
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

ADetect: Hybrid Analysis Feature Extraction for
Android malware Detection

Kyaw, May Thu
University of Computer Studies Yangon

Soe, Yan Naung
University of Computer Studies Yangon

Kham, Nang Saing Moon
University of Computer Studies Yangon

https://doi.org/10.15017/1960660

出版情報：Proceedings of International Exchange and Innovation Conference on Engineering &
Sciences (IEICES). 4, pp.27-31, 2018-10-18. 九州大学大学院総合理工学府
バージョン：
権利関係：

ADetect: Hybrid Analysis Feature Extraction for Android malware Detection

*May Thu Kyaw1, Yan Naung Soe1, Nang Saing Moon Kham1

1University of Computer Studies Yangon.

maythukyaw@ucsy.edu.mm

Abstract: Today, mobile devices are very popular in everyday life of our sociality for communication or many

perspectives. They become an interesting point for malicious attackers. Malicious software which can destroy mobile

devices or steal sensitive information are growing in every form of people’s live. A number of researches have been

proposed to detect malicious software in recent year. However, they still suffer with many intelligent malicious software

that a traditional methodology is not sufficient to detect the key features of intelligent malware. To address this

problem, this paper proposes a feature extraction method from Android malware applications using hybrid analysis

method to improve Machine Learning based detection framework. ADetect can achieve 80% detection accuracy, which

are tested by using Random Forest, K-nearest Neighbor and Naïve Bayes (NB) classifiers.

Keywords: Mobile, Malware, Machine Learning

1. INTRODUCTION

A recent report of Gartner[1], an American information

technology research and advisory firm, android has

become the No.1 operating system in 2013 and also

dramatically transcend a large number shipments of its

devices in 2014. In contrast to other platforms, Android

grants the installation of applications(.apk) from various

sources, such as Google Play Store and other mediator

markets. As a result, it has led to an increase in their

potential as a target for malicious activities.

In the internet age, privacy and security issues are

developed rapidly for mobile computing because of

mobile devices take place in computing platforms and

data storage units. Malware developers used various

intelligent methods to overcome traditional and modern

malware protection and detection mechanisms.

Therefore, analysis of malware and detection

approaches have become an active area of research.

Many researchers proposed a number of techniques

such as graph theory [2], machine learning [3,4] and

information visualization [5,6] to hinder the growing

amount and sophistication of Android malware.

Malware analysis can be categorized in three methods:

static, dynamic, and hybrid analysis techniques. Static

analysis is based on extracting features of application

without running. It checks out an application’s manifest

(AndroidManifest.xml) and disassembled code.

Reversely, dynamic analysis methods analyze the

application’s behavior during the execution process.

Hybrid method is the combination of static and dynamic

analysis. However, there has a challenge for accuracy in

malware characterization and detection, mainly in day-

by-day changing of intelligent malware and the open

distribution channels of Android apps

To overcome this situation, we proposed a framework

with hybrid analysis, namely ADetect (Android

Detector), that can automatically detect whether an apk

is a malware or not. ADetect use marketplace crawlers,

filtering and feature extraction and classifier. It means

that we use all apk(malware or benign) to process, and

then filter out which are either known malware or not.

This paper emphasizes on the feature extraction for

malware detection. We propose a hybrid security

solution, integrated static and dynamic analysis method,

to analyses and characterize an unknown executable file.

The rest of the paper is structured as follows. Section 2

presents the motivation of this paper. Section 3 provides

the literature review. The proposed system illustrates in

Section 4. Finally, Section 5 concludes and discuss

future work to detect of android malware.

2. MOTIVATION

Today, mobile devices have become a widely used for

personal and business purposes. The ecosystem of

Android application has increased dramatically in recent

year. Over 3 million apps currently available at Google

Play official market [14]. Mobile device became a pool

of data for us and it may carry sensitive data, such as

credit card account number, username, password, etc[7].

Smartphones may now represent an ideal target for

malware writers and it has become the most coveted and

viable target of malicious apps.

Our present study aims at designing and developing

better approach to detect malicious application in

Android devices. More precisely, ADetect, a framework

for detection of Android malware based on Machine

Learning technique. There are various elements such as

network, permission, method call, java code and

behavior of application etc. The selection of useful

feature from large number of available can change the

result of the whole experiment (Guyon and Elisseeff,

2003). The following are the benefits of feature

selection:

• Reducing the size of dataset can easily visualize the

trend in data (Crussell et al.).

• There is huge amount of data in analyzing datasets.

Therefore, compressing them to only useful feature

save not only time but also save money. It also

reduces for the time of real world implementation

(Crussell et al.).
• Feature selection help to get accurate results of

machine learning algorithms because it removes

noisy and irrelevant data from datasets (Jensen and

Shen, 2008).
• Feature selection also enhance model simplification

that can make easier to interpret by researchers or

users.

Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES) 4 (2018) 27

mailto:maythukyaw@ucsy.edu.mm

3. LITERATURE REVIEW

The process of Machine learning algorithms is learning

the patterns from the data. Feature extraction is the first

step of every machine learning algorithm in malware

analysis. There are many approaches for mobile

malware detection and analysis, such as static analysis,

dynamic analysis and hybrid analysis approach for

malware detection.
DroidRanger [8] is a one of hybrid analysis using

manifest file and bytecode and monitor during

execution. It is a footprint-based detection engine that

extracts features such as permission and semantic word

in bytecode (e.g. INTERNET) for static analysis and

also on a heuristics-based detection engine that monitors

applications during their execution for dynamic analysis,

e.g., system calls with root privileges.

Shina Sheen, R.Anitha, V.Natarajan [9] uses different

features vector for example API call feature and

permission based features to consider for a better

detection. They use collaborative approach based on

probability theory. Kabakus Abdullah Talha, Dogru

Ibrahim Alper, Cetin Aydin proposed a method based

on permissions used in an application and static analysis

is made using machine learning algorithm such as

logistic regression [10].

Seung-Hyun Seo, Aditi Gupta, Asmaa Mohamed Sallam,

ElisaBertino, KangbinYim proposed a method to detect

mobile malware threats to homeland security. In their

proposed approach, they define different characteristics

of android malware and provide a case study which are

feasible against Homeland Security. They used

DroidAnalyzer which is static analysis tool for

identification of vulnerabilities in android applicaions

and the presence of root exploits [11].A. Shabtai, L.

Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira,

Y. Elovici, discovered a method to find mobile malware

based on semi supervised machine learning despite of

regular static and dynamic base analysis[12].

Wanqing You, Kai Qian, MinzheGuo, Prabir

Bhattacharya proposed a hybrid approach for mobile

threat analysis. The key of this approach is the

unification of data states and software execution on

critical test paths conditions. The outcome leads to

combine the benefit of static and dynamic analysis. This

is the main benefit of their technique that is they used a

hybrid approach for analysis [13].

4. SYSTEM ARCHITECTURE

In this section, we first introduce the overall architecture

of ADetect and then describe each module individually

to explain how ADetect works for Android malware

detection. Figure 1 illustrates the experiment work flow

structure consisting of four phases.

The first stage is data collection, which collects normal

and malicious applications. In the second phase is

feature extraction and selection. In this stage, extracted

features are selected, labelled and stored to be applied in

the next phase. The Machine Learning classifiers entail

the third phase, whereby the stored information trains

the Machine Learning classifiers to produce several

detection models. The last phase is the evaluation and

choice of a classifier based on empirical data obtained,

in order to build our framework.

Fig. 1. System Architecture

4.1 Data Collection

In this data collection phase, we use two main

approaches to collect the data. Firstly, we crawl

malware samples directly from well-known Android

malware blogs such as Contagio Mobile Malware Mini

Dump [15]. Because of no standard dataset for benign

application, we collected dataset from Google Play

Store [14] which is considered as the official market

with the least possibility of malware application. We

have collected total 219 applications from various

sources. Table 1 gives the malware families chosen for

this experiment.
 Table 1. Malware Dataset Description

No Malware

Family

Name

Total Characteristics

1 DroidDrea

m

21 Hijacks application

and controls the UI

and performs

commands received

from a hacker

2 DroidKun

gFu3

30 Malicious code is

encrypted and it

steals user's phone

number and send it

to hacker

3 DroidKun

gFu4

20 C&C server address

is in the native

program but in

cipher text. It

receives commands

from a hacker

4 Geinimi 39 Makes phone calls in

background.

Commands are

received from a

hacker

5 Anserver

Bo

13 Silently downloads

an update for

malicious application

on run time

containing malicious

code from a hacker

 Total 113

Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES) 4 (2018) 28

4.2 Feature Set

We proposed 7 features for static and dynamic analysis

which are extracted from our dataset (malicious or

benign). These features are used permissions, requested

permissions, permission request APIs, network APIs,

suspicious calls, providers and instruction sequences.

Hybrid Analysis Features

Used permissions: Most of the Android applications

request many permissions without using it. They use

only a subset of the requested permissions. We can get

more exact observation of apps intension by extracting

the used permissions. Eg.,<uses-permission
android: name="android.permission.ACCESS_

WIFI_STATE"/>

Requested permissions: Most of user are easily grant

the permissions without knowing of how it is work.

Permission plays an important role in security of

Android operation system. Most of user are easily grant

the permissions without knowing of how it is work. An

application can install itself by user granting and can

perform malicious behaviors. Eg., INTERNET,

WRITE_EXTERNAL_STORAGE AD CONTACT.

Permission request APIs: API calls can be requested

Android permission. For example, a sendDataMessage

call requests permission SEND SMS and to receive

SMS, developer use android.permission.RECEIVE
_SMS.

Network APIs: Malwares are now try to access the

network and then send out sensitive data by using

network APIs.

Suspicious calls: These Suspicious API calls such as

communicating over the network, sending and receiving

messages, and executing external commands are

frequently used by malware developers.

Providers: The provider can be used to manage

structured access to data storage. <provider> element

is used to define provider in the manifest file. Otherwise,

the system is not assuming as a provider and doesn't run

them.

Instruction sequences: Open source tool is used for

extraction of low level instructions (also known as

Dalvik bytecode) from an application.

Table 2. Overview of Features

Type Features (Keywords)
API calls

related

getSubscriberId;getLine1Number;

getSimSerialnumber; SMSReceiver;

getNetworkOperactor;Contacts;

FindClass; KeySpec; getCellLocation;

onActivityResult;

Permission ACCESS_FINE_LOCATION;

WRITE_SMS; WRITE_ CALL_LOG;

SEND_SMS;WRITE_APN_SETTING

S; RECEIVE_BOOT_COMPLETED;

RECEIVE_MMS;BROADCAST_SMS

;INTERNET;ACCESS_COARSE_LO

CATION;

Feature Vector

We used machine learning algorithms for

characterization of android malware because most of

them process data with numerical vectors. Therefore,

we first need to map our extracted features into a joint

feature vector.

Suppose V be a vector for all of selected features vector.

Let ith be every application in Android apps dataset. So,

we generate Vi = {v1, v2,….,vn} and

In our system permission features are stored in binary

format (0 and 1) in separation of comma where 1 define

the permission is exist and 0 for not exist of that

permission. In addition, we define a variable D, where D

∈ {benign, malware}. We represent the variable to 1

for benign and -1 for malware application. Figure 2 and

3 are the example of vector for these benign and

malware apk:

Fig. 2. Permission Vector of Benign App

Fig. 3. Permission Vector of Malware App

4.3 Feature Extraction and Selection

All of android applications are developed in zip format

that we know apk format. Features are encrypted in that

apk file for example permissions, Network API, IP

address and URL. We combine static and dynamic

analysis method to extract that features which are

assisted in characterization of benign or malware as

shown in Fig 2 and 3. There are three types of feature in

our proposed system: required permission, dynamic

behaviors and sensitive APIs. Among them, dynamic

behaviors are extracted with dynamic analysis, whereas

sensitive APIs and required permissions are extracted

with static analysis.

Fig.2. Proposed Feature Extraction for apk

In the static phase, we decompress the apk file with the

7-Zip tool to retrieve the content. As a result,

AndroidManifest.xml and classes.dex are obtained. Our

system used AXML-Printer2 for retrieving the required

features from AndroidManifest.xml. We can also obtain

the permissions required by the app with the TinyXml

parser. For eg., android.permission.READ_SMS need

permission for reading SMS and android.permission.

network is the permission that required to access the

network from app. We got 120 permissions in this step.

Moreover, we also obtained classes.dex file in

decryption of apk. Our system uses disassembler

basksmali for parsing that file. In that way what API

0,0,1,0,0,0,0,1,0,

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1

0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,

1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,-1

Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES) 4 (2018) 29

function are worked. For example, chmod, is a sensitive

API because that can change the role of user permission

on files. We earned total 59 sensitive API function in

this step.

We use DriodBox[16] for installing and running android

apk in dynamic analysis phase. DroidBox can execute at

the application framework level because it is one kind

of SandBox. Therefore, it can analyze a dynamic taint

analysis with system hooking and then it can also

monitor a number of app behaviors such as Short

Message Services (SMS), information leaks,

cryptography operations, network and file input/output,

and mobile phone calls. In this study, we can monitor a

total of 13 app dynamic behavior. For instance,

action_sendnet is the action that sends data over the

network and android.permission. ACCESS_FINE_

LOCATION is the action that sends victim’s location to

the server.

As a conclusion, we totally earned 192 features of each

application by using static and dynamic analysis. In this

case, each feature represents as binary number, where

denote 1 for a feature occur: its feature value is 1;

otherwise, its feature value is 0.

4.4 Machine Learning based Classifier

Traditional way of machine learning models such as

Support Vector Machine are processed with less than

three layers of computation units. Therefore, they can be

considered as shallow architectures. Fortunately, deep

learning models is not same as that situation because of

a deep architecture. A deep learning model are

developed with different deep architecture [18] in

applied environment such as convolutional neural

network and Deep Belief Network(DBN). In our system,

we propose DBN architecture to develop our deep

learning model and characterize Android apps. For our

proposed framework, we have two process phases for a

deep learning model construction, pretraining and back-

propagation. The pre-training phase are constructed in

unsupervised manner. Because of Restricted Boltzmann

Machines (RBM) our DBN is hierarchically built with

the deep neural network take a notice of a hidden

variable model. The way of process is effective for

high-level representations of our features. In the

supervised back-propagation phase, we finetuned the

sample with labeled with the pre-trained DBN in a

supervised manner. The same dataset (application set)

are used in both of training process of deep learning

model. The deep learning model will be completely

built in this way.

5. EXPERIMENT AND EVALUATION

This section provides the experiments performed and

the results obtained from our proposed system. Three

cases are evaluated in this section. Firstly, static analysis

was carried out using only the permission data for

training and testing. Secondly, dynamic analysis

(system call frequency data) was analyzed for training

and testing. Lastly, training and testing was carried out

by combining static and dynamic such as the permission

data and system calls frequency data.

Accuracy of a test is evaluated on how well the test is

able to distinguish between a malware and benign. We

use three classifiers Random Forest (RF), K-nearest

Neighbor (KNN) and Naïve Bayes (NB) to evaluate our

hybrid feature selection method. The evaluation was

performed by measuring the following equation:

 True positive rate =
)(FNTP

TP

 (1)

False positive rate =
)(FPTN

TP

 (2)

Precision =
)(FPTP

TP

 (3)

Recall =
)(FNTP

TP

 (4)

F-measure=
)Pr(Re

PrRe2

ecisioncall

ecisioncall

 (5)

Accuracy =
)(FNFPTNTP

TNTP

 (6)

We use Weka[17], which is a collection visualization

tools. It also have many algorithms for data

analysis and predictive modeling. Moreover, it has a

graphical user interface which can help easy access to

analysis and algorithm.

Table 4. Experimental Results with ML-based classifier

Feature

Set

Classifier True

Positive

Rate

True

Positive

Rate

Accuracy

(%)

Static RF 0.872 0.08 89

KNN 0.795 0.358 68

NB 0.812 0.6 60

Dynamic RF 0.634 0.491 57

KNN 0.094 0.244 83

NB 0.828 0.674 58

Hybrid RF 0.896 0.108 89

KNN 0.824 0.232 79

NB 0.813 0.492 72

As a result, the system calls frequency results (dynamic

analysis) were not as effective as the permissions data.

However, the effect of combining both the feature

vector fetched a better result as shown in Table 4. All

experiments are performed on a 3.40GHz Intel Core i7

PC with 4GB physical memory, using Weka and MS

Windows 10.

6. CONCLUSION AND FUTURE WORK

In this paper, we provide a detecting architecture aiming

at identifying harmful Android applications without

modifying the Android firmware. We proposed hybrid

feature selection method by addressing the selecting of

key features from Android apps. Three Machine

Learning classifiers is used to evaluate malware

classification accuracy in our feature set. According to

the result, our approach can be considered as an

effective approach in malware detection. However, the

time is too long in real smart phone because of hardware

requirement. A major benefit of the approach is that the

system is designed as platform-independent so that

smart devices with different versions of Android OS can

use it. Many commercial antivirus software use

signature-based approach which is static analysis

method and cannot effectively handle malware with

code obfuscation technique. For future work, we design

our system to develop a real-time malware detection

infrastructure.

Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES) 4 (2018) 30

https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Predictive_modeling

7. REFERENCES

[1] Gartner website: http://www.gartner.com/newsroom.

(assessed 12.04.18)

[2] Elhadi AAE, Maarof MA, Barry BI, Hamza H.

Enhancing the detection of 16 metamorphic malware

using call graphs. Comput & Sec 2014; 46: 62–78.

17

[3] Rieck K, Trinius P, Willems C, Holz T. Automatic

analysis of malware behavior 20 using machine

learning. J Comput Sec 2011; 19: 639–668. 21

[4] Nataraj L, Karthikeyan S, Jacob G, Manjunath B.

Malware images: visualization 1 and automatic

classification. Proc of VizSec'11 2011; 4. 2

[5] Nataraj L, Karthikeyan S, Jacob G, Manjunath B.

Malware images: visualization 1 and automatic

classification. Proc of VizSec'11 2011; 4. 2

[6] Saxe J, Mentis D, Greamo C. Visualization of shared

system call sequence 3 relationships in large

malware corpora. Proc of VizSec'12 2012; 33–40.

[7] Y. Wang, K. Streff, and S. Raman, “Smartphone

Security Challenges,” Computer (Long. Beach.

Calif)., vol. 45, no. 12, pp. 52–58, Dec. 2012.

[8] T.Zhou, Z.Wang, W.Zhou, and X.Jiang. “Hey you,

get off of my market: Detecting malicious apps in

official and alternative android markets”, in Proc. Of

Network and Distributed System Security

Symposium (NDSS 2012), San Diego; CA, USA,

Feb 2012.

[9] Shina Sheen, R.Anitha,V.Natarajan, “Android based

malware detection using a multifeature collaborative

decision fusion approach”, October 2014, Elsevier,

Neurocomputing151(2015)905–912.

[10] Kabakus Abdullah Talha , Dogru Ibrahim Alper ,

Cetin Aydin , “APK Auditor: Permission-based

Android malware detection system”, March 2015,

Elsevier, Digital Investigation 13 (2015) 1-14.

[11] Seung-Hyun Seo, Aditi Gupta, Asmaa Mohamed

Sallam, ElisaBertino, KangbinYim, “Detecting

mobile malware threats to home land security

through static analysis”, June 2013,Elsevier, Journal

of Network and Computer Applications

38(2014)43–53

[12] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L.

Rokach, B. Shapira, Y. Elovici, “Mobile malware

detection through analysis of deviations in

application network behavior”, Feb 2014,Elsevier,

computers & security 43(2014)1-18

[13]Wanqing You, Kai Qian, Minzhe Guo, Prabir

Bhattacharya, “POSTER: A Hybrid Approach for

Mobile Security Threat Analysis”,June 2015,ACM,

ACM 978-1-4503-3623-9/15/06.

[14]Google PlayStore. Available: https://play.google.

com/store

[15] Malware Repository website: http://contagio

minidump.blogspot.com. (accessed 21.07.17)

[16] DroidBox: An Android application sandbox for

dynamic analysis, http://www.honeynet.org/

gsoc2011/slot5, 2015.

[17]Weka the University of Waikato website:

https://www.cs.waikato.ac.nz/ml/weka/ (assessed

02.08.18)

[18] Y. Bengio, Learning deep architectures for ai,

Foundations and Trends in Machine Learning, vol. 2,

no. 1, pp. 1–127, 2009.

Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES) 4 (2018) 31

http://www.gartner.com/newsroom
https://play.google/
http://contagio/
http://www.honeynet.org/

