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Abstract: Today, mobile devices are very popular in everyday life of our sociality for communication or many 

perspectives. They become an interesting point for malicious attackers. Malicious software which can destroy mobile 

devices or steal sensitive information are growing in every form of people’s live. A number of researches have been 

proposed to detect malicious software in recent year. However, they still suffer with many intelligent malicious software 

that a traditional methodology is not sufficient to detect the key features of intelligent malware. To address this 

problem, this paper proposes a feature extraction method from Android malware applications using hybrid analysis 

method to improve Machine Learning based detection framework. ADetect can achieve 80% detection accuracy, which 

are tested by using Random Forest, K-nearest Neighbor and Naïve Bayes (NB) classifiers. 

 

Keywords: Mobile, Malware, Machine Learning 
  
 

1. INTRODUCTION  

A recent report of Gartner[1], an American information 

technology research and advisory firm, android has 

become the No.1 operating system in 2013 and also  

dramatically transcend a large number shipments of its 

devices in 2014. In contrast to other platforms, Android 

grants the installation of applications(.apk) from various 

sources, such as Google Play Store and other mediator 

markets. As a result, it has led to an increase in their 

potential as a target for malicious activities. 

In the internet age, privacy and security issues are 

developed rapidly for mobile computing because of 

mobile devices take place in computing platforms and 

data storage units. Malware developers used various 

intelligent methods to overcome traditional and modern 

malware protection and detection mechanisms. 

Therefore, analysis of malware and detection 

approaches have become an active area of research. 

Many researchers proposed a number of techniques 

such as graph theory [2], machine learning [3,4] and 

information visualization [5,6] to hinder the growing 

amount and sophistication of Android malware. 

Malware analysis can be categorized in three methods: 

static, dynamic, and hybrid analysis techniques. Static 

analysis is based on extracting features of application 

without running. It checks out an application’s manifest 

(AndroidManifest.xml) and disassembled code. 

Reversely, dynamic analysis methods analyze the 

application’s behavior during the execution process. 

Hybrid method is the combination of static and dynamic 

analysis. However, there has a challenge for accuracy in 

malware characterization and detection, mainly in day-

by-day changing of intelligent malware and the open 

distribution channels of Android apps  

To overcome this situation, we proposed a framework 

with hybrid analysis, namely ADetect (Android 

Detector), that can automatically detect whether an apk 

is a malware or not. ADetect use marketplace crawlers, 

filtering and feature extraction and classifier. It means 

that we use all apk(malware or benign) to process, and 

then filter out which are either known malware or not. 

This paper emphasizes on the feature extraction for 

malware detection. We propose a hybrid security 

solution, integrated static and dynamic analysis method, 

to analyses and characterize an unknown executable file.      

The rest of the paper is structured as follows. Section 2 

presents the motivation of this paper. Section 3 provides 

the literature review. The proposed system illustrates in 

Section 4. Finally, Section 5 concludes and discuss 

future work to detect of android malware.  

 

2. MOTIVATION 

Today, mobile devices have become a widely used for 

personal and business purposes. The ecosystem of 

Android application has increased dramatically in recent 

year. Over 3 million apps currently available at Google 

Play official market [14]. Mobile device became a pool 

of data for us and it may carry sensitive data, such as 

credit card account number, username, password, etc[7]. 

Smartphones may now represent an ideal target for 

malware writers and it has become the most coveted and 

viable target of malicious apps.  

Our present study aims at designing and developing 

better approach to detect malicious application in 

Android devices. More precisely, ADetect, a framework 

for detection of Android malware based on Machine 

Learning technique. There are various elements such as 

network, permission, method call, java code and 

behavior of application etc. The selection of useful 

feature from large number of available can change the 

result of the whole experiment (Guyon and Elisseeff, 

2003). The following are the benefits of feature 

selection: 

• Reducing the size of dataset can easily visualize the 

trend in data (Crussell et al.).  

• There is huge amount of data in analyzing datasets. 

Therefore, compressing them to only useful feature 

save not only time but also save money. It also 

reduces for the time of real world implementation 

(Crussell et al.). 
• Feature selection help to get accurate results of 

machine learning algorithms because it removes 

noisy and irrelevant data from datasets (Jensen and 

Shen, 2008).   
• Feature selection also enhance model simplification 

that can make easier to interpret by researchers or 

users. 
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3. LITERATURE REVIEW 

The process of Machine learning algorithms is learning 

the patterns from the data. Feature extraction is the first 

step of every machine learning algorithm in malware 

analysis. There are many approaches for mobile 

malware detection and analysis, such as static analysis, 

dynamic analysis and hybrid analysis approach for 

malware detection. 
DroidRanger [8] is a one of hybrid analysis using 

manifest file and bytecode and monitor during 

execution. It is a footprint-based detection engine that 

extracts features such as permission and semantic word 

in bytecode (e.g. INTERNET) for static analysis and 

also on a heuristics-based detection engine that monitors 

applications during their execution for dynamic analysis, 

e.g., system calls with root privileges. 

Shina Sheen, R.Anitha, V.Natarajan [9] uses different 

features vector for example API call feature and 

permission based features to consider for a better 

detection. They use collaborative approach based on 

probability theory. Kabakus Abdullah Talha, Dogru 

Ibrahim Alper, Cetin Aydin proposed a method based 

on permissions used in an application and static analysis 

is made using machine learning algorithm such as 

logistic regression [10]. 

Seung-Hyun Seo, Aditi Gupta, Asmaa Mohamed Sallam, 

ElisaBertino, KangbinYim proposed a method to detect 

mobile malware threats to homeland security. In their 

proposed approach, they define different characteristics 

of android malware and provide a case study which are 

feasible against Homeland Security. They used 

DroidAnalyzer which is static analysis tool for 

identification of vulnerabilities in android applicaions 

and the presence of root exploits [11].A. Shabtai, L. 

Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, 

Y. Elovici, discovered a method to find mobile malware 

based on semi supervised machine learning despite of 

regular static and dynamic base analysis[12].  

Wanqing You, Kai Qian, MinzheGuo, Prabir 

Bhattacharya proposed a hybrid approach for mobile 

threat analysis. The key of this approach is the 

unification of data states and software execution on 

critical test paths conditions. The outcome leads to 

combine the benefit of static and dynamic analysis. This 

is the main benefit of their technique that is they used a 

hybrid approach for analysis [13].   
 

4. SYSTEM ARCHITECTURE 

In this section, we first introduce the overall architecture 

of ADetect and then describe each module individually 

to explain how ADetect works for Android malware 

detection. Figure 1 illustrates the experiment work flow 

structure consisting of four phases. 

The first stage is data collection, which collects normal 

and malicious applications. In the second phase is 

feature extraction and selection. In this stage, extracted 

features are selected, labelled and stored to be applied in 

the next phase. The Machine Learning classifiers entail 

the third phase, whereby the stored information trains 

the Machine Learning classifiers to produce several 

detection models. The last phase is the evaluation and 

choice of a classifier based on empirical data obtained, 

in order to build our framework. 

 
Fig. 1. System Architecture 

 

4.1 Data Collection  

In this data collection phase, we use two main 

approaches to collect the data. Firstly, we crawl 

malware samples directly from well-known Android 

malware blogs such as Contagio Mobile Malware Mini 

Dump [15]. Because of no standard dataset for benign 

application, we collected dataset from Google Play 

Store [14] which is considered as the official market 

with the least possibility of malware application. We 

have collected total 219 applications from various 

sources. Table 1 gives the malware families chosen for 

this experiment. 
  Table 1. Malware Dataset Description 

No Malware 

Family 

Name 

Total Characteristics 

1 DroidDrea

m 

21 Hijacks application 

and controls the UI 

and performs 

commands received 

from a hacker 

2 DroidKun

gFu3 

30 Malicious code is 

encrypted and it 

steals user's phone 

number and send it 

to hacker 

3 DroidKun

gFu4 

20 C&C server address 

is in the native 

program but in 

cipher text. It 

receives commands 

from a hacker 

4 Geinimi 39 Makes phone calls in 

background. 

Commands are 

received from a 

hacker 

5 Anserver

Bo 

13 Silently downloads 

an update for 

malicious application 

on run time 

containing malicious 

code from a hacker 

 Total 113  
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4.2 Feature Set  

We proposed 7 features for static and dynamic analysis 

which are extracted from our dataset (malicious or 

benign). These features are used permissions, requested 

permissions, permission request APIs, network APIs, 

suspicious calls, providers and instruction sequences. 

 

Hybrid Analysis Features 

Used permissions: Most of the Android applications 

request many permissions without using it. They use 

only a subset of the requested permissions. We can get 

more exact observation of apps intension by extracting 

the used permissions. Eg.,<uses-permission 
android: name="android.permission.ACCESS_ 

WIFI_STATE"/> 

Requested permissions: Most of user are easily grant 

the permissions without knowing of how it is work. 

Permission plays an important role in security of 

Android operation system. Most of user are easily grant 

the permissions without knowing of how it is work. An 

application can install itself by user granting and can 

perform malicious behaviors.  Eg., INTERNET, 

WRITE_EXTERNAL_STORAGE AD CONTACT.  

Permission request APIs: API calls can be requested 

Android permission. For example, a sendDataMessage 

call requests permission SEND SMS and to receive 

SMS, developer use android.permission.RECEIVE 
_SMS. 

Network APIs: Malwares are now try to access the 

network and then send out sensitive data by using 

network APIs. 

Suspicious calls: These Suspicious API calls such as 

communicating over the network, sending and receiving 

messages, and executing external commands are 

frequently used by malware developers.  

Providers: The provider can be used to manage 

structured access to data storage. <provider> element 

is used to define provider in the manifest file. Otherwise, 

the system is not assuming as a provider and doesn't run 

them. 

Instruction sequences: Open source tool is used for 

extraction of low level instructions (also known as 

Dalvik bytecode) from an application. 

 

Table 2. Overview of Features 

Type Features (Keywords) 
API calls 

related 

getSubscriberId;getLine1Number; 

getSimSerialnumber; SMSReceiver; 

getNetworkOperactor;Contacts; 

FindClass; KeySpec; getCellLocation; 

onActivityResult;  

Permission ACCESS_FINE_LOCATION; 

WRITE_SMS; WRITE_ CALL_LOG; 

SEND_SMS;WRITE_APN_SETTING

S;  RECEIVE_BOOT_COMPLETED; 

RECEIVE_MMS;BROADCAST_SMS

;INTERNET;ACCESS_COARSE_LO

CATION; 

 

Feature Vector 

We used machine learning algorithms for 

characterization of android malware because most of 

them process data with numerical vectors. Therefore, 

we first need to map our extracted features into a joint 

feature vector.  

Suppose V be a vector for all of selected features vector. 

Let ith be every application in Android apps dataset. So, 

we generate Vi = {v1, v2,….,vn} and  

 
In our system permission features are stored in binary 

format (0 and 1) in separation of comma where 1 define 

the permission is exist and 0 for not exist of that 

permission. In addition, we define a variable D, where D 

∈ {benign, malware}. We represent the variable to 1 

for benign and -1 for malware application. Figure 2 and 

3 are the example of vector for these benign and 

malware apk: 

 

 

 

 

Fig. 2. Permission Vector of Benign App 

 

 

 

 

Fig. 3. Permission Vector of Malware App 

 

4.3 Feature Extraction and Selection  

All of android applications are developed in zip format 

that we know apk format. Features are encrypted in that 

apk file for example permissions, Network API, IP 

address and URL. We combine static and dynamic 

analysis method to extract that features which are 

assisted in characterization of benign or malware as 

shown in Fig 2 and 3. There are three types of feature in 

our proposed system: required permission, dynamic 

behaviors and sensitive APIs. Among them, dynamic 

behaviors are extracted with dynamic analysis, whereas 

sensitive APIs and required permissions are extracted 

with static analysis. 

 

 
Fig.2. Proposed Feature Extraction for apk   

 

In the static phase, we decompress the apk file with the 

7-Zip tool to retrieve the content. As a result, 

AndroidManifest.xml and classes.dex are obtained. Our 

system used AXML-Printer2 for retrieving the required 

features from AndroidManifest.xml. We can also obtain 

the permissions required by the app with the TinyXml 

parser. For eg., android.permission.READ_SMS need 

permission for reading SMS and android.permission. 

network is the permission that required to access the 

network from app. We got 120 permissions in this step. 

Moreover, we also obtained classes.dex file in 

decryption of apk. Our system uses disassembler 

basksmali for parsing that file. In that way what API 

0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 
0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1 

 

0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,

1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,-1 
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function are worked. For example, chmod, is a sensitive 

API because that can change the role of user permission 

on files. We earned total 59 sensitive API function in 

this step. 

We use DriodBox[16] for installing and running android 

apk in dynamic analysis phase. DroidBox can execute at 

the application framework level because it is one kind 

of SandBox. Therefore, it can analyze a dynamic taint 

analysis with system hooking and then it can also 

monitor a number of app behaviors such as Short 

Message Services (SMS), information leaks, 

cryptography operations, network and file input/output, 

and mobile phone calls. In this study, we can monitor a 

total of 13 app dynamic behavior. For instance, 

action_sendnet is the action that sends data over the 

network and android.permission. ACCESS_FINE_ 

LOCATION is the action that sends victim’s location to 

the server.  

As a conclusion, we totally earned 192 features of each 

application by using static and dynamic analysis. In this 

case, each feature represents as binary number, where 

denote 1 for a feature occur: its feature value is 1; 

otherwise, its feature value is 0.  

 

4.4 Machine Learning based Classifier  

Traditional way of machine learning models such as 

Support Vector Machine are processed with less than 

three layers of computation units. Therefore, they can be 

considered as shallow architectures. Fortunately, deep 

learning models is not same as that situation because of 

a deep architecture. A deep learning model are 

developed with different deep architecture [18] in 

applied environment such as convolutional neural 

network and Deep Belief Network(DBN). In our system, 

we propose DBN architecture to develop our deep 

learning model and characterize Android apps. For our 

proposed framework, we have two process phases for a 

deep learning model construction, pretraining and back-

propagation. The pre-training phase are constructed in 

unsupervised manner. Because of Restricted Boltzmann 

Machines (RBM) our DBN is hierarchically built with 

the deep neural network take a notice of a hidden 

variable model. The way of process is effective for 

high-level representations of our features. In the 

supervised back-propagation phase, we finetuned the 

sample with labeled with the pre-trained DBN in a 

supervised manner. The same dataset (application set) 

are used in both of training process of deep learning 

model. The deep learning model will be completely 

built in this way. 

 

5. EXPERIMENT AND EVALUATION 

This section provides the experiments performed and 

the results obtained from our proposed system. Three 

cases are evaluated in this section. Firstly, static analysis 

was carried out using only the permission data for 

training and testing. Secondly, dynamic analysis 

(system call frequency data) was analyzed for training 

and testing. Lastly, training and testing was carried out 

by combining static and dynamic such as the permission 

data and system calls frequency data.  

Accuracy of a test is evaluated on how well the test is 

able to distinguish between a malware and benign. We 

use three classifiers Random Forest (RF), K-nearest 

Neighbor (KNN) and Naïve Bayes (NB) to evaluate our 

hybrid feature selection method. The evaluation was 

performed by measuring the following equation: 

 

 True positive rate =
)( FNTP

TP


  (1) 

False positive rate =
)( FPTN

TP


  (2) 

Precision    =
)( FPTP

TP


   (3) 

Recall      =
)( FNTP

TP


   (4)    

F-measure=
)Pr(Re

PrRe2

ecisioncall

ecisioncall





 

  (5) 

Accuracy =
)( FNFPTNTP

TNTP




   (6) 

 

We use Weka[17], which is a collection visualization 

tools. It also have many algorithms for data 

analysis and predictive modeling. Moreover, it has a 

graphical user interface which can help easy access to 

analysis and algorithm. 

 

Table 4. Experimental Results with ML-based classifier 

Feature 

Set 

Classifier True 

Positive 

Rate 

True 

Positive 

Rate 

Accuracy 

(%) 

Static RF 0.872 0.08 89 

KNN 0.795 0.358 68 

NB 0.812 0.6 60 

Dynamic RF 0.634 0.491 57 

KNN 0.094 0.244 83 

NB 0.828 0.674 58 

Hybrid RF 0.896 0.108 89 

KNN 0.824 0.232 79 

NB 0.813 0.492 72 

As a result, the system calls frequency results (dynamic 

analysis) were not as effective as the permissions data. 

However, the effect of combining both the feature 

vector fetched a better result as shown in Table 4. All 

experiments are performed on a 3.40GHz Intel Core i7 

PC with 4GB physical memory, using Weka and MS 

Windows 10. 

 

6. CONCLUSION AND FUTURE WORK 

In this paper, we provide a detecting architecture aiming 

at identifying harmful Android applications without 

modifying the Android firmware. We proposed hybrid 

feature selection method by addressing the selecting of 

key features from Android apps. Three Machine 

Learning classifiers is used to evaluate malware 

classification accuracy in our feature set. According to 

the result, our approach can be considered as an 

effective approach in malware detection. However, the 

time is too long in real smart phone because of hardware 

requirement. A major benefit of the approach is that the 

system is designed as platform-independent so that 

smart devices with different versions of Android OS can 

use it.  Many commercial antivirus software use 

signature-based approach which is static analysis 

method and cannot effectively handle malware with 

code obfuscation technique. For future work, we design 

our system to develop a real-time malware detection 

infrastructure. 
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