九州大学学術情報リポジトリ Kyushu University Institutional Repository

自然画像統計によるトーンマッピング関数の最適パ ラメータ推定

岡崎, 大暉 九州大学大学院芸術工学府

原,健二 九州大学大学院芸術工学研究院

井上, 光平 九州大学大学院芸術工学研究院

浦浜, 喜一 九州大学大学院芸術工学研究院

https://hdl.handle.net/2324/1959210

出版情報:第33回信号処理シンポジウム講演論文集, pp.298-303, 2018-11-06. The Institute of Electronics, Information and Communication Engineers バージョン: 権利関係:copyright©2018 IEICE 自然画像統計によるトーンマッピング関数の最適パラメータ推定

Optimum Parameter Estimation of Tone Mapping Operators by Natural Image Statistics

岡崎大暉†

原健二[†] 井上光平[†] †九州大学大学院芸術工学研究院 浦浜喜一†

Kiichi URAHAMA[†]

Daiki OKAZAKI[†] Kenji HARA[†] [†]Faculty of Design

Kenji HARA[†] Kohei INOUE[†] †Faculty of Design, Kyushu University

アブストラクト 本報告では,自然画像統計を用いるこ とにより HDR 画像を LDR 画像に変換するトーンマッピ ング関数のパラメータを最適化する手法を提案する.提 案される手法では,まずカラー自然画像を対象に,一般 化ガウス分布に基づく自然画像の事前確率モデルを構成 する.次に,HDR 画像をトーンマッピング関数により変 換させた LDR 画像の正規化ヒストグラムを離散ウェーブ レット変換を用いて生成する.最後に,確率密度関数と正 規化ヒストグラムとの Kullback-Leibler 情報量を最小化 することにより,トーンマッピング関数の最適なパラメー タを推定する.このようにして推定されたパラメータを 用いることにより,自然画像に近く違和感のない LDR 画 像を生成することが可能である.

1 はじめに

近年,実世界のシーンを通常の低ダイナミックレンジ (Low Dynamic Range, LDR)より正確に捉え表現する ことが可能である高ダイナミックレンジ (High Dynamic Range, HDR) 画像が注目を集めている. HDR 画像は,人 間の視覚特性 (Human Visual System, HVS)と同程度の ダイナミックレンジを保持した画像のことで,高品質なレ ンダリングや車載カメラ,監視カメラ,医用画像など,高 い汎用性を持つため様々な分野で応用されている [1]–[4]. HDR 画像は,一般的に露光量の異なる条件下で撮影さ れた複数枚の LDR 画像を合成することで生成される [3]. 生成した HDR 画像を一般的な LDR ディスプレイ上に 表示する際には,トーンマッピング関数 (Tone Mapping Operator, TMO)を用いて HDR 画像のダイナミックレ ンジを LDR 画像の 1 画素あたり RGB 各8 ビット・256 階 調に圧縮するトーンマッピング処理を必要とする.

これまで数多くのトーンマッピング手法が提案されて いる [5]-[10]. これらの手法を用いたトーンマッピング処 理により得られる LDR 画像の全体的な明るさやコントラ ストは,各手法のパラメータの値に大きく依存する.そ のため, HDR 画像に応じてパラメータに適切な値を設定 する必要がある.現状ではこれらのパラメータの値を経 験的あるいは試行錯誤的に決めることが多い.

本報告では、HDR 画像を対象に、自然画像統計を用い て HDR 画像のダイナミックレンジを圧縮するトーンマッ ピング関数のパラメータを最適化する手法を提案する.提 案される手法では、まずカラー自然画像を対象に、一般 化ガウス分布に基づく自然画像の事前確率モデルを構成 する.次に、HDR 画像をトーンマッピング関数により変 換させた LDR 画像の正規化ヒストグラムを離散ウェーブ レット変換を用いて生成する.最後に、確率密度関数と正 規化ヒストグラムとの Kullback-Leibler 情報量を最小化 することにより、トーンマッピング関数の最適なパラメー タを推定する.このようにして推定されたパラメータを 用いることにより、自然画像に近く違和感のない LDR 画 像を生成することが可能である.

2 トーンマッピング処理

トーンマッピング処理では,HDR 画像のダイナミック レンジの圧縮と適切な階調の保存が重要な課題であり,こ れまでに様々なトーンマッピング手法が提案されている [5]-[10].トーンマッピング手法は,グローバルトーンマッ ピングとローカルトーンマッピングに大別できる.

2.1 グローバルトーンマッピング

グローバルトーンマッピングは、一様な変換関数を用 いて画像全体の輝度変換を行う [5]-[7]. 一般的にグロー バルトーンマッピングは計算コストが低く、実時間で処 理を行うことができる. Drago ら [5] は、広いダイナミッ クレンジを扱うために対数関数を利用したトーンマッピ ング手法を次式のように提案した.

$$L_{d} = \frac{L_{d_{max}} \cdot 0.01}{\log_{10}(L_{max}+1)} \cdot \frac{\log_{10}(L+1)}{\log_{10}\left(2+8\left(\left(\frac{L}{L_{max}}\right)^{\frac{\log_{10}(b)}{\log_{10}(0.5)}}\right)\right)}$$
(1)

ここで、Lは HDR 画像の輝度値、 L_{max} は HDR 画像の 最大輝度値、 L_d はトーンマッピング処理後の LDR 画像 の輝度値、 L_{dmax} は LDR 画像の最大輝度値、b は明度領 域のレンジ圧縮性と暗部領域でのコントラストを制御す るパラメータである.Dragoらの手法では、底の値が小 さい対数関数曲線の急激な傾きが暗部領域の輝度変換に 適しており、底の値が大きい対数関数曲線のなだらかな 傾きが明度領域の圧縮に適しているという見解に基づい て、入力画像のシーンに応じて適応的に式(1)のパラメー タ b を変化させる必要がある.グローバルトーンマッピ ングは、入力画像に一様に輝度変換を施すことで全ての 画素間で輝度値の大小関係が保存されてしまうため、局 所領域の詳細なテクスチャを表現する微小なコントラス トは失われやすい.

2.2 ローカルトーンマッピング

ローカルトーンマッピングは、シーンの再現性を高め るために画像の局所毎に異なった輝度変換を行う [8]-[10]. ローカルトーンマッピング処理の計算コストはグローバ ルトーンマッピング処理に比べて高くなるが、局所毎に 適したダイナミックレンジの設定が可能となり、HDR 画 像のテクスチャ等の情報やコントラストを維持したまま 輝度変換ができる. Reinhard らは、アナログ写真の現像 過程に利用される技術を用いたトーンマッピング手法を 提案した [8]. はじめに、入力画像のシーン内の基準とな る明るさを次式に基づき決定する.

$$\bar{L_{\omega}} = \frac{1}{N} \exp\left(\sum_{x,y} \log\left(\sigma + L_{\omega}(x,y)\right)\right)$$
(2)

ここで、 \bar{L}_{ω} は入力画像の平均輝度値、Nは入力画像の画 素数、 $L_{\omega}(x,y)$ は入力画像の座標 (x,y)における画素値、 σ は発散を防ぐための小さな定数である。平均輝度値 \bar{L}_{ω} を用いて各画素値を次式に基づきスケーリングする。

$$L(x,y) = \frac{a}{\bar{L}_{\omega}} L_{\omega}(x,y)$$
(3)

ここで, L(x, y) はスケーリング画像, a はスケーリング 画像 L(x, y) のシーン全体の明るさを制御するパラメータ である.次に,周辺領域の輝度値と大きく異なるピクセ ルのコントラストを強調させる dodging-and-buring を実 現させる.まず,複数の空間スケール s_i で定義された円 形のコンボリューションカーネルで画像の畳み込みを行う.これにより得られた応答を $V_i(x, y, s_i)$ とすると,空間スケール s_i に応じたローカルなコントラストを以下の式で与えることができる.

$$V(x, y, s_i) = \frac{V_i(x, y, s_i) - V_{i+1}(x, y, s_{i+1})}{2^{\phi} a/s_i^2 + V_i(x, y, s_i)}$$
(4)

ここで、 ϕ はエッジ強調を制御する鮮鋭度パラメータである. Reinhard らは s_i について 8 つのスケールレベルを考慮しており、最小の s_i は 0.35 で、そこから 1.6 倍ずつ大きくしている。そして、各ピクセルに対して最初に以下の式を満たす s_i を見つける。

$$|V(x, y, s_i)| < \epsilon \tag{5}$$

ここで, ϵ は閾値である.最後に,このようにして得られた $V(x, y, s_i)$ より,ローカルトーンマッピング処理を以下の式で施す.

$$L_d(x,y) = \frac{L(x,y)}{1 + V(x,y,s_i)}$$
(6)

ここで, *L_d(x, y)* はローカルトーンマッピング処理後の LDR 画像である.パラメータ *a* と空間スケール *s_i* を適切 に決定することで,自然な LDR 画像を生成できる.ロー カルトーンマッピングでは,輝度の整合性を維持しよう とする結果,ハローアーティファクトと呼ばれる原画像 に存在しない影のようなノイズが発生する場合がある.

次章以降では、これらのトーンマッピング関数で用い られる最適なパラメータを推定する手法について述べる.

3 自然画像統計 [11]

自然画像統計によるトーンマッピング関数の最適なパ ラメータの推定について述べる.はじめに,自然画像の事 前確率モデルを一般化ガウス分布 (generalized Gaussian distribution, GGD)に基づき構築する.GGDの確立密 度関数は,次式で表される [12].

$$p(x;\alpha,\beta) = \frac{\beta}{2\alpha\Gamma(1/\beta)} e^{-|x/\alpha|^{\beta}}$$
(7)

ここで, α はスケールパラメータ, β は形状パラメータ, $\Gamma(z) = \int_0^\infty e^{-t}t^{z-1}dt(z>0)$ はガンマ関数である.式(7) より,GGDは、 $\beta = 2$ のときガウス分布、 $\beta = 1$ のときラ プラス分布にそれぞれ等しくなり、 $\beta \to 0+$ のとき Dirac デルタ関数分布、 $\beta \to +\infty$ のとき一様分布にそれぞれ収 束することがわかる(図1).GGDに従う観測データ に対してパラメータ(α,β)を推定する方法が幾つか提案 されているが、最尤推定(maximum likehood estimation,

図 1: 一般化ガウス分布

c 4	сШ		cA ₂	cH ₂	сЦ		cA ₃ cH ₃ cV ₃ cD ₃	cH_2	сЦ
	cn_1	DWT	cV_2	cD ₂	<i>cn</i> ₁	DWT	cV ₂	cD ₂	<i>cn</i> ₁
cV ₁	cD_1		cV ₁		cD ₁	F	cl	V ₁	cD ₁

図 2:3 レベルの離散ウェーブレット変換

MLE) を用いることが多い. MLE では,対数尤度関数

$$L = \log \prod_{i=1}^{n} f(x_i; \alpha, \beta)$$

= $n \log \beta - n \log(2\alpha \Gamma(1/\beta)) - \sum_{i=1}^{n} \left(\frac{|x_i|}{\alpha}\right)^{\beta}$ (8)

を最大化するパラメータの値を求める.ここで, x_i は観 測値,nは観測値の総数, $\varphi(\cdot)$ はディガンマ関数である. 式 (8)の β に関する導関数

$$g(\beta) = 1 + \frac{\varphi(1/\beta)}{\beta} - \frac{\sum_{i=1}^{n} |x_i|^{\beta} \log |x_i|}{\sum_{i=1}^{n} |x_i|^{\beta}} + \frac{\log\left(\frac{\beta}{n}\right) \sum_{i=1}^{n} |x_i|^{\beta}}{\beta}$$
(9)

を0と置いた尤度方程式を解くことにより, βの推定値を 求める.しかし,これを解析的手法で解くことはできな いため,ニュートン法を用いて解く.βの更新式は次のよ うになる.

$$\beta_{k+1} = \beta_k - \frac{g(\beta_k)}{g'(\beta_k)} \tag{10}$$

ここで, k は更新ステップである. β の推定値を用いて, α の推定値は次式のように求まる.

$$\alpha = \left(\frac{\beta}{n} \sum_{i=0}^{n} |x_i|^{\beta}\right)^{\frac{1}{\beta}} \tag{11}$$

次に、多数枚のカラー自然画像を用意し、各自然画 像の CIELUV チャンネルに、離散ウェーブレット変 換(discrete wavelet transform, DWT)を適用し、異 なる 3 つの周波数レベルと異なる 3 つの方向からな るハイパスサブバンド(high-pass subband, SB),す なわち 9 個の水平方向 SB{ $\{cH_j^{(\lambda)}\}_{j=1,2,3}\}_{\lambda=L^*,u^*,v^*}$, 9 個の鉛直方向 SB $\{\{cV_j^{(\lambda)}\}_{j=1,2,3}\}_{\lambda=L^*,u^*,v^*}$, 9 個 の斜め方向 SB $\{\{cD_j^{(\lambda)}\}_{j=1,2,3}\}_{\lambda=L^*,u^*,v^*}$, ローパス SB $\{\{cA_j^{(\lambda)}\}_{j=1,2,3}\}_{\lambda=L^*,u^*,v^*}$ を抽出する(図 2).ここ で、j = 1,2,3はDWTの解像度レベル、 $\lambda = L^*, u^*, v^*$ はCIELUV カラーチャンネルである.

さらに,各自然画像の 27(= 9×3) 個の SB 成分 {{ $\{cG_{j}^{(\lambda)}\}_{G=H,V,D}\}_{j=1,2,3}\}_{\lambda=L^{*},u^{*},v^{*}}$ に対して正規化ヒ ストグラム (以下,SB ヒストグラム)を生成する.ここ で,SB ヒストグラムのビン幅は,Scott の公式 [13] より $H = 3.5S/N^{1/3}$ (N は画素数,S は画素値の標準偏差)と 設定する.これらの各 SB ヒストグラムに対し,GGD のパ ラメータを最尤推定する.そして,27 個の各 SB 成分ごとの GGD の二つのパラメータ α と β について,各自然画像あ たりの平均値 {{ $\{\hat{\alpha}_{G_{j}}^{(\lambda)}, \hat{\beta}_{G_{j}}^{(\lambda)}\}_{G=H,V,D}\}_{j=1,2,3}\}_{\lambda=L^{*},u^{*},v^{*}}}$ を算出して,自然画像の事前モデルとして用いる.実験 では 6000 枚の画像を上記の学習に用いた.

4 Kullback-Leibler 情報量

HDR 画像を輝度変換するトーンマッピング関数に よる出力画像の SB ヒストグラムと GGD パラメータ $\{\{\hat{\alpha}_{G_{j}^{(\lambda)}},\hat{\beta}_{G_{j}^{(\lambda)}}\}_{G=H,V,D}\}_{j=1,2,3}\}_{\lambda=L^*,u^*,v^*}$ の下での確率 密度関数との間の差異が小さくなるようにパラメータが 選ばれたトーンマッピング関数を用いると,詳細のテク スチャ情報の増加やハローアーティファクトが低減した 画像が得られると期待される.このとき,確率分布間の 距離尺度として Kullbuck-Leibler divergence (KLD)を 用いる.ここでは,Dragoら [5] のグローバルトーンマッ ピングの式 (1) で用いられるパラメータ b と,Reinhard ら [8] のローカルトーンマッピングの式 (3)~式 (6) で用 いられるパラメータ a と空間スケール s_i の最適化ついて 考える.KLDを用いて次の各式の解を探索する.

 $\bar{b} =$

$$\underset{b}{\operatorname{argmin}} \sum_{\lambda \in \{L^*, u^*, v^*\}} \sum_{j=1}^3 \sum_{G \in \{H, V, D\}} D_{KL}(P_{G_j^{\lambda}} \| Q_{G_j^{\lambda}}(b))$$
(12)

図 3: (a),(b) 露光時間1秒で撮影した LDR 画像.

 $(\bar{a}, \bar{s_i}) =$

$$\underset{a,s_{i}}{\operatorname{argmin}} \sum_{\lambda \in \{L^{*}, u^{*}, v^{*}\}} \sum_{j=1}^{3} \sum_{G \in \{H, V, D\}} D_{KL}(P_{G_{j}^{\lambda}} \| Q_{G_{j}^{\lambda}}(a, s_{i}))$$
(13)

ここで, $D_{KL}(P_{G_{j}^{\lambda}} || Q_{G_{j}^{\lambda}}(b))$ は確率分布 $P_{G_{j}^{\lambda}} \geq Q_{G_{j}^{\lambda}}(b)$ の KLD, $D_{KL}(P_{G_{j}^{\lambda}} || Q_{G_{j}^{\lambda}}(a, s_{i}))$ は確率分布 $P_{G_{j}^{\lambda}} \geq Q_{G_{j}^{\lambda}}(a, s_{i})$ の KLD である.式(12) の \bar{b} を Drago ら[5] の トーンマッピング関数の最適パラメータ,式(13) の (\bar{a}, \bar{s}_{i}) を Reinhard ら[8] のトーンマッピング関数の最適パラメー タと空間スケールとして探索する.ここで,式(12) と式(13) はそれぞれ

$$D_{KL}(P_{G_{j}^{\lambda}} \| Q_{G_{j}^{\lambda}}(b)) = \sum_{j=1}^{N} p(x_{i}; \hat{\alpha}_{G_{j}^{\lambda}}, \hat{\beta}_{G_{j}^{\lambda}}) \log \frac{p(x_{i}; \hat{\alpha}_{G_{j}^{\lambda}}, \hat{\beta}_{G_{j}^{\lambda}})}{Q_{G_{j}^{\lambda}}(i|b)}$$
(14)

$$D_{KL}(P_{G_{j}^{\lambda}} \| Q_{G_{j}^{\lambda}}(a,s_{i})) = \sum_{j=1}^{N} p(x_{i};\hat{\alpha}_{G_{j}^{\lambda}},\hat{\beta}_{G_{j}^{\lambda}}) \log \frac{p(x_{i};\hat{\alpha}_{G_{j}^{\lambda}},\hat{\beta}_{G_{j}^{\lambda}})}{Q_{G_{j}^{\lambda}}(i|a,s_{i})}$$
(15)

である.ここで、 x_i はトーンマッピング関数による出力 画像に対して生成された SB ヒストグラムにおける *i* 番 目のビンの中央値, $p(x_i; \hat{\alpha}_{G_j^{\lambda}}, \hat{\beta}_{G_j^{\lambda}})$ (G = H, V, D; j =1,2,3; $\lambda = L^*, u^*, v^*$) はパラメータの値が (α, β) = $(\hat{\alpha}_{G_j^{(\lambda)}}, \hat{\beta}_{G_j^{(\lambda)}})$ ($G = H, V, D; j = 1, 2, 3; \lambda = L^*, u^*, v^*$)) のときの GGD の確率密度関数の $x = x_i$ における値, $Q_{G_j^{\lambda}}(i|b)$ ($G = H, V, D; j = 1, 2, 3; \lambda = L^*, u^*, v^*$)) は Drago ら [5] のトーンマッピング関数による出力画像の 各 SB ヒストグラムの *i* 番目のビンの度数, $Q_{G_j^{\lambda}}(i|a, s_i)$ ($G = H, V, D; j = 1, 2, 3; \lambda = L^*, u^*, v^*$)) は Reinhard ら [8] のトーンマッピング関数による出力画像の各 SB ヒス トグラムの *i* 番目のビンの度数である.

5 実験

本実験では、インターネット上から収集した HDR 画像 と、実際のシーンを露光時間を変化させながら撮影を行 い、Debevec らの手法 [3] を用いて複数枚の LDR 画像を HDR 画像に変換させた画像データを用いた.実験では、 25 枚の多重露光画像を撮影して HDR 画像を作成した. 図 3に露光時間1秒で撮影したLDR 画像を示す.HDR 画 像のフォーマットは, Radiance の RGBE フォーマット (拡張子.hdr)を使用した. RGBE フォーマットは, RGB と指数部(Exponent)にそれぞれ1バイトを割り当てた 合計 32bpp(bit per pixel) のフォーマットである. RGB 各チャネルに対し1バイトで仮数を表現し、全チャネル 共通の指数部として1バイトが割り当てられる. トーン マッピング関数は、グローバルトーンマッピング関数と して Drago らの手法 [5], ローカルトーンマッピング関数 として Reinhard らの手法 [8] を用いて実験を行った.ま た, Reinhard ら [8] のパラメータ定義方法である, パラ メータ a を 0.18, 空間スケール s を式 (6) に従い決定し てトーンマッピング処理を施した場合(以下, Reinhard) を従来手法として,提案手法により(1)Dragoらの手法[5] の式(1)で用いられるトーンマッピング関数のパラメータ bを決定してトーンマッピング処理を施した場合(以下, ours-Drago), (2)Reinhard らの手法 [8] の式 (3)~式(6) で用いられるトーンマッピング関数のパラメータ a と空 間スケールsを決定してトーンマッピング処理を施した 場合(ours-Reinhard)との比較を行った.

図 4 に, HDR 画像に最小 KLD 解に対応するトーン マッピング関数による処理を施して生成した LDR 画像 の結果を示す. 図 4(a)~(e) は ours-Drago, 図 4(f)~(j) は ours-Reinhard による生成結果をそれぞれ示している.

図5に,提案手法と従来手法によるローカルトーンマッ ピング処理を施して生成した各LDR 画像を比較した結果 を示す.従来手法として Reinhard,提案手法として ours-Reinhard により生成された結果を比較した.図5の結果 より,従来手法と比較して,提案手法の方がテクスチャが 明確であることが分かる.

図6に,入力した HDR 画像にグローバルトーンマッ ピング処理をそれぞれ施して生成された LDR 画像(図 4(d),(e))の KLDと,各 LDR 画像と実際に露光時間1秒 で撮影した画像(図3(a),(b))との相関係数を計算して得 られた2次元プロットを示す.図6(a)は図4(d)と図3(a) を用いた比較,図6(b)は図4(e)と図3(b)を用いた比較 を示している.ここで,グローバルトーンマッピング処 理により得られた画像のみを評価しているのは,ローカ ルトーンマッピング処理で得られた画像は画像の局所毎 に異なった輝度変換を行っており,元の撮影した画像との 輝度値の大小関係が大きく異なっているためである.図 6の結果より,KLDが最小値のとき相関係数が最大値と なっていることが分かる.

表1,2に,提案手法の定量的評価を表にまとめた結果を

図 4: 提案手法によるトーンマッピング処理を施して生成した LDR 画像. (a)~(e)ours-Drago, (f)~(j)ours-Reinhard.

図 5: 提案手法と従来手法の比較. (a)Reinhard, (b)ours-Reinhard, (c)Reinhard, (d)ours-Reinhard.

示す.実験では、図 4(d),(e),(i),(j) の 4 枚を評価した. グ ローバルトーンマッピング処理の評価では、パラメータ $b = 1.0, 2, 0, \dots, 9.0$ でトーンマッピング処理を施した各 LDR 画像と、図 3(a),(b) との相関係数を計算した(表 1). ローカルトーンマッピング処理の評価では、Reinhard と ours-Reinhard により得られた各 LDR 画像と、図 3(a),(b) との相関係数を計算した(表 2).表 1,2 より、最小 KLD 解に対応したパラメータ値の場合、他のパラメータ値と 比較して相関係数が最大値となっていることが分かる.

6 むすび

一般化ガウス分布に基づく自然画像の事前確率モデル を用いたトーンマッピング関数のパラメータ最適化手法 を提案し,実際のHDR 画像を用いた実験により有効性を 確認した.今後の課題として,本手法の高速化などが挙 げられる.

参考文献

- [1] E. Reinhard, S. Pattanaik, G. Ward, and P. Debevec, "High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Morgan Kaufmann Series in Graphics and Geometric Modeling)," Morgan Kaufmann Publisher, 2005
- [2] A. Spivak, A. Belenky, and A. Fish, "Widedynamic-range CMOS image sensors -comparative performance analysis," *IEEE Trans. On Electron Devices*, Vol. 56, No. 11, pp. 2446-2461, Nov., 2009
- [3] P.E. Debevec, and J. Malik, "Recovering high dynamic range radiance maps from photographs," In Proceedings of SIGGRAPH'97, pp. 369-378, 1997
- [4] S. Mann and, R. Picard, "On being 'undigital' with digital cameras: Extending dynamic range by combining differently exposed pictures," Proc. IS & T

図 6: *b* = 1.0 ~ 9.0 の KLD(左) と相関係数 (右). (a) 図 4(d) と図 3(a) を用いた比較, (b) 図 4(e) と図 3(b) を用いた比較.

46th Annual Conference, No.5, pp. 422-428, May., 1997

- [5] F. Darago, K. Myszkowski, T. Annen, and N. Chiba, "Adaptive logarithmic mapping for displaying high contrast scenes," *Computer Graphics Forum*, Vol. 3, pp. 419-426, 2003
- [6] J. Tumblin and, G. Turk, "LCIS:A boundary hierarchy for detail-preserving contrast reduction," In Proceedings of SIGGRAPH'99, pp. 83-90, 1999
- [7] H. Rushmeier, and, C. Piatko, "A visibility matching tone reproduction operator for high dynamic range scenes," *IEEE Transactions on Visualization* and Computer Graphics, Vol.3, pp. 291-306, 1997
- [8] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, "Photographic tone reproduction for digital images," *In Proceedings of SIGGRAPH'02*, Vol. 21, No. 3, pp. 267-276, July., 2002
- [9] R. Fattal, D. Lischinski, and M. Werman, "Gradient domain high dynamic range compression," *In Proceedings of SIGGRAPH'02*, Vol. 21, pp. 249-256, 2002
- [10] C. Rother, V. Kolmogorov and, A. Blake, "GrabCut: Interactive foreground extraction using iterated

表 1: グローバルトーンマッピング処理の定量的	比較
--------------------------	----

Parameter b	Image	correlation coefficient			
1.0		0.9652			
2.0	Fig.3(a)	0.9677			
3.0		0.9687			
4.0		0.9694			
5.0		0.9695			
6.0		0.9693			
7.0		0.9689			
8.0		0.9685			
9.0		0.9680			
1.0		0.9738			
2.0	Fig.3(b)	0.9740			
3.0		0.9735			
4.0		0.9729			
5.0		0.9723			
6.0		0.9718			
7.0		0.9713			
8.0		0.9708			
9.0		0.9703			

表 2:	ローカルト	ーンマッ	ピンク	ブ処理の定量	量的比較
------	-------	------	-----	--------	------

method	Image	correlation coefficient
Reinhard	Fig.3(a)	0.8098
ours-Reinhard		0.8355
Reinhard	Fig.3(b)	0.8850
ours-Reinhard		0.8859

graph cuts," In Proceedings of SIGGRAPH'04, Vol. 23, pp. 309-314, 2004

- [11] A. Morinaga, K. Hara, K. Inoue, and K. Urahama, "Classification between Natural and Graphics Images Based on Generalized Gaussian Distributions," *Information Processing Letters (IPL)*, No. 138, pp.31-34, Oct., 2018
- [12] G.E.P. Box, and G.C. Tiao, "Bayesian inference in statistical analysis," John Wiley & Sons, New York, 1992
- [13] D.W. Scott, "On optimal and data-based histograms," *Biometrika*, Vol. 66, No. 3, pp.605-610, 1979