohexylcyclohept-1-en-1-yl 2-chloroacetate (2i)

66% yield, yellow oil (2 equiv of chloroacetic anhydride was used.)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.11(\mathrm{~s}, 2 \mathrm{H}), 2.30-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.09-2.06(\mathrm{~m}, 2$ H), 1.73-1.58 (m, 7 H), 1.50-1.40 (m, 4 H), 1.29-1.03 (m, 5 H). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.0,145.3,134.5,40.9,39.4,33.2,32.0,29.9$ (2 carbons), 26.8, 26.37(2 carbons), 26.35, 26.1, 25.3. Anal. Calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClO}_{2}$: C, 66.53; H, 8.56. Found: C, 66.70; H, 8.59.

2-benzylcyclohept-1-en-1-yl 2-chloroacetate (2j)
96% yield, pale yellow oil (5 equiv of chloroacetic anhydride was used.)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H})$, 4.11(s, 2 H$), 3.30(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 4$ H) 1.45-1.36 (m, 2 H$).{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,147.5,138.9$, 129.0 (2 carbons), 128.6, 128.5 (2 carbons), 126.3, 40.9, 38.2, 33.1, 31.3, 30.8, 26.3, 25.2. Anal. Calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClO}_{2}$: C, 68.93; H, 6.87. Found: C, 69.06; H, 6.89.

2-(4-methylpentyl)cyclohex-1-en-1-yl 2-chloroacetate (2k)

96% yield, pale yellow oil (4 equiv of chloroacetic anhydride was used)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.10(\mathrm{~s}, 2 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.07$ (m, 2 H), $1.90(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 2 \mathrm{H})$, 1.50 (sep, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.36-1.27 (m, 2 H), 1.15-1.07 (m, 2 H), 0.84 (d, 6.4 $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7,142.0,125.5,40.9$, 38.9, 30.3, 27.88, 27.85, 26.9, 25.1, 23.1, 22.7 (2 carbons), 22.4. Anal. Calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{ClO}_{2}$: C, 64.98; H, 8.96. Found: C, 61.12; H, 7.89.

4. General procedure for asymmetric hydrolysis of enolesters catalyzed by PTC

Procedures: A typical experimental procedure for asymmetric hydrolysis of enolesters is described below. A round-bottomed screw cap tube ($\phi 13 \times 100 \mathrm{~mm}$) equipped with a magnetic stir bar is charged N-9-anthracenylmethyl cinchonidinium chloride ($6.1 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $\mathrm{CHCl}_{3} /$ Mesitylene $(267 \mu \mathrm{~L} / 133 \mu \mathrm{~L})$ solution under air, followed by the addition of 2-chloroethanol ($6.7 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1$ equiv) and $50 \% \mathrm{KOH}$ aq $(100 \mu \mathrm{~L})$. Then, the mixture was stirred at $-40^{\circ} \mathrm{C}$ for 10 min followed by the addition of enolester $2 \mathbf{c}(21.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv). The efficiency of agitation has an effect on the yield and enantioselectivity. The reaction mixture was stirred for 13 h at $-40^{\circ} \mathrm{C}$. Then, the reaction mixture was immediately passed through a thin pad of silica-gel and the resultant crude product was purified by silica-gel column chlomatography to give (R)-3c ($13.9 \mathrm{mg}, 99 \%$ yield, $92: 8$ er) followed by Chiral GC analysis (Conditions: InertCap CHIRAMIX, length 30 m , i. D. 0.25 mm , df. $0.25 \mu \mathrm{~m}$; Detector: FID; Temperature; injector $200^{\circ} \mathrm{C}$, detector $240^{\circ} \mathrm{C}$, oven $40-180^{\circ} \mathrm{C}$, program $3{ }^{\circ} \mathrm{C} / \mathrm{min}$, $\mathrm{t}_{\text {major }}$ $=34.7 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=35.6 \mathrm{~min}$). In case of 1 or 2 mmol -scale and 5 mmol -scale reraction, a $20-\mathrm{mL}$ Schlenk flask and a $50-\mathrm{mL}$ recovery flask were used for an alternative reaction container respectively.

5. Preliminary results of asymmetric hydrolysis of the acetyl enolate (2a).

Procedures: To the stirred solution of 1a ($6.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and solid $\mathrm{KOH}(85 \%$ purity, 9.9 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) was added $\mathbf{2 a}(18.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) at RT. After the $1-14 \mathrm{~h}$, the reaction mixture was directly passed through a short silica-gel pad. Resultant solution was analyzed by GC (according to general procedure for asymmetric hydrolysis of enolesters catalyzed by PTC.). Obtained preliminary results are shown below.

Table S1 Preliminary results of asymmetric hydrolysis

entry	time (h)	solvent	yield (\%) ${ }^{\text {a) }}$	er
1	1	toluene	20	$70: 30$
2	14	toluene	65	$64: 36$
3	1	$\mathrm{CHCl}_{3}{ }^{\text {b) }}$	10	$79: 21$

a) GC yield. b) Less than 1% of EtOH was contained in the solvent.

6-1. Effects of alcohols

Procedures: N-9-anthracenylmethyl cinchonidinium chloride ($6.1 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added to the $\mathrm{CHCl}_{3}(400 \mu \mathrm{~L})$ under air, followed by the addition of an alcohol ($0.05 \mathrm{mmol}, 0.5$ equiv) and 50% KOH aq $(200 \mu \mathrm{~L})$. Then, the mixture was stirred for 10 min at $-40^{\circ} \mathrm{C}$ followed by the addition of enolester 2c ($21.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv). The reaction mixture was stirred for 1 h at $-40^{\circ} \mathrm{C}$. Then, the reaction mixture was immediately passed through a thin pad of silica-gel. Resultant solution was analyzed by GC (according to general procedure for asymmetric hydrolysis of enolesters catalyzed by PTC.). Obtained results are shown below.

Table S1 Preliminary results of asymmetric hydrolysis

6-2. Confirmation of mass balance of reaction products

Asymmetric hydrolysis of 3c was performed according to the general procedures. After $19.5 \mathrm{~h}, 1 \mathrm{~N} \mathrm{HCl}$ aq (2 mL) was added to the reaction mixture in order to neutralize KOH aq in the solution. After that, internal standard (diglyme) was added to the solution. The resultant mixture was homogenized by addition of MeOH followed by GC analysis.

Table S3. Analysis of reaction products

6-3. Asymmetric hydrolysis of enolesters with the in situ generated stoichiometric $\mathrm{Q}^{+} \mathrm{OH}^{-}$reagent.

Reaction in homogenious system ($\mathbf{C H C l}_{3}$): N-9-anthracenylmethyl cinchonidinium chloride (61 mg , 0.10 mmol , 1 equiv) in MeOH solution in 1 -neck recovery flask (50 mL) was passed through a column filled with an anion exchange resin (Amberlyst A-26 OH form, $233 \mathrm{mg}, 10 \mathrm{meq}$). MeOH of the eluate was distilled away under reduced pressure at $0{ }^{\circ} \mathrm{C}$. The resultant dried residue was dissolved with CHCl_{3} $(0.5 \mathrm{~mL})$ and repeatedly dried in vacuo for 15 min at $0^{\circ} \mathrm{C}$. Then, chloroform (1 mL) was added to the dried residue. The mixture was cooled down to $-40^{\circ} \mathrm{C}$ and stirred for 5 min . An enolester $2 \mathrm{c}(21.7 \mathrm{mg}$,
$0.10 \mathrm{mmol}, 1$ equiv) was added to the solution and stirred for 4 h at the same temperature. After that, the reaction mixture was immediately passed through thin pad of silica-gel and an internal standard (tridecane) was added to the eluate. Then, the resultant mixture was analyzed by GC ($(R)-3 \mathbf{c}, 99 \%$, 89:11 er).

Reaction in biphasic system ($\mathbf{C H C l}_{3} / \mathbf{H}_{\mathbf{2}} \mathbf{O}$): N-9-anthracenylmethyl cinchonidinium chloride (61 mg , $0.10 \mathrm{mmol}, 1$ equiv) in MeOH solution was passed through a column filled with an anion exchange resin (Amberlyst A-26 OH form, $233 \mathrm{mg}, 10 \mathrm{meq}$). MeOH of the eluate was distilled away under reduced pressure at $0{ }^{\circ} \mathrm{C}$. The resultant dried residue in 1-neck recovery flask (50 mL) was dissolved with $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ and the solution was transferred to a screw vial using MeOH as a solvent. Solvents were removed under reduced pressure at $0{ }^{\circ} \mathrm{C}$. The resultant dried residue was dissolved with CHCl_{3} $(0.5 \mathrm{~mL})$ and removed repeatedly. Then the dried residue was further dried in vacuo for 15 min at $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{CHCl}_{3}(400 \mu \mathrm{~L})$ and distilled water $(100 \mu \mathrm{~L})$ was added to the residue. The mixture was stirred for 2 min at $25^{\circ} \mathrm{C}$. An enolester $2 \mathrm{c}(21.7 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added to the solution and stirred for 4 h at the same temperature. After that, the reaction mixture was immediately passed through thin pad of silica-gel and an internal standard (tridecane) was added to the eluate. Then, the resultant mixture was analyzed by GC. (R)-3c ($77 \%, 77: 23$ er).

6-4. Asymmetric hydrolysis of enolesters with the in situ generated stoichiometric $\mathbf{Q}^{+} \mathbf{C F}_{3} \mathbf{C H}_{2} \mathrm{O}^{-}$ reagent.

N-9-anthracenylmethyl cinchonidinium chloride ($61 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) in MeOH solution was passed through a column filled with an anion exchange resin (Amberlyst A-26 OH form, $233 \mathrm{mg}, 10$ meq). 2,2,2-Trifluoroethanol ($125 \mathrm{mg}, 1.25 \mathrm{mmol}, 90 \mu \mathrm{~L}, 5$ equiv) was added to the elution and stirred for 15 min at RT. The solvent was removed under reduced pressure, then added CHCl_{3} and the solution was transferred to a screw vial. Solvents were removed by evaporation and dried in vacuo for 6 h . To the resultant solid was added $\mathrm{CHCl}_{3}(400 \mu \mathrm{~L})$, distilled water $(100 \mu \mathrm{~L})$. Then the mixture was stirred for 2 min at $25^{\circ} \mathrm{C}$. An enolester $2 \mathrm{c}(21.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was added to the solution and stirred for 4 h at the same temperature. After that, the reaction mixture was immediately passed through thin pad of silica-gel and an internal standard (tridecane) was added to the eluate. Then, the resultant mixture was analyzed by GC. (R)-3c (55\%, 69:31 er).

6-5. Preparation method for a sample of NOE experiment of N -9-anthracenylmethyl cinchonidinium 2,2,2-trifluoroethanoxide.

N-9-anthracenylmethyl cinchonidinium chloride ($130 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv) in MeOH solution was passed through a column filled with an anion exchange resin, Amberlyst A-26 OH form (10 meq). 2, 2, 2-Trifluoroethanol ($125 \mathrm{mg}, 1.25 \mathrm{mmol}, 90 \mu \mathrm{~L}, 5$ equiv) was added to the eluate and stirred for 15 min . The solvent was removed under reduced pressure, then added $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ and removed the solvent again. After that, $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL})$ was added to the residue and $600 \mu \mathrm{~L}$ of the solution was transferred to a NMR tube. $\mathrm{D}_{2} \mathrm{O}(50 \mu \mathrm{~L})$ was added to the sample. After that, it was subjected to two freeze-pumpthaw cycles followed by keeping in refrigerator for 12 h . Then, NMR experiments were performed. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.79\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{19}\right), 8.64\left(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 8.61(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$), $8.39\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{29}\right), 8.14\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{24}\right), 7.95\left(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 7.75(\mathrm{~d}$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{22}$), $7.70\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{26}\right), 7.47\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 7.40-7.28\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{20}+\right.$ $\mathrm{H}_{21}+\mathrm{H}_{28}$), 7.28-7.23 (m, $1 \mathrm{H}, \mathrm{H}_{27}$), $7.06\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 6.99-6.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 6.98(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{10}\right), 6.46\left(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{166}\right), 6.41\left(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16 \mathrm{a}}\right), 5.36$ (ddd, $J=6.6,11.0,17.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{33}$), $5.01\left(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{34 \mathrm{a}}\right)$, (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{34 \mathrm{~b}}$), 4.76-4.66 (m, 1 H, H 15 b), 4.76$4.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{15 \mathrm{~b}}\right), 4.49-4.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 4.05-3.93\left(\mathrm{~m}, 3.1 \mathrm{H}, \mathrm{H}_{35}+\right.$ excess $), 3.92-3.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{32 \mathrm{~b}}\right)$, $2.61\left(\mathrm{t}, J=12.4 \mathrm{~Hz}, \mathrm{H}_{32 \mathrm{~b}}\right), 2.65-2.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{32 \mathrm{a}}\right), 2.40-2.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{15 \mathrm{a}}\right), 1.66-1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{31}\right)$, $1.90-1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14 \mathrm{~b}}+\mathrm{H}_{12 \mathrm{~b}}\right)$, 1.66-1.61 (m, 1H, H$\left.{ }_{13}\right), 1.11-1.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{14 \mathrm{a}}\right), 0.95-0.87(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}_{12 \mathrm{a}}$).

${ }^{1} \mathrm{H}$ and 2D-NOESY chart

Green: negative, Red: positive

2d-ROESY Chart

Green: negative, Red: positive

6-6. Kinetic resolution of an aryl ester bearing binaphthyl backbone
6-6-1. Synthesis of the catalyst and substrate

Synthesis of 1-bromomethyl-2,3,4,5-tetraphenyl benzene (8)

To a stirred solution of tetraphenyl cyclopentadienone ($3.85 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in toluene (10 mL) was added propargyl bromide ($3.01 \mathrm{~mL}, 40 \mathrm{mmol}, 4$ equiv). After stirring for 8 h at $110^{\circ} \mathrm{C}$ the reaction mixture was allowed to cool down to RT. Resultant white precipitate was filtrated and washed with hexane to give $8(4.36 \mathrm{~g}, 9.1 \mathrm{mmol}, 91 \%)$ as white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.64(\mathrm{~s}, 1 \mathrm{H})$, 7.20-7.11 (m, 10 H$), 6.92-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 2 \mathrm{H})$, 4.40 (s, 2 H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.2,141.5,141.4,140.9,140.6,139.8,139.6,138.7$, 135.1, 131.5, 131.4(2 carbons), 131.2 (2 carbons), 130.3 (2 carbons), 129.9 (2 carbons), 127.7 (2 carbons), 127.6 (2 carbons), 127.0 (2 carbons), 126.8, 126.7 (2 carbons), 126.5, 125.8, 125.6, 32.8. Anal. Calcd (\%) for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{Br}$: C, 78.32; H, 4.88. Found: C, 78.29; H, 4.86.

Synthesis of catalyst $\mathbf{1 g}$

A stirred solution of quinine ($1 \mathrm{mmol}, 324 \mathrm{mg}$, 1 equiv) in $\mathrm{DMF}: \mathrm{EtOH}: \mathrm{CHCl}_{3}(9: 7.5: 1,200 \mu \mathrm{~L}$) solution was added 1-bromomethyl-2,3,4,5-tetraphenyl benzene 8 ($1 \mathrm{mmol}, 475 \mathrm{mg}, 1$ equiv). The mixture was allowed to warm up to $100{ }^{\circ} \mathrm{C}$. After 2 h , the reaction mixture was cooled to RT. The resultant solution was evaporated and purified by Silica-gel column chromatography to give $\mathbf{1 g}$ (344 mg , $0.43 \mathrm{mmol}, 43 \%$) as pale pink powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.73-8.67(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}) 7.48(\mathrm{dd}, J=2.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.10(\mathrm{~m}$, 8 H), 6.91-6.71 (m, 12 H$), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.63-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.84(\mathrm{~m}, 3$ H), $4.05(\mathrm{~s}, 3 \mathrm{H}), 3.95-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.44(\mathrm{~m}, 1 \mathrm{H})$, $3.28(\mathrm{~s}, 1 \mathrm{H}), 3.04-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 2.16-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.31-1.20(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.7,146.9,144.5,144.0,143.6,143.3,143.1$, 141.7, 140.8, 139.6, 139.2, 138.6, 137.5, 135.6, 131.6, 131.4, 131.04, 131.00, 130.94, 130.6, 129.7, 128.1, 128.0, 127.6, 127.1, 126.8, 126.6, 125.9, 125.6, 124.4, 121.4, 120.2, 115.8, 101.4, 68.4, 64.9, $61.8,61.1,55.4,53.5,51.6,37.6,26.3,24.5,21.2$. HRMS (FAB+) m/z calculated for $\mathrm{C}_{51} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{2}$ 719.3632 found $719.3641[\mathrm{M}-\mathrm{Br}]$

Synthesis of 2'-acetoxy-[1,1'-binaphthalen]-2-yl pivalate (7)

To a mixture of 2'-hydroxy-[1,1'-binaphthalen]-2-yl pivalate ($1.14 \mathrm{~g}, 4.0 \mathrm{mmol}$) and acetyl chloride ($310 \mu \mathrm{~L}, 4.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(610 \mu \mathrm{~L}, 4.4$ mmol) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at RT for 20 h . The reaction was quenched by adding $\mathrm{HCl}(1 \mathrm{~N}, 30 \mathrm{~mL})$ and extracted with AcOEt. The resulting extracts were washed with brine, and dried, and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography to give $6(1.63 \mathrm{~g}, 3.96$ mmol, 99%) as white solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.99-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.89(\mathrm{~m}, 1 \mathrm{H})$, 7.46-7.37 (m, 4 H), $7.31-7.22(\mathrm{~m}, 6 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $176.6,169.2,147.0,146.9,133.5,133.4,131.6,131.5,129.5,129.4,128.1,128.0,126.8$ (2 carbons), $126.2,126.1,125.8,125.7,123.7,123.6,122.0,121.9,38.8,26.5$ (3 carbons), 20.6. elemental analysis calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{4}$: C 78.62, H 5.86; found: C 78.60, H 5.86.

6-6-2. Asymmetric hydrolysis of the acetate ester

A mixture of the catalyst $1 \mathrm{~g}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{CO}_{3}$ aq ($200 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2$ equiv) in toluene ($200 \mu \mathrm{~L}$) was stirred at $20^{\circ} \mathrm{C}$. After 20 min , the rac- $7(0.1 \mathrm{mmol}, 1$ equiv) was added and the mixture was stirred at the same temperature. Silica-gel column chromatography (Hexane: $\mathrm{CHCl}_{3}: \mathrm{Et}_{2} \mathrm{O}$ $=20: 6.5: 1$) was carried out to give (S)-8 (15% yield, $78: 22$ er) and (R)-7 (80% yield, $43.5: 56.5 \mathrm{er}$); HPLC analysis: CHIRALPAK AD-H (+), hexane $/ 2$-propanol $=20 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, 7$: $\left.\mathrm{t}_{\text {major }}=7.9 \mathrm{~min}, \mathrm{t}_{\text {minor }}=17.4 \mathrm{~min}, 8: \mathrm{t}_{\text {major }}=10.6 \mathrm{~min}, \mathrm{t}_{\text {minor }}=16.5 \mathrm{~min}\right)(S)-7:[\alpha]_{\mathrm{D}}{ }^{25.5}=+35.1,(c 0.5$, $\left.\mathrm{CHCl}_{3}\right),(R)-8:[\alpha]_{\mathrm{D}}^{24.5}=-3.63,\left(c 1.0, \mathrm{CHCl}_{3}\right) . k_{\text {rel }}=4.1$ (The $k_{\text {rel }}$ value was calculated from ee sub and $\mathrm{ee}_{\text {pro }}$ with equations as follows.: conv $=\mathrm{ee}_{\text {sub }} /\left(\mathrm{ee}_{\text {sub }}+\mathrm{ee}_{\text {pro }}\right), k_{\mathrm{rel}}=\ln \left[\left(1-\operatorname{conv}\left(1+\mathrm{ee}_{\mathrm{pro}}\right)\right] / \ln [(1-\operatorname{conv}(1\right.$ $-\mathrm{ee}_{\mathrm{pro}}$)])

Recovered substrate (S)-7

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=7.99-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.37$ (m, 4 H), 7.31-7.22 (m, 6 H), 1.76 ($\mathrm{s}, 3 \mathrm{H}$), 0.76 (s, 9 H). 13C-NMR (100 MHz , CDCl3) $\delta=176.6,169.2,147.0,146.9,133.5,133.4,131.6,131.5,129.5,129.4$, 128.1, 128.0, 126.8 (2 carbons), 126.2, 126.1, 125.8, 125.7, 123.7, 123.6, 122.0, 121.9, 38.8, 26.5 (3 carbons), 20.6. elemental analysis calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{4}$: C 78.62, H 5.86; found: C 78.60, H 5.86.

Product (R)-8

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in agreement with the literature ${ }^{11} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.06(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=177.9,151.8,148.4,133.7,133.6,132.3,130.8,130.4,129.1,128.4$, $128.0,127.5,126.7,126.3,125.7,124.6,123.6,123.1,121.9,118.3,114.3,38.8$, 26.5 (3 carbons). elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 81.06; H, 5.99; found: C, 81.11, H, 5.99.

HPLC chart of rac-7

HPLC chart of recovered substrate (S)-7 and product (R)-8

7. Formal synthesis of the biologically-active natural product

7-1. Synthesis of catalyst 1f

Synthesis of amine 9

To the stirred solution of $(-)$-cinchonidine (883 mg , 3 mmol , 1 equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$ was added ${ }^{t} \mathrm{BuLi}(1.57 \mathrm{M}$ in pentane, $5.73 \mathrm{~mL}, 9 \mathrm{mmol}, 3$ equiv) in one portion and stirred for 10 min . Then, the reaction mixture was allowed to warm up to RT and stirred for another 1 h . Reaction was monitored by TLC analysis (toluene: $\mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N}=10: 1: 1,{ }^{t} \mathrm{Bu}$ adducts turn blue under the UV irradiation). AcOH was added to quench the residual basic reagents in cool bath, then EtOAc (30 mL) and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added followed by the addition of I_{2} until strong brown color persists. After that, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq was added to quench residual I_{2}. The reaction mixture was extracted with EtOAc. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude mixture was purified by silica-gel column chromatography (toluene: $\mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N}=20: 1: 1$) to give the product $9(704 \mathrm{mg}, 1.92 \mathrm{mmol}$, $64 \%)$ as white solid. Analytical sample was prepared by the PTLC purification $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=4: 1\right)$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72,(\mathrm{~s}, 1 \mathrm{H})$, 7.63 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (ddd, $J=7.8,10.1,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (s, 1 H), $4.93(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.59$ (m, 2 H), 2.29-2.20 (m, 1 H$), 1.80-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=169.0,148.3,147.7,142.0,130.4,128.7,125.9,123.9,122.6,115.2,114.4,72.4,60.3,57.2,43.4,40.1$, 38.3, 30.2 (3 carbons), 28.1, 27.7, 21.4. FABMS m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O} 351.24$ found 351.29 $[\mathrm{M}+\mathrm{H}]$ Anal. Calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 78.82 ; \mathrm{H}, 8.63$; N, 7.99 Found: C, $78.38 ; \mathrm{H}, 8.63, \mathrm{~N} ; 7.89$.

Synthesis of $\mathbf{1 f}$

To the stirred solution of amine 9 ($73 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) in CHCl_{3} - THF (1:1) was added 9 bromomethylanthracene ($57 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.05$ equiv) followed by concentration with nitrogen gas stream down to a volume 0.2 mL . The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 10 min . Then, the solution was allowed to cool down to RT. After that, resultant precipitate was dissolved with CHCl_{3}. To the solution was added $\mathrm{Et}_{2} \mathrm{O}$ dropwise to solidify the product. The resulting solid was filtrated and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the product ($118 \mathrm{mg}, 0.19 \mathrm{mmol}, 95 \%$) as pale yellow powder. Analytical sample was prepared by the PTLC purification (EtOAc:MeOH $=4: 1$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.81(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1$ H), $8.68(\mathrm{~s}, 1 \mathrm{H}), 8.60-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.54-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.16-8.09(\mathrm{~m}, 4 \mathrm{H}), 7.82-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.60-$ 7.52 (m, 2 H), 7.01 (s, 1 H), 6.36 (d, J = $13.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.86 (d, J = $13.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.66 (ddd, $J=7.6,9.6$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.40(\mathrm{~m}, 1$ H), 3.90-3.84 (m, 1 H), $3.13(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 1$ H), 2.12-2.00 (m, 1 H$), 1.87(\mathrm{~s}, 1 \mathrm{H}), 1.66-1.20(\mathrm{~s}, 9 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.0,147.5,145.1,137.5,133.4,133.3,132.3,131.60,131.55,129.8$, $129.7,129.6,129.2,127.93,127.88,126.9,125.2,124.5,123.9,123.1,122.7,118.0,117.0,116.3,78.2$, $68.6,66.2,62.3,55.4,51.9,38.3,38.0,29.2$ (3 carbons), 26.0, 24.9, 21.8. FABMS m/z calculated for $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}^{+} 541.32$ found 541.38 [M].

Synthesis of (R)-3k from cyclohexanone (4)

To a stirred solution of cyclohexanone ($4.91 \mathrm{~g}, 50 \mathrm{mmol}, 1$ equiv) and N, N-dimethyl hydrazine (3.16 g , $52.5 \mathrm{mmol}, 1.05$ equiv) in toluene (40 mL) was added trifluoroacetic acid ($80 \mathrm{mg}, 0.7 \mathrm{mmol}, 1.4 \mathrm{~mol} \%$). The mixture was refluxed for 5 h . After that, the resulting solution was cooled to RT. Then, distilled water was added to the solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was evaporated and purified by distillation under reduced pressure to give colorless oil (yield of 7: $6.13 \mathrm{~g}, 43.7 \mathrm{mmol}, 87 \%$) laced with toluene (molar ratio $=10: 1$). This was used without further purification. $\operatorname{BuLi}(1.67 \mathrm{M}$ in hexane, $10.5 \mathrm{mmol}, 6.30 \mathrm{~mL}, 1.0$ equiv) was added dropwise to a stirred solution of $7\left(1.47 \mathrm{~g}, 10.5 \mathrm{mmol}\right.$, 1 equiv) in THF (anhydrous, 20 mL) at $-5^{\circ} \mathrm{C}$ under a nitrogen atmosphere and stirred for 1 h . After that, 1-bromo-4-methylpentane ($1.733 \mathrm{~g}, 10.5 \mathrm{mmol}, 1$ equiv) was added dropwise to the solution, and then the resulting solution was allowed to warm to RT and stirred for 5 h . The resultant solution was added water and cooled to $0{ }^{\circ} \mathrm{C}$. Then the solution was acidified with concentrated HCl aq to reach $\mathrm{pH}=1-2$. After stirring at $45^{\circ} \mathrm{C}$ for another 3 h , the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give yellow oil. Silica-gel column chromatography of the crude residue by eluting with diethylether/hexane (1:30-1:20) afforded $3 \mathbf{k}(1.76 \mathrm{~g}, 9.66 \mathrm{mmol}, 92 \%)$ as a colorless oil and ${ }^{1} \mathrm{H}$ NMR was in agreement with the literature ${ }^{12}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1 \mathrm{H})$, 2.04-1.92 (m, 1 H), 1.88-1.79 (m, 1 H$), 1.79-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.51(\mathrm{sep}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.31(\mathrm{~m}$, $1 \mathrm{H}), 1.31-1.08(\mathrm{~m}, 5 \mathrm{H}), 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.8,50.9,42.1$, 39.1, 33.9, 29.7, 28.1, 27.9, 25.0, 24.9, 22.71, 22.66. Anal. Calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 79.06$; H, 12.16. Found: C, 79.03; H, 12.12.

2k was synthesized according to the general method (pale yellow oil, 96% yield). Asymmetric hydrolysis of $\mathbf{2 k}$ was performed according to the general method of Asymmetric hydrolysis of enolesters (cat. 1f was used in place of cat. 1a). (R)-(+)-2-(4-Methylpentyl)cycloheptanone was obtained in 96% yield and $92: 8$ er as a colorless oil.

8. Derivatization of ketones to the corresponding alcohol and Mosher's esters

General procedure: reduction of ketones

A typical experimental procedure for the reduction of ketones is described below. To the stirred solution of a ketone ($0.01 \mathrm{mmol}, 1$ equiv) in absolute $\mathrm{EtOH}(0.5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(9.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 2.5$ equiv) followed by stirring at RT for 24-48 h . The reaction mixture was monitored by TLC. After the substrate was completely converted, the reaction mixture was quenched with water and 1 N HCl aq. The resultant solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x 3). After that, the organic layer was combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated and purified by silica-gel chromatography to give the corresponding alcohol.

2-propyl-cycloheptanol (10f) ${ }^{13}$

$0.0758 \mathrm{mmol}(11.7 \mathrm{mg})$ of 2-propylcyclohepanone $3 \mathbf{f}$ (Table 2, entry 5) was used. The product (diastereomeric mixture) was obtained as colorless oil ($11.5 \mathrm{mg}, 0.0736$ $\mathrm{mmol}, 97 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.94-3.89(\mathrm{~m}, 0.66 \mathrm{H}), 3.49-3.44(\mathrm{~m}$, $0.34 \mathrm{H}), 1.80-1.15(\mathrm{~m}, 16 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major isomer, $\delta=73.4,44.2,35.6,35.2,28.3,27.2,26.8,22.0,21.0,14.5$. minor isomer, $\delta=73.4,47.2,36.8,36.5,29.1,28.7,26.9,22.3,20.2,14.6$.

2-butyl-cycloheptanol (10g) ${ }^{9,14}$

$0.097 \mathrm{mmol}(16.3 \mathrm{mg})$ of 2-butylcycloheptanone $\mathbf{3 g}$ (Table 2, entry 6) was used. The product (diastereomixture) was obtained as colorless oil ($0.0916 \mathrm{mmol}, 15.6$ $\mathrm{mg}, 94 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.94-3.89(\mathrm{~m}, 0.7 \mathrm{H}), 3.71-3.20(\mathrm{~m}$, $0.3 \mathrm{H}), 1.80-1.10(\mathrm{~m}, 18 \mathrm{H}), 0.95-0.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major isomer, $\delta=73.4,44.5,35.6,32.6,30.2,28.3,27.2,26.85,23.1,22.0,14.2$. minor isomer, $\delta=73.4,47.4,36.5,34.2,29.4,29.1,28.8,26.91,23.2,22.3,14.2$.

2-isopropyl-cycloheptanol(10h) ${ }^{15}$

$0.097 \mathrm{mmol}(15 \mathrm{mg})$ of 2-isopropylcycloheptanone $\mathbf{3 h}$ (Table 2, entry 7) was used. The product was obtained as colorless oil in 93% yield (major isomer: $10.8 \mathrm{mg}, 0.0691$ $\mathrm{mmol}, 71 \%$, minor isomer: $3.3 \mathrm{mg}, 0.0211 \mathrm{mmol}, 22 \%$). ${ }^{1} \mathrm{H}$ NMR of major isomer ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.13-4.09(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.49(\mathrm{~m}, 5 \mathrm{H})$, 1.48-1.35 (m, 3 H$), 1.19-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=5.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR of major isomer ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=71.5,50.2,36.9,31.4,28.2,27.9,24.1,22.2,21.1$. Anal. Calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 76.86 ; \mathrm{H}, 12.90$. Found: C, 76.44; H, 12.64.

Mosher's esterification

(2R)-2-propylcycloheptyl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (11f)

To the stirred solution of an alcohol ($0.0644 \mathrm{mmol}, 1$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ $\mathrm{mL})$ was added $(R)-\mathrm{MTPACl}(32.5 \mathrm{mg}, 0.129 \mathrm{mmol}, 2.0$ equiv), dry pyridine ($20.4 \mathrm{mg}, 0.258 \mathrm{mmol}, 4$ equiv) and N, N-dimethyl aminopyridine ($1 \mathrm{mg}, 4$ $\mu \mathrm{mol}, 6 \mathrm{~mol} \%$) followed by stirring at RT for 48 h . The reaction mixture was monitored by TLC. After the substrate was completely converted, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$. The crude was washed with saturated CuSO_{4} aq and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3). The resultant solution was was concentrated and purified by silica-gel chromatography (Hexane/ $\mathrm{Et}_{2} \mathrm{O}=50: 1-40: 1$) to give the corresponding ester (93%) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.32-5.29(\mathrm{~m}, 0.335 \mathrm{H}), 5.29-5.24$ $(\mathrm{m}, 0.335 \mathrm{H}), 4.96-4.88(\mathrm{~m}, 0.33 \mathrm{H}), 3.57-3.50(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.00(\mathrm{~m}, 15 \mathrm{H}), 0.90-0.71(\mathrm{~m}, 3 \mathrm{H})$.

(2R)-2-butylcycloheptyl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate(11g)

To the stirred solution of an alcohol ($0.059 \mathrm{mmol}, 1$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ mL) was added (R)-MTPACl ($29.8 \mathrm{mg}, 0.118 \mathrm{mmol}, 2.0$ equiv), dry pyridine $(18.7 \mathrm{mg}, 0.16 \mathrm{mmol}, 4$ equiv) and N, N-dimethyl aminopyridine ($1 \mathrm{mg}, 4$ $\mu \mathrm{mol}, .7 \mathrm{~mol} \%$) followed by stirring at RT for 48 h . The reaction mixture was monitored by TLC. After the substrate was completely converted, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$. The crude was washed with saturated CuSO_{4} aq and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3). The resultant solution was was concentrated and purified by silica-gel chromatography (Hexane/ $\mathrm{Et}_{2} \mathrm{O}=50: 1-40: 1$) to give the corresponding ester (99%) as inhomogeneous colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H})$, 5.28-5.22 (m, 0.72 H), 4.96-4.93 (m, 0.14 H), 4.92-4.88 (m, 0.14 H), 3.43-3.39 (m, 3 H), 1.83-0.74 (m, 20 H).

9. Analysis of hydrolyzed products

 The product ((S)-(+)-2-ethyl-cyclohexanone) was obtained as a colorless oil and 87: 13 er . ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in agreement with the literature ${ }^{16}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=2.40-1.90(\mathrm{~m}, 5 \mathrm{H}), 1.90-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 1$ H), $0.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.6,52.4,42.1,33.5$, 28.1, 24.9, 22.5, 11.8. Anal. Calcd (\%) for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 76.14 ; \mathrm{H}, 11.18$. Found: C, 76.30; H, 11.21. Enantiomeric ratio (er) was determined by GC with a CHIRASIL-DEX CB column (conditions, starting temperature: $60^{\circ} \mathrm{C}$ [hold 10 min .], rate of temperature increase: $2{ }^{\circ} \mathrm{C} / \mathrm{min}$ up to $120^{\circ} \mathrm{C}$), $\mathrm{t}_{\mathrm{r}}($ major $)=27.6$ $\min ., \mathrm{t}_{\mathrm{r}}($ minor $)=28.3 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25.6}=+36.1,\left(c 0.5, \mathrm{CHCl}_{3}\right)$ The absolute configuration was established by comparison of the optical rotation to the literature value for $(R)-(-)-2$-ethylcyclohexanone: $[\alpha]_{\mathrm{D}}^{25}=-$ $23.6(c 4.31, \mathrm{MeOH}){ }^{17,18}$.

The product ($(S)-(+)$-2-propylcyclohexanone) was obtained as a pale yellow oil and 92: 8 er. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in agreement with the literature ${ }^{19}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.39-2.2 .31(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.92(\mathrm{~m}, 2 \mathrm{H})$, 1.86-1.56 (m, 4 H$), 1.42-1.08(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.7,50.6,42.0,33.9,31.7,28.1,24.9,20.4,14.3$. Anal. Calcd (\%) for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}$, 77.09 ; H, 11.50. Found: C, 77.01; H, 11.50. Enantiomeric ratio (er) was determined by GC with a InertCap CHIRAMIX Column (conditions, starting temperature: $40{ }^{\circ} \mathrm{C}$ [hold 0 min.], rate of temperature increase: $3{ }^{\circ} \mathrm{C} / \mathrm{min}$ up to $120^{\circ} \mathrm{C}$ [hold 15 min .]), $\mathrm{t}_{\mathrm{r}}($ major $)=37.5 \mathrm{~min}$., t_{r} (minor) $=38.7$ $\min .[\alpha]_{\mathrm{D}}{ }^{22.5}=+33.5,\left(c 1.0, \mathrm{CHCl}_{3}\right)$ The absolute configuration was established by comparison of the
optical rotation to the literature value for $(R)-(-)$-2-propylcyclohexanone: $[\alpha]_{\mathrm{D}}{ }^{25}=-25.7$ (c 0.82 , $\mathrm{MeOH})^{20}$.

The product ${ }^{7}$ ((+)-4,4-dimethyl-2-propylcyclohexanone) was obtained as a pale yellow oil and 92: 8 er. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.44(\mathrm{td}, J=6.4,14.2 \mathrm{~Hz}, 1$ H), 2.36 (dt, $J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.22(\mathrm{dt}, J=3.2,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.55(\mathrm{~m}, 4 \mathrm{H})$, $1.34-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{tq}, 6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=214.1,46.8,45.8,40.2,38.6,31.6$, $31.2,30.9,24.7,20.3,14.3$. Anal. Calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 78.51 ; \mathrm{H}, 11.98$. Found: C, 78.24; H, 11.98 . Enantiomeric ratio (er) was determined by GC with a InertCap CHIRAMIX Column (conditions, starting temperature: $40^{\circ} \mathrm{C}$ [hold 0 min .], rate of temperature increase: $3{ }^{\circ} \mathrm{C} / \mathrm{min}$ up to $120^{\circ} \mathrm{C}$ [hold 15 $\min].), \mathrm{t}_{\mathrm{r}}($ major $)=42.9 \mathrm{~min} ., \mathrm{t}_{\mathrm{r}}($ minor $)=44.1 \mathrm{~min} .[\alpha]_{\mathrm{D}} 25.9=+26.6,\left(c 1.0, \mathrm{CHCl}_{3}\right)$

The product $((R)-(+)-2$-cyclohexylcyclohexanone) was obtained as a colorless oil
 and 87: 13 er and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were in agreement with the literature ${ }^{12} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.39-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H})$, 1.98-1.45 (m, 12 H), 1.33-1.18 (m, 2 H), 1.16-0.80 (m, 3 H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=213.8,56.6,41.9,36.1,31.6,29.42,29.37,28.0,26.6,26.5,24.0$. Anal. Calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}$: C, 79.94; H, 11.18. Found: C, 79.78; H, 11.27. Enantiomeric ratio (er) was determined by GC with a CHIRASIL-DEX CB column (conditions, starting temperature: $40{ }^{\circ} \mathrm{C}$ [hold 1 min .], rate of temperature increase: $2{ }^{\circ} \mathrm{C} / \mathrm{min}$ up to $160^{\circ} \mathrm{C}$), $\mathrm{t}_{\mathrm{r}}($ minor $)=55.1 \mathrm{~min}$., t_{r} (major) $=55.3 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}^{24.8}=+46.1,\left(c 1.0, \mathrm{CHCl}_{3}\right)$ The absolute configuration was established by comparison of the
optical rotation to the literature value for $(S)-(-)-2$-cyclohexylcyclohexanone: $[\alpha]_{\mathrm{D}}{ }^{24.3}=-38.1$ (c 1.58, $\mathrm{MeOH})^{21}$.

The product (2-(+)-propylcycloheptanone) was obtained as a pale yellow oil and
 94.5: 5.5 er and ${ }^{13} \mathrm{C}$ NMR was in agreement with the literature ${ }^{8} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=2.54-2.34(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.17(\mathrm{~m}$, $6 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=216.8,52.3,42.7$, 34.6, 31.3, 29.7, 28.5, 24.8, 20.5, 14.2. Anal. Calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 77.87$; H, 11.76. Found: C, $78.01 ; \mathrm{H}, 11.83$. $[\alpha]_{\mathrm{D}}{ }^{25.3}=+49.7$ (c 1.0, CHCl_{3}). Enantiomeric ratio (er) was determined by ${ }^{1} \mathrm{H}$ NMR after the product was reduced and esterified to the corresponding mosher's ester ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, major isomer : $\delta=5.33-5.29 \mathrm{ppm}$, minor isomer : $\delta=5.29-5.25 \mathrm{ppm}$).

The product ${ }^{9}$ (2-(+)-butylcycloheptanone) was obtained as a pale yellow oil and 95: 5 er. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.53-2.32(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 4 \mathrm{H})$, 1.68-1.50 (m, 2H), 1.38-1.14 (m, 8 H$), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=216.9,52.5,42.7,32.2,31.3,29.7,29.5,28.5,24.8,22.9,14.1$. Anal. Calcd (\%) (\%) for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 78.51$; H, 11.98. Found: C, 78.44; H, 11.96. $[\alpha]_{\mathrm{D}}{ }^{25.3}=+49.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$ Enantiomeric ratio (er) was determined by ${ }^{1} \mathrm{H}$ NMR after the product was reduced and esterified to the corresponding mosher's ester ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, major isomer : $\delta=$ $4.97-4.92 \mathrm{ppm}$, minor isomer : $\delta=4.92-4.87 \mathrm{ppm}$).

The product $((R)-(+)-2$-benzylcycloheptanone) was obtained as a colorless oil
 and 89.5: 10.5 er and ${ }^{13} \mathrm{C}$ NMR was in agreement with the literature ${ }^{22} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=$ $6.0,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=8.7,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-$ $2.40(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.22(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.7,140.1,129.2,128.4,126.1,53.7,43.3,38.0,30.4,29.4,28.7,24.3$. Anal. Calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 83.12$; H, 8.97. Found: C, $82.87 ; \mathrm{H}, 8.88$. Enantiomeric ratio (er) was determined by HPLC with a Chiracel AD-H column (conditions, Hexane : $\mathrm{EtOH}=100: 1$, flow rate $=1$ $\left.\mathrm{mL} / \min , 25^{\circ} \mathrm{C}\right), \mathrm{t}_{\mathrm{r}}($ minor $)=8.9 \mathrm{~min} ., \mathrm{t}_{\mathrm{r}}($ major $)=9.7 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{26.7}=+54.1,\left(c 1.0, \mathrm{CHCl}_{3}\right)$ The absolute configuration was established by comparison of the optical rotation to the literature value for $(R)-(+)$-2-benzylcyclohexanone: $[\alpha]_{\mathrm{D}}=+41.4(c=5, \mathrm{MeOH}, 88 \% \mathrm{ee})^{17,18}$.

The product ((+)-isopropylcycloheptanone) was obtained as a pale yellow oil and 95: 5 er, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR was in agreement with the literature ${ }^{4} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.49(\mathrm{td}, J=3.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H})$, $2.00-1.80(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.12(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{dd}, \mathrm{J}=6.4,12.8 \mathrm{~Hz}, 6$ H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=217.2,59.8,42.9,30.6,30.1,28.2,27.8,25.5,21.1$, 19.6. Anal. Calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$: C, 77.87 ; H, 11.76. Found: C, $77.81 ; \mathrm{H}, 11.89$. Enantiomeric ratio (er) was determined by GC with a CHIRASIL-DEX CB column (conditions, starting temperature: $60^{\circ} \mathrm{C}$ [hold 10 min.$]$, rate of temperature increase: $2^{\circ} \mathrm{C} / \mathrm{min}$ up to $120^{\circ} \mathrm{C}$) after the product was reduced to the corresponding alcohol (major isomer). $\mathrm{t}_{\mathrm{r}}($ major $)=48.2 \mathrm{~min} ., \mathrm{t}_{\mathrm{r}}($ minor $)=48.4 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{30.0}=+95.5,(c$ $\left.1.0, \mathrm{CHCl}_{3}\right)$.

The product $((R)-(+)-2$-cyclohexylcycloheptanone) was obtained as a colorless oil and 94: 6 er, and ${ }^{13} \mathrm{C}$ NMR was in agreement with the literature ${ }^{12}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.52(\mathrm{dt}, \mathrm{J}=3.2,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}$, $1 \mathrm{H})$, 1.98-1.79 (m, 4 H), 1.75-1.40 (m, 7 H), 1.40-1.07 (m, 6 H), 1.17-0.84 (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=217.4,59.3,42.8,40.7,31.4,30.2,30.0,27.9$, 27.8, 26.47, 26.44, 25.8. Anal. Calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$: C, 79.94; H, 11.18. Found: C, 79.98; H, 11.25. Enantiomeric ratio (er) was determined by GC with a CHIRASIL-DEX CB column (conditions, starting temperature: $60^{\circ} \mathrm{C}$ [hold 1 min .], rate of temperature increase: $1{ }^{\circ} \mathrm{C} / \mathrm{min}$ up to $160^{\circ} \mathrm{C}$). $\mathrm{t}_{\mathrm{r}}($ major $)=85.3$ $\min ., \mathrm{t}_{\mathrm{r}}($ minor $)=85.6 \mathrm{~min} .[\alpha]_{\mathrm{D}} 25.8=+78.3$, $\left(c 1.0, \mathrm{CHCl}_{3}\right) \quad$ The absolute configuration was established by comparison of the optical rotation to the literature value for $(R)-(+)-2-$ cyclohexylcycloheptanone: $[\alpha]_{\mathrm{D}}{ }^{20}=+87.3\left(c 0.284, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{11}$.

The product $((R)-(+)-2-(4$-methylpentyl)cycloheptanone) was obtained as a colorless oil and 92: 8 er, and ${ }^{1} \mathrm{H}$ NMR was in agreement with the literature ${ }^{12} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.04(\mathrm{~m}$, $1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.51(\mathrm{sep}, J=6.4$, $\mathrm{Hz}, 1 \mathrm{H}) 1.42-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.08(\mathrm{~m}, 5 \mathrm{H}), 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.8,50.9,42.1,39.1,33.9,29.7,28.1,27.9,25.0,24.9,22.71,22.66$. Anal. Calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 79.06$; H, 12.16. Found: C, 79.03; H, 12.12. Enantiomeric ratio (er) was determined by GC with a CHIRASIL-DEX CB column (conditions, starting temperature: $60{ }^{\circ} \mathrm{C}$ [hold 10 min.$]$, rate of temperature increase: $2{ }^{\circ} \mathrm{C} / \mathrm{min}$ up to $\left.120^{\circ} \mathrm{C}\right) . \mathrm{t}_{\mathrm{r}}($ major $)=51.1 \mathrm{~min} ., \mathrm{t}_{\mathrm{r}}($ minor $)=$
$52.0 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{24.4}=+20.1,\left(c 1.0, \mathrm{CHCl}_{3}\right)$. The absolute configuration was established by comparison of the optical rotation to the literature value for $(R)-(+)-2-(4-M e t h y l p e n t y l) c y c l o h e p t a n o n e: ~[\alpha]_{\mathrm{D}}{ }^{20}=+$ $18.4\left(c 3.75, \mathrm{Et}_{2} \mathrm{O}\right){ }^{12}$.

10. Reactivity of enolesters bearing chloroacetyl group and PNP amino acid esters

The pKa values of products (alcohols and acids) are described below (Fig. S1). The pKa value of cyclohexenol is 4.55 point larger than p-nitrophenol, although chloroacetic acid is more acidic than N benzoylglycine by 0.75 point. Therefore, enolesters bearing chloroacethyl group seem to be less reactive compared to PNP esters derived from N-benzoyl aminoacids.

Fig. S1 Comparison of pKa values between product acids and alcohols (in water)

11. References

1) Perrin, D. D.; Armarego, W. L. F.; Purification of Laboratory Chemicals; 3rd ed., Pergamon Press, Oxford, 1988
2) Lygo, B.; Crosby, J.; Lowdon, T. R.; Peterson, J. A.; Wainwright, P. G. Tetrahedron 2001, 57, 2403.
3) Poulsen, T. B.; Bernardi, L.; Bell, M.; Jørgensen K. A. Angew. Chem. Int. Ed. 2006, 45, 6551.
4) Malosh, C. F.; Ready, J. M. J. Am. Chem. Soc. 2004, 126, 10240.
5) Chou, H.-H.; Wu, H.-M.; Wu, J.-D.; Ly, T. W.; Jan, N.-W.; Shia, K.-S.; Liu, H.-J. Org. Lett., 2008, 10, 121.
6) Lin, H.-H.; Chang, W.-S.; Luo, S.-Y.; Sha, C.-K. Org. Lett. 2004, 19, 3289.
7) Guiard, B. et al. Bull. Soc. Chim. Fr. 1974, 3021.
8) Li, L.; Guo, Q.; Xue, S. J. Org. Chem. 2008, 73, 3516.
9) Miyamoto, N.; Isiyama, S.; Utimoto, K.; Nozaki, H. Tetrahedron, 1973, 29, 2365.
10) Borowitz, I. J.; Casper, E. W. R.; Crouch, R. K.; Yee, K. C. J. Org. Chem. 1972, 37, 3873.
11) Takasaki, M.; Motoyama, Y.; Yoon, S.-H.; Mochida, I.; Nagashima, H. J. Org. Chem. 2007, 72, 10291.
12) Soorukram, D.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 3686.
13) Braude et al. J. Chem. Soc. 1953, 2202.
14) Sehgal, R. K.; Koenigsberger, R. U.; Howard, T. J. J. Org. Chem. 1975, 40, 3073.
15) Lhuguenot et al. Bull. Soc. Chim. Fr. 1967, 4129.
16) Pecunioso, A.; Menicagli, R. J. Org. Chem. 1988, 53, 45.
17) Meyers, A. I.; Williams, D. R.; Druelinger, M. J. Am. Chem. Soc. 1976, 98, 3032-3033.
18) Meyers, A. I.; Williams, D. R.; Erickson, G. W.; White, S.; Druelinger, M. J. Am. Chem. Soc. 1981, 103, 3081-3087.
19) Takahashi, T.; Nakao, N.; Koizumi, T. Tetrahedron: Asymmetry, 1997, 8, 3293.
20) Hiroi, K.; Achiwa, K.; Yamada, S. Chem. Pharm. Bull. 1972, $20,246$.
21) Cheon, C. H.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 9246.
22) Ranu, B. C.; Dutta, J.; Guchhait, S. K. Org. Lett. 2001, 3, 2603.
23) Dippy, J.F.J.; Hughes, S.R.C.; Rozanski, A. J. Chem. Soc. 1959, 2492.
24) Keeffe, J. E.; Kresge, A. J. The Chemistry of Enols. (Wiley, Chichester, 1990)
25) Drugarin, C.; Balint, M.-A. Acta Chimica Hungarica, 1986, 123, 31.
26) Mock, W. L.; Morsch, L. A. Tetrahedron, 2001, 57, 2957.

Overall picture of HMQC (compound 9)

Expanded figure 1 of HMQC (compound 9)

Expanded figure 2 of HMQC (compound 9)

Expanded figure 3 of HMQC (compound 9)

Overall picture of HMBC (compound 9)

Expanded figure 1 of HMBC (compound 9)

Expanded figure 2 of HMBC (compound 9)

Expanded fiaure 3 of HMBC (compound 9)

Expanded fiaure 4 of HMBC (compound 9)

Expanded fiaure 5 of HMBC (compound 9)

Expanded fiaure 6 of HMBC (compound 9)

