Nanodot MoS_2@3DOM Ti0_2 composites for their photocatalytic application

Krobkrong, Navapat The Department of Chemistry, Faculty of Science, Kasetsart University | The Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University

Thaweechai, Thammanoon The Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University

Sirisaksoontorn, Weekit The Department of Chemistry, Faculty of Science, Kasetsart University | The Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University

https://doi.org/10.15017/1961300

出版情報: Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES). 4, pp.112-115, 2018-10-18. 九州大学大学院総合理工学府 バージョン: 権利関係:

Nanodot MoS₂@3DOM TiO₂ composites for their photocatalytic application

Navapat Krobkrong^{1,2}, Thammanoon Thaweechai², Weekit Sirisaksoontorn^{1,2,*}

¹The Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

²The Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan

Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand.

fsciwks@ku.ac.th

Abstract: Nanodot $MoS_2@3$ -dimentional ordered macroporous (3DOM) TiO₂ was represented to be a photocatalyst in the degradation of methylene blue. Nanodot MoS_2 suspension was synthesized by intercalation and exfoliation processes. To give the high yield, MoS_2 prepared by a hydrothermal method was selected as a nanodot MoS_2 source instead of large-plane commercial MoS_2 . In case of 3DOM TiO₂, polystyrene opal prepared by a self-assembly method was used as the 3DOM template. Then, the hydrolysis and calcination of titanium alkoxide filled in template void were further employed to obtain the 3DOM TiO₂. Finally, nanodot MoS_2 and 3DOM TiO₂ were combined via an impregnation method. Interestingly, nanodot $MoS_2@3DOM$ TiO₂ exhibited the higher performance in degradation than unmodified 3DOM TiO₂. It strongly emphasizes that nanodot MoS_2 provides the quantum confinement effect and prohibits the electron-hole recombination on TiO₂. Furthermore, 3DOM structure of TiO₂ can improve the diffusion rate of involved compounds during the photocatalytic reaction.

Keywords: Nanodot MoS₂; 3DOM TiO₂; Photocatalyst; Degradation

1. INTRODUCTION

The transition-metal dichalcogenides (TMDs) are semiconductors of the MX2-type compounds of which M is a transition metal (Mo, W, or Nb), and X is a chalcogen (S, Se or Te). Among all types of TMDs, molybdenum disulfide (MoS₂) has been attractive by enormous scientists because of the unique properties. The transformation of MoS₂ from bulk to 2D structure can transform its semiconductor property from indirect band gap ($E_g \sim 1.2 \text{ eV}$) to direct band gap ($E_g \sim 1.9 \text{ eV}$). Interestingly, 0D MoS₂ with diameter less than 10 nm, also known as MoS₂ nanodots, shows higher photocatalytic efficiencies than large-plane bulk MoS₂ due to the larger band gap ($E_g \sim 3.96 \text{ eV}$) and higher exposition of edge sites or active sites [1,2]. Thus, in this project, MoS₂ nanodots are utilized as a co-catalyst to improve photocatalyst properties of titanium dioxide (TiO₂) by charge separation and increase of active sites.

TiO₂ is one such compound that is notable for being used as a photocatalyst because of inertness and suitable energy level of conduction band (CB) and valence band (VB). However, the wide band gap of TiO₂ has limited the absorption under the ultraviolet spectrum ($\lambda < 387$ nm). Additionally, it also hinders photocatalytic activities by electron-hole recombination. Thus, the strategies for reducing their band gap and inhibiting charge carrier recombination are the key objectives to improve TiO₂ performance.

Currently, there are many methods for improving TiO_2 efficiency such as modification with other components, like MoS₂. Moreover, the increase of surface area of TiO₂ also enhances photocatalytic activities due to the short diffusion length of electron and hole, leading to the inhibition of electron-hole recombination. Thus, nanostructures of TiO₂ have been extensively fabricated in order to shorten the travel length of charge carriers. Remarkably, the 3-dimentional ordered macroporous

(3DOM) TiO_2 such as an inverse opal structure provides a new opportunity to improve photocatalytic activities. This structure not only improves the diffusion rate of involved compounds during reaction, but it is also capable of manipulating the incident light based on photonic crystal properties. Thus, this structure enables the enhancement of solar light harvesting.

Therefore, we aim to study the synthesis of nanodot $MoS_2@3DOM$ TiO₂ composites to improve photocatalytic activities. Nevertheless, the method for depositing MoS₂ nanodots on 3DOM TiO₂ is still very challenging and has not been reported yet. Herein, fabrication of MoS₂ nanodots and 3DOM TiO₂ is deeply investigated. Their activities on photocatalytic reaction are also tested by degradation of methylene blue (MB) and compared their efficiencies with unmodified catalyst.

2. EXPERIMENTAL PROCEDURE

2.1 Catalyst preparation

2.1.1 Preparation of MoS2 nanodots

 MoS_2 nanodots were prepared by intercalation and exfoliation methods (Scheme 1). To increase the number of nanodots, the few-layer MoS_2 was used as a MoS_2 precursor for an intercalation process. Initially, 0.5 mmol of ammonium molybdate and 15 mmol of thiourea were dissolved in deionized water. Then, the solution was transferred into Teflon-line stainless-steel autoclave (50% by vol) and kept in an oven at 200°C for 24 h. The obtained sediment was thoroughly washed by water and ethanol several times and dried under vacuum for 2 h. Finally, few-layer MoS_2 was obtained.

Based on MoS_2 intercalation from the previous work [3], Na metal (50 mg) and as-synthesized few-layer MoS_2 (100 mg) were vigorously stirred for 24 h in ethylenediamine under N₂ atmosphere. After that, the sample was centrifuged and dried for 3 h under vacuum to collect the MoS₂-intercated compound. Next, the intercalated MoS₂ was readily exfoliated in 45% ethanol under bath sonication [4]. The MoS₂ suspension was centrifuged and purified by 0.22 μ m filters to remove unexfoliated compounds. Finally, the nanodot-MoS₂ suspension was obtained.

2.1.2 Preparation of 3DOM TiO₂

3DOM TiO₂ was synthesized by an infiltration and calcination (Scheme 1) by using polystyrene (PS) opal prepared by a self-assembly method as a template. Firstly, 6% w/v of styrene reacted with 3% w/v of potassium persulfate (KPS) as an initiator. Then, the solution was vigorously stirred at 80°C for 51/2 h under N₂-flowing to form PS suspension with 300-400 nm in diameter. After that, PS suspension was centrifuged at 10,000 rpm for 20 min to form a PS template with the face-centered cubic structure. After taking the supernatant out, the sample was kept for a couple of days and dried at 60°C under vacuum for 6 h. Next, the PS template was immersed in titanium isopropoxide for about 12 h and washed by ethanol to eliminate the excess titanium isopropoxide. After hydrolyzed under the air overnight, the sample was calcined at 500°C for 5 h. Finally, 3DOM TiO₂ was successfully synthesized and denoted as 3DOM TiO₂.

2.1.3 Preparation of MoS₂@3DOM TiO₂

The MoS₂ nanodot was deposited on 3DOM TiO₂ via the impregnation method [5]. Firstly, The MoS₂ suspension was mixed with 3DOM TiO₂ with different % wt of MoS₂ (based on an ICP-OES result of MoS₂ suspension). The solution was then sonicated for 10 min and dried at 60°C. Finally, the nanodot MoS₂@3DOM TiO₂ composites were formed and denoted as x% MoS₂@3DOM (x%= % wt of MoS₂; 1%, 3%, 5%, 10% and 20% respectively).

🛹 Ethylenediamine 🔵 Na metal

Scheme 1. The synthesis diagram of nanodot $MoS_2@3DOM TiO_2$ composite.

2.2 Degradation of methylene blue

The photocatalytic activities of nanodot $MoS_2@3DOM$ TiO₂ composites were evaluated by examining the degradation of MB at room temperature under a UV lamp at ~254 nm. In typical reactions, 10 mg of each catalyst was added to the MB solution (10 ppm, 50 mL) and the mixture was sonicated for 10 min in dark.

Before irradiation, the mixture was stirred for 1 h to reach an adsorption-desorption equilibrium. During the reaction, the mixture was extracted and centrifuged at 3,000 rpm for 10 min to remove the catalyst. Finally, the UV-Vis spectrometer was utilized to observe the concentration of MB (at 664 nm) for determining the degradation efficiency.

Precentage of degradation = $\frac{[MB]_{solution}}{[MB]_{initial solution}} \times 100\%$

3. RESULTS AND DISCUSSION

3.1 Characterization

The MoS_2 synthesized by a hydrothermal method was characterized by XRD and SEM techniques. The XRD pattern of synthesized MoS_2 is comparable with 2H- MoS_2 standard (PDF 00-037-1492) as shown in Fig. 1a. Moreover, its morphology gives a layered-type compound with a flower-like structure (Fig. 2a) that also corresponds to the MoS_2 structure from the previous reports [6,7]. After intercalation and exfoliation, MoS_2 nanodots in suspension exhibit a small domain less than 10 nm as confirmed by the characteristics of nanodot behaviors; fluorescence property under UV light and absorption peak at about 209 nm as shown in Fig. 3 [8,9].

Fig. 1. XRD patterns of (a) as-synthesized MoS_2 (b) 3DOM TiO₂ (c-g) 1%, 3%, 5%, 10% and 20% $MoS_2@3DOM TiO_2$, respectively.

In case of 3DOM TiO₂ support, the PS template of 3DOM TiO₂ shows spherical shape and homogenous size of 380 nm as shown in Fig. 2b. Moreover, 3DOM TiO₂ exhibits anatase phase of TiO₂ (PDF 03-065-5714, Fig. 1b) with the homogenous pore size of 220 nm (Fig. 2c). It is noticed that the pore size of 3DOM TiO₂ dramatically decreases about 37% compared to the spherical size of PS template. It is because of the shell thickness of 3DOM TiO₂ and the shrinkage of the structure after eliminating PS beads [10].

Fig. 2. SEM images of (a) synthesized MoS_2 , (b) PS opal template and (c) 3DOM TiO₂.

Fig. 3. UV-vis spectrum and fluorescence characteristic of nanodot MoS₂ suspension under UV irradiation.

After depositing nanodot MoS_2 on 3DOM TiO₂, the crystal structure was studied by the XRD technique as shown in Fig. 1c-g. The XRD results indicate that 1%,

3%, 5%, 10% and 20% MoS₂@3DOM show diffraction peaks of anatase TiO₂ like 3DOM TiO₂. Besides, the (100) peak of internal plane of MoS₂ is only observed in 10% and 20% MoS₂@3DOM due to increase of MoS₂ loading and low crystallinity of MoS2 suspension before deposited on 3DOM TiO₂. However, the unknown peaks are clearly observed when increase of MoS₂ loading. It corresponds to the molybdenum-oxide (MoO_x) impurities which were formed during the impregnation. Morphologies of nanodot MoS₂@3DOM TiO₂ composites were investigated as shown in Fig. 4. Some MoS₂ aggregates or MoO_x components are slightly appeared in the honey-comb structure and strongly found in high percentage of MoS₂ loading. However, it does not thoroughly block the catalyst pores, so the diffusion rate of involved compounds in the reaction is not interfered.

Fig. 4. SEM images of (a) 3DOM TiO₂, (b-f) 1%, 3%, 5%, 10% and 20% MoS₂@3DOM, respectively.

3.2 Photocatalytic activities

The photocatalytic activities of nanodot $MoS_2@3DOM$ TiO₂ composites were evaluated via the degradation of MB as shown in Fig. 5. Obviously, 3DOM TiO₂ can degrade MB only 40% for 4 h, but nanodot MoS_2 on TiO₂ composites can degrade MB more than 80% for the same reaction time. It is strongly confirmed that the nanodot MoS_2 deposited on 3DOM TiO₂ can enhance photocatalytic activities of MB degradation due to the quantum confinement effect of MoS_2 nanodots, which enable the suppression of charge recombination in 3DOM TiO₂ [5].

To further investigation, the kinetic studies were expressed as the pseudo-first order reaction with an equation, $\ln (C/C_0) = -kt$, where k is a current rate constant, C_0 and C are the initial concentration of MB

Fig. 5. The percentage of degradation of MB (% wt) as a function of time (hour).

and the concentration of MB at time, t, respectively (Fig. 6 and Table 1). Obviously, the apparent rate constants are 0.1524, 0.8164, 0.9073, 0.7529, 0.5977, 0.5076 for 3DOM TiO₂ and 1%, 3%, 5%, 10% and 20% MoS₂@3DOM, respectively. The linear correlation between $ln(C/C_0)$ and irradiation time of all reaction is found with correlation coefficient (\mathbf{R}^2) more than 0.94. It clearly demonstrates that the addition of MoS₂ on 3DOM TiO₂ provides the enhanced photocatalytic activity compared to unmodified 3DOM TiO₂ catalyst. Especially, 3% MoS₂@3DOM exhibits the highest degradation with a rate constant of 0.9073 h⁻¹ which is 6 times higher than that of 3DOM TiO₂. However, when MoS₂ loading contents increase to 20%, the rate constant of the composite slightly decreases to 0.5076 h⁻¹. It is because the increase in MoS₂ contents can gradually reduce the light absorption ability of the composite due to the high reflection index of $MoS_2[11]$. Moreover, high MoS₂ loading also causes particle aggregates as well as the phase transformation of MoS₂ to MoO_x. The aggregation of nanodot MoS₂ can reduce edge sites or active sites of MoS₂ and suppress quantum confinement effect of nanodot MoS₂. Furthermore, the photocatalytic activity of MoS2 was also decreased when contaminated by MoO_x [12,13].

Based on the above experimental results, the possible mechanism of degradation of MB can be proposed as

Fig. 6. The pseudo-first ordered kinetic plots of $ln(C/C_0)$ as a function of time (hour) for degradation of MB.

Table 1. The pseudo-first ordered rate constant (h^{-1}), R^2 values, maximum degradation (%) of samples.

Sample	Rate constant (h ⁻¹)	R ²	Maximum degradation (%)
3DOM TiO ₂	0.1524	0.9717	51.64
$1\%MoS_2@3DOM$	0.8164	0.9816	3.95
3%MoS ₂ @3DOM	0.9073	0.9460	3.91
5%MoS ₂ @3DOM	0.7529	0.9687	6.21
10% MoS ₂ @3DOM	0.5977	0.9854	9.06
20%MoS ₂ @3DOM	0.5076	0.9839	15.18

shown in Scheme 2. Under the irradiation of UV light, TiO₂ absorbs photons and generates excited electrons and holes. In general, CB of MoS₂ is lower than that of TiO₂, but when MoS₂ domain is reduced less than 10 nm, the band gap of MoS₂ is wider due to the quantum confinement effect. As a result, the CB of MoS₂locates at a higher energy than that of TiO₂ and the VB of MoS₂ still remains in the middle of the TiO_2 band gap [14,15]. The hole of excited TiO₂ can migrate to VB of MoS₂ and, hence, the recombination of electron-hole pairs in TiO₂ can be suppressed. However, amount of MoS₂ loading should be concerned to avoid the light reflection, particle aggregation and phase transformation of MoS₂. Although, some limitations in nanodot MoS₂@3DOM TiO₂ catalysts need to be considered, the outstanding photocatalytic abilities of MoS₂@TiO₂ composites over 6 times compared to unmodified TiO₂ still challenge us to further develop the synthesis method that can provide the photocatalyst with optimal structural design and strong synergistic effect.

Scheme 2. Proposed mechanism of MB degradation using a nanodot $MoS_2@3DOM TiO_2$ composite.

4. CONCLUSION

In summary, nanodot MoS_2 deposited on 3DOM TiO₂ was completely synthesized with different %loading; 1%, 3%, 5%, 10% and 20%, respectively. Nanodot $MoS_2@3DOM$ TiO₂ composites exhibit the higher performance in degradation of MB than unmodified 3DOM TiO₂. It strongly emphasizes that nanodot MoS_2 provides the appropriate overlapping band gap with TiO₂, resulting in the suppression of the electron-hole recombination on TiO₂ surface. Furthermore, the 3DOM structure of TiO₂ can also improve the scattering of incident light. Thus, nanodot $MoS_2@3DOM$ TiO₂ composites are underlined to be of interest in the competent photocatalyst.

5. ACKNOWLENGTMENTS

This work was financially supported by the Graduate School, Department of Chemistry, Faculty of Science, Kasetsart University, and the Centre of Excellence for Innovation in Chemistry (PERCH-CIC). We would like to acknowledge the Kasetsart University Research and Development Institute (KURDI) for partially financial support.

6. REFERENCES

- Y. Jiang, et al., Designing MoS₂ nanocatalysts with increased exposure of active edge sites for anthracene hydrogenation reaction, Catal. Sci. Technol. 7 (2017) 2998-3007.
- [2] S. Pal, et al., Temperature assisted shear exfoliation of layered crystals for the large-scale synthesis of catalytically active luminescent quantum dots, Mater. Chem. Front. 1 (2017) 319-325.
- [3] A. U. Liyanage, M. M. Lerner, Use of amine electride chemistry to prepare molybdenum disulfide intercalation compounds, RSC Adv. 4 (2014) 47121-47128.
- [4] A. A. Jeffery, C. Nethravathi, M. Rajamathi, Scalable large nanosheets of transition metal disulphides through exfoliation of amine intercalated MS₂ [M = Mo, W] in organic solvents, RSC Adv. 5 (2015) 51176-51182.
- [5] D. Wang, et al., Enhanced photocatalytic activity of TiO₂ under sunlight by MoS₂ nanodots modification, Appl. Surf. Sci. 377 (2016) 221-227.
- [6] X. Zhang, et al., Hydrothermal synthesis and characterization of 3D flower-like MoS₂ microspheres, Mater. Lett. 148 (2015) 67-70.
- [7] J. Theerthagiri, et al., Recent advances in MoS₂ nanostructured materials for energy and environmental applications – A Review, J. Solid State Chem. 252 (2017) 43-71.
- [8] W. Qiao, et al., Luminescent monolayer MoS₂ quantum dots produced by multi-exfoliation based on lithium intercalation, Appl. Surf. Sci. 359 (2015) 130-136.
- [9] W. Gu, et al., One-step synthesis of water-soluble MoS_2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection, ACS Appl. Mater. Interfaces 8 (2016) 11272-11279.
- [10] M. Wu, et al., High photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption, J. Mater. Chem. A 1 (2013) 15491-15500.
- [11] D. Wang, et al., Enhanced photocatalytic activity of TiO₂ under sunlight by MoS₂ nanodots modification, Appl. Surf. Sci. 377 (2016) 221-227.
- [12] G. Zhou, et al., Vertically aligned MoS₂/MoO_x heterojunction nanosheets for enhanced visiblelight photocatalytic activity and photostability, CrystEngComm 16 (2014) 9025-9032.
- [13] M. J. Hwang, et al., Preparation of MoO₃/MoS₂/TiO₂ composites for catalytic degradation of methylene blue, J. Nanosci. Nanotechnol. 12 (2012) 5884-5891.
- [14] H. Liu, et al., Efficient synthesis of MoS₂ nanoparticles modified TiO₂ nanobelts with enhanced visible-light-driven photocatalytic activity, J. Mol. Catal. A: Chem. 396 (2015) 136-142.
- [15] J. Low, et al., Two-dimensional layered composite photocatalysts, Chem. Commun. 50 (2014) 10768-10777.