
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Securing Data with Provenance and Cryptography

アムリル, シャリム

https://hdl.handle.net/2324/1959201

出版情報：Kyushu University, 2018, 博士（情報科学）, 論文博士
バージョン：
権利関係：

Securing Data with Provenance

and Cryptography

Amril Syalim

Department of Informatics

Kyushu University

mailto:amril.syalim@cs.ui.ac.id
http://www.inf.kyushu-u.ac.jp/
http://www.kyushu-u.ac.jp/

Abstract

With the advances in the network technology, it is now possible to implement

the databases and applications as services. The main advantage of this model

is the users can use the services at a fraction of the cost to maintain their own

servers. The users can also use a powerful distributed computational resource that

is provided as a service for their computation heavy tasks. However, this model

has a fundamental problem, because the data are stored in the servers owned by

the entities that are not controlled by the users, the users need to concern about

the confidentiality and integrity of their sensitive data.

In a distributed system, because the tasks can be executed by many computers,

some auditors may need to verify the integrity of data produced by the system.

Many researchers suggested the idea to implement the provenance concept in the

distributed systems. In the context of the computer systems, the provenance

of data is recorded as a collection of assertions created by the process executors

that describe the origins and the processes to produce the data. The provenance is

stored in a special database, we call the Provenance Store, that should be accessible

to the auditors who need to verify the data integrity.

The Provenance Store should be protected from malicious entities who try to up-

date the provenance assertions. The update to the provenance causes the integrity

problems, namely “inconsistent claims” and “inconsistent interpretations” prob-

lems. Storing the provenance in a trusted storage can prevent the attack. However,

it is not practical to be implemented in many systems. We propose an integrity

scheme that can be used to detect any changes to the provenance assertions by

employing a signature chain and assigning a consecutive counter produced by a

Trusted Counter Server (TCS) to each assertion.

The provenance should also be protected from unauthorized accesses. The existing

methods for the access controls are designed for regular data that are not suitable

for the provenance. A critical information in the provenance that needs to be

protected by the access control is the causal relationships between the process and

the data. We propose a method to implement access control system by defining

the access right we call TRACE, that can be used to define access policy to a

collection of assertions that have causal relationships to a specific assertion. We

combine the TRACE right with a Multilabels method to support better granularity

of the access restrictions.

ii

In this thesis, we also discuss the method to protect the integrity of a sequence of

documents by using digital signature. The signature is used to prove the authentic-

ity of each document and the order of the documents in the sequence. The existing

signature schemes have some disadvantages: either we need to include another in-

formation to prove the order of the sequence (i.e., trusted time-stamps/counters)

or during the verification, we need to have access to all (or large numbers) of the

signed documents. We propose a scheme that allows a party to sign a sequence

of digital documents with the following characteristics: (1) the party can prove

the order of the document in the sequence without having a trusted timestamps/-

counters, (2) the party can verify the authenticity of the members of the sequence

without having access to all other members in the sequence, and (3) the stor-

age that is needed for the signature is smaller than signing each member of the

sequence.

To protect confidentiality of the data in an untrusted server, the data owner can

encrypt the data before storing the data in the server. The problem is when-

ever the data owner needs to update the encryption key, the data owner needs

to re-encrypt the data by downloading the data from the server, decrypting the

data, encrypting the data with the new key and uploading the new encrypted data

to the server. It is desirable to have more efficient re-encryption method where

the data owner can securely delegate the re-encryption process to a semi-trusted

party (i.e., a proxy). Most symmetric ciphers do not support proxy encryption

because malleability (the ability to meaningfully convert the ciphertext) is not a

desired property in a secure encryption scheme. We propose a symmetric encryp-

tion scheme that supports proxy re-encryption by first transforming the plaintext

into a random sequence of blocks using a variant of an All or Nothing Transform

(AONT), and then transforming the random sequences by using some combina-

tions of permutations.

Acknowledgements

I am indebted to my research advisors, Professor Kouichi Sakurai, Professor Yoshi-

aki Hori and Professor Takashi Nishide for their guidance, comments, supports and

helps in everything related to my research work.

I am very grateful to my external advisors, Professor Toshihiro Yamauchi (Okayama

University) and Dr. Naohiko Uramoto (IBM Tokyo Research Laboratory) for their

advices during my study.

I am also very grateful to the Japanese Government (Monbukagakusho/MEXT)

for the scholarship scheme and many supports provided by the Kyushu University

during my study.

Many thanks to Professor Masafumi Yamashita and Professor Tsuyoshi Takagi for

thoroughly checking my thesis and presentation that result in significant improve-

ments to the thesis and presentation from their earlier drafts.

I would like to thank Professor Daisuke Ikeda and Professor Masaya Yasuda for

their insightful and critical comments during the review of the thesis.

I would also like to express my gratitude to all members of Sakurai Lab, including

all of the Japanese students, China Scholarship Council (CSC) students, Erwan Le

Malécot, Chunhua Su, Prof. Kyung Hyune Rhee and all other members who have

helped me with rich discussions during seminars or casual discussions. I would

also like to thank Dr. Junpei Kawamoto, Dr. Sabyasachi Dutta, and Nakano-san

(KDDI Laboratory) for supportive discussions during the thesis revision. I would

like to thank Sakurai Lab secretaries and also Misni Harjo Suwito for their kind

help during the exam and public hearing.

I would like to give special thanks to my wife, daughter, and son for their supports

during my study and writing this thesis.

iii

Contents

Abstract i

Acknowledgements iii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Summary of the Contributions . 3

1.1.1 An Integrity Scheme for the Provenance Recording System . 3

1.1.2 An Access Control Model for the Provenance Recording Sys-
tem . 5

1.1.3 A Method to Sign a Sequence of Digital Documents 6

1.1.4 A Proxy Re-encryption Scheme for the Symmetric Key Cryp-
tography . 7

1.2 Thesis Organization . 9

2 Background 11

2.1 Cloud Computing . 11

2.2 Provenance Recording Systems . 13

2.2.1 What is the Provenance? . 13

2.2.2 Fine-grained vs Coarse-grained Provenance 15

2.2.2.1 Fine-grained Provenance 15

2.2.2.2 Coarse-grained/Workflow-based Provenance 16

2.2.3 Open Provenance Model . 18

2.2.4 Provenance vs Version Control System 19

2.2.5 Related Projects on the Provenance 21

2.2.5.1 EU Provenance Project 21

2.2.5.2 Provenance in Healthcare Management 22

2.2.5.3 Provenance Aware Storage System (PASS) 24

2.2.5.4 Sprov Library . 25

2.2.5.5 Panda: A System for Provenance and Data 25

2.3 Modeling the Provenance Recording System 26

2.3.1 Preliminaries . 27

2.3.2 Modeling the Distributed System 27

v

vi Contents

2.3.3 Modeling the Storage . 29

2.3.4 Modeling the Parties . 31

2.3.5 Our Definition of Provenance 32

2.3.6 Provenance Graph Model 34

2.3.7 The Provenance Recording Protocol 36

2.4 Basic Cryptography . 37

2.4.1 The Primitives . 38

2.4.1.1 Collision Resistant Hash Functions 38

2.4.1.2 Private Key Encryptions 40

2.4.1.3 Public Key Encryptions 42

2.4.1.4 Digital Signatures 44

2.4.2 How to Prove the Security of Cryptosystems 46

2.4.2.1 Security Reduction 46

2.4.2.2 Proofs in the Random Oracle Model 47

2.4.2.3 Attack Scenarios 48

2.4.2.4 Game-based Security Proof 49

2.4.2.5 Simulation-based Security Proof 56

3 An Integrity Scheme for the Provenance Recording System 59

3.1 Introduction . 59

3.1.1 Motivation . 60

3.1.2 The Problems of “Inconsistent Claims” and “Inconsistent
Interpretations” . 62

3.1.3 Contributions . 63

3.2 Related Work . 64

3.3 Preliminaries . 68

3.3.1 Modeling the Security of the Provenance 68

3.3.2 Definition of the Provenance 69

3.4 Proposed Scheme . 71

3.4.1 Extended Hash/Signature Chain 71

3.4.2 Labeling Each Assertion with Unique Counter 72

3.4.3 Secure Provenance Recording Protocol 72

3.5 Security Analysis . 75

3.6 Storage Requirements for the Integrity Schemes 76

3.7 Beyond the Counter: Certificate of Relationships 77

3.7.1 Including Certificate of Relationships 78

3.7.2 How to recover the missing nodes 79

3.8 Discussion: Public Key Infrastructure and Replay Attack 79

3.9 Performance Analysis . 80

3.10 Conclusion . 80

4 An Access Control Model for the Provenance Recording System 81

4.1 Introduction . 81

4.1.1 The Problem of Access Control to the Provenance 82

Contents vii

4.1.2 Contributions . 83

4.2 Related Work . 83

4.3 Preliminaries . 86

4.3.1 Definition of the Provenance 86

4.3.2 Provenance Storage . 87

4.3.3 Access Control Enforcement 87

4.4 Proposed Access Control System 89

4.4.1 TRACE and Multilabels . 89

4.4.2 Implementation of the Multilabels 90

4.4.3 Implementation of the TRACE 91

4.4.4 Access Control Decision . 92

4.4.5 Security Analysis . 94

4.4.6 Performance Analysis . 95

4.5 Alternative Implementation: Encryption-based Access Control . . . 96

4.5.1 Encryption Method . 96

4.5.2 Key Generation . 97

4.5.3 Provenance Recording Protocol 97

4.5.4 Accessing the Provenance 98

4.5.5 Access Control Policy . 98

4.5.6 Performance Analysis . 99

4.6 Conclusion . 99

5 A Signature Scheme for a Sequence of Digital Documents 101

5.1 Introduction . 101

5.1.1 Problem Description . 101

5.1.2 Usage of the Proposed Scheme 102

5.1.3 The Basic Method and Our Previous Attempts 102

5.1.4 Contributions . 103

5.2 Related Work . 104

5.2.1 Plain Signature . 104

5.2.2 Signature Chain . 105

5.2.3 Signature Aggregate . 105

5.2.4 Signature with Message-Recovery 107

5.3 Preliminaries . 108

5.3.1 Definition of the Signature 108

5.3.2 Security Model . 109

5.3.2.1 Extended Existential Unforgeability Under Chosen
Message Attack (EEUF-CMA) 109

5.3.2.2 Order Unforgeability Under Chosen Message At-
tack (OUF-CMA) 110

5.3.3 Complexity Assumptions . 111

5.3.3.1 Assumption about the Hardness of the RSA problem111

5.3.3.2 Assumption about the Hash Functions 112

5.4 Proposed Scheme . 112

viii Contents

5.4.1 Notations . 112

5.4.2 Primitives: VPSign, VPPla, VPVer 113

5.4.3 Signing the Sequence . 114

5.4.4 Correctness of the signature scheme 116

5.4.5 Proving the order of the sequence 118

5.4.6 Signature size . 118

5.5 Security Proofs . 118

5.5.1 Security under EEUF-CMA 118

5.5.2 Security under OUF-CMA 121

5.6 Comparison of Our Scheme with the Other Schemes 125

5.7 Conclusions . 126

6 Proxy Re-encryption for Symmetric Key Cryptography 127

6.1 Introduction . 127

6.1.1 Security Model . 128

6.1.2 Contributions . 130

6.2 Related Work . 130

6.2.1 Ciphertext Transformation and Proxy Re-encryption 130

6.2.2 All or Nothing Transform 132

6.2.3 Our Original Scheme . 133

6.3 Preliminaries . 134

6.3.1 Notion of Security . 134

6.3.2 PRF and PRP Advantages 136

6.3.3 Difference Lemma . 137

6.4 The Primitives . 137

6.4.1 All or Nothing Transform (AONT) 137

6.4.2 The functions PE ,DP , and FC 139

6.4.3 Permutation Key Generator (PGen) 140

6.5 The Proposed Scheme . 142

6.5.1 Definition . 142

6.5.2 The Scheme . 142

6.5.3 Correctness of the Re-encryption Function RE 145

6.6 Security Analysis . 147

6.6.1 Security Against Outsiders 147

6.6.2 Security Against Previous Users 148

6.6.3 Security Against Proxy . 149

6.6.4 A Note on Collusion Attack 149

6.7 Performance Evaluation . 149

6.8 Discussion: Using CBC and CTR modes as Alternatives to AONT 150

6.8.1 Using CBC mode . 151

6.8.2 Using CTR mode . 152

6.9 Proof of the Theorems . 152

6.9.1 Proof of Theorem 6.6 . 153

6.9.2 Proof of Theorem 6.7 . 155

Contents ix

6.9.3 Proof of Theorem 6.8 . 157

6.9.4 Proof of Theorem 6.9 . 161

6.10 Discussion: An Attempt to Develop a Secure Proxy Re-encryption
Using Pure Symmetric Cipher . 162

6.10.1 Xor-scheme (Vernam Cipher) 162

6.10.2 Stream cipher-like encryption 163

6.10.3 Block cipher-like encryption 166

6.11 Conclusion . 167

7 Conclusion 169

7.1 Recent Research on the Provenance and the Signature Chain 170

7.2 Recent Research on the Proxy Re-encryption 171

7.3 Suggestions for the Future Work . 171

A Implementation and Experimental Results 173

A.1 Experimental Setup . 174

A.2 Results . 175

Published Papers 179

Bibliography 181

Index 199

List of Figures

1.1 Provenance recording . 3

1.2 Provenance as a proof of responsibility of each process executor . . 4

1.3 Access Control to Provenance . 5

1.4 An Encrypted Database . 7

1.5 Translating ciphertext encrypted with one key to another without
knowing the keys . 8

2.1 Provenance chain of a medical record 17

2.2 An example of the Open Provenance Model [1] 19

2.3 An Architecture of Provenance-Aware Application Proposed by EU
Provenance Project [2] . 22

2.4 An Architecture of Portal-EHCR [3] 23

2.5 An Architecture of Provenance-Aware Storage Systems (PASS) [4] . 24

2.6 Provenance recording process in the Sprov Library [5] 26

2.7 Execution Manager . 28

2.8 Provenance Store . 30

2.9 A Model of Provenance System . 31

2.10 The Uniform DAG model . 34

3.1 Provenance as a proof of responsibility of each process executor . . 62

3.2 Signature Chain . 63

3.3 A simplified model of Habert and Stornetta’s sceme 65

3.4 Hash Chain . 66

3.5 Trusted Timestamping Service . 67

3.6 Trusted Counter Server (TCS) . 72

3.7 A Model of Secure Provenance System 73

4.1 An Access Control Language for Provenance [1] 86

4.2 Participants in the Provenance System 88

4.3 Access Control Module . 89

4.4 An example of the access control policy 99

6.1 Illustration of the encryption of a large block (`× n bits) 145

A.1 Execution time of the Provenance Executor (in seconds) 176

A.2 Execution time of the Provenance Store Interface (in seconds) . . . 176

A.3 Execution time of the TCS (in seconds) 177

xi

List of Tables

5.1 Comparison with other signing methods 125

6.1 The number of primitive executions 150

A.1 Hardware and Software of experiment 174

A.2 The complexity of each task (relative to the size of process docu-
mentation A) . 177

xiii

Chapter 1

Introduction

Security is a classic problem and one of the most important requirements on the

computer systems where the computers process and store sensitive data in many

organizations. Since the invention and possible implementation of the time-sharing

system, where the processes and data in a computer can be accessed by many

people, there are many problems and security breaches involving the sensitive data.

Security is often defined in terms of CIA: confidentiality, integrity and availability.

Confidentiality requirements dictate who can access which sensitive data. The

integrity prescribes that the data should not be changed/updated by unauthorized

users. The availability defines that the data should be always accessible by its

respective authorized users.

With the advances in the network technology, it is possible to outsource the com-

putational and data storage to cloud services owned by Internet companies. The

main advantage of this method is the users do not need to maintain their own

physical computing and storage platforms. They can rent the computing and

storage platforms at a fraction of the cost to maintain their own data centers. The

users can also easily increase the capacity of the computing and storage platform

without the need to physically buy new hardware. They can just change their

plan to a more expensive one. However, the cloud computing model raise many

security concerns because it has a fundamental weakness: the computing and stor-

age platforms are not controlled by the users, so that the users should consider

to implements additional security mechanisms to protect the confidentiality and

integrity of their sensitive data.

1

2 Introduction

To provide the computing and storage services to their users, a typical cloud

systems uses a powerful distributed system (i.e., a grid system) to provide the

services. In a distributed system, because the tasks can be executed by many

computers, some curious parties (i.e., the auditors) may want to trace the origin

and processes that produce the data (i.e., the provenance of data), so that they can

judge the integrity and value of the data produced in the systems. The problem

is the typical database services normally do not record the information about

the origin and processes that produce the data, so that the cloud systems need

to record the information using a provenance recording system. The provenance

recording system, that is inspired from the provenance in the works of art, is

suggested by many researchers to be implemented in a distributed system so that

the auditors can completely trace the data history. The provenance recording

systems keep the collection of metadata created by the process executors that

describe the origins and the processes to produce the data. The metadata should

be stored in a special database, we call the Provenance Store, that is accessible

to the auditors. The problem is, the malicious parties, rather than attacking the

databases, may also try to attack the Provenance Store to change the data history

or access sensitive provenance. A trusted provenance recording system should

implement security mechanisms to protect the data history and help the auditor

correctly judge the value of data.

In this thesis, we are focusing on the problems to protect the integrity and confi-

dentiality of data by implementing secure provenance and applying cryptographic

schemes. In computing systems, a security problem can be defined by a descrip-

tion of the state of computer systems and data when the attackers successfully

break the systems or data security. The basic methods to protect the computing

resources are by implementing access control schemes. Access control prevents

unauthorized accesses by employing a trusted reference monitor (that can be im-

plemented by a small program run in a tamper-resistant hardware) that intercepts

all accesses and decides what are allowed and what are prohibited based on a secu-

rity policy. The reference monitor can also be implemented in an operating system

to mediate all accesses of users to the computer resources (application, memory

or data), in a network router that mediates access to the network resources, or in

a database interface that mediates access to data. A main challenge in an access

control system is how to define policies that reject all possible malicious accesses

while providing minimum accesses that are needed by authorized users efficiently.

Introduction 3

Cryptography uses mathematical and statistical properties of cryptographic func-

tions to ensure some security requirements. A central concept in cryptography is

the one-way function that is a function that can be easily computed, but it is dif-

ficult to compute the inverse. The one-way function can be implemented by some

mathematical concepts that were treated pure theoretical (i.e., number theory,

abstract algebra). It can also be implemented by a function that is heuristically

developed and showed to be resistant to some specific security attacks. The main

cryptographic schemes are encryption and digital signature that can be used to

protect the confidentiality and integrity of data.

1.1 Summary of the Contributions

1.1.1 An Integrity Scheme for the Provenance Recording

System

Process Executors

Provenance
Store

receive inputs

produce outputs

send provenance

Figure 1.1: Provenance recording

In the context of the computer systems, the provenance is recorded in the form

of assertions created by the process executors that explain about how to produce

the data outputs. The provenance assertions are submitted by the process ex-

ecutors to a dedicated database (in this thesis we call the provenance database

as a Provenance Store – see Figure 1.1) for a long term storage and easy access

by the auditors. The auditors are the parties who need to check and evaluate

the processes to produce the data. An assertion submitted by a process executor

confirms the responsibility of the process executor to the process and data output.

4 Introduction

The assertion can also be an evidence to support the auditor’s appraisal about the

quality and value of the data output.

Figure 1.2: Provenance as a proof of responsibility of each process executor

The provenance proves two main facts: the process to produce the data, and the

source of the data. In a distributed system, the data can be produced by collab-

orations of many process executors. The provenance of the distributed processes

shows the contribution and responsibility of each process executor to each data

output. By checking the provenance, the auditor should be able to trace whether

there are more than one process executors should be responsible to the data out-

put. For example, in Figure 1.2, Process Executor 2 uses the output of the Process

Executor 1, so that in this case, the output of the Process Executor 1 affects the

output of the Process Executor 2. Because the Process Executor 1 is responsi-

ble to the data used by Process Executor 2, the Process Executor 1 should also

be responsible in part to the data output produced by Process Executor 2. The

auditor should be able to confirm the chain of responsibilities by inspecting the

provenance and data.

The problem is, the provenance can also prove that some process executors are

responsible for faulty processes that produce erroneous outputs. The faulty pro-

cesses and outputs may cause disadvantages to the process executors who are

responsible to the processes and outputs, because the parties who are affected by

the outputs of the faulty processes may send complaints to the process executors.

The process executors may got reward (be respected) for high quality outputs,

but they also may get disadvantages (penalty) if they produce low quality out-

puts. The honest process executors will take responsibility to the faulty processes

and all of the consequences (including bad reputation), and try to improve their

credibility later. However, the malicious ones may try to avoid the responsibility

by trying to update or delete the provenance of the faulty processes.

Introduction 5

In this thesis, we propose an integrity scheme for the provenance recording sys-

tem. We define the security model as “inconsistent claims” and “inconsistent

interpretation” attacks. Our method uses the signature chain method and also

uses a Trusted Counter Server (TCS) to label each provenance assertion with a

consecutive and unique counter, and stores the latest counter in a trusted storage.

We show that the method can detect the “inconsistent claims” and “inconsistent

interpretations” problems in the provenance system that cannot be detected by

the normal hash/signature chain.

1.1.2 An Access Control Model for the Provenance Record-

ing System

The provenance describes the processes to produce the data. To fully audit the

processes, an auditor needs to access all of assertions created by the process execu-

tors that have causal relationships with the data. A causal relationship means that

a process has contribution or affects the output of another process. The causal

relationship is transitive, so that if process A contributes the output of process B,

and process B contributes to the output of process C, then the process A should

have an indirect contribution to the output of C.

User

Provenance Storage

denied

allowed

Figure 1.3: Access Control to Provenance

When an auditor needs to check the processes that led to a data object, for a

full traceability of the causal relationships, the auditor needs to have access to all

connected assertions. However, some of the assertions may be sensitive so that we

need to restrict accesses by some auditors. A simple method of access control is

by restricting access to each element of the provenance assertion: process docu-

mentation and relationship between process documentations (see Figure 1.3). It is

6 Introduction

desirable to have an access control system that considers the causal relationships

in the provenance and supports access control policy efficiently.

We propose an access control method to the provenance that supports access

restriction based on the relationships between the provenance assertions. Our

access control method restricts the traceability of the provenance assertion us-

ing the access right we call TRACE. We combine the access right TRACE with

the Multilabels method for better access granularity. We show and evaluate the

implementation of our access control method by using a trusted and idealized

reference monitor. We also propose an alternative implementation by using an

encryption-based access control system for better security.

1.1.3 A Method to Sign a Sequence of Digital Documents

In a part of this thesis, we are concerned about the method to sign a sequence

of digital documents (created by a party) that consists of many distinct docu-

ments that are created sequentially. The signature of the sequence of the digital

documents should prove two facts about the documents: the authenticity of each

member of the documents, and the order of the documents in the sequence.

We identified two main differences of signing this type of documents with the

signature scheme for a single document. The first one is the new members of the

sequence can be added later after signing current existing members. The second

difference is during verification of the members, we cannot assume that we have

access to all documents in the sequence. We can only assume that we have access

to the documents that will be verified.

A simple method to sign the sequence of the documents is by simply appending a

consecutive counter to each member of the sequence and signing each consecutive

member of the sequence with a standard signature. The signatures can be used to

authenticate each member and also the order of the members without having access

to other members of the sequence. However, this method has some disadvantages

where we need to keep and track the unique identification number of each sequence,

and also the counter does not represent the “hard-proof” about the order of the

members in the sequence.

We propose a signature scheme for a sequence of digital document by extending the

standard signature, so that it can be used to generate the signature sequentially

Introduction 7

and also verifying the order of the members in the sequence. We show a variant

of the signature with message recovery originally proposed by Bellare et al. and

propose a signature scheme for the sequence of digital documents using a signature

with message recovery as the primitive. We describe the security model of the

scheme in the form of Extended Existential Unforgeability under Chosen Message

Attack (EEUF-CMA) and Order Unforgeability Under Chosen Message Attack

(OUF-CMA). We prove the security of the scheme in the random oracle model.

1.1.4 A Proxy Re-encryption Scheme for the Symmetric

Key Cryptography

In a database service provider, the users may encrypt their data to protect the

data confidentiality. In a typical implementation, the data is encrypted by the

data owner before submitting the data, so that any other parties (including the

service provider itself) cannot access the data without knowing the decryption

keys (see Figure 1.4). The service provider can be an online provider in different

places or organizations. The data owner encrypts the data because he/she may

not trust the service provider, but he/she needs to use the database service so that

he/she can access the data anywhere/anytime and does not need to be burdened

with maintaining the database server. The data owner may also need to share the

data to the other users. In an encrypted database, the data owner can share the

data by simply providing the encryption keys that can be used to decipher the

data.

Data Owner Authorized Users

Store
encrypted

data

Access
encrypted

data

Send decryption key

Encrypted
Databases

Figure 1.4: An Encrypted Database

8 Introduction

A problem in an encrypted database is whenever the data owner needs to update

the encryption/decryption keys because of the keys are leaked or the data owner

wants to revoke access by the other users. Using the naive method, the data owner

needs to download the encrypted data, decrypts the data and re-encrypts with the

new key locally and submits the new encrypted data to the service provider. For a

large encrypted data, this method is not efficient because the data owner needs to

pay computation costs for decrypting and re-encrypting the data and high network

cost for downloading and uploading the data.

Proxy

ciphertext1
(encrypted data

with key1)

ciphertext2
(encrypted data

with key2)

key1 key2

transforms ciphertext1 to
ciphertext2 without knowing

key1 and key2

Data Owner

Figure 1.5: Translating ciphertext encrypted with one key to another without
knowing the keys

A more efficient and desirable method is by allowing the service provider to re-

encrypt the data with a proxy re-encryption scheme. Using this method, the

re-encryption can be delegated to a proxy (that can be implemented in the service

provider), without providing any encryption or decryption keys to the proxy. The

proxy re-encryption works by finding a function that can directly translate the

ciphertext encrypted with a key to another ciphertext encrypted with another key

without knowing any encryption/decryption keys (see Figure 1.5).

In the asymmetric ciphers setting, we can use some beautiful mathematical func-

tions and properties (i.e., pairing, homomorphic encryption property) to imple-

ment a secure proxy re-encryption [6–10]. However, for performance reasons, the

data is normally encrypted with a symmetric cipher (asymmetric encryption is

much slower that symmetric encryption).

Introduction 9

In this thesis, we propose a secure symmetric encryption scheme that supports fast

key update and proxy re-encryption. The idea of our scheme is by first transform-

ing the plaintext using an All or Nothing Transform (AONT) and then exploiting

some of AONT’s characteristics to implement an efficient and secure proxy re-

encryption scheme. We prove the security of the scheme under chosen plaintext

attack security model. We also show that the scheme is more efficient than the

simple decrypt and encrypt method.

1.2 Thesis Organization

This thesis consists of seven chapters.

• In the first chapter, we discuss the motivation and summarize all of the

contributions that are included in this dissertation.

• In the second chapter, we discuss the background on the clouds and the

provenance system and also the related projects on provenance system. We

also describe our model for the provenance recording system. This model

is used as a basis for the development of the integrity scheme and also the

access control method described in the Chapter 5 and 6. In this chapter, we

also discuss the background on cryptographic techniques.

• In Chapter 3, we describe our proposed method to protect the integrity of

the provenance.

• In Chapter 4, we describe our proposal for the access control system that

can be applied to a provenance recording system.

• In Chapter 5, we describe our proposed signature scheme that can be used

to sign a sequence of digital documents.

• In Chapter 6, we describe our proxy re-encryption scheme in the symmetric

cryptography setting.

• Chapter 7 is the conclusion of this thesis.

Chapter 2

Background

2.1 Cloud Computing

The term cloud computing is typically referred to as the usage of computing ser-

vices that are provided by the cloud companies. The customers of the cloud

companies can access the computing services by using the networks (i.e., the In-

ternet). The history of the cloud computing can be traced to the concept of

time-sharing, where the resources of a computer (i.e., a mainframe) can be con-

currently accessed by many users. With the advances of the network technologies,

virtualization software, and distributed computing, it is now possible to provide

many types of computing services in the Internet.

Foster et al. define the cloud computing as follows [11]:

A large-scale distributed computing paradigm that is driven by economies

of scale, in which a pool of abstracted, virtualized, dynamically-scalable,

managed computing power, storage, platforms, and services are deliv-

ered on demand to external customers over the Internet.

A cloud computing system is a type of distributed system that is used to provide

the computing resources as services [12]. Because the distributed system should

provide an interface so that the users believe that they are dealing with a single

system, the cloud computing is seen as a centralized system from the user’s per-

spective [12]. From the perspective of the services provided by the clouds, the

authors in [13] defines the clouds as everything as services (XaaS). So that, the

11

12 Background

clouds can include SaaS (Software as a Service), PaaS (Platform as a Service),

HaaS (Hardware as a Service), DaaS (Database/Desktop/Development as a Ser-

vice), IaaS (Infrastructure as a Service), BaaS (Business as a Service), etc. They

categorize the cloud services into four layers of the services [13] (from the low-

est layer to the highest one): Hardware-as-a-Service, Infrastructure-as-a-Service

(IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS).

The authors in [14] argue that the cloud should include both of the applications

delivered as services over the Internet and the hardware and systems software in

the data centers that provide those services. So that, all layers in the clouds are

integral parts that support each other. From the economics perspective, they iden-

tify that the clouds provide many advantages to the users/companies, because the

users/companies can reduce the cost of maintaining their own hardware, infras-

tructure, platform or software. Another advantage of the cloud is the scalability.

The users/companies can easily increase the computation power or storage to ful-

fill their business requirements. However, they also suggest that the users should

considers the security and reliability of the cloud services.

The authors in [15] found many security problems in the cloud, including the

data integrity and data confidentiality. The main data security problems for an

enterprise in the clouds are caused by the fact that data are stored outside of

the enterprise boundaries. Without encrypting the data, the users have no choice

other than trusting the cloud companies to protect their data.

Foster et al. argue that the cloud computing uses many concepts and services pro-

vided by the grid computing [11]. The grid was originally proposed as a distributed

computing infrastructure for advanced science and engineering [16, 17]. The grid

computing is basically a form of distributed computing that provide many services

for the resources managements, for example the computing and data resources,

virtualization and also the protocols for managements and communications.

Foster et al. state that an important feature in the grid that can also be useful in

the cloud is the provenance system that is used to record the history of data [11].

In computer and grid systems, the provenance concept has been applied to record

the history of data in the computer systems [18–21]. Other useful applications of

the provenance concept are in the health-care applications [3, 22–24], and in the

courts and police/law institutions [25, 26].

Background 13

2.2 Provenance Recording Systems

2.2.1 What is the Provenance?

In the dictionary, provenance is defined as “the place of origin or earliest known

history of something” and also “a record of ownership of a work of art or an

antique, used as a guide to authenticity or quality” [27]. The word provenance

in the English vocabulary was imported from the French word provenir, so we

may say the provenance/origin of the English word provenance is the French word

provenir. Provenance of an object is a very useful information to understand the

characteristics of the object. If we know the history about how the French word

provenir was adapted to the English vocabulary, we may say that we know the

provenance of the English word provenance. Furthermore, if we know the history

of the French word provenir, for example its origin or the first person who used

the word in conversation or writing, we have better understanding to all words

that are derived from it, including its English word version.

The provenance has its root in the work of art where the provenance documents

the history of an art object [28–30]. In the work of art, the provenance is used

to estimate the quality (and also the value) of the art objects. An object origi-

nated from famous artists and owned/maintained by trusted people/organizations

has higher value than the object comes from unknown artists or maintained by

untrusted people/organizations. In the traditional paper-based world, the prove-

nance is recorded as a collection of documents that describe the origin of the object,

and all events related to the object that affect the object’s current condition (i.e.,

who are the owners/maintainers).

In the context of the computer systems, Moreau and other researchers define the

provenance as follows:

Definition 2.1 (Provenance as Process). [2, 31] The provenance of a piece of data

is the process that led to that piece of data.

This definition says that to record the provenance of a piece of data, we should

record the process that led to the data. We may record the process in detail,

for example recording step by step of the process execution, or we may record as

simple as the name of the process, with an assumption we understand the pro-

cess from its name. Ideally, the provenance records the detail of the processes, at

14 Background

the level so that we can re-produce the data exactly. However, it is not always

practical to record the provenance of the large processes in detail because it needs

large documentation storage (it is equivalent to the size of the complete programs

executed by the processes). A more practical approach is by recording the higher

level assertions about the process execution (i.e., by only recording the descrip-

tions/summaries of the processes, the input parameters and the outputs of the

processes).

There are two perspectives of the definition of the provenance in the computer

systems [1, 18, 31–35]. The first perspective defines the provenance as the docu-

mentation of the detail of data derivation in a database (fine-grained provenance).

In this perspective, we should record each step that are executed to derive data

from its source, for example in a database, we should record each query that are

executed to produce the data output.

The second perspective defines the provenance as a documentation of processes

execution to produce the data (process-oriented or coarse-grained provenance).

From the coarse-grained provenance we know the sequences of the process execu-

tions, which processes produce each data. However, the detail of data derivation in

each process cannot be concluded precisely because there is no specific requirement

to the format of the process description (that is why it is called a coarse-grained

provenance).

In the coarse-grained provenance, the provenance of an object captures the infor-

mation about the process to produce the object [33, 35, 36] that includes: (1) the

origin/source of the object, and also entities that cause the existence of the

object, (2) description about the process to produce the object, and (3) the actor

that executes/controls the processes. For example, in the medical contexts, the

provenance of a medical object (i.e., a medical record) should include the sources of

the object (for example, medical tests), the description about the process (i.e., rea-

soning of diagnosis or the treatment), and also the actor that executes the process

(i.e., the physician who write the diagnosis or decides the medical treatments).

The provenance can be recorded by the actor that executes the process and can

also be recorded by other parties (either manually by people or automatically by

computers). On both cases, there should be a proof of the relation between the

process with the actor (either by signatures or other proofs).

Background 15

2.2.2 Fine-grained vs Coarse-grained Provenance

2.2.2.1 Fine-grained Provenance

In the fine-grained provenance, the data derivation is recorded in detail so that

by having the provenance it is possible to reproduce the data as the original pro-

cesses. A fine-grained provenance can be described as why and where provenance

[35]. Why provenance records the detail on how to produce the data, that is the

process. Where provenance records the origin/source of the data. For example,

in a database, why provenance is a collection of queries that were executed to

produce the data. Where provenance is a collection of the location of the data

sources in the database. The definition of why provenance for relational view can

be found in [37].

By having why and where provenance, we can reproduce the data verify the origin

of data. An application of why and where provenance is to record the provenance in

curated databases where the content of the database is the results of interpretation

from other databases (raw data). Because the curators may modify the data to

“clean” the data [38], the provenance is useful when we need to trace the sources of

the modified data. We can define the provenance in the form a relational calculus

(in a relational query language: i.e., SQL) to trace the data derivation [35]. The

SQL can describe the process to select the data from its sources. For example,

we record the provenance during the data curation process, so that later we can

answer the question: for a given database query Q, a database D, and a tuple t in

the output of Q(D), which parts of D “contribute” to t? [30]. An example is the

provenance is recorded in the form the relational calculus in the following query:

SELECT name, telephone

FROM employee

WHERE salary $>$ SELECT AVERAGE salary FROM employee

By checking the provenance, for an output ("JohnClark", 12344444), we under-

stand which tuple in the relation database employee that affects the output. In

this case, it is called “why” provenance, that explains why we get the output. If

we ask where the number 12344444 comes from? We may answer that the num-

ber comes from the field "JohnClark". This is called “where” provenance, that

explains where the output comes from. If any error to the output (for example

16 Background

John Clark finds that his telephone number is incorrect), we can easily find the

source of an error from “where” provenance. John Clark may conclude the source

of the error is the field "JohnClark" in the database.

2.2.2.2 Coarse-grained/Workflow-based Provenance

Rather than recording the data derivation in detail, in the coarse-grained prove-

nance, we only need to record a higher level description of the process of the data

derivation (i.e., a workflow that describes the execution plan in a distributed sys-

tem). The coarse grained provenance is normally used to record the provenance

of data produced in a distributed system where many processes are involved to

produce the data. Each process describes how to produce the data and the

sources that are used in the provenance. A recorded provenance is a collection of

assertions created by the process executors about how to produce the data and

origin of the data.

From the coarse-grained provenance we understand how many processes in the

distributed system collaborate to produce the data. The coarse-grained prove-

nance also represents higher level understanding of execution of processes in the

distributed system [39]. A simple model of execution is a sequential execution of

processes [5, 40, 41]. The provenance captures the execution model in the form

of a chain of assertions created by the process executors. Hasan et al. define the

provenance record and provenance chain as follows:

Definition 2.2 (Provenance chain). [40] A provenance chain for a given document

D is comprised of a time-ordered sequence of provenance records P1|P2...|Pi|...Pn

of length n > 0, where two adjacent entries Pi and Pi+1 indicate that user ui+1

obtained D from the user ui where a provenance record P for a document involves

two components: the ownership entry for a document, and the log of the tasks

applied on the document by authorized users.

The chain model represents the sequential execution of processes that produce the

objects [5, 40, 41]. In this model, the processes are executed one after another

where each process uses the output of the process that is executed before the

process. The provenance also takes a form of a chain where each link is the docu-

mentation of each process. The links are connected for two consecutive processes.

Background 17

Checkup 1 Notes 1 Checkup 2 Test 1 Surgery 1 Result 1

Figure 2.1: Provenance chain of a medical record

Figure 2.1 shows a provenance of a sequential execution of six processes (Checkup

1, Notes 1, Checkup 2, Test 1, Surgery 1, and Result 1).

A more sophisticated model of execution of processes is a directed acyclic graph

[18]. For example, this model is used in the provenance of processes in service

oriented architecture where the processes are invoked by sending inputs to the

services in the systems and the services will send the outputs after each execu-

tion. The provenance is recorded by each party after having executed a process

or sending data to other parties. Simmhan et al. describe two features of the

provenance in distributed system: the origin (ancestral data product(s)) and the

process (that transform these ancestral data product(s)) [18]. In the process of

audit, the auditor should treat the distributed system as a system that produce

the outputs, so the different methods to produce the outputs are represented by

the difference sequence/order of the processes execution in the distributed system.

The graph model supports sequential and also parallel execution of processes. The

provenance of the processes can also be modeled by a directed graph where a node

represents an entity and an edge represents a causal relationship between two

entities (i.e., an object is derived from another object, a process uses an entity as

its input) [42, 43]. There should be no cycle in the graph because a node in the

provenance graph represents the condition of entity at a specific time [44] (in the

case of the same process is repeated, the provenance is recorded in a new node). A

relationship between two nodes in the graph is a causal relationship, for example a

process B uses the output of process A so that the output of A causes the output

of B. An annotation can be included in each edge to describe the detail of the

causal relationship (i.e., what is the role of an input of a process).

Cohen et al. defines the provenance over a workflow execution as a function which

takes as input the identifier of a data object and return the sequence of steps and

input data objects on which it depends [45]. All produced data is called calculated

data.

18 Background

Definition 2.3. [45] The provenance of a data object d (Prov(d)) is given as:

Prov(d) =

(sid, {d1 : Prov(d1), ..., dn : Prov(dn)})

Info(d)

The first case is applied whenever d is calculated data, while the second case is

applied whenever d is the other data.

For example, a workflow with two processes (S1, S2), where S1 takes as input

{I1, I2}, produces as output {D}, which is taken as input to S2, which produces

as output {O1}. Then

Prov(O1) = (S2, {D : (S1, {Ii : Info(I1),

I2 : Info(I2)})})

Provenance can also capture the information from the computational tasks. There

are two forms of the provenance for computational tasks: prospective provenance

and retrospective provenance [46]. The prospective provenance captures the work-

flow to generate the data product (plan of distributed processes execution) while

the retrospective provenance is a detail log of the execution that can be used to

reconstruct the workflow (documentation during execution of the workflow). An

important component of the provenance is causality that represent relationship

between entities during the execution of the workflow

2.2.3 Open Provenance Model

An example of the graph model of the provenance is the Open Provenance Model

(OPM). The OPM is being proposed by the provenance research community as

a standard provenance model [33, 47, 48]. The model is a directed acyclic graph

(DAG) with three types of nodes and five types of edges. The types of nodes are:

(1) the artifact, that is immutable information (i.e., an input or an output), (2)

the process, that is the series of action on or caused by artifacts and resulting in

new artifacts, and (3) the agent is the active entity that starts/controls a process

(see Figure 2.2). The types of relationships between the nodes are as follows

Background 19

(represented by edges in the graph): (1) an artifact was used by a process, (2) an

artifact was generated by a process, (3) a process was triggered by a process, (4) an

artifact was derived from an artifact, and (5) a process was controlled by an agent.

The OPM standard does not specify the internal provenance representation and

the protocol to store or query the provenance graph to/from a storage [33]. The

OPM model also does not specify how to record and secure the provenance.

Checkup 1 Physician 1

Doc 1

Doc 2 Doc 3

Physician 2 Physician 3 Surgeon 1

Doc 4

Notes 1

Test 1

Checkup 2
Surgery 1 Result 1

wCB
U

wDF
wGB

U

wDF

wCB

wCB

wCB

wCB
wCB wCB

wDF

wGB
wGBU

Figure 2.2: An example of the Open Provenance Model [1]

(U=Used, wDF=wasDerivedFrom, wGB=wasGeneratedBy, wCB=wasControlledBy)

The OPM can be represented graphically by using an octagon as an agent, a

rectangle (or a square) to represent a process and an ellipse (or a circle) to represent

an artifact. In Figure 2.2, we show an example of the OPM in the medical context.

This example is adopted from the example of the OPM in [1]. In this example, a

patient medical records are created by three physicians and one surgeon (Physician

1, Physician 2, Physician 3, and Surgeon 1). Initially, the Physician 1 does a

checkup (Checkup 1) that uses a previous medical record (Doc 1). The Physician

1 writes a note that is recorded in the Doc 2. In the next checkup (Checkup 2),

the patient meets the Physician 2 who reads the Doc 2, does a test (Test 1) that

produces Doc 3. In the third visit a surgery (Surgery 1) is done by Physician 3

and Surgeon 1. They write the result (Result 1) in the Doc 4.

2.2.4 Provenance vs Version Control System

The existing system that is very related to the provenance is the version control

system that is also known as the source code control system [49–51]. A version

control system maintains multiple versions of the documents and the changes

(difference, ∆) between the versions. Typical examples are Concurrent Versions

Systems (CVS), and Subversion [52]. A manual of the Subversion [53] describes

the main capability of the Subversion as follows.

20 Background

Subversion manages files and directories over time. A tree of files

is placed into a central repository. The repository is much like an

ordinary file server, except that it remembers every change ever made

to your files and directories. This allows you to recover older versions

of your data, or examine the history of how your data changed. In

this regard, many people think of a version control system as a sort of

“time machine”. [53]

A version control system can be seen as a form of the provenance system because

it also records the history of update. It records a specific form of the provenance

where we define the process as document editing process. De Nies et al. [54]

conclude that the version control system records an aspect of the provenance:

entities, activities, and people producing or modifying a piece of data. Koop et al.

[55] analyze that the current implementation of the provenance has a weakness,

because the provenance cannot provide a strong link between the outputs that

can be cured with a version control system. They argue that the provenance and

version control are complement each other where the provenance can explain how

the data is produced and the version control explains the changes between data.

By combining the version control with cryptographic hash, they incorporate the

strong links between inputs in the existing provenance system [55].

Cheney et al. [56] analyzed that the version control system, the operating system

log and other records to the changes of files are some forms of the provenance.

However, they are still not representing a complete provenance. Halpin et al. [57]

developed a provenance for the data in RDF (Resource Description Framework)

by incorporating versioning system to the RDF’s data.

We conclude the main differences of the provenance and version control system as

follows.

1. The version control has a strong relationship, where we can check whether

the document is derived from another document by checking the differences

(∆).

2. The provenance records any relationships, not only the differences, so that

the provenance is more general than the version control. We can define

the relationship with a new definition, for example a document A has a

relationship with document B if A affects the process to produce document

Background 21

B, for example A is an input or parameter that is used by the process that

produces B.

2.2.5 Related Projects on the Provenance

2.2.5.1 EU Provenance Project

The EU provenance project focuses on the framework to implement the provenance

in the context of e-science and healthcare management. E-science is about using

computation and data resources to help scientists to get scientific results [20]. In e-

science, the scientists are doing in silico experiments to analyze the data products

by using many services provided by many organizations (internal or external of the

organization where the scientist are working). One motivation of e-science is to

develop a better collaboration between scientists by sharing computation and data

infrastructures. E-science normally uses grid-infrastructure to manage sharing of

resources across many organizations.

A scientist performs in silico experiment by composing a workflow that describes

how to combine many computation and data resources to get a result [18]. The

scientist who invokes the services may want to verify that the executions were

performed correctly or conform to some criteria [21]. The scientists also want to

review the result of experiments started by other scientists. In these cases, the

provenance can be used to trace and record the processes execution that produce

outputs in the e-science experiments. The provenance is an alternative to static

verification where each program that run in services is verified to conform the

criteria or run-time checking that verify the program at run time [21].

Provenance can be used to record the history of the execution of processes so

that the scientist can check whether the services correctly execute their invoca-

tion and the other scientists can verify and audit the sources of the data inputs

and the steps executed to produce the results. The information includes the the

process (the description of process and identity of the service), data inputs and

the parameters used to execute the processes, and the outputs. Figure 2.3 shows

the provenance recording and user interfaces architecture for provenance-aware

applications proposed by EU Provenance project. The central of the architecture

is the Provenance Store where Application Services that execute the processes

22 Background

User

Presentation
User Interfaces (UIs)

Processing Services

Provenance
Store

Application Services

Recording

Query

Management
User Interfaces (UIs)

Manage

Figure 2.3: An Architecture of Provenance-Aware Application Proposed by
EU Provenance Project [2]

record the provenance and Processing Services that query the provenance from

the Provenance Store to be sent to the user interfaces.

To implement the provenance system, the EU provenance project develop model

of provenance record using the concept of p-assertion and the Open Provenance

Model [2, 33, 47, 48]. They defined p-assertion as an assertion that is made by

an actor and pertains to a process. The provenance (documentation of a process)

consists of a set of p-assertions made by the actors involved in the process. What

should be recorded in the p-assertion is specific to the requirements in each system.

2.2.5.2 Provenance in Healthcare Management

In healthcare management system, we need to share the healthcare data across

healthcare boundaries so that we can trace the medical history of a patient for

better understanding for the current patient’s health condition. Documents in a

hospital include the patient medical records that are produced by many physician,

and medical laboratory staffs from many different healthcare organizations. Be-

cause the organizations may be independent, a standard for information exchange

is needed.

A standard framework that can be used is a distributed Electronic Healthcare

Record (EHCR) System [3, 22, 58]. The EHCR (see Figure 2.4) provides the sys-

tem to collect the patient healthcare record from multiple database systems. It uses

the ENV13606 standard, for the messages, and communication rules. ENV13606

Background 23

standard provides three types of messages: (1) request message, (2) notification

message, and (3) message that contains privacy protection rules [3].

EHCR

Provenance
Store

Hospital Actors’
Interactions

Portlet

Provenance
Portal

Web
Browser

User

Healthcare Organization

Figure 2.4: An Architecture of Portal-EHCR [3]

In a hospital, the provenance describes the causal relationships between the ob-

jects (i.e., medical records, medical test results), the processes that produce the

objects (i.e., a medical checkup, medical diagnosis) and the actors that control the

processes (i.e., the physicians). Kifor et al. [22]) describe the case of provenance

application in an Organ Transplant Management (OTM) application that uses a

subsystem of EHCR. The challenging issues in implementing provenance in OTM

are [22]): (1) the provenance should record the process execution carried by human

being (i.e., physician) (2) the past treatments are relevant to the current treat-

ment while there are not always strong connections in the provenance of previous

treatments to the current treatments (3) privacy problem because the agent who

manages the provenance knows much about the patient than any other agent.

A physician checks the provenance to know the past history of a patient and to

understand the causes the current patient condition [3]. A patient wants to prove

a wrong treatment or laboratory test by a doctor or a laboratory staff by showing

the provenance. A physician wants to show he/she did not do a mistreatment to a

patient by showing the provenance of the treatment [5]. An independent reviewer

wants to know the cause of the death of a patient after having a medication or a

medical treatment.

24 Background

2.2.5.3 Provenance Aware Storage System (PASS)

Provenance-aware storage system (PASS) is a provenance implementation in the

storage [59]. The main motivation is to support better traceability for processes

execution. PASS automatically collects and stores the provenance and provides

management interface for the provenance. We can use PASS to search and analyze

the provenance, for example comparing two provenance. Figure 2.5 shows the

architecture of the PASS. It is implemented in Linux OS.

User processes

User

Kernel

Collector

Pasta KBDB

Ext2

VFS Layer

event
records

provenance

event
records

provenance

provenance
data

data

Figure 2.5: An Architecture of Provenance-Aware Storage Systems (PASS)
[4]

PASS mainly consists of two components: the storage system and the provenance

collector. The provenance collector intercepts activities in the system, creates the

provenance to be stored in the indexed provenance storage implemented in KBDB

(an in-kernel port of BerkeleyDB engine) [4]. PASS uses the query tools in the

database engine for searching and analyzing the provenance. PASS records the

provenance in the form of a graph where the nodes consists of the processes (for

example bash, config), a workflow engine, and the output. The process execution

is managed by the workflow engine.

Background 25

2.2.5.4 Sprov Library

The Sprov Library is developed by Hasan et al. [5]. It is an implementation

of the provenance concept in a system similar to the PASS project. Hasan et

al. define that a document can be a file, database tuple, or network packet.

The provenance of a document is defined as the record of actions taken on the

document. Each access to a document D generates a provenance record P . P

may include many information, for example the identity of the principal, a log of

the actions and their associated data, a description of the environment when the

action is executed, and confidentiality and integrity related components, such as

cryptographic signatures, checksums, and keying material [5]. A provenance chain

for a document D is a time-ordered sequence of provenance records P1‖P2‖...‖Pn.

The chain can be stored by simply appending it to the document D.

To protect the provenance chain, they implement hash/signature chain C as fol-

lows:

C = SU(hash(U,W, hash(D), public, I)|C ′)

where U is the user identity and SU is a signature by U , W is description of the

changes to the document D, public is the public key of user, and I is an encryption

key to implement confidentiality by using broadcast encryption [5].

Sprov Library is implemented as application level library that consists of wrapper

functions for the standard I/O library (stdio.h). Sprov captures the I/O operation

executed by application, creates new provenance chain when the application write

new data (see Figure 2.6). The data and the provenance are stored in the same

storage.

2.2.5.5 Panda: A System for Provenance and Data

In Panda [60], provenance (also called “lineage”) captures where data came from,

how it was derived, manipulated, and combined, and how it has been updated over

time. Some functions of the provenance: (1) explaining how the data is derived,

(2) verifying the correctness of the process that produce the data, (3) allowing

re-computation of the data that may be produced by erroneous/outdated sources.

26 Background

Application

SPROV Library

File system

Storage

provenance

provenancedata

data

write operation

Figure 2.6: Provenance recording process in the Sprov Library [5]

The provenance is recorded in two forms [60]:

• Backward tracing. Given a data element D, where did D come from?

And, what data elements and processing contributed to D?

• Forward tracing. Given an input or derived data element D, where did D

later go? And, what processing nodes did D subsequently pass through and

what data elements were produced?

2.3 Modeling the Provenance Recording System

In this section, we develop a model of the provenance recording system that in-

cludes the distributed system model, the storage model, the participants, the

process execution, and the provenance recording process. This model is a refer-

ence model for the provenance recording system that will be used to describe the

security schemes proposed in Chapter 3 and Chapter 4.

Background 27

2.3.1 Preliminaries

A set is a collection of distinct elements. For example a set P = {2, 3, 5, 7} consists

of four numbers as its elements. A set of elements of the same type, for instance

{X0, X1, ..., Xn−1} is represented by {Xi}. An element in {Xi} is represented by

Xi. We can use a more complex representation of the set of element with the

same type, for example we can represent a set {〈X,Z0〉, 〈X,Z1〉, ..., 〈X,Zn−1〉} as

{X,Zi}, and a set {〈X0, Z0〉, 〈X1, Z1〉, ..., 〈Xn−1, Zn−1〉} is represented as {Xi, Zi}.
We use the term tuple to represent a collection of data or variables. A tuple with

three elements a, b, c is represented by 〈a, b, c〉. A tuple can have subtuples, for

example a tuple 〈a, 〈b, c〉〉.

We use some variables to represent data items and data in tuples that are sent

through network or stored in a database. We also use some functions that take

some inputs (variables or numbers) and produce outputs that is represented by

Functionidentifier(Inputs). The variables and functions (including their identifiers)

are described each time they are first introduced. For example, in Section 2.5,

we introduce variables PAsrt , A, Cid, I, O, Pid, and Pid′. In some parts of this

thesis, we introduce functions Hash, Sign, Enc, and the other functions.

We use ref(Y) to represent a unique reference to a data represented by variable Y

so that we can retrieve the data Y from a database by providing its reference. In

implementation, reference can be implemented by as simple the name of file/record

in the database, or by a Uniform Resource Identifier (URI) that can be used to

identify the data universally.

Communications and queries between two parties where the party A sends data

or a query to the party B through network are represented as A → B : Data

and A → B : Query(Inputs). For example, A sends data X to B is represented

by A → B : X. A sends query Store with inputs X to B is represented by

A→ B : Store(X).

2.3.2 Modeling the Distributed System

In our model, the provenance system records the sources and processes that con-

tribute to the data in a distributed system. A distributed system is defined as

[12, 61]:

28 Background

A distributed system is a collection of autonomous computing elements

that appears to its users as a single coherent system.

The computing elements (also called “node”), can be either hardware device or

software process [12]. In this thesis, we call the computing elements as “process”.

The important element of the distributed system is that the users believe that they

are dealing with a single system (it is a centralized system from the user’s per-

spective), so that there should be a method of collaboration between the procesess

[12].

We model the collaboration between processes as a centralized execution of an Ex-

ecution Plan (for example a workflow in a grid system) by an Execution Manager.

The centralized execution model of the distributed process execution [62, 63] as-

sumes an entity who starts and manages the processes execution, in this model the

entity is the Execution Manager. The Execution Manager executes an Execution

Plan that is defined as follows.

Process Executor

Provenance
Store

Interface

Database
System

Interface

refs to data input/output

data input/outputprovenance

Execution
Manager

Figure 2.7: Execution Manager

Definition 2.4. Execution Plan EP for a data set D stored in a database DB is

a set of execution nodes Q = {Q0, Q1, ..., Qm−1} for m > 0 and a binary relation

F on Q where each execution node Qi consists of an identification Qid, a process

executor Cid, and a list of references to a set of inputs I for I ∈ D. The relation

F represents the execution edges such that for (Qx, Qy) ∈ Q × Q and x 6= y and

the execution node Qy takes the output of execution node Qx as its input.

Background 29

The Execution Manager executes the Execution Plan EP by sending the references

to inputs to each process executor listed in the execution nodes defined in the

Execution Plan. The Execution Manager is responsible to manage the execution so

that the relationships between execution nodes (the execution edges) are fulfilled.

At first, the DB only stores the data before the execution. Any execution nodes

that use the outputs of the other execution nodes that are not yet executed (so

that the list of references to inputs are not yet available) cannot be started before

all of the inputs are available. The Execution Manager should update the list of

references to inputs that are available after a process execution. The Execution

Plan can be dynamic, so that the Execution Manager can add new nodes and

edges. However, the nodes that have been executed and all edges that connect the

nodes that have been executed cannot be removed/deleted.

2.3.3 Modeling the Storage

The access to the storage by each process is needed for data sharing. A simple

model is a centralized storage [12, 55] where the data and provenance resides in

a storage that is accessible to all processes. The centralized storage simplifies the

data sharing because each process can access and use exactly the same data in

the same storage. Another choice is distributed storage [12, 55] where the data is

shared using the peer-to-peer network (like BitTorrent [64], and also Blockchain

[65]). In this model, each process keeps their own storage and advertises their

storage contents to be synced or accessed by other processes. In our model, we

use the simple centralized storage for the data and the provenance.

Main provenance systems use the concept of the Provenance Store [2, 42, 66],

that is a system that has interface to store and query provenance record (showed

in the Figure 2.8). The Provenance Store normally provides the interfaces for

provenance recording, provenance query interface and provenance management.

This architecture is much similar to the database system where a user can query

the data in the database.

The Provenance Store PS is the database where the provenance is submitted for a

long term storage. Provenance Store Interface provides the interfaces for recording,

querying and managing provenance in the Provenance Store. The Provenance

Store Interface is also a server that stores the semantic of provenance that can be

30 Background

Provenance
Query

Interface

Provenance
Recording
Interface

Provenance
Management Interface

Provenance
Store

Figure 2.8: Provenance Store

accessed by any parties in the system for a common understanding of the meaning

of the provenance.

There are three choices of storage of the provenance and data [34]: (1) no sep-

aration of the storage of data and provenance, (2) the data and the provenance

are logically separated in the same physical storage, and (3) the data and the

provenance are physically separated. The choice of the storage affects the way to

link the provenance and the data. The provenance system should have addressing

and linking mechanisms that are used in the mapping between the provenance and

data it is documented, so that from the references to data (inputs and outputs)

recorded in the provenance nodes, the auditor knows the location of the data.

The easiest method of the linking is in the first choice of the storage, because we

do not need to specify the place (i.e., IP address) of the data and the provenance,

they reside in the same storage. In the second and the third storage models, we

need to have a linking mechanism that connect data in different storage (logical

or physical), so the address of the data or provenance should include the address

of the data storage. However, a separate provenance storage is convenient for

recording provenance in distributed processes (i.e., service oriented architecture)

because it has advantages in accessibility and scalability [2]. In a separated storage

there should be a naming and addressing convention to refer to a data location in

other places/servers. In our model, we use the third choice where the data and

provenance are stored in different physical databases because it is more general

and can be applied in many systems.

Background 31

2.3.4 Modeling the Parties

We identify the parties that are involved in the provenance recording system are

as follows (see Figure 2.9):

Process Executor

Provenance
Store

Interface

Database
System

Interface

Provenance
Store

Database
System

Auditor

provenance

data input/
output

data
input/
output

provenance

refs to data
input/output

Execution
Manager

Figure 2.9: A Model of Provenance System

1. The Process Executors

We need to define the process execution in the distributed processes. The

distributed system is consisted of a set of asynchronous processes that do

not share a global memory and clock. The message transfer are also asyn-

chronous and we assume that each process is running on different processor

32 Background

and the execution of each process is sequential. The Process Executors are

the the entities (i.e., computers/services) that receive the inputs from the

Execution Manager, execute the processes to produce the outputs, and send

the outputs to the Execution Manager.

2. The Database System (DB) and Database System Interface (DBI)

The Database System is the storage for data inputs and outputs of processes

execution in the system. The Database System Interface is an interface to

the Database System.

3. The Provenance Store (PS) and Provenance Store Interface (PSI)

The Provenance Store is a persisten storage where the provenance is recorded

for a long term provenance management. The Provenance Store Interface

provides an interface to access the provenance in the Provenance Store.

4. The Execution Manager

The Execution Manager is an entity that starts the execution of processes

and stores the Execution Plan. The Execution Manager starts a process by

querying inputs from the Database System, sending the inputs to the Process

Executors, receives the outputs from the Process Executor and stores the

outputs to the Database System.

5. The Auditors (ADT)

The Auditors are entities that audit the provenance in Provenance Store.

The Auditors need to verify the quality of outputs from the provenance or

finding flaws in the process executions.

2.3.5 Our Definition of Provenance

In this thesis, we define the provenance as a coarse-grained provenance, formally:

Definition 2.5 (Provenance definition in this thesis). Provenance related to the

data set D = {D0, D1, ..., Dm−1} for m > 0 stored in a database DB is a set of

provenance assertions P = {P0, P1, ..., Pn−1} for n > 0 recorded in a database PS.

A provenance assertion Pi is a documentation of a process execution at specific

time that consists of a process documentation ai and relationship documentation

ri, where ai consists of at least an identification number Pid, a process description

Background 33

A, an identity of the process executor Cid, the list of references to a set of inputs

{ref(Ii)}, for I ⊆ D and a reference to an output ref(O) for O ∈ D and ri consists

of at least identities of the process executors {Cid′i} and the identification numbers

of the provenance assertion for the processes that produce {ref(Ii)}, that is {Pid′i}.

The process description A is a documentation that describes the steps that are

executed in the process to produce the output O from the collection of inputs I.

A can be as simple as the process name and also a detail program execution. The

process executor Cid is the identity of the actor that executes or be responsible to

the process. The actor can be a computer or a service and can also be a human

being. In this definition, we restrict each process to only have one output and one

process executor. In implementation, the process with more than one outputs can

use a collection mechanism to collect all outputs into one entity that represents

the outputs.

Based on Definition 2.5, a provenance of process that takes a collection of inputs

{Ii}, produces an output O, executed by process executor identified by Cid is

stored in a database PS in the forms of PAsrt as follows:

PAsrt =ai|ri
ai =〈Cid, P id, A, {ref(Ii)}, ref(O)〉

ri ={Cid′i, P id′i}

where:

Cid = the ID of the process executor

Pid = the ID of the provenance node

A = assertion about process execution

ref(Ii) = a reference to an input of the process

ref(O) = a reference to the output of the process

Cid′i = the ID of the process executor that produce the input ref(Ii)

Pid′i = the ID of the provenance of the process that produce the input ref(Ii)

34 Background

2.3.6 Provenance Graph Model

The provenance in Definition 2.5 can be modeled by a directed acyclic graph

(DAG) as depicted in Figure 2.10. We call the model as the uniform DAG model.

In the uniform DAG model, a provenance node represents a documentation of a

computational entity that consists of a description of process A, a list of process

executors C, a list references to the inputs I, and a list of references to the out-

puts O. An edge that connects the first node to the second node represents a

relationship between the computational entities where the computational entity

documented by the second node used the output of the computational entity doc-

umented by the first node. We call the model as the uniform DAG model because

each node and edge has only one type.

A: Init
C: Physician 1

I: None
O: Doc 1

A: Checkup 1
C: Physician 1

I: Doc 1
O: None

A: Notes 1
C: Physician 1

I: Doc 1
O: Doc 2

A: Checkup 2
C: Physician 2

I: Doc 2
O: None

A: Test 1
C:Physician 2

I: Doc 2
O: Doc 3

A: Surgery 1
C: Physician 3,

Surgeon 1
I: Doc 3
O: None

A: Result 1
C: Surgeon 1

I: Doc 3
O: Doc 4

Figure 2.10: The Uniform DAG model

Although it takes the same DAG form as the Open Provenance Model (OPM), the

uniform DAG model is different to the OPM model in that it only has a common

type of node and a type of edge, while the OPM has three types of nodes and five

types of edges as described in Section 2.2.3. Another difference is, in the OPM

model there are no edges between an agent with an artifact. To know who are

responsible for an output artifact, we should trace the causal relationship from

an artifact to a process and from the process to an agent. In the uniform DAG

model, the artifact, the process, and the agent (process executor) are collected

into a provenance node.

Background 35

Algorithm 1: Converting the OPM model to the uniform DAG model

Input: an OPM graph
Output: the uniform DAG model
for each OPM node where the type is process do

Create a node, where
A← the OPM process
Cid← the ID to agents connected with “was controlled by”
{ref(Ii)} ← references to artifacts connected with “used”, and references to
artifacts connected to output O with “was derived by”
ref(O)← reference to a collection of artifacts connected with “was generated
by”

end for
for each OPM artifact with no “was generated by” connection do

Create a node, where
A← “Init”
Cid← the ID of agent of process that first uses the OPM artifact
{ref(Ii)} ← references to artifacts connected by “was derived from”
ref(O)← reference to the OPM artifact

end for
return the DAG nodes

A node in the uniform DAG model covers all types of the nodes in the OPM: pro-

cesses, agents, and input/output artifacts. It also represents four causal relation-

ship between the process, artifacts and agents: (1) the outputs (O) “was generated

by” the process (A), (2) the process (A) “was controlled by” the process executors

(C), (3) the inputs (I) are “used” by the process (A), (4) the outputs (O) “was

derived from” the inputs (I). The OPM model can be converted to the uniform

DAG model by using Algorithm 1. Figure 2.10 shows the result of conversion of

the OPM model shown in Figure 2.2.

Another difference of the uniform DAG model with the OPM is it does not support

an inessential feature of the OPM, that is account. An account is a different

detail of view of the provenance [33, 47, 48]. The account is useful to simplify

the presentation of a provenance graph by omitting some nodes and hiding some

details (however, there should be an account that record all of the details). A

relationship in the OPM, that is “was triggered by” relationship, uses this feature.

A “was triggered by” relationship represents a relationship between two processes,

i.e., process A and process B, where the process B used the output of the process

A without explicitly defined the output of the process A. This relationship exists

in an account view that represents a less detail process execution where an artifact

(that is output of A which is also input of B) is removed from the view. In the the

36 Background

uniform DAG model, all the outputs and inputs of a process are clearly stated.

No feature to group some nodes for simpler/higher level presentation.

2.3.7 The Provenance Recording Protocol

The provenance should be recorded to the Provenance Store by parties in the

system. Groth et al. describe a provenance recording method where all entities

who are involved in the process execution submitted the provenance. [2, 32, 66, 67].

In their model, the provenance is submitted by all parties who are involved in the

process execution. For example, when a client invokes a service in the system by

sending the inputs to the service, the provenance of invocation is recorded by both

client and service that send and receive the inputs. The Provenance Aware Storage

System (PASS) records the provenance automatically in an operating system as a

sequence of system calls used by a process in the process execution [59].

In our model, we consider the case of the provenance recording method, where the

provenance is only recorded by the process executor. Our rationale is because to

analyze the security, we need to reduce the assumption about the secure parties. If

the provenance is recorded by other parties (i.e., the workflow manager), we need

to assume that the workflow manager is trusted, otherwise we cannot consider the

provenance submitted by the parties as correct. Assuming the workflow manager

as a trusted party is a strong assumption that cannot easily be guaranteed in an

untrusted distributed environment.

We define the provenance recording protocol as follows:

1. Process Invocation

the Execution Manager sends command to execute the process by providing

the identification number of the Execution Plan Qid, the references to inputs

{ref(Ii)}, and the provenance of inputs.

EM → C : Execute(Qid, {ref(Ii)}, {Pid′i})

2. Process Execution

The Process Executor retrieves the inputs from DB through its interface

Background 37

DBI. The Process Executor executes the process, stores the output O to

the DB and sends back the reference of the output (ref(O)) to the Execution

Manager.

C → PSI → PS : Check({ref(Ii)}, {Pid′i})

PS → PSI → C : true|false

C → DBI → DB : {ref(Ii)}

DB → DBI → C : {Ii}

C → DBI → DB : ref(O), O

DB → DBI → C : success|fail

3. Provenance Recording

The Process Executor creates the provenance assertion PAsrt

PAsrt =ai|ri
ai =〈Cid, P id, A, {ref(Ii)}, ref(O)〉

ri ={Cid′i, P id′i}

and sends to PSI. The Process Executor reports to the Execution Manager

whether the whole process is successful or not.

C → PSI → PS : SubmitPAsrt(PAsrt)

PS → PSI → C : success|fail

C → EM : Report(Qid, ref(O), Cid, P id, success|fail)

2.4 Basic Cryptography

The term cryptography comes from the Greek words kriptos (meaning “hidden,

secret, concealed”) and graphein (meaning “to write”). So that, literally, cryp-

tography means “to write a hidden/secret message”. In the Oxford Dictionary,

38 Background

cryptography is defined as “the art of writing or solving codes” [27]. Historically,

cryptography was used for secret writing or secret communications to secure com-

munications between parties, while in modern usage cryptography is used for other

security purposes, for example authentication, digital signature, key exchanges

protocol, electronic auctions and elections, and digital cash [68].

In the classical cryptosystems, cryptography only deals with private key encryption

setting where two parties who need to communicate securely share a secret key.

To send the message securely, the sender encrypts the message by transforming

the message with a secret key into an unintelligent form (we call as ciphertext).

The receiver who knows the secret key can decrypt the ciphertext to the original

message.

The modern cryptography includes both of the private key and the public key

cryptosystems. The public key encryption techniques that require no sharing of

secret keys prior to encryption (but rather require publishing the public keys)

are among modern cryptographic techniques and also fundamental inventions in

computer science.

In this chapter, we review the basic techniques used in cryptography. The tech-

niques include the collision resistant hash functions, the private key encryption, the

public key encryption, and the digital signatures. We also describe the methods

to prove the security of the cryptosystems.

2.4.1 The Primitives

2.4.1.1 Collision Resistant Hash Functions

The basic primitive of the cryptographic scheme is the collision resistant hash

function. The collision resistant hash function is a form of one-way function that

also has collision resistant property. A one-way function is a function that can

be easily computed, but it is difficult to compute the inverse. A definition of the

one-way function (the strong one), can be found in [69]:

Definition 2.6 (Strong One-Way Function [69]). A function f : {0, 1}∗ → {0, 1}∗

is called (strongly) one way if the following two conditions hold:

Background 39

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm

A such that on input x algorithm A outputs f(x) (i.e., A(x) = f(x)).

2. Hard to invert: For every probabilistic polynomial-time algorithm A′, every

positive polynomial p(·), and all sufficiently large n’s,

Pr[A′(f(Un), 1n) ∈ f−1(f(Un))] <
1

p(n)

The following function is believed to be a one way function if we assume the

problem to invert the discrete logarithm problem is a difficult/hard problem [68].

fp(x) = gx mod p for any large prime p

A (cryptographic) hash function is a type of the one-way function with additional

property: collision resistant, as defined in [70].

Definition 2.7 (Collision Resistant). Let H : K ×M → Y be a hash function,

the advantage of an adversary B to find the collision of the outputs of H is defined

as follows:

Advcoll
H (B) = Pr[Ki

$←− K; (M,M ′)
$←− B(Ki) :

(M 6= M ′) ∧ (HKi
(M) = HKi

(M ′))]

For a secure cryptographic hash function, the advantages of the adversary Advcoll
H (B)

should be very small.

Shamir proposes a variant of the discrete log hash that is believed to be collision

resistant 1. Let g be an element of maximum order in Z∗k (i.e., an element of order

λ(k) = lcm(r − 1, s − 1). Assume that k and g are fixed and public, r and s are

secret large primes.

f(x) = gx mod k

1http://diswww.mit.edu/bloom-picayune/crypto/13190

40 Background

As shown in [71], the above function has the collision resistant properties.

We can also heuristically develop the hash function by showing that the function

is secure to some security attacks. For example, the hash function SHA-256 is

heuristically built and shown no attack, for example preimage attack, and collision

attack [72–74].

A widely used method to develop the hash function is by combining a compression

function that works for a fix length block (i.e., C : {0, 1}n × {0, 1}m → {0, 1}n)

and a domain extender that support any length of message. The compression

function C can be constructed using a similar method used to construct the block

ciphers in the symmetric encryption algorithm. The popular domain extender,

called Merkle-Damgard construction, works for a message M using the following

steps:

Algorithm 2: Merkle-Damgard based hash function

Break M into m-bit blocks M1, ...,Mk

Set h0 = IV , where IV is an n− bit initialization vector
for i = 1 to k + 1 do
hi ← C(hi−1,M)

end for
return hk+1

2.4.1.2 Private Key Encryptions

A private key encryption algorithm transforms a message and a secret key into

an intelligible ciphertext that can only be decrypted back to the original mes-

sage by using a decryption algorithm and the knowledge of the secret key. The

main drawback of the private key encryption is we also need to transfer the key

securely to the receiver. However, the private key encryptions use more simple

operations, so that generally, the private key encyptions are more efficient than

the public key encryptions. Formally, a private key encryption scheme consists of

three algorithms as follows [68, 75]:

Definition 2.8. A private key encryption scheme consists of three probabilistic

polynomial-time algorithms (Gen,Enc,Dec) where:

1. Gen takes a security parameter k and return a key K ← Gen(k).

Background 41

2. Enc takes as inputs a key K and a plaintext message M ∈ {0, 1}∗, and return

a ciphertext C ← EncK(M).

3. Dec takes a inputs a key K and a ciphertext C, and outputs the plaintext

message M ← DecK(M), so that M ← DecK(EncK(M)) for all M ∈ {0, 1}∗.

The classical cryptosystem uses some simple transformations (substitutions and

permutations) to transform the message into unintelligent form. For example

Caesar and Vigenere ciphers convert the message by shifting the alphabet by

using a key [76, 77]. Modern cryptosystem uses more complex transformations,

for example the block ciphers DES and AES [78, 79] uses S-Boxes and larger

permutation to transform the messages.

The Data Encryption Standard (DES) uses Feistel method to transform the mes-

sages, so that we can have a similar algorithm for encryption and decryption.

Basically, the Feistel ciphers transform the messages by executing many rounds,

where each round Roundi takes 2m bits defined as follows [80]:

Roundi : (Li, Ri)→ (Ri−1, F (Ki, Ri−1)⊕ Li−1)

where Li and Ri are the left and right part with length m each and Ki is the

round key that are generated by a key schedule function. In DES, F is a function

that produces m bits value using the following stages: expansion and key mixing,

substitutions with S-boxes and permutations.

The Advanced Encryption Standard (AES) is also an iterated block cipher that

consists of repeated application of the round transformation. AES does not use

Feistel method, it uses the Substitution-Permutations Network (SPN) to transform

the messages. The SPN transformations should be invertible to implement the

decryption algorithm, while in the DES, the F function (because of Feistel method)

does not need to be invertible. Each round of AES consists of four main operation

[81]: (1) AddRoundKey (2) MixColumn (3) SubBytes (4) ShiftRows.

To encrypt a large data using a block cipher, we need to break the data into many

blocks and use a mode of operation to encrypt the data. The simple Electronic

Codebook (ECB) mode is not secure because the result is deterministic (the same

data will produce the same ciphertext). The provable secure mode of operations,

for example the Cipher Block Chaining (CBC) and Counter (CTR), produce the

42 Background

ciphertexts that are difficult to distinguish to the random sequence. CBC and

CTR modes encrypt the large messages by using the following methods:

1. In CBC, we need to have a random initialization vector (IV). Each en-

crypted block (ci) using CBC is defined as ci = E(k, pi⊕ ci−1), c0 = IV [82].

To decrypt a block ci we use the formula: pi = E(k, ci)⊕ ci−1, c0 = IV .

2. The CTR uses a nonce n (a one time used random number) and counter i

to encrypt each block of the message. Each block encrypted with CTR is

defined as ci = E(k, n⊕i)⊕pi [82]. To decrypt a block ci we use the formula:

pi = E(k, n⊕ i)⊕ ci.

2.4.1.3 Public Key Encryptions

A breakthrough in cryptography is the invention of public key encryption. The

public key encryption solves an inherent problem in symmetric key encryption,

that is the sender should share a private key to the receiver. In a public key

encryption scheme, the encryption key is public, so that the keys can be safely

accessed by any parties. Most public key cryptosystems are not as fast as the

private key cryptosystem, because the operations use more costly mathematical

computations. In practice, most systems uses the hybrid methods, where the

encryption keys are shared using a public key encryption scheme, while the data

is encrypted using a private key encryption scheme.

A public key encryption scheme also uses three algorithms (Gen, Enc, Dec). The

main characteristic of the public key encryption scheme is that the algorithms use

different keys for encryption and decryption [68].

Definition 2.9. A public key encryption scheme consists of three probabilistic

polynomial-time algorithms (Gen,Enc,Dec) where:

1. Gen takes a security parameter k and return a pair of keys (pk, sk)← Gen(k).

2. Enc takes as inputs a public key pk and a plaintext message M ∈ {0, 1}∗,
and return a ciphertext C ← Encpk(M).

3. Dec takes as inputs a secret key s and a ciphertext C, and outputs the

plaintext message M ← Decsk(M), so that M ← Decsk(Encpk(M)) for all

M ∈ {0, 1}∗.

Background 43

An example of the public key cryptosystem is the RSA algorithm proposed by

Rivest, Shamir and Adleman [83]. To generate the public and private keys we

choose two very large and random primes number p and q and compute n = pq.

Then choose d, that is a large and random integer which is relatively prime to

(p−1)(q−1). The integer e is computed from p, q, and d by finding multiplicative

inverse of d modulo (p− 1)(q − 1), so that ed ≡ 1 mod (p− 1)(q − 1). The mul-

tiplicative inverse can be computed by using the Extended Euclidean algorithm.

The pair of positive integers (e, n) is the public key, while (d, n) is the private key.

To encrypt m where 0 ≤ m ≤ (n− 1), we compute ciphertext c ≡ me mod n. To

convert the ciphertext c back to the message m, compute m ≡ cd mod n.

The scheme is correct because for the Euler totient function ϕ(n) (where n = pq)

for any integer message m which is relatively prime to n, then mϕ(n) ≡ 1 mod n.

Because ϕ(n) = ϕ(p)ϕ(q), ϕ(p) = (p − 1), and ϕ(q) = (q − 1) for prime numbers

p and q, then ϕ(n) = (p − 1)(q − 1). In the RSA algorithm, e is a multiplicative

inverse of d modulo (p − 1)(q − 1), so that ed ≡ 1 mod ϕ(n), and we should be

able to find a non negative integer h, where ed = 1 + (hϕ(n)). Because c ≡ me

mod n, then cd ≡ (me)d ≡ med ≡ m1+(hϕ(n)) ≡ m mod n.

Another example of the public key encryption scheme is a discrete log based en-

cryption (Elgamal encryption) [84]. In a group G of order q that has a primitive

root g, compute the private key as a random value x where 1 < x < q, and the

public key is y = gx mod p. To encrypt the message m, generate a random k

where 1 < k < q, then compute c1 = gk mod q, and calculate s ≡ yk ≡ gxk.

Then, calculate c2 ≡ m · s, to produce the ciphertext (c1, c2). To decrypt the

ciphertext, first the receiver computer the shared secret s ≡ cx1 , the computes

m ≡ c2 · s−1 where s−1 is the inverse of s in the group G.

The other public key cryptosystems are Paillier, Cramer-Shoup and Boneh-Franklin

schemes. The Paillier scheme [85] uses another form of assumption about the com-

plexity of computation in the number theory to prove the security of the scheme.

The assumption states that given a composite n and an integer z it is difficult

to decide whether there exists y such that z ≡ yn mod n2. Cramer-Shoup en-

cryption scheme [86] is an extension to the ElGamal algorithm by improving the

original scheme so that it is secure under Chosen Ciphertext Attack (CCA). Boneh-

Franklin scheme is a type of public key encryption scheme that supports the usage

of the unique identity (id) of a user as the public key [87].

44 Background

2.4.1.4 Digital Signatures

A digital signature scheme is implemented to verify the integrity and authenticity

of a document. The digital signature can be implemented by using a variant of a

public key encryption scheme, for example in the RSA signature, a party can sign

a message by encrypting the message using the private key. The digital signature

scheme include a verification algorithm that takes the the public key, the signature

and the signed message to check the integrity and authenticity of the messages.

Definition of a digital signature scheme [68, 88, 89]:

Definition 2.10. A digital signature scheme consists of three probabilistic polynomial-

time algorithms (Gen,Sign,Verify) where:

1. Gen takes a security parameter k and return a pair of keys (pk, sk)← Gen(k).

2. Sign takes as inputs the secret key sk and the message M ∈ {0, 1}∗, and

return a signature σ ← Signsk(M).

3. Verify takes as inputs the message M and a signature σ, and outputs a bit

(valid, invalid) ← Verifypk(M,σ), so that Verifypk(M, Signsk(M)) = valid for

all M ∈ {0, 1}∗.

In the RSA signature scheme, for the RSA public and private key pair (e, n) and

(d, n), we compute hash h = H(m), and produce the signature σ ≡ hd mod n. To

verify the signature σ, we compute h = H(m) and check whether σe ≡ h mod n.

Another popular signature scheme is Elgamal signature [90]. In a group Zp that has

a primitive root g, compute the private key as a random value x where 1 < x < p,

and the public key is y = gx mod p. To sign the message, generate a random

k, then compute r = gk mod p where r 6= 0, and calculate s ≡ k−1(H(m) − xr)

mod p − 1, for a secure hash function H. The signature is (r, s). Signature

verification works by checking whether gH(m) ≡ yrrs mod p.

Schnorr proposed a signature scheme as follows [91]: let q be a large prime, and p a

larger prime such that p ≡ 1 mod q. Let g be a generator of a cyclic group of order

q in Zp. For a random secret key x, the public key is gx mod p. The signature for

a message m is produced by first compute r = gk mod p for a random k, produce

h = H(m, r), compute the signature s = k + hx mod q, and return (h, s) as the

Background 45

signature. Digital Signature Algorithm (DSA) can be viewed as combination of

the Elgamal and the Schnorr signature [92].

Boneh et al. proposed a short signature by assuming the existence of bilinear

maps e : G1×G2 → GT where for all u ∈ G1, v ∈ G2 and a, b ∈ Zp and e(ua, vb) =

e(u, v)ab[93]. For a generator g1 in G1, a generator g2 in G2, and a random secret

key x ∈ Zp, compute the public key v = gx2 ∈ G2. The signature σi ∈ G1 on the

message mi is produced by computing σi = H(mi)
x. By having bilinear maps

e : G1 ×G2 → GT , we can verify whether e(σi, g2) = e(h, gx2).

Many signatures can be aggregated into one signature for more efficient space

and verification. Aggregate signature is a technique to combine signatures on

many different messages into a short signature. Some aggregate signatures have

restriction that they can only be verified if there is no duplicate messages or public

keys. However, it is possible to develop a scheme that does not have any restriction

[94].

For the RSA signature, the basic method of aggregation is by computing the

product of the signatures as follows. For signatures σ0, σ1, ...σt−1 the signature

can be condensed into a signature σ by computing [95]:

σ =
t−1∏
i=0

σi mod n

The method can also be used for the signature based on pairing [96], that is with

the requirement of the existence of a mapping between groups for example the map

e : G1 ×G2 → GT where |G1| = |G2| = |GT | with bilinear (for all u ∈ G1, v ∈ G2

and a, b ∈ Z, e(ua, vb) = e(u, v)ab) and non-degenerate (e(g1, g2) 6= 1) properties. A

particular aggregate signature scheme proposed by Boneh et al. [96] is as follows:

Key Generation the user picks random secret key x
R← Zp and computes the

public key v ← gx2 .

Signing to sign a message mi, compute hi ← H(m), where h ∈ G1, and the

signature σi ← hx
i .

Aggregation for a set of signatures {σ1, σ2, ..., σk}, compute the aggregate signa-

ture σ ←
∏k

i=1 σi.

46 Background

Aggregate Verification for all users ui ∈ U with public keys vi ∈ G1 and

the original messages mi, computes hi ← H(mi) and accept if e(σ, g2) =∏k
i=1 e(hi, vi) holds.

We may see that e(hi, vi) = e(hi, g
x
2), and e(σi, g2) = e(hx

i , g2). Because of the

pairing property, e(hi, g
x
2) = e(hx

i , g2) = e(hi, g2)
x.

Based on the work of Boneh et al. [96], Bellare et al. analyze the workaround

suggested Boneh et al. regarding the restriction that all messages m1, ...,mn should

be distinct by appending the public key gx to each message m, so in the signing step

we compute signature σ ← hx, where h ← H(gx||m). Bellare et al. showed the

requirement that gx1||m1, ..., g
xn||mn should be distinct can be removed without

compromising the security [94].

2.4.2 How to Prove the Security of Cryptosystems

2.4.2.1 Security Reduction

A fundamental question in the computer security is how to prove the property of

a security scheme. For example, an encryption scheme should be proved to be

secure under all possible security attacks. To prove a security scheme, we often

need to prove the “inexistence”, rather than the “existence” of the conditions.

The method to prove the security of the cryptosystem is often difficult to grasp

for normal computer science researchers because it has different characteristics

to the method to prove the correctness of algorithms. The method of “proof

by contradiction” is often used where the researchers prove that if the attacker

successfully attacks the system, the attacker can also solve some known hard

problems.

To prove the security property of a cryptosystem, first we need to formally define

the security properties that capture the requirements where the scheme will be

used in the real life. For example, an attack to an encryption system is extracting

information about the plaintext or key from the ciphertext. Another attack is

distinguishing two ciphertext which can be used to extract more information about

the plaintext or the key. Attack to signature scheme is forgery, for example finding

a valid pair of message and signature without having the private key. The security

Background 47

proof needs to show that these attack is not possible to be executed under the

assumptions about the power of the adversary.

To prove the security property of a cryptographic scheme, we can use reduction

method, where we need to find a reduction of the problem to attack the cryp-

tosystem to the problem of solving some hard problems (for example the RSA or

discrete log problem). Bellare described the reduction as follows [97].

Here is another way of looking at what reductions do. When I give you

a reduction from the one-wayness of RSA to the security of my protocol,

I am giving you a transformation with the following property. Suppose

you claim to be able to break my protocol. Let P be the program that

does this. My transformation takes P and puts a simple “wrapper”

around it, resulting in a protocol P’. This protocol P’ provably breaks

RSA. Conclusion? As long as we believe you can’t break RSA, there

could be no such program P . In other words, my protocol is secure.

Those familiar with the theory of NP-completeness will recognize that

the basic idea of reductions is the same. When we provide a reduction

from SAT to some problem we are saying our problem is hard unless

SAT is easy; when we provide a reduction from RSA to our protocol,

we are saying the latter is secure unless RSA is easy.

2.4.2.2 Proofs in the Random Oracle Model

Random oracle model is a model to analyze the security schemes by assuming the

existence an idealized random oracle [98]. The random oracle should be able to

return perfectly random outputs (the assumption which is somewhat cannot be

truly applied in the real world). The random oracle model was introduced as a

more practical way to prove the security [98].

It is often easier to prove the security of the crypto schemes by using idealized

security primitives (random oracle for the hash function, or ideal cipher for en-

cryption), because we do not need to analyze the inner working of the security

primitives. However, the primitives that are used in the real cryptosystems are

not ideal, so that it is desirable to have a security proof without the assumption

about existence of the random oracle. The proof without the requirement of the

existence of the random oracle and other idealized functions is called the standard

48 Background

model. In the standard model, the security proofs may still use the assumptions

about the computation complexity of some difficult problems.

2.4.2.3 Attack Scenarios

The attack scenarios to an encryption scheme can be categorized into following:

• Ciphertext-only attack (COA). In this scenario, the attacker can only observe

the ciphertext. No access to the plaintext. The purpose of attack is to

determine the plaintext.

• Known-plaintext attack (KPA). The attacker knows some pairs of plaintext

and ciphertext encrypted under the same key. The attacker attempts to

determine the plaintext that is encrypted in other ciphertext.

• Chosen-plaintext attack (CPA). The attacker has capability to obtain the ci-

phertext for his/her chosen plaintext. The attacker tries to find the plaintext

encrypted in other ciphertext.

• Chosen-ciphertext attack (CCA). In this scenario, the attacker can obtain

decryption of his/her chosen ciphertext. The aim of attack is to determine

the plaintext correlated to other ciphertext.

A modern encryption scheme should be shown to be secure at least in the CPA

model, and it is desirable to be proved secure in the CCA model.

In a signature scheme, the attack scenarios are as follows:

1. Total break : disclosing the signer’s private key

2. Universal Forgery : constructing an algorithm which can sign any messages

3. Existential Unforgeability : Providing a new message-signature pair.

A modern digital signature requires the security under the strongest attack, that

is existential unforgeability (EUF). In the EUF definition, a digital signature is

secure if no pair of message and the signature can be created without access

to the private key [88]. In the model, the attacker is provided access to the

Background 49

pair of messages and the signatures for any chosen messages, and by using these

information the attacker adaptively tries to forge the signature by creating a new

valid message the signature. This security model is often described as EUF-CMA

(Existential Unforgeability under Chosen Message Attack). The EUF-CMA can

be written in the following algorithm (Algorithm 3):

Algorithm 3: Existential Unforgeability under Chosen Message Attack

(pk, sk)← Gen(1k)/* Global Vars */
r

r←− R, view ← {r, pk}
OracleQueries(A, view)
(m∗, σ∗)← A(view)
return verpk(m∗, σ∗)/* return 1 if the signature is valid, 0 otherwise */
function OracleQueries(A, view)
loop
m← {A, view},
σ ← SigningOracle(m),
view ← view ∪ {σ}

end loop
end function
function SigningOracle(m)
σ ← sigsk(m)

return σ
end function

As shown in Algorithm 3, the attacker has access to an oracle that can generate

a valid pair of message and signature upon request by the attacker (the chosen

messages). Then the attacker tries to forge at least a valid pair of message and

signature. The attacker successfully attacks the signature if he/she can show a pair

of message and signature which has not been previously requested to the oracle.

2.4.2.4 Game-based Security Proof

The attacks in the cryptosystem can be represented as a game between the ad-

versary and the challenger, where the adversary tries to attack the scheme (under

the scenarios described in Section 2.4.2.3), and the challenger interacts with the

adversary and provides the challenges that need to solved by the attacker. If the

adversary solves the challenges, then the adversary wins the game and the se-

curity of the scheme is compromised. Both of the adversary and challenger are

probabilistic processes that communicate with each other.

50 Background

We can construct the security proof by identifying the event S that represents the

possibility of the success of the adversary (for example, the event that adversary

forges the signature, or distinguishing two encrypted text). A cryptosystem is

defined secure if for each adversary the probability of the event S is close to a

specific value (i.e., 0 or 1
2
). For example, the ciphertext indistinguishability under

chosen plaintext attack (also called the semantic security) game for a public key

encryption scheme is defined as the game between adversary and challenger so that

the adversary cannot infer any information about the plaintext from its ciphertext

for the next encryption, even if the adversary knows previously encrypted form of

some chosen messages. The semantic security game is described in Algorithm 4.

Algorithm 4: Semantic Security

(pk, sk)← Gen(1k)/* Global Vars */
r

r←− R, view ← {r, pk}
(m0,m1)← A(view)
b

r←− {0, 1}, c← fpk(mb), view ← view ∪ {c}
b̂← A(view)
if(b̂ = b) then return 1 else return 0

The security proofs using game-based security proof can be described by showing

a sequence of games that can be reduced to each other. Concretely, we need to

construct games G0, G1, ..., Gn where the G0 is the original attack. For each game

Gi, we need to compute the probability of event Si and prove that Pr[Si] is close to

Pr[Si+1] for 0 ≤ i < n, and the probability of event Sn is close to the probability

of solving the target hard problem. By relating Pr[S0] to Pr[S1], and Pr[Si] to

Pr[Si+1], we can prove the relation of Pr[S0] to Pr[Sn] which complete the proof.

There are three types of reductions (also called the transitions) that are normally

used in the security proof using game-based security proof method [99]:

1. Transition based on indistinguishability.

We need to prove that |Pr[Si] − Pr[Si+1]| is very small by showing a dis-

tinguishing algorithm that can run for both input distribution in game Gi

and Gi+1 with probability Pr[Si] and Pr[Si+1]. The different probability of

occurrence of the event Si and Si+1 in both games should be small.

For example, if in the game Gi we need to distinguish three inputs (gx, gy, gxy)

mod p, the probability of success is close to the probability in game Gi+1 to

distinguish (gx, gy, gz) mod p for some random z because of the Decisional

Background 51

Diffie-Hellman assumption where the advantage of a distinguishing algorithm

D, that is:

DDHAdv(D) = |Prx,y[D(gx, gy, gxy) = 1]

− Prx,y,z[D(gx, gy, gz) = 1]|

is very small.

2. Transition based on failure events.

We need to show that Game i and i + 1 are identical unless some failure

events F occurs, so that

Si ∧ ¬F ⇐⇒ Si+1 ∧ ¬F

The following lemma is often used.

Lemma 2.11. (Difference Lemma [99, 100]). Let A,B,F be three prob-

abilistic events such that A∧¬F ⇐⇒ B∧¬F , then |Pr[A]−Pr[B]| ≤ Pr[F].

Proof. Because of A ∧ ¬F ⇐⇒ B ∧ ¬F , we get:

|Pr[A]− Pr[B]| = |Pr[A ∧ F] + Pr[A ∧ ¬F]

− Pr[B ∧ F]− Pr[B ∧ ¬F]|

= |Pr[A ∧ F]− Pr[B ∧ F]|

≤ Pr[F]

So, by showing Pr[F] is negligible we can prove that Pr[Si] is close to Pr[Si+1].

3. Bridging steps.

This type of transition is used to make the proof clearer and easy to follow

by formulating the game in a different way such that Pr[Si] =Pr[Si+1].

52 Background

An example of the security proof using the game-playing technique is the security

proof of Cipher Block Chaining (CBC) with random initialization vector (IV). As

described in Section 2.4.1.2, each encrypted block is defined as ci = E(k, pi ⊕
ci−1), c0 = IV . At first, we need to define the original indistinguishability under

chosen plaintext attack (IND-CPA) game in the Game G0.

G0. This game represents the original game. In each query qi, the adversary A

chooses two n blocks plaintexts (Mi[0],Mi[1]) and given access to the encryp-

tion oracle. The oracle encrypts the plaintexts and return the ciphertext,

the adversary should guess whether the ciphertexts belong to the left (0) or

right (1).

K
$←− {0, 1}k, b $←− {0, 1}, S ← ∅

for i← 1...q do

(Mi[0],Mi[1])← A(r, C1, ..., Ci−1)

mi[1]...mi[n]←Mi[b]

ci[0]
$←− {0, 1}n

for j = 1 to n do

P ← c[i− 1]⊕m[j]

if P /∈ S then

T[P]← EK(P)

end if

c[i]← T[P]

end for

S ← S ∪ {P}
end for

d← A(r, C1, ..., Cq)

return (b = d)

Let Pr[Guess⇒ true] be the probability that the adversary correctly guess

the left or right oracle, then:

Advlor−cpa−b
SE (A) = 2 · Pr[Guess⇒ true]− 1

Proof:

Pr[Guess⇒ true]

= Pr[Guess⇒ 1|b = 1] · 1
2
+ Pr[Guess⇒ 1|b = 0] · 1

2

= Pr[Guess⇒ 1|b = 1] · 1
2
+

(
1− Pr[Guess⇒ 0|b = 0] · 1

2

)
=

1

2
+

1

2
· (Pr[Guess⇒ 1|b = 1]− Pr[Guess⇒ 0|b = 0])

=
1

2
+

1

2
·
(
Advlor−cpa−b

SE (A)
)

Background 53

Because Pr[Guess ⇒ true] is the condition where the adversary wins the

game G0. So, that

Advlor−cpa−b
PR (A) = 2 · Pr[GA

0 ⇒ 1]− 1

G1. In this game, we assume E is pseudorandom function with a PRF advantage

Advprf
E (B), and we now use the random values rather than E, so that the

difference of the advantages of G0 and G1 is:

Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1] = AdvprfE (B)

Pr[GA
0 ⇒ 1] = Pr[GA

1 ⇒ 1] + AdvprfE (B)

K
$←− {0, 1}k, b $←− {0, 1}, S ← ∅

for i← 1...q do

(Mi[0],Mi[1])← A(r, C1, ..., Ci−1)

mi[1]...mi[n]←Mi[b]

ci[0]
$←− {0, 1}n

for j = 1 to n do

P ← c[i− 1]⊕m[j]

if P /∈ S then

T[P]
$←− {0, 1}n

end if

c[i]← T[P]

end for

S ← S ∪ {P}
end for

d← A(r, C1, ..., Cq)

return (b = d)

G2. In this game, we modify the game G1 and define the event bad ← true

whenever there is collision on P ← c[i − 1] ⊕m[j]. In game G2, whenever

there is collision on P , we will use the consistent value (previously computed)

as P .

Pr[GA
1 ⇒ 1] = Pr[GA

2 ⇒ 1]

54 Background

K
$←− {0, 1}k, b $←− {0, 1}, S ← ∅

for i← 1...q do

(Mi[0],Mi[1])← A(r, C1, ..., Ci−1)

mi[1]...mi[n]←Mi[b]

ci[0]
$←− {0, 1}n

for j = 1 to n do

P ← c[i− 1]⊕m[j]

c[i]
$←− {0, 1}n

if P ∈ S then

bad← true

c[i]← T[P]

end if

T[P]← c[i]

end for

S ← S ∪ {P}
end for

d← A(r, C1, ..., Cq)

return (b = d)

G3. The game G3 is exactly the same as game G2, except that in game G3,

whenever there is collision on P , the game stops and the adversary wins.

K
$←− {0, 1}k, b $←− {0, 1}, S ← ∅

for i← 1...q do

(Mi[0],Mi[1])← A(r, C1, ..., Ci−1)

mi[1]...mi[n]←Mi[b]

ci[0]
$←− {0, 1}n

for j = 1 to n do

P ← c[i− 1]⊕m[j]

c[i]
$←− {0, 1}n

if P ∈ S then

bad← true

end if

T[P]← c[i]

end for

S ← S ∪ {P}
end for

d← A(r, C1, ..., Cq)

return (b = d)

So that, Pr[GA
2 ⇒ 1] is the same as Pr[GA

3 ⇒ 1] until bad← true.

Pr[GA
2 ⇒ 1] ≤ Pr[GA

3 ⇒ 1] + Pr[GA
3 sets bad]

And, because G3 only uses the random values as the values of c[i], then the

probability of the adversary wins the game is

Pr[GA
3 ⇒ 1] =

1

2

Background 55

G4. In game G4, we directly set the value of P as a random value. We argue

that game G4 is the same as G4 because in G3, P ← c[i− 1]⊕m[j] while

c[i]
$←− {0, 1}n.

K
$←− {0, 1}k, b $←− {0, 1}, S ← ∅

for i← 1...q do

(Mi[0],Mi[1])← A(r, C1, ..., Ci−1)

mi[1]...mi[n]←Mi[b]

ci[0]
$←− {0, 1}n

for j = 1 to n do

P
$←− {0, 1}n

c[i]
$←− {0, 1}n

if P ∈ S then

bad← true

end if

end for

S ← S ∪ {P}
end for

d← A(r, C1, ..., Cq)

return (b = d)

So, that:

Pr[GA
3 sets bad] = Pr[GA

4 sets bad]

The probability of the collision on a set of n-bits random values for q queries

should be less than q2

2n+1 , so that

Pr[GA
4 sets bad] ≤ q2

2n+1

Advlor−cpaPR (A) = 2 · Pr[GA
0 ⇒ 1]− 1

≤ 2 ·
(
Pr[GA

1 ⇒ 1] + AdvprfF (B)
)
− 1

≤ 2 ·
(
Pr[GA

2 ⇒ 1] + AdvprfF (B)
)
− 1

≤ 2 ·
(
Pr[GA

3 ⇒ 1] + Pr[GA
3 sets bad] + AdvprfF (B)

)
− 1

≤ 2 ·
(
1

2
+ Pr[GA

4 sets bad] + AdvprfF (B)

)
− 1

≤ 2 ·
(
1

2
+

q2

2n+1
+ AdvprfF (B)

)
− 1

≤ 2 · AdvprfF (B) +
q2

2n

56 Background

2.4.2.5 Simulation-based Security Proof

In the simulation-based security proof, we need to show that the attacker who

interacts with a simulator in the ideal world is indistinguishable from the challenger

in the real world [101]. The simulator is assumed to be in ideal world where the

scheme is secure by definition, so that by definition the simulator cannot attack

the system, and has no access to the private information. If we can show that the

simulator can interact with the attacker without being detected by the attacker,

and exploit the attacker (i.e., treats the attacker as a sub-routine) to solve the

difficult problem, we can prove the security of the scheme.

For example, to prove the security of a signature scheme, we need to prove that

if the attacker A can forge the signature in EUF-CMA, then we show that there

exists a simulator B that can simulate A’s environment without detected by A and

then by using A’s outputs, the simulator B can solve the RSA problem. Because

the simulator does not have access to the private information in the RSA signature

and we believe that RSA problem is hard, this is a contradiction.

In the following, we provide an example of the proof of the Full Domain Hash

(FDH) signature [102]. In the FDH, for the RSA public and private key pair

(e, n) and (d, n), we compute hash h = H(m), and produce the signature σ ≡ hd

mod n. To verify the signature σ, we compute h = H(m) and check whether

σe ≡ h mod n. The basic assumption is the hash function H maps the inputs

uniformly into the full domain of ZN in the RSA function.

In the EUF-CMA model, the attacker A is given access to the random oracle H

and the signing function Sign, simulator B should be able to simulate both of the

random oracle and the signing function without having better information than

A. A should produce a valid forgery mi∗ and ji∗ and σi∗ and we need to show

how B uses A’s outputs to solve an RSA problem. To prove security of FDH, we

shows how B simulates these functions without having access to the RSA private

keys.

Setup. The simulator B is given the signer public key (e,N), but B has no access

to the private key d. The simulator B is also provided with y and later B

should solve the RSA problem by computing yd mod N from A’s outputs.

The simulator B starts by giving the forger algorithm A the public key (e,N).

Background 57

Answering Signature Queries.

To answer the signature queries for the message mi, B sets a random signature

xi and sets H(mi) = xe
i mod N . The simulator should keep the pair of

messages and the hashes, so that the values can be retrieved later.

Answering H Queries. To answer the hash queries for the message mi, B picks

a random xi

1. with a probability p, the simulator returns H(mi) = xe
i mod N

2. with a probability 1− p, the simulator returns H(mi) = y · xe
i mod N

After answering the queries, the simulator should also keep the pair of mes-

sages and the hashes.

Output.

To forge the signature, the forger outputs a signature message pair (σ?
i ,m

?
i)

that has not been queried before. With probability 1−p, the H(m?
i) = y ·(x?

i)
e

mod N and σ?
i ≡ (y · (x?

i)
e)d ≡ yd · x?

i mod N . The simulator can easily

output yd ≡ σ?
i /x

?
i .

From the above argument, we show that if there exists a forger A who breaks our

signature scheme then there exists a simulator B that can solve the RSA problem.

Chapter 3

An Integrity Scheme for the

Provenance Recording System

3.1 Introduction

Provenance of an object is the documentation about the origin and how to pro-

duce the object [1, 18, 32–35]. It describes the causal relationship between objects,

processes and the actors that control the processes and objects. For example, in

a hospital, the provenance describes the causal relationships between the objects

(i.e., medical records, medical test results), the processes that produce the objects

(i.e., a medical checkup, medical diagnosis) and the actors that control the pro-

cesses (i.e., the physicians). In grid and cloud systems, the provenance records

the source of the objects and the processes that affects the condition of objects

produced in the system. The provenance is important to verify the quality of the

processes and objects.

The provenance can be explicitly recorded and stored along with the objects in the

same or different file systems/databases. It can also be later inferred, for exam-

ple, by asking the actors that control the processes or by checking the computer

logs where the processes are executed. Recently, there is much interest in explicit

provenance recording. Many implementations represent the provenance as a di-

rected graph where the nodes represent the entities (i.e., objects, processes and

actors) and edges represent the causal relationship between entities [42, 43].

59

60 An Integrity Scheme for the Provenance Recording System

In a distributed system, the provenance is normally stored in a persistent storage

(for example a database or a file system), where an interested user can query the

provenance to verify the quality of objects produced in the system. Ideally, the

storage and the computing environment should be trusted. However, with current

technology in computer and network security, it is difficult (if not impossible) to

implement a fully trusted storage and computing environment.

3.1.1 Motivation

A provenance recording system receives the assertions submitted by the process

executors and keeps the assertions to be accessed later by the auditors. The

collection of the assertions (i.e., the provenance) confirms which process executors

that should be responsible to the processes and outputs. It can also confirm that

some process executors are responsible for faulty processes that produce erroneous

outputs. The faulty processes and outputs may cause disadvantages to the process

executors who are responsible to the processes and outputs, because the parties

who are affected by the outputs of the faulty processes may send complaints to

the process executors.

The process executors may got reward (be respected) for high quality outputs, but

they also may get disadvantages (penalty) if they produce low quality outputs.

At the time of submission, the process executors may have no idea about the

faulty outputs, and only realized later after the submission. This is a normal

characteristic of the human being and also processes designed by human (including

the processes that are executed by machines/computers). Even after careful design

and execution of a process, there are possibilities of errors that can only be detected

later (we may refer to many recall of the products of large/established companies

because of defects in the products).

The honest process executors will take responsibility to the faulty processes and all

of the consequences (including bad reputation), and try to improve their credibility

later. However, the malicious ones may try to avoid the responsibility by trying

to hide the provenance of the faulty processes. The malicious process executors

attack the provenance which was previously submitted by them to change the

facts about the faulty processes that are recorded in the provenance by updating

or deleting the provenance. In a distributed processes, the attack may affect other

An Integrity Scheme for the Provenance Recording System 61

process executors (the honest ones), because the malicious process executors may

try to change the responsibility of the faulty processes to the honest ones.

There are some integrity and confidentiality mechanisms that can be employed

to protect the provenance. The basic integrity mechanism is the digital signature

that proves the originality of the documentation. It detects unauthorized updates

to the provenance (i.e., updates by the person who is not authorized to sign the

documentation). It also prevents repudiation by the signer. However, the signature

cannot detect malicious updates by an “authorized” person. That is the person

who owns the private key for signing the documentation.

This attack (“authorized” update) is viable because normally the parties who are

interested in the provenance do not have prior knowledge or copy of the prove-

nance. So, they do not have any evidence about the malicious but “authorized”

update that has been made to the provenance. It is not efficient and also costly

for each user (i.e., the auditor) who is interested in the provenance to make a copy

of the provenance promptly after the provenance is submitted to the database. It

is also possible that the interested users do not have any previous access to the

provenance system, so the users could not make any copies of the provenance.

We show some examples of this attack. The first example is in the process of

audit by an external auditor in a company where normally the documentations

of processes are kept by the company. When the external auditor inspects the

company, without security mechanisms that detect the alteration, the company can

re-create a fresh and verifiable provenance. The external auditor cannot detect the

alteration because it is signed by authorized parties (if the provenance is created

by the people outside the company, they can also collude to alter the provenance).

In the context of computer systems, an example is when a user wants to verify

the quality of outputs of a grid system in other organizations where the user does

not have access previously. Without a secure provenance system, the user does

not have a choice other than believing that the provenance is correct and is not

altered by “authorized” person in the organization. In the context of the medical

record, the medical data of a patient is normally stored in the health care provider

of the patient (i.e., the hospital). The hospital can easily change the data without

the patient’s consent (although the laws in many countries mandate that the data

should be under the patient control).

62 An Integrity Scheme for the Provenance Recording System

3.1.2 The Problems of “Inconsistent Claims” and “Incon-

sistent Interpretations”

Due to its liquidity, the digital form of provenance is vulnerable to security prob-

lems because it can be easily copied, changed, added or deleted by anybody who

has access to (either legal or illegal) the provenance database. The alteration of the

provenance record may cause the integrity problem we call “inconsistent claims”

and the “inconsistent interpretations” problems.

For example in Figure 3.1, Process Executor 2 uses the output of the Process

Executor 1, so that in this case, the output of the Process Executor 1 affects the

output of the Process Executor 2. Because the Process Executor 1 is responsible

to the data used by Process Executor 2, the Process Executor 1 should also be

responsible in part to the data output produced by Process Executor 2.

Figure 3.1: Provenance as a proof of responsibility of each process executor

If both process executors are honest, both of them will have consistent statements

in their provenance. However, if one of them is malicious, there will be inconsistent

claims between them. For example, Process Executor 2 says that it uses an output

O′0 which was produced by Process Executor 1, while Process Executor 1 may say

that it never produce O′0, its output was O′1, not O′0. An auditor cannot easily

decide which process executor is honest, because there are two possibilities:

1. Process Executor 1 is malicious. It wants to avoid the responsibility to

its previous output O′0 by updating the assertion (i.e., assertion about its

output), and also the output O′0 to O′1 so that he/she is not responsible to

the output of Process Executor 2.

An Integrity Scheme for the Provenance Recording System 63

2. Process Executor 2 is malicious. He/she does not use the output O′0 produced

by the Process Executor 1, but claims that he/she uses an output produced

by Process Executor 1.

Figure 3.2: Signature Chain

The problem of “inconsistent interpretation” occurs when two process executors in

the end of the chain collude to update the provenance, so the auditor has different

interpretation to the provenance after update. For example in the above example,

the Process Executor 1 and Process Executor 2 collude to update the provenance,

so the provenance describe different assertions from the the previous/deleted ver-

sions. This attack cannot be prevented by the hash/signature chain because the

integrity checking will conclude the provenance is plausible and no detected prob-

lem.

3.1.3 Contributions

In this chapter, we propose the method for the integrity mechanism for the prove-

nance graph. Our method to protect the integrity of the provenance by employing

a Trusted Counter Server (TCS) that provides a unique label which is consecutive

counter for each provenance assertion in a group. By combining the counter with

the signature chaining we prove that we can guarantee the security of the prove-

nance to the consistency problems namely inconsistent claims and inconsistent

interpretation attacks.

Our work extends the signature chain proposed in [5, 40, 41, 103, 104]. In our

method, we employ the linking mechanism in a graph structure rather than a

chain structure. We also include another layer of the integrity mechanism by em-

ploying a Trusted Counter Server (TCS). The TCS is different to a timestamping

64 An Integrity Scheme for the Provenance Recording System

service, rather than providing the creation time for each provenance node, the TCS

provides a counter number to each provenance node. In our proposed scheme, the

TCS can keeps the number of nodes that can be used to detect deletion, and find

which nodes that have been deleted by simply enumerating the existing nodes and

find the missing counter. By using this method, we can also identify the collusion

of some process executors to change some nodes that cannot be detected by the

standard signature chain.

3.2 Related Work

A solution to the integrity of the provenance is by storing the provenance in a

trusted storage, for example by using Write Once Read Many (WORM) stor-

age. A CDROM device is an example of WORM implementation where the data

cannot be updated after they are written to the CDROM because of physical char-

acteristics and the method of data writing of the CDROM. However it may not

convenient to use the WORM storage and also it may need a large storage to store

all provenance and data which is not applicable in many situations because of the

cost and performance. It is desirable to have more efficient solution in term of the

trusted storage requirement.

Two methods to protect integrity of a sequence of digital documents by digital

timestamping have been proposed by Habert et al. [105]. The first method employs

a Trusted Time-Stamping Service (TSS) that issues signed timestamps and also

links two timestamps requested consecutively. The TSS links two timestamps by

storing the hash value of the first timestamp in the second timestamp. Any changes

to the first timestamp can be detected by checking the hash value in the second

timestamp. To produce a fake timestamp, the TSS needs to collude with all clients

who are requested timestamps after the fake timestamp. The second method uses

the digital signature to distribute trust among many clients. A client who needs to

timestamp a document should ask k random other clients to sign the timestamp.

The list of the other clients is generated by a pseudorandom generator that uses

hash of the document as a seed. Because the other users are chosen randomly it

is very unlikely that they collude to create a fake timestamp. This second method

does not employ any TSS but assumes that the users can ask the signatures from

the other users.

An Integrity Scheme for the Provenance Recording System 65

Client

x2

x1 x2 x3 x4 x5 x6 x7 x8 x9

Trusted
Repository

rt

z4

z3

z2
h(x1,x2)

rt

z1

Figure 3.3: A simplified model of Habert and Stornetta’s sceme

Buldas et al shows an improved hash-chain by using a trusted storage [106, 107].

To implement the timestamping scheme, we need to assume the existence of a

write only repository R and receive data from server S in an authenticated man-

ner. The timestamping is divided into many rounds. In a round t, server S

receives timestamping requests x1, ..., xm from its clients. After the round is over,

S computes an aggregate hash rt = Gh(x1, ..., xm). For example, S may compute

rt = h(x1, h((x2, x3), x4)) and stores (t, rt) in R.

For each request x, S issues certificate c = (x, t, n, z), where t is the current

time value, n is an identifier n = n1n2...nl ∈ {0, 1}l, and z is a sequence z =

(z1, z2, ..., zl) ∈ ({0, 1}k)l. In Figure 3.3, the certificate for x1 is (x1, t, 0000, (z1, z2, z3, z4)),

where z1 = x2, z2 = h(x3, x4), z3 = h(h(x5, x6), x7), and z4 = h(x8, x9).

To check whether (x, t, n, z) is an authentic certificate, the verifier computes a

sequence y0, y1, ..., yl where y0 = x, and

yi =

{
h(zi, yi−1 if ni = 1

h(yi−1,zi if ni = 0

and check whether yl = rt by querying (t, rt) from R.

66 An Integrity Scheme for the Provenance Recording System

Hasan et al. [5, 40, 41] show a threat model for provenance and the method to

prevent/detect the attacks associated with the threats by using digital signature,

checksum and broadcast/threshold encryption. The provenance is modeled as a

chain so the method cannot be applied directly to the graph model. Their method

to protect integrity of the provenance chain is by signing each provenance record

in the chain and including a checksum of the previous record in the current record

to maintain the integrity of the records and the chain structure. They assume that

no collusion of all users (the people who write provenance). Aldeco-Pérez et al.

and Syalim et al. proposed similar method to secure provenance [103, 104] and

applying the hash/signature-chain to the graph model.

Hash (d1)

d2

Hash (d2) Hash (d3)

d1 d3 d4

Figure 3.4: Hash Chain

The hash/signature chain as proposed in [5, 40, 41, 103, 104] works as follows (see

Figure 3.4). Each process executor should sign provenance and data created by

him/her. Whenever a Process Executor 2 uses the output of Process Executor 1,

Process Executor 2 should keep a proof by also recording the hash/signature of

the provenance and data created by Process Executor 1 so that Process Executor 1

cannot reject claims made by Process Executor 2 (see Figure 3.2) if the signatures

are correct. However, the hash/signature can only proof the claim if we keep the

output or provenance created by Process Executor 1 in a trusted storage. In an

untrusted environment, Process Executor 1 may easily reject the claim by updating

the output and data.

The hash/signature chain can only show whether the provenance is “plausible”,

that is whether it is acceptable or not acceptable as the processes documentation

[5]. If the hash/signatures are not consistent, for example Process Executor 1

updates the provenance and data, the auditor can only decide that the provenance

is not acceptable, but the auditor cannot decide which process executor is honest.

An Integrity Scheme for the Provenance Recording System 67

Even if Process Executor 2 keeps the hash/signature of the provenance and data

created by Process Executor 1, if Process Executor 1 updates the provenance and

data, the hash/signature cannot prove the claim without the existence of the

original provenance and data. Hash/signature chain also cannot detect updates

to the latest provenance and data. A malicious process executor can also abuse

the provenance by simply deleting the provenance and data.

d2d1 d3 d4

Timestamp (d1) Timestamp (d2) Timestamp (d3) Timestamp (d4)

Trusted Timestamping
Service

timestamp timestamp

timestamp
timestamp

Figure 3.5: Trusted Timestamping Service

Another method is by using a secure timestamping service. Gadelha et al. imple-

ment a simple time-stamp mechanism for protecting the provenance [108] in a grid

system. In their scheme, the provenance is signed by the data owner and hash of

the signature is sent to a Time-Stamp Authority (TSA) that appends a timestamp

to the hash. The hash and the timestamp is signed by the TSA and send them

back as a provenance record receipt. This scheme can prevent repudiation, but it

can not detect a deletion and update to the provenance. A data owner can simply

delete the provenance without being detected or update the data by requesting

new correct timestamp. The timestamp cannot also prove the relationship be-

tween the data other than proving the a data is created after another (by checking

their creation times in the timestamps).

68 An Integrity Scheme for the Provenance Recording System

3.3 Preliminaries

3.3.1 Modeling the Security of the Provenance

In the integrity attack model, we are concerned to the type of attacks to the prove-

nance by updating/deleting the provenance assertions. We define the integrity

problem of the provenance by defining the attacks into two attack models: (1)

inconsistent claim attack, (2) inconsistent interpretation attack. An inconsistent

claim attack is an attack that cause the claims between at least two process execu-

tors do not match each other, and the auditor cannot decide which one is honest.

An inconsistent interpretation attack cause different interpretation between the

different auditor that access the provenance at different times.

In the Oxford dictionary, consistent is defined as “acting or done in the same

way over time, especially so as to be fair or accurate” [27]. It is very important

to keep the consistency of the provenance, otherwise the judgment made by the

auditor can be invalid over time. As a history record, many researchers argue that

the provenance should be immutable (no change is allowed in the history records)

[4, 18, 32, 33, 44, 48, 109] the provenance represents the facts in the past.

We describe the consistency problem in the provenance by using the following

scenario: An auditor ADT1 checks the provenance at time t1 and make a decision.

Another auditor ADT2 also checks the provenance at time t2, and makes a decision.

A consistent provenance should provide the same view for either ADT1 and ADT2.

Definition 3.1. The provenance is consistent if the auditors ADT1 and ADT2

have a consistent view of the provenance on any different times.

We show that the consistent provenance should be immutable. If we allow any

updates, the auditor will get different interpretation over time.

Theorem 3.2. A consistent provenance should be immutable.

Proof. The proof by contradiction: if the provenance is mutable, and we allow

changes, then the provenance can have different representation at different time,

which is by definition is not consistent.

We model the inconsistent claims attack as a game played by the attacker and the

auditor. In the game, the challenger is the auditor needs to detect whether the

An Integrity Scheme for the Provenance Recording System 69

provenance assertions are consistent or not. Before the game, the auditor may not

have access to the provenance assertions. We define the attacker as one or more

malicious process executors who want to avoid responsibilities for the processes.

The attackers can access, update and delete all provenance assertions and data

that were created by them. The attacker has access to a signature service for one

of the process executors. The game is described in the Algorithm 5.

The inconsistent interpretation claims attack has a slight different characteristic

where the attacker has access to the signing oracle of all process executors (de-

scribed in Algorithm 5).

3.3.2 Definition of the Provenance

We define the provenance as a graph that can be recorded as a collection of asser-

tions. A provenance of process that takes a collection of inputs {Ii}, produces an

output O, executed by process executor identified by Cid is stored in a database

PS in the forms of assertion PAsrt as follows:

PAsrt =ai|ri
ai =〈Cid, P id, A, {ref(Ii)}, ref(O)〉

ri ={Cid′i, P id′i}

where:

Cid = the ID of the process executor

Pid = the ID of the provenance node

A = assertion about process execution

ref(Ii) = a reference to an input of the process

ref(O) = a reference to the output of the process

Cid′i = the ID of the process executor that produce the input ref(Ii)

Pid′i = the ID of the provenance of the process that produce the input ref(Ii)

The provenance is the collection of PAsrt for a set of data outputs. The collection

of PAsrt can be depicted as a graph where the processes represent the nodes and

the references to the other processes represent the edges.

70 An Integrity Scheme for the Provenance Recording System

Algorithm 5: Inconsistent Claims—Interpretation Attacks Game

D,P, σ ← GetAll()/* Get all data and provenance */
Attack(D,P, σ, Ck|C)/* Inconsistent Claims: Attacker has access to only one
process executor signing oracle, Inconsistent Interpretation: Attacker has
access to all process executor signing oracle */
return V er(D,P, σ, C)
function Attack(D,P, σ, Ck|C)
loop

Choose any di, pi, σj

Create d′i, p
′
i

σ′j ← SigningOracle(d′i, p
′
i, Ck)

Update(di, d
′
i, pi, p

′
i, σj, σ

′
j)

end loop
end function
function Update(di, d

′
i, pi, p

′
i, σj, σ

′
j)

Delete(di, pi, σj)
Add(d′i, p

′
i, σ
′
j)

end function
function GetAll()
return D,P, σ
end function
function Add(di, pi, σj)

Insert di to DB
Insert pi|σj to PS

end function
function Delete(di, pi, σj)

Delete di from DB
Delete pi|σj from PS

end function
function SigningOracle(di, pi, Ck)
σi ← sigCk

(di, pi)
return σ
end function
function V er(P,D, σ, C)

/* Check the consistency of the provenance */
return 0|1 /* return 1 if the provenance is consistent, 0 otherwise */
end function

An Integrity Scheme for the Provenance Recording System 71

3.4 Proposed Scheme

3.4.1 Extended Hash/Signature Chain

We extend the hash/signature chain to allow the chaining to the graph form rather

than the chain form originally the hash/signature chain is used. First, we need to

keep the hash of the data in the provenance:

PAsrt =ai|ri|Int(O)

ai =〈Cid, P id, A, {ref(Ii)}, ref(O)〉

ri ={Cid′i, P id′i}

Int(O) =Hash(O)

To implement the extended hash/signature chain we need to also keep the chain to

the parent nodes. So, we record each provenance assertion PAsrt in the following

format (RCert is certificate released by the Trusted Counter Server (TCS), we

will describe RCert in the following section):

PAsrt =ai|ri|Int(O)|Int(ri)

ai =〈Cid, P id, A, {ref(Ii)}, ref(O)〉

ri ={Cid′i, P id′i}

Int(O) =Hash(O)

Int(ri) ={SignCid′(PAsrt’),RCert’}

The complete provenance assertion SPAsrt is recorded as follows:

SPAsrt =PAsrt, Int(PAsrt)

PAsrt =ai|ri|Int(O)|Int(ri)

Int(PAsrt) =SignCid(PAsrt),RCert

72 An Integrity Scheme for the Provenance Recording System

3.4.2 Labeling Each Assertion with Unique Counter

We need to have a trusted entity called the Trusted Counter Server (TCS). The

TCS receives inputs the group number G and SignCid(PAsrt) that is a signature

on PAsrt by the process executor Cid.

For a group number G of the provenance nodes, the TCS assign a unique counter

number R ∈ {1, 2, ...} to each provenance node and keeps the latest counter num-

ber N for the group in a trusted storage (see Figure 3.6).

Figure 3.6: Trusted Counter Server (TCS)

The certificate issued by the TCS for a provenance assertion PAsrt created by

process executor Cid is defined as follows:

RCert =〈G,R, SignTCS(SignCid(PAsrt), G,R)〉 (3.1)

3.4.3 Secure Provenance Recording Protocol

In the secure provenance recording protocol, for each record, we should ask the

counter to the TCS. An implementation is by employing the Provenance Store

Interface to request the TCS for each assertion submitted by the process executor.

Figure 3.7 shows the parties that are involved in the provenance recording and

auditing. We include a trusted party the Trusted Counter Server whose task is to

proved the trusted counter for each provenance assertion.

An Integrity Scheme for the Provenance Recording System 73

Process Executor

Database
System

Interface

Provenance
Store

Database
System

Auditor

provenance

data input/output

data
input/
output

Provenance
Store

Interface

Trusted
Counter
Server

refs to data
input/output

Execution
Manager

provenance

RCert

Figure 3.7: A Model of Secure Provenance System

Below, we describe the steps that are executed by the parties in a session of secure

provenance recording. The protocol consists of five groups of steps as follows:

1. the Execution Manager invokes the process by providing references to inputs

{ref(Ii)}. The process executor retrieves the inputs from DB through its

interface DBI.

EM → C : Execute(Qid, {ref(Ii)}, {Pid′i})

2. The Process Executor retrieves the inputs from DB through its interface

DBI. The Process Executor executes the process stores the output O to the

DB and sends back the reference of the output (ref(O)) to the Execution

Manager.

74 An Integrity Scheme for the Provenance Recording System

C → PSI → PS : Retrieve({ref(Ii)}, {Pid′i})

PS → PSI → C : 〈ri|Int(ri)〉|false

C → DBI → DB : {ref(Ii)}

DB → DBI → C : {Ii}

C → DBI → DB : ref(O), O

DB → DBI → C : success|fail

3. Provenance Recording

The Process Executor creates the provenance assertion PAsrt and sends to

PSI.

C → PSI → PS : SubmitPAsrt(PAsrt, SignCid(PAsrt))

4. The PSI checks the signature SignCid(PAsrt), whether it has been submitted

before to prevent replay attack. The PSI asks RCert that consist of group

number G and counter R that is increased by one for each group to the

Trusted Counter Server.

PSI → TCS : G, SignCid(PAsrt)

TCS → PSI : RCert = G,R, SignTCS(SignCid(PAsrt), G,R)

SPAsrt =PAsrt, Int(PAsrt)

Int(PAsrt) =SignCid(PAsrt), RCert

5. The PSI submits SPAsrt to PS. The Process Executor reports to the Exe-

cution Manager whether the whole process is successful or not.

An Integrity Scheme for the Provenance Recording System 75

PSI → PS : Submit(SPAsrt)

PS → PSI → C : success|fail

C → EM : Report(Qid, ref(O), Cid, P id, success|fail)

3.5 Security Analysis

We need to prove that this scheme is resistant to inconsistent claims and incon-

sistent interpretation attacks.

Theorem 3.3. A set provenance of the assertions in a group G is consistent, that

is no successful inconsistent claims and interpretation attack, if the number of the

assertions is R and no missing counter.

Proof. Proof by contradiction, assume that the consistent provenance in a group

G consists of n provenance assertions P = {P0, P1, ..., Pn−1}. To do an inconsis-

tent claim or an inconsistent interpretation attack, in the inconsistent claim/inter-

pretation attack game, the attacker should create a set of provenance assertions

P ′ = {P ′0, P ′1, ..., P ′n−1} where at least one of them has been updated using the

same counter. Because the counter for a group cannot be generated more than

one times, it is a contradiction.

Theorem 3.4. By using the above scheme, if the signature scheme Sign is secure

and TCS does not collude with any other parties, the auditor can always detect

any changes to the provenance nodes.

Proof. We should show that any changes and deletions to the provenance as-

sertions can be detected. We show that it is not possible to have a consistent

provenance assertions after any alteration, or deletion of the provenance graph:

1. To alter the content of PAsrt consistently, an attacker should also up-

date Int(PAsrt). If the process executor Cid corrupts and re-creates the

signature SignCid(PAsrt), the alteration can be detected from RCert on

Int(PAsrt). The process executor can submit new provenance to get new

correct R from the TCS and deletes the previous one, but the TCS will give

76 An Integrity Scheme for the Provenance Recording System

a new number R so that the total number of nodes will be less than the

number recorded by the TCS.

2. To delete a node consistently, deletion causes the number of nodes to de-

crease, so that the total number of nodes is not the same as N .

Corollary 3.5. By using the above scheme (described in the section 3.4.3), if all

provenance assertions PAsrt in group G is consistent, for each node whose counter

R 6= 1 and R 6= N , there are two other nodes submitted by PO whose counters are

R + 1 and R− 1.

Proof. Because an assertion cannot be deleted without being detected, each as-

sertion has a unique counter number occupying all numbers from 1 to N where

N is the number of nodes in group G. So that for any number of counter R 6= 1

(counter for the first node) and R 6= N (counter the last node) there will be other

nodes whose counters are R + 1 and R− 1.

3.6 Storage Requirements for the Integrity Schemes

Each assertion stores:

SPAsrt =PAsrt, Int(PAsrt)

PAsrt =ai|ri|Int(O)|Int(ri)

Int(PAsrt) =SignCid(PAsrt), RCert

where

An Integrity Scheme for the Provenance Recording System 77

PAsrt =ai|ri|Int(O)|Int(ri)

ai =〈Cid, P id, A, {ref(Ii)}, ref(O)〉

ri ={Cid′i, P id′i}

Int(O) =Hash(O)

Int(ri) ={SignCid′(PAsrt′), RCert′}

The size of Int(O) and Int(PAsrt) are constant for each assertion, while the size

of Int(ri) depends on the number of inputs. For n number of inputs, each node

needs additional storage for the integrity scheme Size(Int(O))+Size(Int(PAsrt))+

n(Size(Int(ri))). If the size of Int(O) = Size(Hash), the size of Int(PAsrt) =

Size(Sign) + Size(RCert), the storage for the integrity scheme is Size(Hash) +

(n + 1)(Size(Sign) + Size(RCert)).

3.7 Beyond the Counter: Certificate of Rela-

tionships

The malicious process executors may remove some or all parts of the nodes to avoid

the responsibility to the deleted nodes. Removing all nodes is a vandalism that

can not be solved without storing all provenance in a trusted storage. Removing

some parts of the provenance assertions cause problems to the other (including

the honest) process executors we call “indirect relationships” problem.

For example, Process Executor 3 uses an output produced by Process Executor 2,

while Process Executor 2 uses an output produced by Process Executor 1, so that

Process Executor 3 has indirect relationship to Process Executor 1. Rather than

changing the provenance, Process Executor 2 may also delete the provenance to

avoid responsibility. If an inhonest Process Executor 2 deletes its provenance, the

auditor cannot confirm the indirect relationship between Process Executor 3 and

Process Executor 1 even if both of them are honest. By having the counter, we can

extend the signature chain to record more relationship by having the certificate of

the relationships.

78 An Integrity Scheme for the Provenance Recording System

3.7.1 Including Certificate of Relationships

We can improve the resiliency of the counter mechanism by including the certificate

of the relationships as follows. The TCS issues a u bits certificate S for each

provenance nodes in the group G that confirms the relationships with the parents

with counter numbers R − u,R − u + 1, ..., R − 1. For u bits of certificate S, the

value of the bit (R− u+n)th bit is 1 if it has relationships with the node number

R− u + n for 0 ≤ n < u, otherwise its value is 0.

For example, a node with the counter number 9 has parents nodes with the counter

numbers 6 and 7. The node number 6 has parents nodes numbers 3 and 4, and

the node number 7 has parents nodes numbers 5. If we use a 4 bits certificate of

relationships (in implementation, we use larger bits for example 64 or 128 bits),

the TCS will assign 0110 to node number 6. Because for the node with R = 6, we

record the relationships to nodes numbers 6−4+0, 6−4+1, 6−4+2, 6−1 = 2, 3, 4, 5

in S. In this case the value of S is 0110, it means that node with number 6 has

direct/indirect relationships with nodes number 3 and 4. The node with counter

number 7 is assigned u = 0010, because S records the relationships with the nodes

numbers 3, 4, 5, 6 and it has relationships with the node number 5.

The TCS assigns S for nodes with counter number 9 to record the relationships

of node number 9 with nodes number 5, 6, 7, and 8. The TCS assigns value S

for node number 9 by combining all values of S on the parents (the nodes with

number 6 and 7). First, the TCS records S by checking the relationship with the

parent. Because the parents are 6 and 7, the value of S = 0110. Then, the TCS

computes the value of S in each parent by left sifting the S at the parent R− R′

bits where R′ is the counter on the parent, for example for the parent 7 whose

S = 0010, the TCS shift left 9−7 = 2 bits to get 1000, and for the parent 6 whose

S = 0110, the TCS shift left 9−6 = 3 bits to get 0000. Finally, the TCS combines

them with a binary OR operation to get OR(0110, 1000, 0000) = 1110.

We update the original RCert as follows:

RCert = 〈G,R, S, SignTCS(SignCid(PAsrt), G,R, S)〉

An Integrity Scheme for the Provenance Recording System 79

3.7.2 How to recover the missing nodes

By using the certificate of the relationships, the auditor can detect any deletion

to the provenance graph. If there are some missing nodes, the auditor still be able

to decide the causal relationships between some nodes by checking the certificate

of relationships issued by the TCS. The certificate of relationships include u bits

S that record the index R− u,R− u + 1, ..., R for each node to record the causal

relationships to u numbers of the previous nodes. After a deletion, the auditor can

recover indirect relationships between existing nodes. For a better recoverability,

we need to use large size of S.

We should know that a node is updated from the missing counter, however we

cannot detect which one is deleted. There are some cases:

1. Check each nodes whose counter larger than the missing nodes and check

the relationship in the node. If we find the missing counter in the certificate

of relationship then FINISH. In this case, the provenance is still usable, and

we have the possibility to recover.

2. If the missing counter is not found, the missing node should include the leaf

nodes. It renders the provenance as INVALID. The provenance cannot be

recovered.

3.8 Discussion: Public Key Infrastructure and

Replay Attack

To implement the integrity scheme, we need to assume that each Process Executor,

the PSI and the TCS have a pair of public key and private key, and each party can

retrieve the public keys certificates of the other parties securely. For example in the

case of application of provenance in a hospital, each actor (i.e., a physician) should

have a pair of public key and the private key. They can also access the public key

certificates (to access the public keys) of all other parties securely. We believe this

assumption is acceptable because of common usage of the public key system, for

example the Public Key Infrastructure (PKI) or alternatively decentralized trust

management with the web of trust in PGP [110, 111].

80 An Integrity Scheme for the Provenance Recording System

For the integrity checking, in the TCS we can store information other than the

number of nodes, for example the list of the provenance nodes and also hashes/sig-

natures of all nodes. However, this alternative has some drawbacks. The first is

we need more storage to store the information because for each node the TCS

stores the hashes and signatures. The second drawback is in integrity checking,

the auditor should download all of the integrity data from the TCS while using

our method, the auditor only needs to ask the TCS one time to ask the number N

(to check a deletion in integrity checking no. 3). The last drawback is the security

mechanism depends only on the TCS while in our model, the security mechanism

is distributed among many parties: the Process Executor, the PSI and the TCS.

We also assume that a replay attack can be prevented by checking signature for

specific Cid. If the signature has been stored in the provenance store, the PSI

simply ignore the request.

3.9 Performance Analysis

In Appendix A, our experimental results show the feasibility of implementing

our scheme in the real systems. Our experimental results show that the process

executors need almost constant execution times (with small growth) to execute

the hash and sign functions, while the provenance store interface needs similar

(almost constant) execution times. Our experimental results also show that the

TCS needs constant execution times regardless the size of the provenance node.

Most of the execution times that are needed to submit the provenance nodes to

the provenance store are the times to send the nodes through the network.

3.10 Conclusion

In this chapter, we have discussed our proposed method to protect the integrity

of the provenance from the inconsistent claims and interpretations attacks. Our

method combines the hash, the signature chain and also employing a Trusted

Counter Server (TCS) to prevent the malicious attacker easily changes the prove-

nance (to do the inconsistent claims and interpretations attacks) without being

detected. We also performed some real experimentals to measure the performance

and show the feasibility of our method.

Chapter 4

An Access Control Model for the

Provenance Recording System

4.1 Introduction

Provenance is a documentation that describes the processes to produce the data.

The provenance is recorded in the form of assertions created by the process ex-

ecutors. The parties who have access to provenance assertions may infers some

information about the data. If the data is sensitive, the provenance of data may

be also be sensitive. But it is possible, the data is sensitive while the provenance

is not or vice versa.

For example, in the case of the letter of recommendation for application to uni-

versities, the data is sensitive while the provenance is not, because the student

who is recommended in the letter of recommendation does know the people who

wrote the letter of recommendation, but the student is not allowed to open the

envelope of the letter and read the letter [44]. In an employee’s performance re-

view, the provenance is sensitive while the data is not, because the employees are

encouraged to read the data produced by the employee’s review process, but they

are usually not told who had inputs in writing of the process.

To restrict the accesses to the sensitive provenance, the provenance system should

implement an access control mechanism. A simple approach to implement the

access control is by creating a program that checks access by any parties to each

provenance assertion and define policy for each combination of the party and the

81

82 An Access Control Model for the Provenance Recording System

assertion. The access control program should store all information and access

definition about each assertion and relationships between assertions. Using this

method, we can implement almost all policies. However, because there is no struc-

ture of the access, the administrator should decide the access policy manually for

each provenance assertion. It means that the security administrator should ana-

lyze the policy of all combinations of the parties who need to access the provenance

(i.e., the auditors) and the provenance assertions and define the policy for all com-

binations. For a large numbers of the parties and the provenance assertions, the

policy also need a large data space to store.

The access control models normally have frameworks that can be used to help

the administrator to define the access control policy consistently. A consistent

policy means that the policy applies a common rule for all policies defined in the

system. For example, in the Role Based Access Control (RBAC), each user should

be assigned to roles [112]. A group of access rights are assigned to permissions.

Access policies are mapping of the roles to the permissions. The access control

model can also include the security model to decide the policy. For example, in

the LaPadula Model, a lower security level of users cannot access access a higher

security level of objects cite.

The main principle that should be followed by the access control policy is the

minimum access policy principle. In this principle, the access is only granted to

the party that really needs the access to do his/her job. The access that is not

related to his/her job should be denied.

4.1.1 The Problem of Access Control to the Provenance

The main purpose of an access control system is to restrict the access by the

auditors to the provenance. The access control to the provenance has different

characteristics to the access control to the regular data.

In the provenance, the basic information is the assertion about process and origin

of data. When an auditor accesses the provenance, he/she may access information

about process to produce the data, the process executor, and also references to

the origin/source of the data. These information may be sensitive because it

describes the process to produce sensitive data or because the sources of the data

are sensitive. So, the access control system to the provenance should be able to

An Access Control Model for the Provenance Recording System 83

restrict accesses by considering the sensitivity of information about the process

and the origin/source of data.

When an auditor needs to check the processes that led to a data object, ideally,

for a full traceability, the auditor needs to have access to the process and all

direct/indirect origins. The access control system should be able to decide whether

the auditor is granted to trace all of the origin/source of the data. It is possible

that the access control policy states that parts of them are sensitive to specific

auditor. So, the access control system to the provenance should be able to define

the policies and implement access control to provenance by considering the direct

and indirect relationships in the provenance assertions.

4.1.2 Contributions

In this chapter, we propose a method to implement access control system to the

provenance by considering the sensitivity of information about the process and

the origin/source of data and also whether the auditor is allowed to access all

direct/indirect relationships. We define the access right we call TRACE, that is

rather than controlling access for each provenance assertion, we implement the

access collectively to the assertion that describes a data object and all assertions

that describe the origin of the data object. We combine TRACE with the multi-

label method for efficient access control definition to support more granularity of

the access restrictions. We propose the implementation by using trusted reference

monitor and also alternative implementation by using encryption.

4.2 Related Work

Braun et al. have discussed security issues on provenance [44] although they did

not propose any security system related to the issues. They identified some of

the security characteristics of provenance. The first is that provenance differs

from data in that it forms a directed acyclic graph (DAG), so we need to have

a security model for a directed acyclic graph (DAG). The second issue is that

sensitivity level of data and its associated provenance may be different. It is

possible that the provenance be more sensitive than data or vice versa. They also

show some situations where the provenance information has different sensitivity

84 An Access Control Model for the Provenance Recording System

level from the data documented by the provenance [44]. They give an example

of employee’s performance review where the employees are encouraged to read

the data produced by the employee’s review process, but they are usually not

told who had inputs in writing of the process. In this case, the sensitivity level of

provenance is higher that sensitivity level of the data. Another example is the letter

of recommendation, e.g., letter of recommendation for application to universities.

In this case, the student who is recommended in the letter of recommendation

does know the people who wrote the but the student is not allowed to open the

envelope of the letter and read the letter. In this case, the sensitivity level of

provenance is lower than the sensitivity level of the data.

Braun et al. also argue that provenance needs a new security model [44]. They

also propose a security model for provenance based on observation of the usage

of provenance [113]. They focus on the security model but do not deeply discuss

how to protect integrity of the provenance. Their main proposal is that we need

to control access to heads and tails of the edges and the attributes of the nodes

in the provenance graph. However, there is no mechanism proposed to implement

their access control model.

Tan et al. list six security issues in an SOA-Based provenance system [114]. These

security issues are (1) enforcing access control over process documentation, (2)

trust framework for actors and provenance stores, (3) accountability and liability

for p-assertions, (4) sensitivity of information in p-assertions, (5) long-term stor-

age of p-assertions, and (6) creating authorizations for new p-assertions. They

emphasis that the first issue is unique to the provenance purposes because the

requirements are different from regular data.

Groth et al. have proposed an architecture of provenance system including the

security architecture in an EU sponsored project [2]. They have implemented the

architecture in an SOA-based provenance store. They suggested that access con-

trol should be specifiable at the level of individual p-assertions and at individual

elements within p-assertion if needed. They also suggested to use role-based ac-

cess control and content-based access control although no detail explanation and

implementation of their proposal.

Syalim et al. discusses the grouping method for improving efficient of access control

to provenance graph [104]. They analyze the efficiency of the access control to the

provenance that employs grouping mechanism. Chebotko et al. [115] proposed a

An Access Control Model for the Provenance Recording System 85

secure scientific workflow provenance querying with security view. Security view

is a subset of data and processes. Another related work is the work Nagappan et

al. [116]. They proposed a model of sharing confidential provenance information

where an actor who are willing to share the provenance information can share the

query for that provenance information.

Ni et al. proposed an access control language for a general provenance model

[117]. They define the provenance of a piece of data as “the documentation of

messages, operations, actors, preferences, and context that let to that piece of

data”. Operation is a process performed on or caused by some messages. Actors

can be applications or human being. Context and preferences are special messages

that are used in operation.

Ni et al. proposed access control language for provenance although no specific

implementation is described [117]. The access control language consists of the

components as follows:

• Target. The target includes the subjects and records to which the policy is

applied. The subject can be a collection of users, the records can be also

a collection of provenance records. We can include restriction for specific

selection of the subjects in the collection.

• Condition. Condition is a boolean expression that define more requirement

for the access, for example time limit, location, etc.

• Effect. Effect is the rights of the subject to the provenance records. The effect

supports the following values: Absolute Permit, Deny, Necessary Permit, and

Finalizing Permit.

• Obligation. An obligation is an operation that should be executed by the

subject before (pre-obligation) or after (post-obligation) accessing the prove-

nance records. For example, the actors who own provenance record require

each user provide their agreement before access, or to be informed after

access.

Cadenhead et al. proposed [1] access control method by query pattern to the

provenance in the form of XML using SPARQL. They use Open Provenance Model

and propose access control language shown in Figure 4.1. The access control can

decide the access by 5 relationships defined in the OPM model, but no definition

for grouping the access control based on a deeper relationships.

86 An Access Control Model for the Provenance Recording System

<policy ID="1" >

<target>

<subject>anyuser</subject>

<record>Doc1_2</record>

<restriction>

Doc1_2 [WasGeneratedBy] process AND

process [WasControlledBy] physician|surgeon

</restriction>

<scope>non-transferable</scope>

</target>

<condition>purpose == research</condition>

<effect>Permit</effect>

</policy>

Figure 4.1: An Access Control Language for Provenance [1]

4.3 Preliminaries

4.3.1 Definition of the Provenance

Our proposed scheme works for the provenance that is defined as a graph. We

define the provenance of process that takes a collection of inputs {Ii}, produces an

output O, executed by process executor identified by Cid is stored in a database

PS in the forms of assertion PAsrt = ai|ri where ai is the node and ri represents

and edge, as follows:

PAsrt =ai|ri
ai =〈Cid, P id, A, {ref(Ii)}, ref(O)〉

ri ={Cid′i, P id′i}

where:

Cid = the ID of the process executor

Pid = the ID of the provenance node

A = assertion about process execution

ref(Ii) = a reference to an input of the process

ref(O) = a reference to the output of the process

Cid′i = the ID of the process executor that produce the input ref(Ii)

Pid′i = the ID of the provenance of the process that produce the input ref(Ii)

An Access Control Model for the Provenance Recording System 87

4.3.2 Provenance Storage

As described in the previous chapter, a secure provenance can be represented as

SPAsrt as follows:

SPAsrt =PAsrt|Int(PAsrt)

PAsrt =ai|ri|Int(O)|Int(ri)

ai =〈Cid, P id, A, {ref(Ii)}, ref(O)〉

ri ={Cid′i, P id′i}

Int(PAsrt) =SignCid(PAsrt), RCert

We need to store each of the provenance assertion in a persistent storage, e.g.,

database that is accessible to the auditors. In the real implementations, we may

use either relational databases or XML [117].

4.3.3 Access Control Enforcement

To implement the access control system, we need to assume the existence of the

trusted reference monitor in Provenance Store Interface (PSI) that intercepts each

access to the provenance. As described in the previous chapter, the parties in the

provenance system are the following (depicted in the Figure 4.2):

1. The Process Executors

2. The Database System (DB) and Database System Interface (DBI)

3. The Provenance Store (PS) and Provenance Store Interface (PSI)

4. The Execution Manager

5. The Auditors (ADT)

The trusted reference monitor is implemented as an Access Control Module (see

Figure 4.3). The Access Control Module in the PSI consists of two sub-modules

as follows (similar to the ITU-T standard [118] that defines two functions – access

88 An Access Control Model for the Provenance Recording System

Process Executor

Database
System

Interface

Provenance
Store

Database
System

Auditor

provenance

data input/output

data
input/
output

Provenance
Store

Interface

refs to data
input/output

Execution
Manager

Access Control
Module

provenance

Figure 4.2: Participants in the Provenance System

control enforcement and access control decision functions – for a trusted reference

monitor):

1. Access Control Enforcement (ACE) Module: This module enforces the ac-

cess policy by intercepting/mediating access by user and ask Access Control

Decision Module for the access policy

2. Access Control Decision (ACD) Module: This module decides which policy

is applied for each access

The Access Control Module in the PSI intercepts accesses to the provenance

through the Access Control Enforcement (ACE) module. The ACE module re-

ceives each access request to the provenance through PSI, and asks the Access

Control Decision (ACD) module to decide whether to allow or deny the access.

An Access Control Model for the Provenance Recording System 89

Access Control Enforcement
(ACE) Module

Access Control Decision
(ACD) Module

Access

Provenance Store Interface

Provenance
Store

Auditors

Figure 4.3: Access Control Module

The ACE module enforces the access decided by the ACD module by allowing or

rejecting the access by the auditor. To implement the access control system, we

also need to assume that the ACE module has authentication mechanism to check

the identities of the auditors.

4.4 Proposed Access Control System

In this section, we describe our proposal of the access control system for the

provenance. At first, we describe the security model we use in the access control

system, then we describe the implementation of the security model, and the access

control decision algorithm.

4.4.1 TRACE and Multilabels

The main intention of the auditor to access the provenance assertions is to evaluate

the process and the origin of data. So that, the basic access right is accessing an

assertion about the data and also tracing the origins/sources of the data. In our

access control model, we define the access right to the provenance assertion as

TRACE. An auditor who is given a TRACE is given rights to access an assertion

and all of its ancestors (i.e., the origins) in the provenance graph model. Formally,

we define the access right TRACE as follows:

Definition 4.1 (Definition of TRACE). An access right TRACE (ADTi, SPAsrti)

of an auditor ADTi to an assertion SPAsrti is defined as the right that is granted

to auditor so that the auditor can access the assertion and also all ancestors of the

assertion.

90 An Access Control Model for the Provenance Recording System

In our model, we define the access policy by using the TRACE and Multilabels

that can be assigned for the each assertion and also each auditor. The access

control decision for each assertion is computed by checking TRACE right and

also by comparing the labels on the assertion and the auditor. We define the

Multilabels as follows:

Definition 4.2 (Definition of Multilabels). The Multilabels is a set L ⊆ {0, 1, ..., n−
1} for n number of labels where each member of L represents a label.

4.4.2 Implementation of the Multilabels

We record multilabel for each auditor and the set of assertions that define the

TRACE access policy. Each auditor is assigned a set of labels (i.e., the multilabels).

For each label, we record the information in the following format:

i|Description

where i is an integer, and Description is a string that describe the label. For

example two labels of 10 and 25 with the descriptions “Financial Audit“ and

“Process Audit” are recorded as follow:

10|Financial Audit

25|Process Audit

For each auditor, we record the information about the identity of the auditor and

also the multilabels of the auditor in the following format:

ADT =UserName|Id|TLabel

Id =FullName|Organization

TLabel ={Li}

Some examples of the record for the auditors are as follows:

An Access Control Model for the Provenance Recording System 91

john1|John Doe|Google|{10, 11, 25}

john2|Johny Deep|Microsoft|{11, 25}

For each provenance assertion that is identified by 〈Cid, P id〉, we also need to

record the Multilabels in the following format:

〈Cid, P id〉|TLabel

TLabel ={Li}

Some examples of the access control policies are as follows:

〈cut10, 201〉|{10, 11, 25}

〈copy30, 409〉|{11, 25}

4.4.3 Implementation of the TRACE

TRACE is implemented by simply recording the pair of the auditor and the as-

sertions. Some examples of the policies are as follows:

john1|John Doe|〈cut10, 201〉

john2|Johny Deep|〈copy30, 409〉

The above policies mean that the auditor john1 has TRACE right to the prove-

nance assertion 〈cut10, 201〉 while the auditor john2 has the TRACE right to the

provenance assertion 〈copy30, 409〉.

92 An Access Control Model for the Provenance Recording System

4.4.4 Access Control Decision

Each access control decision is computed by comparing the label of the auditor

with the label of the assertions. However, not all assertions define the label. This

is the main feature of our the access control for efficient and secure access. The

auditor cannot access the assertions with empty label directly, but he/she may be

able to access an assertion with empty labels by accessing a related assertion (i.e.,

the assertion that have causal relationship with the assertion with empty label).

We describe the access control decision as follows. To audit a data output di, the

Auditor ADT needs to access the provenance assertion pi. The auditor sends access

query Trace(ref(di)) to PSI. PSI checks access policy and returns pi and keeps

all other assertions that are allowed to be accessed by the ADT in a temporary

memory. During the session, the PSI decides the access by checking the temporary

memory. The access control decision is described in the Algorithm 6.

As described in the Algorithm 6, to access a provenance of data output di, the

auditor sends his/her identity and the information about the data output di. The

ACE asks ACD whether this access is allowed or not. The ACD checks the label of

the auditor (i.e., ALabel) and finds the provenance of di, that is pi. The ACD gets

the label of pi (i.e., PLabel) and computes the intersection of ALabel and PLabel.

If the intersection is not NULL, the auditor is allowed to access pi. Otherwise, the

access is denied. So, for all assertion with empty label, the direct access is always

denied.

If the access is allowed, the ACD traces the relationship of pi by checking ri =

{Cid′, P id′} (see Section 4.3.2), that is a set of the ids of pi’s parents. For each

parent, if the label is empty the access is allowed, the ACD continues to the parent

of the assertion with empty label (i.e., the grandparent of the original assertion).

However, if the label is not empty, the ACD needs to compare (compute the

intersection) the label with the label of the auditor. The access decision now

depends on the intersection. If the intersection is not empty, the access is allowed

and the checking is continued to the grandparent (like the access decision for a

parent with an empty label). But, if the intersection is empty, the access is denied,

and the ACD stops checking to the grandparent.

An Access Control Model for the Provenance Recording System 93

Algorithm 6: Access Control Decision Algorithm

Inputs: Auditor UserName, a data output ref(di)
Outputs: Set of id of the provenance assertions {Cid, P id} or NULL
ALabel← GetALabel(Username) // Get all labels of the auditor
〈Cid, P id〉 ← GetPAsrt(ref(di)) // Get provenance assertion for di
PList←NULL
if 〈Cid, P id〉 6=NULL then
GetTrace(〈Cid, P id〉, ALabel, PList)

else
return NULL

end if

function GetTrace(〈Cid, P id〉, ALabel, PList)
PLabel← GetPLabel(〈Cid, P id〉) // Get all labels in pi
if (PLabel ∩ ALabel) 6=NULL then
Add(〈Cid, P id〉, PList)
CheckLabel(〈Cid, P id〉, ALabel, P list)

else
return NULL

end if
end function

function CheckLabel(〈Cid, P id〉, ALabel, PList)
{〈Cid′, P id′〉} ← GetParent(〈Cid, P id〉)
if ({〈Cid′, P id′〉} =NULL then
return NULL

else
foreach {〈Cid′, P id′〉}
PLabel← GetPLabel(〈Cid′, P id′〉)
if (PLabel =NULL then
Add(〈Cid′, P id′〉, PList)
CheckLabel(〈Cid′, P id′〉, ALabel, PList)

else if (PLabel ∩ ALabel) 6=NULL then
Add(〈Cid′, P id′〉, PList)
CheckLabel(〈Cid′, P id′〉, ALabel, PList)

else
return NULL

end if
end foreach {〈Cid′, P id′〉}

end if
end function

94 An Access Control Model for the Provenance Recording System

4.4.5 Security Analysis

We analyze the security by proving some facts as follows:

Theorem 4.3. An auditor cannot access an assertion that defines no access right

TRACE for the auditor.

Proof. No trace for an auditor means that the assertion defines a trace policy but

not applicable for an auditor. In the access control decision algorithm, the auditor

is allowed the access in two following conditions:

1. the intersection of the trace label of the assertion and the auditor are not

empty, so the trace policy is applicable for the auditor.

2. the trace label is empty and the assertions are the parent/grandparent (we

can continue the relationship to all ancestors) of an applicable assertion.

From the above conditions, we conclude that the auditor cannot access an assertion

that defines no trace in any conditions.

Corollary 4.4. An auditor cannot access an assertion with empty label without

having access to at least one assertion that has a relationship (i.e., as children or

grandchildren) to the assertion with empty label.

Proof. The proof follows from the proof of Theorem 4.3, that is from the second

condition that allows access.

From the above theorem and corollary, we conclude that the access decision come

from two policy definitions: explicit and implicit policy. In explicit policy, the ad-

ministrator should define the trace label, while in implicit policy the trace label of

the assertion is empty but the assertion can be accessed by accessing the successor

of the assertion. We should now proceed to the following theorem.

Theorem 4.5. To enforce minimum access policy principle, if the provenance as-

sertion is sensitive, the administrator should define the trace label for the assertion,

while in the case of the provenance assertion is not sensitive the administrator can

safely assign empty label to the assertion.

An Access Control Model for the Provenance Recording System 95

Proof. In the minimum access policy principle, the auditor can only access the

provenance that is needed to do the audit. By using this method, the system can

enforce minimum access policy because the auditor can only access the assertions

that have relationships to the accessible assertions. So the assertions that have

no relationships or no applicable trace policy will be denied to be accessed by the

auditor. Because to do the audit the auditor only needs to access an assertion

and all assertions that have relationships to the assertions, the system effectively

enforce the minimum access policy principle.

4.4.6 Performance Analysis

The access decision algorithm (the Algorithm 6) needs to decide which asser-

tions can be accessed for each session. As shown in the Algorithm 6, the ACD

needs to compute the intersection between the labels (PLabel ∩ ALabel). If the

access is allowed to a node, the ACD needs to check the parents of the asser-

tion (GetParent(〈Cid, P id〉) and if the label on the parent is not empty, the ac-

cess control decision is (again) done by computing intersection between the labels

(PLabel ∩ ALabel).

If the label in a node is empty, the ACD simply stops and denies all accesses, no

need to continue to the parent. The ACD needs to continue to the parents if and

only if the auditor is allowed to access the node. So, for the best case, the access

decision algorithm is stopped at the first node. As of the worst case, the access

decision algorithm needs to check all ancestors of the node.

To improve the efficiency, the ACD can implement a lazy checking, that is by only

deciding the access if the auditor requests the access to a node. In this case, the

complexity of the access control decision algorithm (in the worst case) depends on

the number of accesses that are needed by a typical auditor.

96 An Access Control Model for the Provenance Recording System

4.5 Alternative Implementation: Encryption-based

Access Control

Encryption is an alternative to access control enforced in the Provenance Store. It

is suitable in some situations, for example in the situation where the provenance

store cannot be fully trusted (i.e., it resides in a cloud server) or in the situa-

tion where the database is highly vulnerable to attackers that break the OS and

database access control.

In the encryption method, each sensitive data is encrypted with a key, and all

authorized auditors should be provided with the keys for decrypting the data that

he is authorized to access. The database server and any attackers breaking the

provenance store cannot decrypt the sensitive data without having access to the

decryption keys. The problem in the encryption method is how to manage a large

number of encryption keys that should be provided to a large number of auditors

with different access policy.

In this section, we show an encryption mechanism for provenance graph that

allows tracing the process documentations. This access control is suitable in the

provenance because an auditor normally needs to access all assertions that have the

causal relationships to a specific assertions. This method also has advantages in

key management because to grant access to an assertions and all of its ancestors, we

only need to provide a few of decryption key. More specific policies are supported

by a label-based access control.

4.5.1 Encryption Method

To enforce the trace-based access control, the provenance tuple (i.e., the assertion)

is encrypted with two keys (KN and KL) by the Provenance Store Interface (PSI)

before storing the provenance. Each provenance tuple is assigned two key generator

values (nk and lk), which are not encrypted.

The encryption method is defined as follows:

An Access Control Model for the Provenance Recording System 97

EPAsrt =〈Cid, P id, EP, 〈nk, lk〉〉

EP =EncKL(EncKN(SPAsrt), {KN ′})

4.5.2 Key Generation

The Provenance Store Interface (PSI) keeps two master keys MKN and MKL in

a trusted place. Keys KN and KL in each assertion are generated from MKN

and MKL as follows:

KN = EncMKN(nk)

KL = EncMKL(lk)

Key generator lk of an assertion identifies the label of the assertion (the assertions

in the same labels have the same lk) while key generator nk should be unique for

each assertion.

4.5.3 Provenance Recording Protocol

The assertions are encrypted by the Provenance Store Interface (PSI). To encrypt

SPAsrt using KN and KL to produce EP the PSI executes the following steps:

1. The PSI generates nk (which is unique for each assertion) and defines the

label number lk (where the assertions in the same label have the same lk).

For an empty label, lk is set to null.

2. The PSI generates KN and KL (the mechanism is shown in Section 4.5.2).

3. The PSI encrypts the assertion with the key KN to get EncKN(SPAsrt, {KN ′}),
where {KN ′} is the set of KN of the parents.

4. The PSI re-encrypts the assertion with key KL to get EncKL(EncKN(SPAsrt, {KN ′})).

98 An Access Control Model for the Provenance Recording System

4.5.4 Accessing the Provenance

An auditor who needs to access the provenance, performs the following steps:

1. The auditor starts from a leaf assertion.

2. The auditor decrypts EncKL(EncKN(SPAsrt, {KN ′})) with key KL and

KN to get SPAsrt and {KN ′}.

3. The auditor proceeds to the parent of the assertions, if the parent has empty

label, he/she can decrypt the parent by using one of the keys in {KN ′}, if

the label is not empty, the auditor should have access to KL on the parent

to be able to proceed.

4. The access is finish if either reaching a root assertion (the assertion that has

no parent) or reaching an assertion with label that is not applicable (the

auditor is not granted access by providing the label key KL)

5. If there is another leaf assertion, for the new leaf assertion start from the

step 1.

4.5.5 Access Control Policy

In Figure 4.4, we show an access policy to the provenance that consists of seven

assertions to four auditors that can be implemented using this encryption mecha-

nism and also the TRACE method. In this policy, the assertions are divided into

two labels: confidential and unconfidential where the members of confidential are

SPAsrt4 and SPAsrt6. The others are members of unconfidential. All auditors

can access the assertions that are members of unconfidential so the assertions do

not need to be encrypted with a label key. The first auditor (no. 1 in Figure 4.4)

can access SPAsrt6 and its ancestors, but he/she cannot access the assertions that

are member of confidential (SPAsrt6 and SPAsrt4). The second auditor (no. 2

in the Figure) can access the assertion SPAsrt7 and its ancestors, and can also

access all assertions that are members of confidential. The third auditor (shown in

no. 3) can access SPAsrt4 and all its ancestors and also assertions in confidential.

The last auditor (no. 4) can access SPAsrt2 and its ancestor, and he/she cannot

access the assertions that are members of confidential. To implement this access

policy we provide the four auditors encryption keys as follows:

An Access Control Model for the Provenance Recording System 99

• auditor 1: KN6

• auditor 2: KN7 and KLconfidential

• auditor 3: KN4 and KLconfidential

• auditor 4: KN2

EP1 EP2

EP3

EP4

EP5

EP6

EP7

EP1 EP2

EP3

EP4

EP5

EP6

EP7

EP1 EP2

EP3

EP4

EP5

EP6

EP7

EP1 EP2

EP3

EP4

EP5

EP6

EP7

(1) (2)

(3) (4)

Figure 4.4: An example of the access control policy

As shown in the example above, to grant access to only an assertion and its

ancestor, we need to provide the KN and KL keys, however, the trace is stopped

when the auditor reaches the assertions whose label key KL are not applicable.

4.5.6 Performance Analysis

In Appendix A, we performed experiments to measure the computation costs of

the encryption mechanisms. As shown in Table A.2, the complexity of the en-

cryptions are linear (with small growth) to the size of the provenance nodes. This

result is predictable because the complexity of AES encryption (that is used in the

experiments) is also linear to the size of the data. As of the complexity to access

the provenance nodes, it is also linear to the number of nodes that are accessed

by the auditors.

4.6 Conclusion

In this chapter, we have proposed the access control mechanism that can be en-

forced in a provenance recording system. Our access control method supports the

100 An Access Control Model for the Provenance Recording System

graph model of the provenance by allowing access policy definition to restrict the

auditors tracing the relationships between the provenance nodes in the provenance

graph. By combining the trace-based access control with multilabels method, we

show that our access control method can be used to enforce the minimum access

policy principle in the provenance recording systems. We also showed an alterna-

tive access control mechanism by using encryption for better security.

Chapter 5

A Signature Scheme for a

Sequence of Digital Documents

5.1 Introduction

A digital signature scheme (i.e., an RSA signature), takes inputs of a document

and a signer private key, creates a small sequence of bytes that can prove the

document is indeed originated to the signer, by assuming nobody except the signer

can generate the signature for the document [83]. Anybody who have access to

the correct public key (which is normally available and can also be authenticated

publicly) can verify the authenticity of the document. The standard security model

for a digital signature scheme is the existential unforgeability where we prove that

the problem to forge the signature can be reduced to a known difficult/intractable

problem.

5.1.1 Problem Description

In this chapter, we are concerned about the method to sign a sequence of digital

documents (created by a party) that consists of many distinct documents (i.e., a

sequence of messages M = {m1,m2, . . . ,mn}) that are created sequentially. The

signature of the sequence of a digital documents should prove two facts about the

documents: the authenticity of each member of the documents (i.e., whether mi

is the member of the sequence and truly created by the party), and the order of

101

102 A Signature Scheme for a Sequence of Digital Documents

the documents in the sequence (i.e., whether mi is included before or after mj in

M). We identify two main differences of signing this type of documents with the

signature scheme for a single document:

1. A new member of the sequence can be added later after signing the current

(existing) members, so that one of the requirements is the signature for the

sequence should also be created sequentially.

2. During verification of the members, we cannot assume that we have access

to all documents in the sequence. We can only assume that we have access

to the documents that will be verified.

5.1.2 Usage of the Proposed Scheme

An example of the usage of the signature scheme is to sign a data stream. The

signer cannot sign all data in the stream in one procedure, so we need to sign the

data sequentially. A possible charateristics of the data stream is that part of the

data of the stream (because of several reasons) may be inacessible in the future.

Another usage of the signature scheme is to sign a large message or a large sequence

of messages where some parts of the messages may be confidential, so that during

verification, we need to provide a limited access to each user. We cannot create

one fix signature for all documents (by combining all documents into a bigger

document) because to verify a part of the document we need to have access to all

parts the document. Although the user cannot access all parts of the documents,

the users still need to prove these two facts (the authenticity of each member of

the documents, and the order of the documents in the sequence) for the accessible

documents.

5.1.3 The Basic Method and Our Previous Attempts

The basic method and our first attempt to sign the documents with the above

requirements is first by simply appending a consecutive counter to each member

of the sequence and then signing each consecutive member of the sequence with a

standard signature. Let Sign be a standard signature scheme (for example an RSA

signature) with a signing key k and ci be a counter that represents the order of the

A Signature Scheme for a Sequence of Digital Documents 103

documents in the sequence, we can generate the signature on mi as Signk(mi‖ci),
so that the signatures on M = {m1,m2, . . . ,mn} be Signk(m1‖1), Signk(m2‖2),

. . ., Signk(mn‖n). This method can prove each member and also the order of the

members without having access to other members of the sequence. However, there

are some disadvantages of this approach:

1. To sign many sequences, the signer needs to include another information (i.e

a unique id) to identify each sequence, and includes the id along with the

counter. The problem is, in practice, it is error-prone and not natural to keep

the information of each sequence, rather than signing the sequence directly.

The signer and the verifier should track the id of the sequence, otherwise,

there are possibility the collision of the id. If the signature should be created

in different systems, it is not easy to manage the id of each sequence.

2. The counter does not represent a “hard-proof” about the order of the mem-

bers in the sequence, so that it is possible to sign the documents out-of-order

by using out of order counters. For example, the signer may sign the first

member, the third member and after then the second member. Without

a trusted party who provide a correct consecutive counter, the signature

cannot convince the verifier that the document signed as the order.

3. A rather minor disadvantage: we need to store a full signature for each

member of the sequence. We cannot combine (i.e., by aggregating) the sig-

natures without changing the characteristics of the signature: the possibility

to verify a member without having access to the other members.

Our second attempt was by using the method similar to the scheme proposed

in this chapter, but used the plain RSA as the primitive instead of the modified

RSA with message recovery. However, the scheme could not be proved secure in

Existential Unforgeability under Chosen Message Attack (EUF-CMA).

5.1.4 Contributions

In this chapter, we propose an alternative method to sign a set of digital documents

where the signature scheme can prove two properties (the authenticity and the

order of each member) of the documents without having access to all documents.

104 A Signature Scheme for a Sequence of Digital Documents

Our method is basically by employing signature-chaining and using a signature

with message recovery as the primitive. Concretely, our contributions are:

1. We define a signature scheme for a sequence of digital document by including

more features to the standard signature, so that it can be used to generate

the signature sequentially and also verifying the order of the members in the

sequence.

2. We propose a variant of the signature with message recovery originally pro-

posed by Bellare et al.

3. We propose a signature scheme for the sequence of digital documents using

a signature with message recovery as the primitive.

4. We propose the security model of the scheme in the form of Extended Ex-

istential Unforgeability under Chosen Message Attack (EEUF-CMA) and

Order Unforgeability Under Chosen Message Attack (OUF-CMA).

5. We prove the security of the scheme in the random oracle model.

5.2 Related Work

5.2.1 Plain Signature

Digital signature is an active research topic in cryptography. The widely used

digital signature scheme, the RSA signature scheme, was proposed by Rivest,

Shamir and Adleman [83]. The other popular signatures scheme are Elgamal

signature [90], DSA signature, and Schnorr signature [91]. Boneh et al. proposed

a short signature by assuming the existence of bilinear maps [93].

We can apply the plain digital signature scheme (the signature for a single docu-

ment) in the context of digital signature for a sequence of digital document. We

can either sign each member of the documents, or combine all members of the se-

quence and signing the result. In the first method, for n number of the documents

in the sequence, the signer needs to produce n signatures for the documents, while

in the second method, the signer only produces one signature. The problem with

the first method is, there is no way to prove the order of the documents in the

A Signature Scheme for a Sequence of Digital Documents 105

sequence. The signature produced in the second method can be used to prove

the order of the sequence. However, it has a major disadvantage: each time we

include a new member, the signer should recreate the new signature which is not

efficient in term of computation and not applicable if the previous documents are

inacessible.

Another strategy to sign the sequence of the documents with a plain signature

is by including a counter or timestamp in the signature [119]. Let Sign be a

standard signature, and ci be a trusted counter or timestamp, the signature on mi

is σi ← Sign(mi‖ci). However, as described in Section 5.1.3, this method requires

the existence of the trusted counter or timestamp server.

5.2.2 Signature Chain

The other possible methods to sign the sequence of the digital documents are by

using the signature-chaining method. The signature chain ensures integrity of a

sequence of document by storing the signature of previous document in the next

document. The basic form of the signature chain is: let Sign be a standard signa-

ture, then the signature chain for a sequence of messages M = {m1,m2, . . . ,mn}
is a set of the signature σ = {σ1, σ2, . . . , σn} where σi = Sign(mi‖σi−1).

The signature chain can be used to verify authenticity and the order of the docu-

ments in the sequence, however it has a main disadvantage where we need to keep

the full signature for each document and to verify the order the documents, in the

worst case, we need to have access to all members of the documents. The signature

chain is an extension of the hash chain proposed in [105]. Recently, the signature

chain is famous in the form of block-chain that is used to record transactions of a

digital money (i.e., bitcoin) [65].

5.2.3 Signature Aggregate

Signature aggregate technique is used to combine many signature into one fix

signature. Some aggregate signature schemes have a restriction about the messages

where the signed messages should be distinct, the other schemes have a restriction

about the signer where the same signer cannot signed the messages more than one

106 A Signature Scheme for a Sequence of Digital Documents

times [120]. In our scheme, we are focusing on the method to sign a sequence of

distinct messages by a specific signer.

The RSA signatures produced by a party can be aggregated/condensed into a

succinct signature by simply computing the product of each individual signature.

Bellare et al. use the aggregation method for fast verification of batch RSA. For

the signatures σ1, σ2, ...σt [95, 121], we compute the aggregate as follows:

σ =
t∏

i=1

σi mod n

where σi ≡ hd
i mod N and hi = H(mi).

The short signature proposed in [93] can be easily aggregated by computing the

product of the each signature [96] (exactly the same method as batch RSA). For

the input n signatures σ1, σ2, ..., σn, compute the aggregate:

σ =
n∏

i=1

σi ∈ G1

To verify the n messages m1,m2, ...,mn, for a public key gx2 check whether

e(σ, g2) =
n∏

i=1

e(H(mi), g
x
2)

We need to assume the existence of the bilinear maps e : G1×G2 → GT where for

all u ∈ G1, v ∈ G2 and a, b ∈ Zp and e(ua, vb) = e(u, v)ab.

There are some significant research on the techniques to aggregate the signature

with some more specific properties. The first property is the possibility to check

the order of aggregating each signature as have been proposed in the form of se-

quential aggregate signature schemes [122–131]. Another interesting property is

the history-free characteristics of the sequential aggregate signature, where ag-

gregation algorithm does not need to have access all previous signed messages

[132, 133]. However, during the verification, we still need to have access to all of

the signed messages.

Recently, Gentry et al [134] classified three main methods for the sequential ag-

gregate signature (SAS) schemes. These methods are (1) LMRS (the methods

A Signature Scheme for a Sequence of Digital Documents 107

proposed in [122]), (2) Neven (proposed in [127]), and (3) BGR (proposed by

Brogle et al. [128]). They also proposed a unified framework for the sequential

aggregate signature scheme by using two functions (an ideal cipher π and claw-

free trapdoor permutation F), where the first function π is first called by taking

inputs the previous signature (the aggregate so-far – σi−1) and also the concate-

nation of the outputs of permutation used to sign each previous message with all

of the previous messages. The second step takes the outputs of the first function

π and uses an inverse of the permutation generated by F . They also proposed the

randomized and the history-free variants of their scheme.

Hohenberger et al. discussed a synchronized aggregate signature where each party

is provided with a message and a time period t. The party can only sign at most

once for each t [135]. The uses the RSA function as the primitive with the RSA

modulus N = p ·q and using a keyed hash HK to map the time period t ∈ [1..T] to

a specific value et and computes E =
∏T

j=1 ej mod φ(N). Their scheme exploits

the characteristics of the multiplication of signed messages using the RSA with

the same modulus.

The sequential aggregate signature, similar to the signature chain, can prove the

authenticity and the order of the sequence and we only need to store one aggregate

signature for all members. The main advantage is we can compress many signature

into practically one signature. However, the disadvantage is, normally during the

verification we need to have access to all of the documents in the sequence.

5.2.4 Signature with Message-Recovery

Signature with message-recovery is a signature scheme that can recover the original

or a part of the signed message. The plain RSA without hash is an example of the

message-recovery signature, however, the plain RSA is not resistant to EUF-CMA

attacks. Bellare proposed the message recovery variant of the RSA-PSS [89]. The

other proposed signatures with message recovery (for discrete log-based digital

signature) can be found in the work of Nyberg et al. [136–138], and also the work

of Miyaji [139], and Abe et al. [140].

108 A Signature Scheme for a Sequence of Digital Documents

5.3 Preliminaries

5.3.1 Definition of the Signature

The standard signature consists of three algorithms: KeyGen that produces the

random keys; Sign that is used to generate the signature; and Verify that checks

whether the signature is valid. We define the signature scheme for the sequence

of digital documents by including functions that are used in the context of digital

signature for a sequence of digital documents. These functions are: appending

a new member, checking whether the signature is plausible (that is by having

no access to the documents we should be able to verify whether the signature

is created by a party), verifying a member without having access to all other

members and also comparing the order of two members.

Formally, the signature scheme for a sequence of digital documents consists of

seven algorithms as follows:

KeyGen. The key generation function that produces a random public and private

keys pair {pk, sk} of the signer.

Sign. This function takes a private key sk, a set of messages M = {m1, ...,mn},
and returns a new signature σ for the sequence {m1, ...,mn}.

Append. This function takes a private key sk, a new member mn and the current

signature σ for the sequence {m1, ...,mn−1}, and returns a new signature σ

for the sequence {m1, ...,mn}.

IsPlausible. This function is used to check whether the signature is acceptable

(created by the party) even without having access to all members of the

sequence. The function takes a public key pk, the signature σ, and returns

TRUE if the signature is acceptable, otherwise returns FALSE.

IsMember. This function takes a public key pk, a message mj and the signature

σ, and returns TRUE if mj ∈ {m1, ...,mn}, otherwise returns FALSE.

IsLater. This function takes two messages mj and mk and the signature σ, and

returns TRUE if mj ∈ {m1, ...,mn}, mk ∈ {m1, ...,mn}, and mk is included

after mj, otherwise returns FALSE. If the signature is not plausible returns

REJECT.

A Signature Scheme for a Sequence of Digital Documents 109

Verify. This function takes a public key pk, a set of message messages M =

{m1, ...,mn} and the latest signature σ, and returns TRUE if IsMem-

ber(pk,mi, σ) returns TRUE for each mi ∈ {m1, ...,mn}, otherwise return

FALSE.

5.3.2 Security Model

A standard signature scheme should be resistant to existential unforgeability (EUF)

attack where the attacker, in the chosen message attack (CMA) model, having ac-

cess to some chosen pair of the message signature tries to fabricate a valid pair of

the message signature that previously not yet queried [88]. The EUF under CMA

(EUF-CMA) can be modeled as the game between the challenger B and the at-

tacker A, where the attacker can request the pair of message-signature in the hope

at the end of the game the attacker outputs a valid pair of message-signature that

has not been requested before. A signature is said broken in existential forgery if

an attacker can forge a signature for at least a message. The EUF-CMA model

can be adopted to model the security of the aggregate signature as in [96].

As described in Section 5.1.1, the signature scheme for the sequence of digital

documents should prove two facts (the authenticity of each document in the se-

quence, and also the order of the document in the sequence) while having two

requirements: the possibility to update the signature sequentially, and the possi-

bility to verify the signature by having access to the subset of the members in the

sequence. We model the security of the signature for a the sequence of documents

into two models as follows:

5.3.2.1 Extended Existential Unforgeability Under Chosen Message

Attack (EEUF-CMA)

We extend the EUF-CMA model by including the possibility of forging signature

under the conditions where some parts of the messages are inaccessible (however,

we require at least an element of the messages is accessible so that we can prove

the forging). We model the Extended Existential Unforgeability Under Chosen

Message Attack (EEUF-CMA) as the game between the challenger B and the

attacker A where the attacker may forge the signature for a member of the sequence

while the other members are inacessible. So, the main difference of EEUF-CMA

110 A Signature Scheme for a Sequence of Digital Documents

and the EUF-CMA is to forge the signature, the attacker does not need to forge

a full sequence. The attacker only needs to show a member of the sequence, while

the other members may be assumed to be inacessible to the verifier both to the

attacker and the verifier.

The model can be described as follows: to attack the scheme, the attacker is

provided with the signer public key, and the signer can request some set of sequence

and its signature pairs (the attacker can also request one by one), and later the

signer outputs a valid signature for at least a member of the sequence. The EEUF-

CMA model consists of three parts as follows:

Setup. The challenger B runs algorithm KeyGen to obtain a public key pk and a

private key sk. The adversary A is given pk.

Queries. Proceeding adaptively, the adversary A requests signatures on at most

qS for the sequence of messages of its choice m1, ...,mqs ∈ {0, 1}∗. The chal-

lenger B responds to each query with a signature σi ← Append(sk, σi−1,mi).

Output. Eventually, the adversary outputs a pair (m∗, σ∗) and wins the game if:

1. (m∗, σ∗) is not any of the results of the previous requests (m1, σ1), ..., (mqs , σqs),

and

2. IsPlausible(pk, σ∗) = TRUE, and

3. IsMember(pk,m∗, σ∗) = TRUE.

5.3.2.2 Order Unforgeability Under Chosen Message Attack (OUF-

CMA)

In our proposed scheme, the signature is created sequentially for each new member

based on the order of the members in the sequence. So, the order of the signing

represents the order of the documents. Another class of attack is changing the

order for the previously signed messages. We model the attack as follows: the

attacker requests the pair of the signature and the sequence, and later the attacker

produces a signature with different order than the existing one.

We define this kind of attack to the signature scheme in term of Order Unforgeabil-

ity under Chosen Message Attack (OUF-CMA), where the attacker can request

the ordered pair of message-signature, and later can prove inconsistency in the

A Signature Scheme for a Sequence of Digital Documents 111

order. The attacker can find inconsistencies by forging the signature or simply

rearranging the signature into another valid signature (in different order). The at-

tack game is similar to the EUF-CMA, except that the attacker can also outputs

the previous requested message-signature pairs. Formally, the OUF-CMA model

consists of three parts as follows:

Setup. The challenger B runs algorithm KeyGen to obtain a public key pk and a

private key sk. The adversary A is given pk.

Queries. Proceeding adaptively, the adversary A requests signatures on at most

qS messages of its choice m1, ...,mqs ∈ {0, 1}∗. The challenger B responds to

each query with a signature σi ← Append(sk, σi−1,mi).

Output. Eventually, the adversary outputs a tuple (mj∗,mk∗, σa∗, σb∗) and wins

the game if:

1. σb∗ is not any of the results of the previous requests (m1, σ1), ..., (mqs , σqs),

and

2. IsPlausible(pk, σa∗) = TRUE, and

3. IsPlausible(pk, σb∗) = TRUE, and

4. IsLater(pk, σa∗,mj∗,mk∗) = TRUE, and

5. IsLater(pk, σb∗,mk∗,mj∗) = TRUE.

5.3.3 Complexity Assumptions

5.3.3.1 Assumption about the Hardness of the RSA problem

The security of our scheme is based on the assumption about the hardness of the

RSA problem. That is, given the RSA public key (N, e), and an element y ∈ Z∗N ,

compute x where y = xe mod N . More formally:

Definition 5.1 (RSA Assumption). Let Πn be a function that produces large

random primes. For every non-uniform Probabilistic Polynomial Time (PTT) ad-

versary A, there exists a negligible function µ such that for all n ∈ N:

Pr


p, q ← Πn;N ← pq;

e← Z∗φ(N); y ← Z∗N : xe = y mod N

x← A(N, e, y)

 ≤ µ(n)

112 A Signature Scheme for a Sequence of Digital Documents

5.3.3.2 Assumption about the Hash Functions

Another important assumption we need to have in the security proofs of our scheme

is about the difficulty to find two messages that have the same hash outputs

(collision resistant). We define the advantage of the attacker to find the collision

of outputs of the hash function in the following definition [70].

Definition 5.2 (Collision Resistant). Let H : K ×M → Y be a hash function,

the advantage of an adversary B to find the collision of the outputs of H is defined

as follows:

Advcoll
H (B) = Pr[Ki

$←− K; (M,M ′)
$←− B(Ki) :

(M 6= M ′) ∧ (HKi
(M) = HKi

(M ′))]

For a secure hash function, Advcoll
H (B) should be negligible (very small).

5.4 Proposed Scheme

5.4.1 Notations

In the following composition, we uses the following notations:

• ‖, represents concatenation, for example a‖b is a concatenation of a and b.

• ⊕, represents the binary XOR.

• bc`, represents the last ` bits (bits on the right), for example bσic` represents

` bits of σi from the right.

• `bc, represents the first ` bits (bits on the left), for example `bσic represents

` bits of σi from the right.

A Signature Scheme for a Sequence of Digital Documents 113

5.4.2 Primitives: VPSign, VPPla, VPVer

The basic form of our signature scheme is a variant of PSS with recovery originaly

proposed by Bellare et al. [89]. The PSS with message recovery randomizes the

signature while providing the possibility to reconstruct a large part of the signed

message. We define a variant of PSS for signing and verification as VPSign and

VPVer. We include another algorithm used for plausibility check we call VPPla.

As the original PSS, we need to assume, we have the hash functions as follows:

• H : {0, 1}∗ → {0, 1}k1 ,

• g = g1‖g2, where

• g1 : {0, 1}k1 → {0, 1}k−k1−1, and

• g2 : {0, 1}k1 → {0, 1}k−k1−1.

VPSign, VPVer, and VPPla are defined in the following algorithms:

Algorithm VPSignd(σi−1,mi)

si−1 ← bσi−1c`
ri ← H(mi)

wi ← H(n−`bσi−1c‖ri)
r∗i ← g1(wi)⊕ ri

σ∗i ← g2(wi)⊕n−` bσi−1c
σi ← (0‖wi‖r∗i ‖σ∗i)d mod N

return si−1‖σi

Algorithm VPPlae(σi)

(b‖wi‖r∗i ‖σ∗i) = σe
i mod N

ri = g1(wi)⊕ r∗i

σ′i−1 = g2(wi)⊕ σ∗i

if (wi = H(σ′i−1‖ri) and b = 0) then

return σ′i−1

else

return REJECT

end if

114 A Signature Scheme for a Sequence of Digital Documents

Algorithm VPVere(σi,mi)

(b‖wi‖r∗i ‖σ∗i) = σe
i mod N

ri = g1(wi)⊕ r∗i

σ′i−1 = g2(wi)⊕ σ∗i

if (wi = H(σ′i−1‖ri) and r = H(mi) and b = 0) then

return σ′i−1

else

return REJECT

end if

5.4.3 Signing the Sequence

We propose the method to sign a sequence of digital documents using the following

algorithms:

KeyGen. The key generation algorithm uses the standard RSA algorithm to gen-

erates the public and private key pair (e,N) and (d,N) with a large modulus.

Sign. The signature algorithm works for a sequence of message M = {m1,m2,m3,

..., mn} and produces the output σ = s1‖s2‖ · · · ‖sn−1‖σn. We define the

signature algorithm as follows:

Algorithm Signd({m1,m2,m3, ...,mn})

σ0 ← {0}n

i← 1

while (i ≤ n) do

si−1‖σi ← VPSignd(σi−1,mi)

i← i + 1

end while

return s1‖s2‖ · · · ‖sn−1‖σn

Append. We use the following algorithm to include a new member mn to the

existing sequence {m1,m2,m3, ...,mn−1} and update the current signature to

a new signature for the new sequence. The new member will be the latest

member of the sequence.

A Signature Scheme for a Sequence of Digital Documents 115

Algorithm Appendd(s1‖s2‖ · · · ‖sn−2‖σn−1,mn)

sn−1‖σn ← VPSignd(σn−1,mn)

return s1‖s2‖ · · · ‖sn−1‖σn

IsPlausible. Checking whether the signature is plausible.

Algorithm IsPlausiblee(s1‖s2‖ · · · ‖sn−1‖σn)

i← n

while (i ≥ 1) do

if (VPPlae(σi) = REJECT) then

return FALSE

end if

σi−1 ← VPPlae(σi)‖si−1
i← i− 1

end while

return TRUE

IsMember. Verification algorithm for a member mj.

Algorithm IsMembere(s1‖s2‖ · · · ‖sn−1‖σn,mj)

i← n

while (i ≥ 1) do

if (i 6= j and VPPlae(σi) = REJECT) then

return FALSE

else if (i = j and VPVere(σi,mi) = REJECT) then

return FALSE

end if

σi−1 ← VPPlae(σi)‖si−1
i← i− 1

end while

return TRUE

IsLater. Checking whether mk is included after mj.

116 A Signature Scheme for a Sequence of Digital Documents

Algorithm IsLatere(s1‖s2‖ · · · ‖sn−1‖σn,mj,mk)

i← n

while (i ≥ 1) do

if ((i 6= j and i 6= k) and VPPlae(σi) = REJECT) then

return REJECT

else if ((i = j or i = k)) and VPVere(σi,mi) = REJECT) then

return REJECT

end if

σi−1 ← VPPlae(σi)‖si−1
i← i− 1

end while

if (j < k) then

return TRUE

else

return FALSE

end if

Verify. Verifying whether the signature s1‖s2‖ · · · ‖sn−1‖σn is a correct signature

on {m1,m2,m3, ...,mn}.

Algorithm Verifye(s1‖s2‖ · · · ‖sn−1‖σn, {m1,m2,m3, ...,mn})

i← n

while (i ≥ 1) do

if (VPVere(σi,mi) = REJECT) then

return FALSE

end if

σi−1 ← VPVere(σi,mi)‖si−1
i← i− 1

end while

return TRUE

5.4.4 Correctness of the signature scheme

For the n messages {m1, ...,mn}, we need to show that a correct signature s1‖s2‖
· · · ‖sn−1‖σn will return TRUE during verification process, otherwise the verifi-

cation algorithm will return REJECT.

A Signature Scheme for a Sequence of Digital Documents 117

At first, we need to show that VPVere(σi,mi) will return REJECT if si−1‖σi 6=
VPSignd(σi−1,mi). From the VPSign algorithm it is easy to check that because

σi ← (0‖wi‖r∗i ‖σ∗i)d mod N , then σi is produced by a unique (0‖wi‖r∗i ‖σ∗i), so

that from the following equations

ri = g1(wi)⊕ r∗i

n−`bσi−1c = g2(wi)⊕ σ∗i

wi = H(n−`bσi−1c‖ri)

ri = H(mi)

the value of n−`bσi−1 and ri = H(mi) should be also unique because the values of

g1(wi) and g2(wi) are fixed. The only possibility of the same signature produced

by a different message is if we can find collision of H, so that we know m′i where

H(m′i) = H(mi). By assuming that the problem of finding m′i is difficult, we can

safely assume that the provided message message is indeed the original signed

message. For the valid values of σi and mi, VPVere(σi,mi) will return a unique

σ′i−1 (by definition, it means a valid signature).

Now, we need to show that if σi is correct, for mi−1, we need to have a correct si−1,

otherwise the verification function will return REJECT. By contradiction, assume

that si−1 is incorrect (different from the original one), because σi−1 = σ′i−1‖si−1,
then

(
0‖wi−1‖r∗i−1‖σ∗i−1

)
will be different from the original one. To be accepted as

the signature, we should check the following equations:

ri−1 = g1(wi−1)⊕ r∗i−1

n−`bσi−2c = g2(wi−1)⊕ σ∗i−1

wi−1 = H(n−`bσi−2c‖ri−1)

ri−1 = H(mi−1)

We can continue the argument for the signature mi−2, so that for {m1, ...,mn},
the signature s1‖s2‖ · · · ‖sn−1‖σn should be correct.

118 A Signature Scheme for a Sequence of Digital Documents

5.4.5 Proving the order of the sequence

To prove the order of the sequence, we need to call the function IsLater which

checks whether one of the two members mj and mk are included before or after

the other. The algorithm IsLater verifies the order by first checking whether both

members are included in the sequence and then checking which one is included

before or after another. IsLater verifies the order by reversing the creation of

the signature, so that we can get the original order of the messages. As proved in

Section 5.5.2, a specific form of the signature can only represents a unique order

of the message, so that IsLater will correctly verifies the order of the sequence.

5.4.6 Signature size

As described in Section 6.5, the signature on {m1,m2,m3, ...,mn} is represented

by s1‖s2‖ · · · ‖sn−1‖σn where the size of σn is constant and the same as the size of

the RSA signature while the size of s1‖s2‖ · · · ‖sn−1 is (n−1)×(the size of si). For

a setup as in the RSA-PSS with message recovery [89] where the size of s ≈ 1
4

of

the standard RSA, we get the following: (n−1)S
4

+ S = (n+2)S
4

where S is the size

of the standard RSA signature.

5.5 Security Proofs

We need to analyze and show the security of the signature scheme under EEUF-

CMA and OUF-CMA.

5.5.1 Security under EEUF-CMA

The main difference of EEUF-CMA with the standard EUF-CMA, is that in the

EEUF-CMA the attacker can forge the signature by showing only one of the signed

messages to the verifier. The possible form of the signature on the sequence of

message M = {m1, ...,mn}, is s1‖s2‖ · · · ‖sn−1‖σn. We need to show that by

showing only one message mi ∈ M and the signature s1‖s2‖ · · · ‖sn−1‖σn, if the

attacker can pass the IsPlausible and IsMember checks, then we can use the outputs

of the attacker to solve the RSA problem.

A Signature Scheme for a Sequence of Digital Documents 119

The security proof is similar to the security proof of RSA-PSS [89], except that,

the random r is substituted by the hash.

Theorem 5.3. If the RSA problem is hard, then the proposed scheme as described

in Section 6.5 is secure in the extended existential unforgeability under chosen

message attack (EEUF-CMA) model.

Proof. Let A be a forger who break the signature in EEUF-CMA, we show a

simulator B which break the RSA.

We need to prove that if the attacker A can forge the signature in EEUF-CMA, we

show that there exists a simulator B that can simulate A’s environment without

detected by A and then by using A’s outputs, the simulator B can solve the RSA

problem. This will contradict the fact that the RSA problem is hard.

In the following, we describe how to simulate A’s environment which is indistin-

guishable from the real A’s environment. Because the attacker A is given access

to the random oracle H, g1, and g2 and the signing function Sign, simulator B

should be able to simulate both of the random oracle and the signing function

without having better information than A. A should produce a valid mi∗ and ji∗
and σi∗ and we need to show how B uses A’s outputs to solve an RSA problem.

Without loss of generality, we assume that the attacker will forge the message mn

from the sequence M = {m1, ...,mn}, and {m1, ...,mn−1} are inaccessible during

verification. We should note that the other possible forms of forgery (forgery for

mi where i 6= n) can be easily derived from this form.

In this form of forgery, the simulator B only needs to simulate the hash output for

mn, for the hash of {m1, ...,mn−1}, we may assume that the forger get the outputs

from other random oracles. In the worst case scenario (as used in this proof), the

attacker sets the value of the hash for {m1, ...,mn−1} directly. This is possible

because during verification, the messages are inaccessible, so there is no way to

check the correctness of the hashes.

Setup. The simulator B is given the signer public key (e,N) and σi−1, but B

has no access to the private key d. The simulator B is also provided with a

and later B should solve the RSA problem by computing ad mod N from A’s

outputs. The simulator B starts by giving the forger algorithm A the public

120 A Signature Scheme for a Sequence of Digital Documents

key (e,N) and the last signature σi−1 (which is the signature of previous

version of the document).

Answering Signature Queries.

During the signature queries (si−1‖σi ← VPSignd(σi−1,mi)), the simulator B

receives inputs σi−1,mi. To answer the signature queries B sets a random

signature xi and sets yi = xe
i mod N where yi has first bit 0. Then B

sets yi = (0‖wi‖r∗i ‖σ∗i), The simulator then derives the result of the hashes

functions H(mi), wi, g1(wi), and g2(w1) as follows:

1. Set H(mi)
$←− {0, 1}, if H(mj) = H(mi) for j < i then ABORT.

2. xi
$←− {0, 1}, yi ← xe

i mod N , if the first bit of yi is 0 then

set (0‖wi‖r∗i ‖σ∗i)← yi, otherwise repeat this step.

3. Set H(n−`bσi−1c‖H(mi)) = wi, if wj = wi for j < i then ABORT.

4. Set g1(wi) = r∗i ⊕ H(mi), Set g2(wi) = σ∗i ⊕n−` bσi−1c, Set g(wi) =

g1(wi)‖g2(wi),

The simulator should keep the pair of messages and the hashes consistently,

so that the values can be retrieved later.

Answering H Queries.

1. the queries have either H(mi) form, or H(n−`bσi−1c‖H(mi)) form, without

loss of generality we assume that no queries are repeated, so each query

is unique. The simulator keeps all previous queries, so that it can detect

if the queries is in the form H(mi) or H(n−`bσi−1c‖H(mi)), because σ1−1

is the result of previous sign queries, while H(mi) is the result of previous

H Queries.

2. If the query is the H(mi)-type one:

(a) Set H(mi)
$←− {0, 1}, if H(mj) = H(mi) for j < i then ABORT.

Otherwise return H(mi)

3. If the query is the H(n−`bσi−1c‖H(mi))-type one:

(a) xi
$←− {0, 1}, yi ← axe

i mod N , if the first bit of yi is 0 then

set (0‖wi‖r∗i ‖σ∗i)← yi, otherwise repeat this step.

(b) Set H(n−`bσi−1c‖H(mi)) = wi, if wj = wi for j < i then ABORT.

(c) Set g1(wi) = r∗i ⊕ H(mi), Set g2(wi) = σ∗i ⊕n−` bσi−1c, Set g(wi) =

g1(wi)‖g2(wi),

A Signature Scheme for a Sequence of Digital Documents 121

4. If the query is the H(n−`bσi−1c‖H(mi))-type one:

(a) xi
$←− {0, 1}, yi ← axe

i mod N , if the first bit of yi is 0 then

set (0‖wi‖r∗i ‖σ∗i)← yi, otherwise repeat this step.

(b) Set H(n−`bσi−1c‖H(mi)) = wi, if wj = wi for j < i then ABORT.

(c) Set g1(wi) = r∗i ⊕ H(mi), Set g2(wi) = σ∗i ⊕n−` bσi−1c, Set g(wi) =

g1(wi)‖g2(wi),

After answering the queries, the simulator should keep the pair of messages

and the hashes consistently, so that the values can be retrieved later.

Answering g Queries.

Answering g(wi) queries is simple, if wj = wi for j < i, simply reply with the

previous result (g(wj). Otherwise return random g(wi)
$←− {0, 1}.

Output.

The forger ouputs a signature message pair (σ?
i ,m

?
i) that has not been queried

before, then the forger should have queried H(mi) and H(n−`bσi−1c‖H(mi)).

If the signature is valid, the simulator computes y?i ← (σ?
i)e mod N and sets

y?i as (0‖wi‖r∗i ‖σ∗i).

The simulator checks the previous queries in the form H(n−`bσi−1c‖H(mi))

and H(mi), where H(mi) = r∗ ⊕ g1(wi) and n−`bσi−1c = σ∗i ⊕ g2(wi). For

this condition, because y?i = (0‖wi‖r∗i ‖σ∗i) = axe
i mod N , then the simulator

outputs σ?
i /xi mod N .

Because (y?i)d = ((σ?
i)e)d = (axe

i)
d mod N , then σ?

i = xia
d mod N , so that

ad mod N = σ?
i /xi mod N .

From the above argument, we show that if there exists a forger A who breaks

our signature scheme then there exists a simulator B that can solve the RSA

problem.

5.5.2 Security under OUF-CMA

Theorem 5.4. If the RSA problem is hard, then the proposed scheme as described

in Section 6.5 is secure in the order unforgeability under chosen message attack

(OUF-CMA) model.

122 A Signature Scheme for a Sequence of Digital Documents

Proof. Assuming the scheme is secure under EEUF-CMA (the attacker cannot

forge the unsigned documents), the attacker can only forge the order by re-

arranging the signed messages and the valid signatures. To re-arrange the or-

der of a signed sequence, the attacker should find the collision in the signature.

That is, the attacker should find the condition si−1‖σi = sj−1‖σj where i 6= j and

si−1‖σi ← VPSignd(σi−1,mi), sj−1‖σj ← VPSignd(σj−1,mj).

We need to prove that the probability to find the collision can be reduced to the

probability to find the collision of the hash function used in the scheme. First, we

define the possibility to find the collision in the signature as follows:

Advouf
Sign(A) = Pr[di

$←− D; (M,M ′)
$←− A(di) :

(Signdi(M) = Signdi(M
′))]

Then, we compute the probability of Advouf
Sign(A) by using game-based proof (G0

to G4) as follows:

G0. This game represents the original game. The attacker can query the valid

pair of message-signature pair, in the end of the game, the attacker outputs

mi,mj, si−1‖σi = sj−1‖σj where i 6= j.

σ0 ← {0}n, d
$←− D

for i← 1...q do

si−1 ← bσi−1c`
r ← H(mi)

wi ← H(n−`bσi−1c‖r)
r∗i ← g1(wi)⊕ r

σ∗
i ← g2(wi)⊕n−` bσi−1c

σi ←
(
0‖wi‖r∗i ‖σ∗

i

)d
mod N

return si−1‖σi

end for

return mi,mj , si−1‖σi = sj−1‖σj where i 6= j and mi 6= mj

Advouf
Sign(A) = Pr[GA

0 ⇒ 1]

A Signature Scheme for a Sequence of Digital Documents 123

G1. In this game, because the RSA is permutation, to find the collision, the

attacker should find (0‖wi‖r∗i ‖σ∗i), and
(
0‖wj‖r∗j‖σ∗j

)
where (0‖wi‖r∗i ‖σ∗i) =(

0‖wj‖r∗j‖σ∗j
)
.

σ0 ← {0}n, d
$←− D

for i← 1...q do

si−1 ← bσi−1c`
r ← H(mi)

wi ← H(n−`bσi−1c‖r)
r∗i ← g1(wi)⊕ r

σ∗
i ← g2(wi)⊕n−` bσi−1c

return ←
(
0‖wi‖r∗i ‖σ∗

i

)
end for

return
(
0‖wi‖r∗i ‖σ∗

i

)
=

(
0‖wj‖r∗j ‖σ∗

j

)
where i 6= j

Pr[GA
0 ⇒ 1] = Pr[GA

1 ⇒ 1]

Advouf
Sign(A) = Pr[GA

1 ⇒ 1]

G2. In this game, we assume H(mi) produces distinct results ri where the ad-

vantage of the adversary B finds a collision is Advcoll
H (B).

σ0 ← {0}n, d
$←− D

for i← 1...q do

si−1 ← bσi−1c`
r ← ri

wi ← H(n−`bσi−1c‖r)
r∗i ← g1(wi)⊕ r

σ∗
i ← g2(wi)⊕n−` bσi−1c

return ←
(
0‖wi‖r∗i ‖σ∗

i

)
end for

return
(
0‖wi‖r∗i ‖σ∗

i

)
=

(
0‖wj‖r∗j ‖σ∗

j

)
where i 6= j

So, that

Pr[GA
1 ⇒ 1] = Pr[GA

2 ⇒ 1] + Advcoll
H (B)

Advouf
Sign(A) ≤ Pr[GA

2 ⇒ 1] + Advcoll
H (B)

G3. In this game, again, we assume H(n−`bσi−1c‖r) produces distinct results ti

where the advantage of the adversary B finds a collision is Advcoll
H (B).

124 A Signature Scheme for a Sequence of Digital Documents

σ0 ← {0}n, d
$←− D

for i← 1...q do

si−1 ← bσi−1c`
r ← ri

wi ← ti

r∗i ← g1(wi)⊕ r

σ∗
i ← g2(wi)⊕n−` bσi−1c

return ←
(
0‖wi‖r∗i ‖σ∗

i

)
end for

return
(
0‖wi‖r∗i ‖σ∗

i

)
=

(
0‖wj‖r∗j ‖σ∗

j

)
where i 6= j

So, that

Pr[GA
2 ⇒ 1] ≤ Pr[GA

3 ⇒ 1] + Advcoll
H (B)

Advouf
Sign(A) ≤ (Pr[GA

3 ⇒ 1] + Advcoll
H (B))

+ Advcoll
H (B)

Advouf
Sign(A) ≤ Pr[GA

3 ⇒ 1] + 2 ·Advcoll
H (B)

G4. In this game, we simplify the notation, so we are only concerned about wi,

because in the G4 we assume that wi is defined as distinct ti, we get the

following game.

σ0 ← {0}n, d
$←− D

for i← 1...q do

ti ← distinct

return ← ti

end for

return ti = tj where i 6= j

We get the following:

Pr[GA
3 ⇒ 1] ≤ Pr[GA

4 ⇒ 1]

Pr[GA
4 ⇒ 1] = 0

Pr[GA
3 ⇒ 1] = 0

In the end, we get the following result:

A Signature Scheme for a Sequence of Digital Documents 125

Advouf
Sign(A) ≤ Pr[GA

3 ⇒ 1] + 2 ·Advcoll
H (B)

Advouf
Sign(A) ≤ 0 + 2 ·Advcoll

H (B)

Advouf
Sign(A) ≤ 2 ·Advcoll

H (B)

5.6 Comparison of Our Scheme with the Other

Schemes

In this section, we compare our scheme to the other possible schemes that can

be used to sign the sequence of the documents (see Table 5.1). We compare the

signature size, the possibility to check the order, whether the scheme allows verifi-

cation without having access to all members, whether the scheme allows sequential

updates and whether the schemes require a trusted party.

Table 5.1: Comparison with other signing methods

Size Allow Allow Allow Needs
Scheme of the Checking Missing Sequential Trusted

Signature Order Members Update Party
RSA comb. S Yes No No No
RSA ctr. nS Yes Yes Yes Yes
S. Chain nS Yes No Yes No
S. Aggr. S Yes No Yes No

Our scheme
(n+ 2)S

k
Yes Yes Yes No

We summarize the results as follows:

1. (RSA comb.) The first possible scheme is the plain RSA where we combine

the messages and create one signature for the message. This method is

efficient in term of the storage, however it has weakness because we cannot

update sequentially and the verification needs access to all members of the

sequence.

2. (RSA ctr.) We may use the plain RSA and include consecutive counters for

each member. This scheme has a main advantage where we can verify each

member without having access to any other members. However, this method

126 A Signature Scheme for a Sequence of Digital Documents

needs a large size of the signature, and needs a trusted party to guarantee

the counters represents the original order.

3. (S. Chain.) The plain Signature chain method can also be used to sign the

sequence, and its main advantage is we can generate the signature sequen-

tially. However, we need to store a large size of the signature and also during

verifiation we needs to have access to all members of the sequence.

4. (S. Aggr.) A promising solution is the signature aggregate where its main

advantage is with a small size signature we can prove many members of

the signature. However, its main problem is we need to access all members

during verification of any member of the sequence.

5. (Our scheme.) Our scheme uses less storage than RSA with counter but

needs a larger storage than the signature aggregate. The main advantages

of our scheme are we allow sequential signing and also allow verification

without having access to all members of the sequence. By assuming that

our signature primitives (VPSign, VPPla, and VPVer) can recover k−1
k

the

original message, the signature size is (n+2)S
k

where S is the size of a full

RSA signature.

5.7 Conclusions

In this chapter, we have proposed a method to sign a sequence of digital docu-

ments by using a variant of signature with message recovery originally proposed

by Bellare et al. [89] as the signature primitive. We defined the security model

for the signature scheme, and showed that the scheme is secure in the model. The

advantages of our method are:

1. Our signature scheme can verify the authenticity and also the order of each

member of the documents.

2. During the verification of a signature, the scheme does not require access to

all members of the documents.

3. The signature size is smaller than signing each member of the sequence using

the standard RSA signature.

Chapter 6

Proxy Re-encryption for

Symmetric Key Cryptography

6.1 Introduction

Cryptography is about the art and science to conceal the meaning of a text. A

main technique in cryptography is encryption, which is used to transform the text

(normally called the plaintext) into an unintelligent form (the ciphertext). The

ciphertext can be securely transmitted in an insecure channel because an attacker

who intercepts the ciphertext cannot infer anything about the text without having

a secret decryption key. The encryption technique is also useful to secure data at

rest, for example to protect the data at the local database or at an online database

(the cloud). Any attacker who successfully bypass the security of the local or the

online database cannot access the text without having access the decryption key.

Encryption schemes can be classified based on the keys used for encryption and

decryption. Symmetric encryptions use exactly the same key for encryption and

decryption while asymmetric encryptions use a pair of public and private keys.

Symmetric encryptions are generally faster than asymmetric ones but we need to

assume the decryption keys are securely transferred to the recipients.

Many symmetric encryption schemes have been proposed and most of the schemes

are getting better in hiding the relationships between the plaintext, the key, and

also the ciphertext. The existence of a function that can meaningfully alter the

ciphertext (i.e., malleability) is generally regarded as a bad characteristics of a

127

128 Proxy Re-encryption for Symmetric Key Cryptography

secure cryptosystem. However, in some situations we need to have a symmetric

encryption scheme whose ciphertext can be efficiently transformed in a meaningful

way. We show the applications of those symmetric encryption schemes in the local

and online encrypted database as follows.

1. Fast key update in an encrypted local database. A user encrypts the

local files or databases for better security measures. The problem is when

the key is unintentionally leaked, the user needs to change the encryption

key. With the current fast hardware, the user may use a simple method:

decrypt-and-then-encrypt approach, by first decrypting the data with the

old (leaked) key and then encrypting with a new key. However, if we need to

re-encrypt a large size of data, it is desirable to have a faster method than

executing these two costly computations (decrypt and encrypt).

2. Key update in an encrypted outsourced database. Recently, the cloud

model (i.e., data as service model) has been implemented by many Internet

companies. The data owner can store the data in the cloud and access

the data from anywhere at anytime. However, without additional security

mechanisms, an attacker (who breaks the security of the server) and also the

company itself can do anything to the data: accessing, updating or removing

the data. A promising solution is by encrypting the data before storing the

data in the server, so that the access to the data is fully controlled by the

data owner.

By encrypting the data, we can also implement encryption-based access control,

where access to the data is granted by providing the decryption key. The problem

is when the data owner needs to securely revoke an access, the data owner also

needs to update the encryption key. Using a simple solution (decrypt-and-then-

encrypt), re-encryption is a costly computation, because the data owner needs

to download the data, decrypt the data and encrypt with the new key and then

re-upload the data to the database. A promising solution is by securely delegating

a re-encryption mechanism to a semi-trusted proxy in the server.

6.1.1 Security Model

We are concerned about an encryption scheme that can be used to encrypt the

data as the other encryption modes (i.e., CBC, CTR). The typical usage is that

Proxy Re-encryption for Symmetric Key Cryptography 129

the data owner encrypts the data and stores the data in a storage that can be

accessed by some other users or malicious attackers. Our proposed scheme can be

used to encrypt the data with some special features:

1. The encryption key can be updated directly, without having to decrypt the

data with the previous key and encrypt with the new key.

2. The data owner can delegate the re-encryption process to a semi-trusted

proxy (for example a cloud server) while the proxy is not allowed to access

the decrypted form (plaintext). The semi-trusted proxy is a proxy which

follows the algorithm correctly but we do not allow the proxy to access the

sensitive data. An online database server may act as a proxy where the data

owner may ask the proxy to update the key by sending the re-encryption

key to the proxy.

In this usage model, we identify three types of attackers who has interest in at-

tacking the encryption scheme.

1. The outsiders. In term of encryption security model, the outsiders are the

normal attackers. The outsiders do not have access to any encryption keys.

In the Chosen Plaintext Attack (CPA) model, we provide the outsiders an

encryption oracle that can be used to collect the pair of chosen plaintexts/-

ciphertexts before playing the indistinguishability game where the attackers

should distinguish ciphertexts produced by some chosen plaintexts but not

yet queried to the encryption oracle.

2. The previous users. In our model, the previous users are the most powerful

attackers, because the previous users have access to at least one encryption

key before re-encryption. In the re-encryption process, the data (plaintext)

are not updated, so that we also need to assume that the previous users may

have access to all existing plaintexts (by storing the decrypted data from the

previous accesses). The only restriction to the previous users is that they do

not have access to the current encryption and the re-encryption keys.

3. The proxy. The main feature of the encryption scheme is that we can

delegate the re-encryption process (key update) to a semi-trusted proxy, but

the proxy is not allowed to access to the encryption key. To re-encrypt the

130 Proxy Re-encryption for Symmetric Key Cryptography

data, the proxy should have access to the re-encryption keys. So, the proxy

is more powerful than the outsiders (because it has more information – the

re-encryption keys), but it is less powerful than the previous users.

6.1.2 Contributions

Our main contribution is: we propose a secure symmetric encryption scheme that

supports fast key update and proxy re-encryption. The idea of our scheme is

by first transforming the plaintext using an All or Nothing Transform (AONT)

and exploits some of its characteristics to implement efficient and secure proxy

re-encryptions scheme1. We prove the security of the scheme under the chosen

plaintext attack security model. We also show that the scheme is more efficient

than decrypt-and-then-encrypt method.

6.2 Related Work

6.2.1 Ciphertext Transformation and Proxy Re-encryption

Many researchers have proposed the method for direct transformation and proxy

re-encryption in the asymmetric key encryption setting [6–10]. Blaze et al. [6]

proposes a bidirectional proxy re-encryption based on ElGamal’s encryption in

their seminal paper. The scheme works with a generator g of prime order q, the

private key ska = a is a randomly selected element of Z∗q and the public key pka is

ga. The ciphertext ca for the message m is (mgr, gar) that can be decrypted back

using the private key a to get the plaintext m = mgr

(gar)1/a
. A proxy can directly

converts ca to ciphertext cb (for the private key skb = b ∈ Z∗q and public key

pkb = gb) by using a re-encryption key rka→b = b/a. This re-encryption is possible

because cb = (mgr, (gar)b/a). This scheme is bidirectional, because the proxy can

also compute rkb→a = a/b and if the proxy colludes with one of the users, they

can recover the private key of the other user (i.e., (a/b) ∗ b = a).

1We can also implement more efficient proxy re-encryption using asymmetric ciphers by only
encrypting a small part of AONT transforms. However, this scheme has a weakness because the
previous users (who have access to the previous versions) may store this small encrypted part
and use it for decrypting the message even if the encryption key in the actual data has been
changed.

Proxy Re-encryption for Symmetric Key Cryptography 131

Some researchers [7–10] have improved the Blaze et al.’s scheme. An example is

the work of Atenise et al. [7] that uses pairing. The scheme works with bilinear

map e : G1 × G1 → G2 with security parameter the random generator g ∈ G1

and Z = e(g, g) ∈ G2. The public key of the first user is pka = (Za1 , ga2) and

the private key is ska = (a1, a2). The encrypted form of a message m ∈ G2

is ca = (gr,mZra1) for random r ∈ Zq. The proxy can convert ca to another

ciphertext using the pairing property (e(ga1 , g
b
2) = e(g1, g2)

ab) by computing cb =

(e(gr, ga1b),mZra1) = (Zbr′ ,mZr′), for r′ = a1r so that it can be decrypted by

a second user with public key pkb = gb and the private key is skb = b to get

m = (mZr′)

(Zbr′)1/b
.

The problem with these schemes is they cannot be applied directly to the local

or online databases because, for performance reason, the database is normally

encrypted using symmetric key encryption. Cook et al. suggest a solution for

proxy re-encryption for symmetric ciphers by using double encryption [141]. In

this scheme, the owner encrypts the data m with a key k1 and re-encrypt with

another key k2 to get, for example the ciphertext c = Ek2(Ek1(m)). The re-

encryption is done by the proxy for the second encryption by providing k2 to

the proxy. During re-encryption process, the proxy can not access the data m,

because the data is protected by the first encryption layer. Using this method,

the proxy needs to execute two costly computations: decrypting with the old key

and encrypting with the new key.

Cook et al. [141] also showed that the symmetric ciphers that are closed under

functional composition [142], where for encryption E and message m, there exist

encryption keys k1, k2, k3 so that Ek3(m) = Ek2(Ek1(m)), has a security weakness

because it is vulnerable to known plaintext attack only requiring 2|k|/2 rather than

2|k| for brute force key search.

Another related work is the conversion method for Galois Counter Mode (GCM)

mode [143]. It is not intended for proxy re-encryption but rather for fast re-

encryption. In this method, the re-encryption needs to execute two encryptions,

so the performance of this mechanism is not much better than decrypt-and-then-

encrypt approach.

132 Proxy Re-encryption for Symmetric Key Cryptography

6.2.2 All or Nothing Transform

All or nothing transform (AONT) converts n blocks message M = m[1], ...,m[n]

into a pseudo message M ′ = m[1]′, ...,m[s]′ for s > n so that the original message

cannot be recovered if any block of the pseudo message is missing. Rivest [144]

proposed an AONT that converts the message by encrypting each block with a

random key and xor-ing the random key with the hash of all blocks, so that

the encryption key cannot be recovered without having all parts of the pseudo

messages. Let F be a block cipher, K0 is a fixed (and publicly known) key. The

Rivest’ scheme is defined in the algorithm E-AONT and D-AONT as follows.

Algorithm E-AONTF,F−1
(m[1], . . . ,m[n])

K ′
$←− {0, 1}l

for i = 1 to n do

m′[i]← m[i]⊕ FK′(i)

h[i]← FK0(m
′[i]⊕ i)

end for

m′[n + 1] = K ′ ⊕ h[1]⊕ h[2]⊕ · · · ⊕ h[n]

return m′[1], . . . ,m′[n + 1]

Algorithm D-AONTF,F−1
(m′[1], . . . ,m′[n+ 1])

for i = 1 to n do

h[i]← FK0(m
′[i]⊕ i)

end for

K ′ = m′[n + 1]⊕ h[1]⊕ h[2]⊕ · · · ⊕ h[n]

for i = 1 to n do

m[i]← m[′i]⊕ FK′(i)

end for

return m[1], . . . ,m[n]

The Rivest scheme is a specific form of the Optimal Asymmetric Encryption

Padding (OAEP) proposed by Bellare et al.[145]. OAEP is intended as a padding

method before encrypting with RSA. Let G : {0, 1}k0 → {0, 1}n be a random

generator, and H : {0, 1}n → {0, 1}k0 is a hash function, and then for the message

m and the parameter n and k, OAEP is defined in the following algorithm:

Proxy Re-encryption for Symmetric Key Cryptography 133

Algorithm OAEPG,H(m, k0, n)

r
$←− {0, 1}k0

k1 ← n− length(m)

x← m||0k1 ⊕G(r)

y ← r ⊕H(x)

return x||y

Boyko proved that OAEP is secure in several forms of security definition including

adaptive semantic security [146]. Because Rivest’s AONT is a form of OAEP, it

is conceivable that it is also secure in these models [146]. Canetti et al. proposed

some All-or-Nothing Transform schemes [147] while Dodis el al. proposed expo-

sure resilient cryptography [148]. Desai proposed CTRT, that is a construction of

AONT similar to Rivest’s scheme based on CTR mode of encryption [149]. The

main advantage is that the scheme needs only one ”pass” rather than two ”passes”

as in the Rivest’s scheme. Stinson provided an AONT scheme in the context of

unconditional security [150]. More recently, Boneh et al. proposed key homomor-

phic Pseudorandom Function (PRF) that is secure in the standard model. The

main construction is based on the learning with errors (LWE) problem [151].

6.2.3 Our Original Scheme

The scheme proposed in this chapter is our second attempt to develop a proxy re-

encryption scheme in symmetric cryptography. The original version of the scheme

described in this chapter has been published in [152]. In the original version, we

used the plain All or Nothing Transform (AONT) by Rivest [144] and only showed

the security proof in the Known Plaintext Attack Model while in this new version

we use a modified/variant of All or Nothing Transform (AONT) (as described in

Section 6.4.1) and proved the scheme is secure under the Chosen Plaintext Attack

(CPA).

The other improvements to the original scheme are the usage of CTR-like encryp-

tion mode and a security proof of the key generation algorithm. All of the security

proofs in this latest version are also treated more formally.

134 Proxy Re-encryption for Symmetric Key Cryptography

6.3 Preliminaries

6.3.1 Notion of Security

Security of a symmetric encryption scheme can be defined in term of Left-or-

Right Indistinguishability [75] in which the attacker should decide whether he/she

accesses a left (encrypting the left part of the message pair M0,M1) or a right

(encrypting the right part of the message pair M0,M1) oracle as follows.

Definition 6.1 (LOR-CPA [75]). Let SE = K, E ,D be a symmetric encryption

scheme. Let b ∈ {0, 1} and k ∈ N. Let Acpa be an adversary that has access

to the oracle EK(LR(· , ·, b)) that takes inputs (x0, x1) and produces the output

C ← EK(xb). We consider the following experiment:

Experiment Explor−cpa−b
SE,Acpa

(k):

K
R←− K(k)

d← A
EK(LR(·,·,b))
cpa (k)

return d

We define the advantage of the adversaries as:

Advlor−cpa−b
SE (A) = Pr

[
Explor−cpa−1

SE,Acpa
(k) = 1

]
− Pr

[
Explor−cpa−0

SE,Acpa
(k) = 1

]

The following conversion is useful to calculate the probability of LOR-CPA. Let

Pr[Guess⇒ true] be the probability that the adversary correctly guesses the left

or right oracle, then:

Advlor−cpa−b
SE (A) = 2 · Pr[Guess⇒ true]− 1

Proxy Re-encryption for Symmetric Key Cryptography 135

Proof.

Pr[Guess⇒ true]

= Pr[Guess⇒ 1|b = 1] · 1
2
+ Pr[Guess⇒ 0|b = 0] · 1

2

= Pr[Guess⇒ 1|b = 1] · 1
2
+

(
1− Pr[Guess⇒ 1|b = 0] · 1

2

)
=

1

2
+

1

2
· (Pr[Guess⇒ 1|b = 1]− Pr[Guess⇒ 1|b = 0])

=
1

2
+

1

2
·
(
Advlor−cpa−b

SE (A)
)

The security of an All or Nothing Transform (AONT) has been defined in [149].

In this model, the adversary can choose l blocks of message M and sends the

blocks to an oracle that replies with the corresponding pseudomessage of M but

one block of the pseudomessages is removed. Then, the oracle randomly chooses

from two blocks where one of them is a part of the pseudomessage (which has been

removed) and the other one is a random bits with the same length. The adversary

needs to guess whether the block is a part of the pseudomessage or the random

bits.

Definition 6.2 (AON-CPA [149]). Let AO = E ,D be an AONT of block numbers

l. Let b ∈ {0, 1} and Acpa be an adversary that has access to the oracle E(AO(·))
that takes inputs M and produces the pseudomessages M ′ ← E(M). We consider

the following experiment:

Experiment Expaon−cpa
AO,Acpa

(b):

(M)← Acpa(find)

y0 ← E(M)

y1
R←− {0, 1}|y0|

d← AYcpa(guess)

return d

Where Y takes a block number n and return yb[n] that is the n-th block of either

y0 or y1 (chosen randomly).

We define the advantage of the adversaries as:

136 Proxy Re-encryption for Symmetric Key Cryptography

Advaon−cpa−b
AO (A) = Pr

[
Expaon−cpa

AO,Acpa
(1) = 1

]
− Pr

[
Expaon−cpa

AO,Acpa
(0) = 1

]

With a similar argument to the LOR security definition, we can derive the advan-

tage of the adversary to an AONT:

Advaon−cpa−b
AO (A) = 2 · Pr

[
Expaon−cpa

AO,Acpa
(b) = b

]
− 1

6.3.2 PRF and PRP Advantages

Let F `,L be a set of all functions from
∑` to

∑L and P` be a set of all permutations

on
∑`, and PRF and PRP advantages are defined as follows:

Definition 6.3 (PRF Advantage). Let F be a pseudorandom function family, that

is a collections of functions FKi
:
∑` →

∑L, and the advantage of an adversary

B to distinguish the outputs of F from a random function R is defined as follows:

Advprf
F (B) = Pr[Ki

$←− K : BFKi
(·) = 1]

− Pr[R
$←− F `,L : BR(·) = 1]

Definition 6.4 (PRP Advantage). Let E be a pseudorandom permutation family,

that is a collections of functions EKi
:
∑` →

∑`, and the advantage of an adver-

sary B to distinguish the outputs of E from a random permutation P is defined

in the following formula:

Advprp
E (B) = Pr[Ki

$←− K : BEKi
(·) = 1]

− Pr[P
$←− P` : BP (·) = 1]

Proxy Re-encryption for Symmetric Key Cryptography 137

6.3.3 Difference Lemma

In some of our security proofs, we use the game playing proof method as described

in [99, 153]. The following is a lemma that is useful in the game playing proof

method.

Lemma 6.5 (Difference Lemma [99, 100]). Let A,B, F be events defined in some

probability distribution, and if A∧¬F ⇐⇒ B ∧¬F , then |Pr[A]−Pr[B]| ≤ Pr[F]

Proof.

|Pr[A]− Pr[B]| = |Pr[A ∧ F] + Pr[A ∧ ¬F]

−Pr[B ∧ F]− Pr[B ∧ ¬F]|

= |Pr[A ∧ F]− Pr[B ∧ F]| ≤ Pr[F]

Bellare et al. also describe a similar lemma in [153] which is used in the game-

playing proof method.

6.4 The Primitives

In this section we describe the primitives that are used as the building blocks for

our encryption scheme.

6.4.1 All or Nothing Transform (AONT)

We propose a variant of Rivest’s AONT as shown in the following algorithm (E-

AONTH and D-AONTH). The main difference to the original Rivest scheme is: we

include another “pass” so that the attacker cannot control the outputs of AONT

even if he/she knows the key K ′. We also use a hash function in the second “pass”

rather than an encryption with a “fixed key”. The differences are highlighted by

boxes. Another difference is: we also include another variable ctr, that is used to

generate unique counter for each block.

138 Proxy Re-encryption for Symmetric Key Cryptography

Algorithm E-AONTHF,F−1,H(ctr,m[1], . . . ,m[n])

K ′
$←− {0, 1}l

for i = 1 to n do

x[i]← m[i]⊕ FK′(ctr + i)

end for

m′[n + 1]← K ′ ⊕ H(x[1] · · ·x[n])

for i = 1 to n do

m′[i]← x[i]⊕H(m′[n + 1]⊕ (ctr + i))

end for

return ctr,m′[1], . . . ,m′[n + 1]

Algorithm D-AONTHF,F−1,H(ctr,m′[1], ...,m′[n+1])

for i = 1 to n do

x[i]← m′[i]⊕H(m′[n + 1]⊕ (ctr + i))

end for

K ′ ← m′[n + 1]⊕ H(x[1] · · ·x[n])

for i = 1 to n do

m[i]← x[i]⊕ FK′(ctr + i)

end for

return m[1], . . . ,m[n]

The security of AONTH in shown in the following theorem.

Theorem 6.6 (Security of AONTH). Let H in AONTH defined in Section 6.4.1

be a pseudorandom function, the advantages of an adversary A attacking AONTH

in AON-CPA security model as defined in Section 6.3 is at most:

Advaon−cpaAO (A) ≤ 2 · AdvprfF (B)

Proof. Basically, the argument is as follow. The AONTH outputs the pseudomes-

sages blocks m′[i] for 1 ≤ i ≤ n

m′[i] = x[i]⊕H(m′[n + 1]⊕ (ctr + i))

Proxy Re-encryption for Symmetric Key Cryptography 139

Because x[i] ← m[i] ⊕ FK′(ctr + i), then we can conclude that x[i] and m′[i] are

random with the advantages of the attacker to distinguish m′[i] from the random

bits is AdvprfF (B). As of the (n + 1)-block:

m′[n + 1] = K ′ ⊕H(x[1] · · · x[n])

Because K ′ is chosen at random, for any H(x[1] · · ·x[n]), we can conclude that

m′[n + 1] should be indistinguishable for random. So, that if the missing block is

m′[i] for 1 ≤ i ≤ n the advantage of the attacker is AdvprfF (B), but if the missing

block is m′[n+ 1], the advantage of the attacker is 0. The complete proof is shown

in Section 6.9.2.

6.4.2 The functions PE ,DP, and FC

Two basic functions used in our scheme are permutation PE and its inverse DP .

A permutation PE is a bijection function that takes two input sequences of the

same size n. The first sequence is the permutation key p[1], ..., p[n] where 1 ≤
p[i] ≤ n for 1 ≤ i ≤ n and p[a] 6= p[b] for a 6= b. The second sequence is

any sequence x[1], ..., x[n] where each element has the same size l(≥ 1). The

permutation PE transforms the second input sequence by changing the order of

the sequence according to the first input sequence (permutation key). For example

a permutation PE (4,2,3,1)(a, b, c, d) transforms the the second input into (d, b, c, a).

The PE algorithm is shown as follows.

Algorithm PEp[1],...,p[n](x[1], . . . , x[n])

for i = 1 to n do

x′[i]← x[p[i]]

end for

return x′[1], . . . , x′[n]

The inverse of permutation DP is a bijection function that takes two inputs as

PE . The difference is the DP converts back the second sequence that has been

permuted using the PE . An example is DP (4,2,3,1)(d, b, c, a) = (a, b, c, d). The DP
algorithm is shown as follows.

140 Proxy Re-encryption for Symmetric Key Cryptography

Algorithm DPp[1],...,p[n](x[1], . . . , x[n])

for i = 1 to n do

x′[p[i]] = x[i]

end for

return x′[1], . . . , x′[n]

An output of a permutation can be converted directly to an output of another

permutation by finding a conversion key. The conversion key pC of a permutation

key pA to permutation key pB is a permutation key so that for each input sequence

x, PEpB(x) = PEpC (PEpA(x)). We can find the conversion key pC if we have pA

and pB by using the following algorithm.

Algorithm FC(pA[1], . . . , pA[n], pB[1], . . . , pB[n])

for i = 1 to n do

for j = 1 to n do

if pA[i] = pB[j] then

pC [j]← i

break

end if

end for

end for

return pC [1], . . . , pC [n]

6.4.3 Permutation Key Generator (PGen)

The permutation key generator is used to generate permutation keys where each

of them consists of a sequence of distinct numbers from 1 to n. We implement the

function using a deterministic encryption function FK(p) that takes an input K

and a plaintext p using the following algorithm. To generate a random sequence of

numbers from 1 to n, first we generate two sequences, the first one is the sequence

from 1 to n, the second one is a sequence produced by encrypting the first sequence

with FK . We change the order of the first sequence based on the order of the second

sequence. The permutation key generator is implemented in the Algorithm PG.

Proxy Re-encryption for Symmetric Key Cryptography 141

Algorithm PGK(n)

for i = 1 to n do

p[i] = i

tmp[i] = FK(i)

end for

QuickSortPlus(p, tmp, 1, n)

return p

Function QuickSortPlus(p, tmp, lo, hi)

if lo < hi then

q ←PartitionPlus(p, tmp, lo, hi)

QuickSortPlus(p, tmp, lo, q − 1)

QuickSortPlus(p, tmp, q + 1, hi)

end if

EndFunction

Function PartitionPlus(p, tmp, lo, hi)

pivot← tmp[hi]

i← lo

for j = lo to hi− 1 do

if tmp[j] ≤ pivot then

swap tmp[i] with tmp[j]

swap p[i] with p[j]

i← i + 1

end if

end for

swap tmp[i] with tmp[hi]

swap p[i] with p[hi]

return i

EndFunction

Security of PGK(n). We need to argue that PGK(n) is secure, that is for a

random K, the algorithm PGK(n) outputs a random sequence of numbers from 1

to n which is indistinguishable from a random permutation of the numbers from

1 to n. The argument is as follows: for a secure F and ` bits size of outputs,

each output of FK(i) for 1 ≤ i ≤ n will be distributed randomly with the values

from 0 to 2` − 1, so that if we sort the results based on the values of the outputs,

we will get a permutation that is indistinguishable to the random permutation,

142 Proxy Re-encryption for Symmetric Key Cryptography

because for each FK(a) and FK(b) where a 6= b, 1 ≤ a ≤ n, 1 ≤ b ≤ n, then

FK(a) 6= FK(b), and there is the same chance that either a < b or a > b.

6.5 The Proposed Scheme

6.5.1 Definition

Let m[1],m[2], ...,m[n] be a sequence of n blocks of message where the size of each

m[i] is ` bits. The encryption algorithm PR consists of six algorithms G1, G2, E ,

D, RG, RE where:

• G1 is a key generation algorithm that produces random keys to be used by

G2

• G2 is a key generation algorithm that produces random keys to be used by

E and D

• E is the encryption algorithm that converts n input blocks m[1],m[2], ...,m[n]

to s output ciphertext blocks c[1], c[2], ..., c[s] for s ≥ n

• D is the decryption algorithm that transforms the ciphertext c[1], c[2], ..., c[s]

back into the plaintext m[1],m[2], ...,m[n]

• RG is an algorithm to generate keys for re-encryption algorithm RE

• RE is the re-encryption algorithm that transforms the ciphertext c[1]A,

c[2]A,..., c[s]A encrypted with private key KA into ciphertext c[1]B, c[2]B,...,c[s]B

encrypted with private key KB

6.5.2 The Scheme

The proxy encryption algorithm PR = (G1,G2, E ,D,RG,RE) works on `× n bits

message m[1], ...,m[n] where the message is divided into n blocks with size `. Com-

bination of the key generators G1 and G2 produce three random permutation keys

P1, P2, P3 that are later used by E and D for encryption and decryption. Encryp-

tion algorithm E works by first converting the plaintext into AONT’s pseudomes-

sage, and then uses three permutation keys P1, P2, P3 to produce the ciphertext

Proxy Re-encryption for Symmetric Key Cryptography 143

with a random initialization vector (iv). The decryption algorithm D is the inverse

of the E . The re-encryption key generator RG produces the re-encryption keys

that are later used by the re-encryption function RE to update the encryption

key. We show the detail of each algorithm as follows.

Algorithm G1(`)

K1
$←− {0, 1}`

K2
$←− {0, 1}`

K3
$←− {0, 1}`

return K1, K2, K3

Algorithm G2(K1, K2, K3, `, n)

P1 ← PGK1(`)

P2 ← PGK2(`)

P3 ← PGK3(n)

return P1, P2, P3

Algorithm E(K1, K2, K3, ctr,m[1], ...,m[n], `, n)

(P1, P2, P3)← G2(K1, K2, K3, `, n)

iv
$←− {0, 1}`

ctr,m′[1], ...,m′[n + 1]← E-AONTH(ctr,m[1], ...,m[n])

m′′[1], ...,m′′[n]← PEP3(m
′[1], ...,m′[n])

c[0]← PEP1(m
′[n + 1][1...`])⊕ PEP2(iv[1...`])

for i = 1 to n do

c[i]← (PEP1(m
′′[i][1...`])

⊕ PEP2(c[i− 1][1...`]))

end for

return ctr, iv, c[0]...c[n]

Algorithm D(K1, K2, K3, ctr, iv, c[0], ..., c[n], `, n)

(P1, P2, P3)← G2(K1, K2, K3, `, n)

for i = n to 1 do

m[i]′′ ← DPP1(c[i]⊕ PEP2(c[i− 1][1...`]))

end for

m′[n + 1] = DPP1(c[0][1...`]⊕ PEP2(iv[1...`]))

m′[1], ...,m′[n]← DPP3(m
′′[1], ...,m′′[n])

m[1], ...,m[n]← D-AONTH(ctr,m′[1], ...,m′[n + 1])

return m[1], ...,m[n]

144 Proxy Re-encryption for Symmetric Key Cryptography

Algorithm RG(K1, K2, K3, `, n)

(P1, P2, P3)← G2(K1, K2, K3, `, n)

(K ′1, K
′
2, K

′
3)← G1(`)

(P ′1, P
′
2, P

′
3)← G2(K ′1, K ′2, K ′3, `, n)

CK1 ← FC(P1, P
′
1)

CK3 ← FC(P3, P
′
3)

return CK1, K2, K
′
2, CK3

Algorithm RE(CK1, K2, K
′
2, CK3, ctr, iv, c[0], ..., c[n], `, n)

P2 ← PGK2(`), P
′
2 ← PGK′

2
(`)

for i = n to 1 do

c′[i]← PECK1(c[i]⊕ PEP2(c[i− 1][1...`]))

end for

iv′
$←− {0, 1}`

c′′[1], ..., c′′[n]← PECK3(c
′[1], ..., c′[n])

c′′[0] = PECK1(c[0]⊕ PEP2(iv[1...`])))

⊕ PEP ′
2
(iv′[1...`]))

c[0]← c[0]′′

for i = 1 to n do

c[i]← c[i]′′ ⊕ PEP ′
2
(c′′[i− 1][1...`])

end for

return ctr, iv′, c[0], ..., c[n]

To encrypt a large message, the data owner generates the encryption keys by calling

G1, and then divides the message into large blocks with size `×n each and assigns

a unique counter ctr for each large block where the different of the ctr between

consecutive large blocks is at least n. Each large block is then divided into n smaller

ones with size ` bits for each block. Each large block is encrypted by executing

the encryption algorithm E with inputs ctr and the blocks m[1], . . . ,m[n]. Figure

6.1 provides an illustration of the encryption algorithm E .

At a later time, the data owner may need to update/change the encryption keys.

First, he/she calls G1 to generate a new key, and call RG1 to generate the re-

encryption key. If the encrypted data is stored in the local storage, the data owner

may simply execute the re-encryption algorithm RE by him/herself to update

encryption key. Alternatively, if the data is stored in an online storage, he/she

may need to send the re-encryption key to the proxy. The proxy executes the

Proxy Re-encryption for Symmetric Key Cryptography 145

ctr m[1] · · · m[n]

↓ E-AONTH

m′[n+ 1] {m′[1] · · · m′[n]}

↓ PEP3

↓ ↘ ↘↙ ↙

m′[n+ 1] {m′′[1] · · · m′′[n]}

↓ PEP1 ↓ PEP1 ↓ PEP1 ↓ PEP1

m′′′[n+ 1] m′′′[1] · · · m′′′[n]

↓ ↓ ↓

iv
PEP2→ ⊕ = c[0]

PEP2→ ⊕ = c[1] · · · → c[n− 1]
PEP2→ ⊕ = c[n]

Figure 6.1: Illustration of the encryption of a large block (`× n bits)

re-encryption algorithm RE to update the key without the need to decrypt the

data or accessing the previous encryption keys. The users who previously were

granted access to the data by the data owner, cannot decrypt the new ciphertext

without having the new encryption key. However he/she (the previous user) may

keep some or all data that is accessible from previous accesses.

Encryption algorithm needs to call E-AONTH function, and also permutation at

the level of blocks and bits. For example m′′[1]...m′′[n] ← PEP3(m
′[1]...m′[n])

permutes many blocks m′[1]...m′[n] at the level of blocks while PEP1(m
′′[i][1...`])

permutes the block m′′[i] at the level of bits where the size of element which is

permuted is one bit. Permutations at the level of blocks move a block (` bits) to

another position in a sequence of blocks, while permutations at the level of bits

move only one bit to another position in one block.

6.5.3 Correctness of the Re-encryption Function RE

It is easy to check that the decryption D is the inverse of the encryption function

E . In this section, we show that the re-encryption algorithm RE correctly converts

a ciphertext encrypted with keys P1, P2, P3 to another ciphertext encrypted with

keys P ′1, P
′
2, P

′
3.

146 Proxy Re-encryption for Symmetric Key Cryptography

The ciphertext of each block before re-encryption is produced from AONT outputs

(m′[1]...m′[n + 1]) as follows:

m′′[1] ... m′′[n + 1]← PEP3(m
′[1]...m′[n + 1])

c[0] ← PEP1(m
′[n + 1][1...`])⊕ PEP2(iv[1...`])

c[i] ← (PEP1(m
′′[i][1...`])

⊕ PEP2(c[i− 1][1...`]))

To re-encrypt, first the proxy produces c′[i] using the following:

c′[i]← PECK1(c[i]⊕ PEP2(c[i− 1][1...`]))

This step correctly transform the key P1 to P ′1, because:

PEP1(m
′[i][1...`]) = c[i]⊕ PEP2(c[i− 1][1...`])

and

PEP ′
1
(m′[i][1...`]) = PECK1(PEP1(m

′[i][1...`]))

Then, the proxy permutes the results using CK3 to convert P3 to P ′3

c′′[1]...c′′[n + 1]← PECK3(c
′[1]...c′[n + 1])

The proxy executes the following transformation to convert the key P2 to P ′2:

c[i]← c[i]′′ ⊕ PEP ′
2
(c′′[i− 1][1...`])

These steps correctly convert the ciphertext c[i] to new keys because:

Proxy Re-encryption for Symmetric Key Cryptography 147

c[i] = PEP ′
1
(m′[i][1...`])⊕ PEP ′

2
(c′′[i− 1][1...`])

= c[i]′′ ⊕ PEP ′
2
(c′′[i− 1][1...`])

6.6 Security Analysis

6.6.1 Security Against Outsiders

First, we analyze the security of the encryption scheme against the attackers who

have no access to any keys (outputs of G1, G2 and RG). In the Left-or-Right Indis-

tinguishability, the adversary chooses two message blocks M [0],M [1]. The encryp-

tion oracle encrypts these blocks, and the adversary should distinguish whether

the encrypted blocks belong to the left or right world.

Theorem 6.7. Let F in AONT defined in Section 6.4.1 be a pseudorandom

function and let PR be the symmetric encryption that supports proxy re-encryption

defined in Section 6.5. The advantage of an adversary A attacking PR in LOR-

CPA defined in Section 6.3 is at most:

Advlor−cpaPR (A) ≤ 2 · AdvprfF (B)

Proof. The complete proof is shown in Section 6.9.2. Basically, the proof is similar

to the proof of the CTR mode. That is, the attacker cannot distinguish the

ciphertext because to produce the ciphertext the plaintext is xor-ed with encrypted

counters. The next processing (hashes and permutations) does not change the

distribution of the ciphertext so the adversary cannot distinguish the outputs of

encryption.

We need to clarify that it seems without the permutations (PE in the encryption

scheme) the outputs of AONT is indistinguishable to the random sequence of bits,

so that it may be secure to be used as an encryption scheme without the permuta-

tions. This is partially true, because the characteristic of AONT’s outputs is: if at

148 Proxy Re-encryption for Symmetric Key Cryptography

least one of the outputs is missing, we cannot derive the original messages. Prac-

tically, if at least one block is missing, the original message is securely encrypted

(with the key to decrypt is the missing block). However, if we have access to all

blocks, it is easy to decrypt the blocks because we can derive the decryption key.

The purpose of the permutations to the AONT’ outputs is to remove access to the

AONT’ blocks, so that the attacker cannot derive the encryption key.

6.6.2 Security Against Previous Users

The previous users are the attackers who have access to previous outputs of key

generations G1, G2 before re-encryption. The difference of the previous users to the

normal attackers is they may also have access to all plaintext Mi (from previous

accesses), intermediate values represented by AONT(Mi), and the key (K ′) used

by AONT. However, the previous users cannot access any outputs of RG (which

can only be accessed by the proxy).

Theorem 6.8. Let F in AONT defined in Section 6.4.1 be a pseudorandom

function and let PR be the symmetric encryption that supports proxy re-encryption

defined in Section 6.5. The advantage of an adversary A, who have access to

previous encryption keys, attacking PR in LOR-CPA defined in Section 6.3 is at

most:

Advlor−cpaPR (A) ≤ AdvprfH (B)

(
2 +

q(q − 1)

2`

)
+
q(q − 1)

2`

(
1

2`
+ 3(n + 1)

)
where q is the number of queries, n is the number of blocks in each query, and `

is the size of each block.

Proof. The complete proof is shown in Section 6.9.3. The previous users have

better advantage to the other attackers because they have access to the key (K ′)

used in AONT function. To distinguish the ciphertext, the previous users try to

find the collision on outputs of hashes on AONT function and also collision of the

ciphertext by choosing the plaintext. The hash function limits the ability of the

adversary to produce the collision on the ciphertext.

Proxy Re-encryption for Symmetric Key Cryptography 149

6.6.3 Security Against Proxy

The proxy, that is the attacker who have access to the outputs of RG, but he/she

has no access to any outputs of G1, G2 and the intermediate values AONT(Mi).

The data owner can delegate the re-encryption process to the proxy by providing

the re-encryption keys (output of RG) without the need to provide any access to

the plaintext and encryption keys.

Theorem 6.9. Let F in AONT defined in Section 6.4.1 be a pseudorandom

function and let PR be the symmetric encryption that supports proxy re-encryption

defined in Section 6.5. The advantages of an adversary A, who have access to the

re-encryption keys (output of RG), attacking PR in LOR-CPA defined in Section

6.3 is at most:

Advlor−cpaPR (A) ≤ 2 · AdvprfF (B)

Proof. The complete proof is shown in Section 6.9.4. The proof is similar to

Theorem 6.7. The difference is the processing after CTR-style encryption and

hashes uses less number of permutations. Because these processes does not change

the distribution of the ciphertext, the adversary cannot distinguish the outputs of

encryption better than distinguishing outputs of pseudorandom functions.

6.6.4 A Note on Collusion Attack

It should be noted that we assume the proxy does not collude with any previous

users who have access to the previous keys before encryption. It is easy to check

that the proxy can recover the current encryption key if he/she has access to the

previous keys. (However, as a comparison, even a costly double encryption method

[141] is not resistant to the collusion attack).

6.7 Performance Evaluation

We analyze the performance of the scheme by calculating the computation costs

to execute the scheme. Table 6.1 shows the computation costs that are needed

by the scheme for the key generations (G1,G2), encryption (E), decryption (D),

re-encryption key generation (RG), and re-encryption (RE). The computational

150 Proxy Re-encryption for Symmetric Key Cryptography

costs are represented by the number of executions of the primitives for n number

of blocks. The primitives are: AONT transform/de-transform (AONT), permu-

tation (PE), de-permutation (DP), finding conversion key (FC), permutation key

generation (PG), random bits generation (
$←− {0, 1}) and XOR operation (⊕).

Table 6.1: The number of primitive executions

Primitives G1 G2 E D RG RE
AONT - - 1 1 - -
PE - - 2n + 3 - - 3n + 3
DP - - - 2n + 3 - -
FC - - - - 2 -
PG - 3 3 3 6 2
$←− {0, 1} 3 - - - 3 -
⊕ - - n + 1 n + 1 - 2n + 2

PE , DP , FC, and XOR (⊕) are cheap operations. The costs of AONT, PG and

random generation are linear to a symmetric cipher operation. For example, the

AONT scheme proposed by Rivest needs 2n encryption operations [144] while our

AONT scheme needs roughly 3n encryption operations. As shown in Table 6.1, the

costs of key generation and re-encryption key generation are linear to symmetric

cipher operations because key generation needs 3 random bits generations while

re-encryption keys generation needs 2 operations of find conversion key (FC), 4

permutation key generations (PG) and 4 random bits generations. The costs of

encryption and decryption are also linear to symmetric cipher operations because

encryption needs execution of an AONT transform, 2n + 3 permutations, 3 per-

mutation key generations, and n times XOR, while decryption needs execution

of an AONT transform, 2n + 3 de-permutations, 3 permutation key generations,

and n times XOR. Re-encryption in this scheme is very efficient because it only

needs 2 permutation key generations regardless of the number of blocks and a

linear number of cheap PE and XOR operations (3n + 3 PE and 2n + 2 XOR

operations).

6.8 Discussion: Using CBC and CTR modes as

Alternatives to AONT

The security of the scheme in Section 6.5 relies on the difficulty to find the correct

position of the AONT transformation. Other encryption modes (CBC and CTR)

Proxy Re-encryption for Symmetric Key Cryptography 151

also have characteristics that the blocks cannot be decrypted correctly if we cannot

find the correct position of the blocks. In CTR, we should know the correct

position of a block for decrypting the block. In CBC mode, we should know a pair

of consecutive blocks to decrypt a block. It is interesting to know whether it is

possible to implement the scheme showed in Section 6.5 using CBC or CTR.

6.8.1 Using CBC mode

Each block encrypted with CBC is defined as ci = E(k, pi ⊕ ci−1), c0 = IV , where

IV is an initialization vector [82]. To decrypt a block ci we use the following

formula: pi = E(k, ci) ⊕ ci−1, c0 = IV . If we substitute the AONT with a CBC

mode there are some features of AONT that cannot be substituted by CBC:

1. In CBC, we only need to know two consecutive modes and decrypt a block to

get a block of the plaintext, while in the AONT we need to know all blocks

with correct position and decrypt all blocks to get any block of the plaintext.

2. In CBC, we do not need to have all of blocks, we can decrypt any blocks and

get a block of plaintext by knowing two consecutive blocks.

Those characteristics of CBC affects the security of the re-encryption as follows:

• the previous user does not need to know all bits key P3 to decrypt a part

of the blocks. By using CBC, it is possible the previous user shares a part

of the blocks without knowing all bits of the key (which is not possible in

All-or-Nothing-Transform (AONT), because in AONT to leak a block, we

need to have all correct bits of the key).

• for the proxy and the normal attackers, by using CBC mode, attack to find

the encryption key is easier, because the proxy and the outsider can check

the correctness of a key for a block by only decrypting the block rather than

decrypting all blocks of the message with correct keys for all blocks in AONT

scheme to test the correctness of any bits of key in a block.

152 Proxy Re-encryption for Symmetric Key Cryptography

6.8.2 Using CTR mode

In CTR, we use a nonce n and counter i to encrypt each block of the message.

Each block encrypted with CTR is defined as ci = E(k, n⊕ i)⊕pi [82]. To decrypt

a block ci we use the following formula: pi = E(k, n⊕ i)⊕ ci. The CTR mode has

the same weaknesses as the CBC so that if we use CTR there are some advantages

for the previous users, the proxy and the outsiders:

• the previous user does not need to know all bits key P3 to decrypt a part

of the blocks. By using CTR, it is possible the previous user shares a part

of the blocks without knowing all bits of the key (which is not possible in

scheme that uses AONT).

• attack to find the encryption key is easier for the proxy and the normal

attackers if we use CTR, because the proxy and the outsider are able to

check the correctness of a key (for the block) by only decrypting a block

of message rather than decrypting all blocks with the correct key in AONT

scheme.

6.9 Proof of the Theorems

In this section, we show the proofs of the theorems by using the game-based proof

strategy as described in [99, 153]. In the game-based proof, a security proof is

represented by a sequence of games G0 to GN where the first game (G0) is the

original chosen-plaintext attack game, while the last game (GN) is a target the

game with a computable probability. We manipulate each game by transforming

the game into another game, and compute the difference probabilities of successful

attacks in the consecutive games.

We need to clarify the notations we use in each game in our proofs. In our proofs,

each game consists of q queries asked by the attacker, that adaptively chooses

the messages to be converted by the oracle (an AONTH oracle or an encryption

oracle). The oracle uses the inputs from the attacker, a random value b, and the

security parameters (i.e., encryption keys) to generate responds to the attacker.

At the end of each game, after receiving responds from the oracle, the adversary

should guess the value of b. We represent the game in a simplified programming

language that uses some of the notations as follows:

Proxy Re-encryption for Symmetric Key Cryptography 153

1. ←, output of, for example in a← f(b), a is the output of f(b).

2.
$←− represents the output of a random function. For example K ′

$←− {0, 1}`

says that the variable K ′ is an output of a random function with length `

3. ⊕, binary exclusive OR (XOR), for example a⊕ b a XOR b

4. [], an element of an array, for example mi[1] represents the first element of

the array mi

6.9.1 Proof of Theorem 6.6

Game based proof.

G0. Game G0 represents the original game. In each query i, the adversary A

chooses n blocks plaintexts (Mi) and a value si where 1 ≤ s ≤ n + 1 and

given access to the AONT oracle. The oracle transforms the plaintexts and

return the pseudomessages with one missing block and also the challenge

block m′i[si], the adversary should guess whether the challenge block belong

to the pseudomessage or a random sequence of bits. To provide the unique

ctr for each AONTH call, we use i ·n as the ctr where i is the query number

and n is the number of blocks in each query.

G0 - Theorem 6.6

K′ $←− {0, 1}`

for i← 1...q do

(Mi, si)← A(M ′
1, ...,M

′
i−1)

mi[1], ...,mi[n]←Mi

for j = 1 to n do

x[j]← mi[j]⊕ FK′ (i · n+ j)

end for

m′
i[n+ 1]← K′ ⊕H(x[1] · · ·x[n])

for j = 1 to n do

m′
i[j]← x[j]⊕H(m′

i[n+ 1]⊕ (i · n+ j))

end for

b
$←− {0, 1}

if b = 1 then

m′
i[si]

$←− {0, 1}`

end if

M ′
i ← m′

i[1], ...,m
′
i[n+ 1]

end for

d← A(M ′
1, ...,M

′
q)

return (b = d)

154 Proxy Re-encryption for Symmetric Key Cryptography

The advantages of the adversaries is defined as:

Advaon−cpa−b
AO (A) = 2 · Pr

[
Expaon−cpa

AO,Acpa
(b) = b

]
− 1

= 2 · Pr
[
GA

0 ⇒ 1
]
− 1

G1 - Theorem 6.6

K′ $←− {0, 1}`

for i← 1...q do

(Mi, si)← A(M ′
1, ...,M

′
i−1)

mi[1], ...,mi[n]←Mi

for j = 1 to n do

x[j]
$←− {0, 1}`

end for

m′
i[n+ 1]

$←− {0, 1}`

for j = 1 to n do

m′
i[j]

$←− {0, 1}`

end for

if b = 1 then

m′
i[si]

$←− {0, 1}`

end if

M ′
i ← m′

i[1], ...,m
′
i[n+ 1]

end for

d← A(M ′
1, ...,M

′
q)

return (b = d)

G1. In this game, we assume F and H are pseudorandom functions with a PRF

advantage Advprf
F (B), so that:

Pr[GA
0 ⇒ 1] = Pr[GA

1 ⇒ 1] + AdvprfF (B)

The above equation says that the advantage of the adversary to distinguish

the values of K ′⊕H(x[1] · · ·x[n]) from the random values and the values of

x[j] ⊕ H(m′i[n + 1] ⊕ (i · n + j)) from random values where x[j] = mi[j] ⊕
FK′(i · n+ j) and K ′ is a random value should be less than AdvprfF (B). This

result can be derived directly from the Definition 6.3.

Because in game G1 the ciphertext is produced randomly, then

Pr[GA
1 ⇒ 1] =

1

2

and

Proxy Re-encryption for Symmetric Key Cryptography 155

Advaon−cpa−b
AO (A) = 2 · Pr[GA

0 ⇒ 1]− 1

≤ 2 ·
(
Pr[GA

1 ⇒ 1] + AdvprfF (B)
)
− 1

≤ 2 · AdvprfF (B) + 2 · 1
2
− 1

≤ 2 · AdvprfF (B)

6.9.2 Proof of Theorem 6.7

Game based proof.

G0. This game represents the original game. In each query i, the adversary A

chooses two n blocks plaintexts (Mi[0],Mi[1]) and given access to the encryp-

tion oracle. The oracle encrypts the plaintexts and returns the ciphertext,

the adversary should guess whether the ciphertexts belong to the left (0) or

right (1).

G0 - Theorem 6.7

P1
$←− P, P2

$←− P, P3
$←− P

b
$←− {0, 1},K′ $←− {0, 1}`, iv $←− {0, 1}`

for i← 1...q do

(Mi[0],Mi[1]) ← A(C1, ..., Ci−1) // if i > 1 the attacker can access his chosen plaintext-

ciphertext pairs from the previous requests

mi[1]...mi[n]←Mi[b]

for j = 1 to n do

x[j]← m[j]i ⊕ FK′ (ctr + j)

end for

m′
i[n+ 1]← K′ ⊕H(x[1]...x[n])

for j = 1 to n do

m′
i[j]← x[j]⊕H(m′

i[n+ 1]⊕ (ctr + j))

end for

ci[0]← PEP1 (m
′
i[n+ 1])⊕ PEP2 (iv[1...`])

for j = 1 to n do

ci[j]← PEP1
(m′

i[P3[j]])⊕ PEP2
(ci[j − 1]) // we represent permutation of blocks with key

P3 in encryption function as m′
i[P3[j]]

end for

Ci ← ci[0]...ci[n]

end for

d← A(C1, ..., Cq)

return (b = d)

156 Proxy Re-encryption for Symmetric Key Cryptography

As shown in the G0, the values of P1, P2, P3, b,K
′, and iv are fixed during

the game because they are chosen before the attackers deciding the chosen

messages. In the LOR-CPA, the oracle encrypts Mi[0] or Mi[1] based on

the random bit value b. The value of b is not revealed until the attacker has

decided his/her guess. Let Pr[GA
0 ⇒ 1] be the probability that the adversary

correctly guesses the left or right oracle, as shown in Section 6.3 then:

Advlor−cpa−b
PR (A) = 2 · Pr[GA

0 ⇒ 1]− 1

G1. In game G1, we change the outputs of each F and H to random values,

and by definition of the PRF advantage, the difference of the adversary’s

advantage in G0 and G1 is at most AdvprfF (B):

Pr[GA
0 ⇒ 1] = Pr[GA

1 ⇒ 1] + AdvprfF (B)

Because the input to H is random, the outputs of H are also randoms. And,

because the inputs to permutations ci[0]← PEP1(m
′
i[n+1])⊕PEP2(iv[1...`])

and ci[j]← PEP1(m
′
i[P3[j]])⊕PEP2(ci[j−1]) are random, those permutations

will also produce random sequence of blocks. To distinguish the ciphertext,

the attackers should find a collision in the outputs ci[j], otherwise the at-

tacker does not have better information than the random outputs.

G1 - Theorem 6.7

P1
$←− P, P2

$←− P, P3
$←− P

b
$←− {0, 1},K′ $←− {0, 1}`, iv $←− {0, 1}`

for i← 1...q do

(Mi[0],Mi[1])← A(C1, ..., Ci−1)

mi[1]...mi[n]←Mi[b]

for j = 1 to n do

x[j]
$←− {0, 1}`

end for

m′
i[n+ 1]

$←− {0, 1}`

for j = 1 to n do

m′
i[j]

$←− {0, 1}`

end for

ci[0]← PEP1
(m′

i[n+ 1])⊕ PEP2
(iv[1...`])

for j = 1 to n do

ci[j]← PEP1 (m
′
i[P3[j]])⊕ PEP2 (ci[j − 1])

end for

Ci ← ci[0]...ci[n]

end for

d← A(C1, ..., Cq)

return (b = d)

Proxy Re-encryption for Symmetric Key Cryptography 157

Because in game G1 the ciphertext is now produced randomly, then the

probability of the attacker successfully guess b is 1
2
.

Pr[GA
1 ⇒ 1] =

1

2

and

Advlor−cpaPR (A) = 2 · Pr[GA
0 ⇒ 1]− 1

≤ 2 ·
(
Pr[GA

1 ⇒ 1] + AdvprfF (B)
)
− 1

≤ 2 · AdvprfF (B) + 2 · 1
2
− 1 ≤ 2 · AdvprfF (B)

6.9.3 Proof of Theorem 6.8

G0/G1. We need to analyze the possibilities of distinguishing the ciphertext for the

second types of the attacker. We identify that there are two possibilities

that the attacker may distinguish the ciphertext:

(a) by fabricating the desired ciphertexts, or

(b) by finding the collisions on the ciphertexts.

In the game G0, we assume that the adversary can also choose x[j] along

with the chosen block m[j] because it knows the encryption key K ′ used

by F , but the adversary cannot easily choose m′[j], otherwise the attacker

should break the security of the hash function H. To attack the scheme, first

the adversary tries to fabricate the ciphertext ci[0] by finding three plain-

texts xi[1], ..., xi[n], xk[1], ..., xk[n], xk′ [1], ..., xk′ [n] where H(xi[1], ..., xi[n]) =

H(xk[1], ..., xk[n]) ⊕ H(xk′ [1], ..., xk′ [n]) and three ivi, ivk, ivk′ where ivi =

ivk ⊕ ivk′ , then the adversary can compute m′i[n + 1] and distinguish ci[0],

because

m′i[n+ 1] = m′k[n+ 1]⊕m′k′ [n+ 1]⊕K ′

for a fixed K ′, k < i, and k′ < i.

158 Proxy Re-encryption for Symmetric Key Cryptography

G0 - Theorem 6.8

P1
$←− P,K2

$←− {0, 1}l, P2
$←− P, P3

$←− P

b
$←− {0, 1}, iv $←− {0, 1}`,K′ $←− {0, 1}`

for i← 1...q do

(Mi[0],Mi[1]) ← A(C1, ..., Ci−1)// if i > 1 the attacker can access his chosen plaintext-

ciphertext pairs from the previous requests

mi[1]...mi[n]←Mi[b]

for j = 1 to n do

x[j]← {0, 1}` // the adversary can choose x[j], and

mi[j]← x[j]⊕ FK′ (ctr + j) // compute the associated m[j]

end for

m′
i[n+ 1]← K′ ⊕H(x[1]...x[n])

for j = 1 to n do

m′
i[j]← x[j]⊕H(m′

i[n+ 1]⊕ (ctr + j))

end for

ci[0]← PEP1 (m
′
i[n+ 1])⊕ PEP2 (iv[1...`])

for j = 1 to n do

ci[j]← PEP1
(m′

i[P3[j]])⊕ PEP2
(ci[j − 1])

end for

Ci ← ci[0]...ci[n]

end for

d← A(C1, ..., Cq)

return (b = d)

We argue that the probability of such condition is at most q(q−1)
2`+1 ·

(
Advprf

H (B) + 1
2`

)
.

At first, we need to find the probability of ivi = ivk ⊕ ivk′ for randoms

ivi, ivk, ivk′ . The probability of such condition is at most q(q−1)
2`+1 , because the

XOR or two randoms (ivk ⊕ ivk′) produces another random value, so the

possibility of finding ivi = ivk ⊕ ivk′ is at most the same as finding collision

of two random outputs which is at most q(q−1)
2`+1 .

The advantage of an adversary to find three plaintexts xi[1], ..., xi[n], xk[1], ..., xk[n],

xk′ [1], ..., xk′ [n] where H(xi[1], ..., xi[n]) = H(xk[1], ..., xk[n])⊕H(xk′ [1], ..., xk′ [n])

should be less than Advprf
H (B), because if the adversary can distinguish the

outputs of H from the random outputs (i.e., guessing the outputs of H), it

can easily fabricate these three plaintexts.

Alternatively, rather than finding the three plaintexts, the attacker may

guess m′i[n + 1] directly with the probability 1
2`

. So that, the probability of

all of the above conditions is at most q(q−1)
2`+1 ·

(
Advprf

H (B) + 1
2`

)
.

If in game G1, we assume that the attacker fails fabricating ci[0] and also

fails guessing m′i[n + 1], then:

Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1] ≤ q(q − 1)

2`+1

(
Advprf

H (B) +
1

2`

)

Proxy Re-encryption for Symmetric Key Cryptography 159

G2. Because ci[j] ← PEP1(m
′
i[P3[j]]) ⊕ PEP2(ci[j − 1]), to distinguish the ci-

phertext, in each query i, the adversary needs to find the collision ck[j] =

ci[j
′](0 ≤ j ≤ n), so that he/she can deduce PEP1(m

′
k[P3[j + 1]]⊕m′i[P3[j

′+

1]]). This information can be used to deduce P1 by checking the number of

1s or 0s bits of m′k[P3[j + 1]] ⊕m′i[P3[j
′ + 1]]. The possibility of collision is

defined in the event “bad”.

G2 - Theorem 6.8

P1
$←− P,K2

$←− {0, 1}l, P2
$←− P, P3

$←− P

b
$←− {0, 1}, iv $←− {0, 1}`,K′ $←− {0, 1}`

for i← 1...q do

(Mi[0],Mi[1])← A(C1, ..., Ci−1)

mi[1]...mi[n]←Mi[b]

for j = 1 to n do

x[j]← {0, 1}` // the adversary can choose x[j], and

mi[j]← x[j]⊕ FK′ (ctr + j) // compute the associated m[j]

end for

Hi,0
$←− {0, 1}`

m′
i[n+ 1]← K′ ⊕Hi,0

for j = 1 to n do

Hi,j
$←− {0, 1}l

m′
i[j]← x[j]⊕Hi,j

end for

ci[0]← PEP1
(m′

i[n+ 1])⊕ PEP2
(iv[1...`])

if ci[0] ∈ S then

bad← true

end if

S ← S ∪ {ci[0]}
for j = 1 to n do

ci[j]← PEP1 (m
′
i[P3[j]])⊕ PEP2 (ci[j − 1])

if ci[j] ∈ S then

bad← true

end if

S ← S ∪ {ci[j]}
end for

Ci ← ci[0], ..., ci[n]

end for

d← A(C1, ..., Cq)

return (b = d)

In game G2, we change the outputs of H to random outputs so that

Pr[GA
2 ⇒ 1] =

1

2

and

Pr[GA
1 ⇒ 1]− Pr[GA

2 ⇒ 1] ≤ Advprf
H (B) + Pr[GA

2 sets bad]

160 Proxy Re-encryption for Symmetric Key Cryptography

Because each m′i[j] is produced randomly and PE is a permutation, the

probability of collision is the total probability of bad events, that is the

collision of m′i[n+ 1], ivi,m
′
i[n+ 1]⊕ ivi,m

′
i[j], cj and m′i[j]⊕ cj. Because for

each query, the algorithm produces three blocks m′i[n+ 1], ivi,m
′
i[n+ 1]⊕ ivi

and 3n blocks m′i[j], cj,m
′
i[j]⊕ cj totaling 3(n+ 1) blocks, the probability of

collision is:

Pr[GA
2 sets bad]

≤ 3(n+ 1) + 2 · 3(n+ 1) + ...+ (q − 1) · 3(n+ 1)

2`

≤ 3(n+ 1)
q(q − 1)

2`+1

So, that

Pr[GA
1 ⇒ 1]− Pr[GA

2 ⇒ 1] ≤ Advprf
H (B) + 3(n+ 1)

q(q − 1)

2`+1

And,

Advlor−cpaPR (A) = 2 · Pr[GA
0 ⇒ 1]− 1

≤ 2 ·
(
Pr[GA

1 ⇒ 1] +
q(q − 1)

2`+1

(
Advprf

H (B) +
1

2`

))
− 1

≤ 2 · q(q − 1)

2`+1

(
Advprf

H (B) +
1

2`

)
+ 2 ·

(
Advprf

H (B) + 3(n+ 1)
q(q − 1)

2`+1
+ Pr[GA

2 ⇒ 1]

)
− 1

≤ 2 · q(q − 1)

2`+1

(
Advprf

H (B) +
1

2`

)
+ 2 ·

(
Advprf

H (B) + 3(n+ 1)
q(q − 1)

2`+1

)
+ 2 · 1

2
− 1

≤ Advprf
H (B)

(
2 +

q(q − 1)

2`

)
+

q(q − 1)

2`

(
1

2`
+ 3(n+ 1)

)

Proxy Re-encryption for Symmetric Key Cryptography 161

6.9.4 Proof of Theorem 6.9

G0. In G0 is similar with the proof in Theorem 6.7.

G1. In G1, F produces random outputs, and we remove PEP2 because the proxy

knows the keys P2 and P ′2.

G1 - Theorem 6.9

P1
$←− P, P2

$←− P, P3
$←− P

b
$←− {0, 1},K′ $←− {0, 1}`, iv $←− {0, 1}`

for i← 1...q do

(Mi[0],Mi[1]) ← A(C1, ..., Ci−1)// if i > 1 the attacker can access his chosen plaintext-

ciphertext pairs from the previous requests

mi[1]...mi[n]←Mi[b]

for j = 1 to n do

x[j]
$←− {0, 1}`

end for

m′
i[n+ 1]

$←− {0, 1}`

for j = 1 to n do

m′
i[j]

$←− {0, 1}`

end for

ci[0]← PEP1
(m′

i[n+ 1])

for j = 1 to n do

ci[j]← PEP1
(m′

i[P3[j]])

end for

Ci ← ci[0]...ci[n]

end for

d← A(C1, ..., Cq)

return (b = d)

Because now the ciphertext is produced randomly, then

Pr[GA
1 ⇒ 1] =

1

2

and

Advlor−cpaPR (A) = 2 · Pr[GA
0 ⇒ 1]− 1

≤ 2 ·
(
Pr[GA

1 ⇒ 1] + AdvprfF (B)
)
− 1

≤ 2 · AdvprfF (B) + 2 · 1
2
− 1 ≤ 2 · AdvprfF (B)

162 Proxy Re-encryption for Symmetric Key Cryptography

6.10 Discussion: An Attempt to Develop a Se-

cure Proxy Re-encryption Using Pure Sym-

metric Cipher

A proxy re-encryption cannot be implemented using currently used practical one-

way functions (i.e., SHA and AES). We show the argument by trying to develop

a proxy re-encryption for symmetric cipher using Xor-scheme (Vernam cipher),

stream cipher and block cipher.

6.10.1 Xor-scheme (Vernam Cipher)

In the Vernam Cipher, the key is generated by random function with the same

length of the message. Besides its big key size, it also does not support secure

proxy cryptography.

Let KA, KB be two random keys and E is the encryption function, then we can

produce the ciphertext CA and CB using the following equations:

CA = E(KA,M) = KA ⊕M (6.1)

CB = E(KB,M) = KB ⊕M (6.2)

To support the proxy re-encryption, there is a function P that converts CA to CB

where:

CB = P (E(KA,M) = P (KA ⊕M)

This equation is fulfilled by P = (KA ⊕KB)⊕, because

CB = (KA ⊕KB)⊕ (KA ⊕M) = KB ⊕M

Proxy Re-encryption for Symmetric Key Cryptography 163

However, this method is not secure because from the equation 6.1 and 6.2:

M = KA ⊕ CA = KB ⊕ CB

KB = KA ⊕ CA ⊕ CB (6.3)

In the equation 6.3, the user who knows the previous ciphertext CA, previous key

KA and the current ciphertext CB can easily compute KB.

6.10.2 Stream cipher-like encryption

In the stream cipher, the plaintext (m0,m1, ...,mn−1) is encrypted to produce the

ciphertext (cA0 , c
A
1 , ..., c

A
n−1) using a random generator R with a private key KA as

follows:

cAi = R(KA,mi−1, ...m0, c
A
i−1, ...c

A
0)⊕mi (6.4)

To implement the proxy re-encryption that converts the ciphertext encrypted with

key KA to the ciphertext encrypted with key KB, the proxy should be able to re-

encrypt the ciphertext cAi into the ciphertext

cBi = R(KB,mi−1, ...m0, c
B
i−1, ...c

B
0)⊕mi (6.5)

using a conversion function P , where

cBi = P (cA0 , c
A
1 , ..., c

A
n−1)

= P (R(KA)⊕m0, R(KA,m0, c
A
0)⊕m1, ...

R(KA,mn−2, ...m0, c
A
n−2, ...c

A
0)⊕mn−1)

so that:

164 Proxy Re-encryption for Symmetric Key Cryptography

R(KB,mi−1, ...m0, c
B
i−1, ...c

B
0)⊕mi = P (R(KA)⊕m0, R(KA,m0, c

A
0)⊕m1, ...

R(KA,mn−2, ...m0, c
B
n−2, ...c

B
0)⊕mn−1)

R(KB,mi−1, ...m0, c
A
i−1, ...c

A
0) = P (R(KA)⊕m0, R(KA,m0, c

A
0)⊕m1, ...

R(KA,mn−2, ...m0, c
A
n−2, ...c

A
0)

⊕mn−1)⊕mi (6.6)

The users who are previously granted access to the message m should not be

able to infer KB even if the users know the previous key KA, all plaintexts

(m0,m1, ...,mn−1) and all ciphertexts (cA0 , c
A
1 , ..., cn−1A , c

B
0 , c

B
1 , ..., c

B
n−1). There are

two possibilities:

1. (A strict requirement): the proxy can collude with the user, so that the users

know P from the proxy.

If the proxy colludes, the user can compute the right side of the equation

6.6. For instance the result is A, then

P (R(KA)⊕m0, R(KA,m0, c
A
0)⊕m1, ...

R(KA,mn−2, ...m0, c
A
n−2, ...c

A
0)⊕mn−1)⊕mi = A

and

R(KB,mi−1, ...m0, c
B
i−1, ...c

B
0) = A (6.7)

Because the user knows all plaintexts and ciphertexts (he/she only does not

have KB), for a secure proxy re-encryption scheme it should not be possible

to calculate KB. This requirement is only fulfilled if the function R is a

one-way function so it is not possible to infer KB from the output of R and

some others inputs.

Proxy Re-encryption for Symmetric Key Cryptography 165

2. (A less strict requirement): the proxy does not collude with the user, so that

the users does not know P .

From equations 6.4 and 6.5 we get:

mi = R(KA,mi−1, ...m0, c
A
i−1, ...c

A
0)⊕ cAi

mi = R(KB,mi−1, ...m0, c
B
i−1, ...c

B
0)⊕ cBi

then

R(KB,mi−1, ...m0, c
B
i−1, ...c

B
0) = R(KA,mi−1, ...m0, c

A
i−1, ...c

A
0)⊕ cAi ⊕ cBi

Because the user can compute the right side (for instance the result is B),

we get the formula similar to equation 6.7.

R(KB,mi−1, ...m0, c
B
i−1, ...c

B
0) = B (6.8)

With the same reason as the equation 6.7, for a secure proxy re-encryption scheme,

the function R should be a one-way function that protect KB even if the users

know the outputs and other inputs.

If R is a one-way function, from the equation 6.6 we have the following equations:

R(KB,mi−1, ...m0, c
B
i−1, ...c0)

B = P (R(KA)⊕m0, R(KA,m0, c
A
0)⊕m1, ...

R(KA,mn−2, ...m0, c
A
n−2, ...c

A
0)

⊕mn−1)⊕mi

R(KB,mi, ...m0, c
B
i , ...c

B
0) = P (R(KA)⊕m0, R(KA,m0, c

A
0)⊕m1, ...

R(KA,mn−2, ...m0, c
A
n−2, ...c

A
0)

⊕mn−1)⊕mi+1

...
...

166 Proxy Re-encryption for Symmetric Key Cryptography

From the above equations we can conclude that to have a proxy cryptography,

we should find a one-way function which we can do operation to the ciphertexts

meaningfully.

We can simplify the above equation (i.e the random function R only uses the

private key KA or KB and a counter i) to the following equations:

R(KA, i) = P (R(KB, i)⊕mi)

R(KA, i + 1) = P (R(KB, i + 1)⊕mi+1)
...

...

With this simplification, we still need a special one-way function which the cipher-

texts are easily converted to another ciphertext with different keys. This property

is undesirable and not possible in the current practical one-way function used in

the real world (i.e., SHA or AES-based one-way functions).

6.10.3 Block cipher-like encryption

In the block cipher-like encryption, the plaintext (m0,m1, ...,mn−1) is encrypted

to produce the ciphertext (cA0 , c
A
1 , ..., c

A
n−1) using a block cipher encryption E with

a key KA as follows:

cAi = E(KA,mi,mi−1, ...m0, c
A
i−1, ...c

A
0) (6.9)

To implement the proxy re-encryption, the proxy should be able to convert the

ciphertext cAi encrypted with the private key KA into another ciphertext cBi en-

crypted with the key KB as follows:

cBi = E(KB,mi,mi−1, ...m0, c
B
i−1, ...c

B
0) (6.10)

With the same arguments as the stream cipher in Section 6.10.2, the E should

be a one-way function and has properties that cannot be implemented with the

current practical one-way functions.

Proxy Re-encryption for Symmetric Key Cryptography 167

6.11 Conclusion

In this chapter, we have showed a secure proxy re-encryption scheme for the sym-

metric cipher. The main advantage of our scheme is that we can update the key of

the encrypted data faster than decrypt-and-then-encrypt method. It is very useful

in the application of data encryption in offline or online databases.

Chapter 7

Conclusion

We conclude this thesis by pointing out our important results as follows:

1. The Integrity Scheme for the Provenance Recording System. We

have proposed a combination of using the signature chain and labeling each

provenance assertion with a trusted counter to protect the integrity of the

assertions in the provenance recording systems. Our method can detect the

integrity attacks that cause the problems namely “inconsistent claims and

interpretation” problems.

2. The Access Control Method for the Provenance Recording Sys-

tem. We have proposed an access control method that is suitable to be im-

plemented in a provenance recording system. Our method allows restricting

access to the provenance assertions by considering the relationships between

the processes and data.

3. The Signature Scheme for a Sequence of Digital Documents. We

proposed a signature scheme for a sequence of digital documents that uses

signature with message recovery as the primitive. The main characteristics

of the signature scheme is we can verify the integrity of a member of the

sequence without accessing the other members of the sequence.

4. The Proxy Re-encryption Scheme for Symmetric Cryptography.

We developed a proxy re-encryption method for the symmetric key cryptog-

raphy by first converting the message to a pseudomessage using an All-or-

Nothing Transform (AONT) and converting the pseudomessage using some

simple permutations so that the ciphertext can be transformed efficiently.

169

170 Conclusion

In the following, we survey recent research results on the provenance and signature-

chain and also research on the proxy re-encryption. We also suggest some possible

future work.

7.1 Recent Research on the Provenance and the

Signature Chain

Security and applications of the provenance are active research topics. Bani Taha

et al. proposed trusted tamper-evident provenance by using Trusted Platform

Module (TPM). Basically the idea is by storing the hash values in the TPM [154].

Chen et al. proposed access control to the provenance graph by controlling ac-

cess to the provenance sub-graph [155]. Xie et al. developed Intrusion Detection

System (IDS) by analyzing the provenance collected in PASS [156]. Yap et al.

developed method for attestation (checking the trustworthiness of a system) by

checking the provenance generated in the system [157]. Chen et al. proposed diag-

nostic method for scientific workflow by using the provenance [158]. McClatchey

et al. discussed the traceability through the provenance in the CRISTAL: a big

data for medical system [159]. Jamil et al. proposed the method to secure the

provenance by using authenticated data structure approach [160].

Recently, the provenance and the signature chain found their application in the

financial industry in the form of block-chain technology. The block chain is basi-

cally a form of signature and hash chain that is used to protect the integrity of

the transaction data. An implementation of the block-chain (i.e., bitcoin) is used

to implement a popular crypto-currency [65]. The main feature of the bitcoin

protocol is that it does not require any trusted party to decide which transaction

should be recorded in the chain. The bitcoin protocol is rather using a consensus

protocol where the transaction can only be recorded by a party that successfully

computes a specific form of hash value. The weaknesses of the bitcoin protocol

are it can only process a limited transaction in a second and it needs to execute a

costly computation to find the specific form of the hash value.

The block-chain technology can also be used to record other data securely, so it

may find applications in other fields (i.e., supply chain, academic record, medical

record, law (contracts), etc). Kosba et al. proposed the block-chain model for

smart contracts [161], that is followed by many other models [162–165]. Weber et

Conclusion 171

al. applied the block-chain in the process monitoring [166, 167]. Abeyratne et al.

surveyed the applications of block-chain in many fields especially manufacturing

supply chain [168] while Wu et al. proposed a specific implementation of the

block-chain technology to protect the supply chain [169]. The other researchers

used the block-chain to protect the medical data [170–173], and tried to apply the

block-chain technology to secure the academic/educational [174] and industrial

data [175].

7.2 Recent Research on the Proxy Re-encryption

Most recent research in proxy re-encryption are mainly focusing on public key

versions using bilinear maps (either an id-based or a non-id-based) and their ap-

plications in the clouds. Lu et al. [176] proposed pairing-free proxy re-encryption

scheme based on Schnorr’s signature scheme [91] and Fujisaki/Okamoto’s hash-

enhanced ElGamal public-key encryption scheme [177]. Canard et al. applied the

proxy re-encryption scheme to protect the privacy of tree-structured data in an

untrusted storage provider [178]. Shao et al. proposed another bidirectional proxy

re-encryption [179]. Ohata et al. proposed the method to verify the results of

re-encryption by the proxy [180], while Peng et al. proposed a symmetric ver-

sion of the authenticated proxy re-encryption scheme [181]. The other results are

ciphertext-policy attribute-based proxy re-encryption that can be used to restrict

data sharing in the cloud [182–185].

7.3 Suggestions for the Future Work

The future work in the provenance research is to investigate application of our

approach to a wider range of fields. The applications and security models of

provenance can be different depend on the needs of the organizations. We may

need to adapt the provenance system and the security model to the specific appli-

cations/organizations. We also may need to adapt or combine our method with

the block-chain technology.

In the proxy re-encryption research, the future work is to apply the scheme in real

cloud system. An interesting question is how to solve the problem of collusion

172 Conclusion

between the proxy and the users. Is it possible to prevent the collusion in the

symmetric encryption setting? The other interesting future work is to find other

applications of All-or-Nothing Transform (AONT).

Appendix A

Implementation and

Experimental Results

In this chapter, we describe our implementation and experimental results to the

scheme described in Chapter 3 and part of the scheme in Chapter 4. In our imple-

mentation, we develop three applications that represent three parties as follows:

1. The Process Executor, that is the actor that creates provenance assertions

PAsrt, creates the signature on PAsrt, and sends the assertion and the

signature to the Provenance Store Interface (PSI).

2. The Provenance Store Interface (PSI) is the party that creates the secure

provenance assertions SPAsrt. The PSI receives the provenance and its

signature from the Process Executor, checks the signature, and requests the

counter to the The Trusted Counter Server (TCS). The Provenance Store

Interface also encrypts the provenance assertions and stores the provenance

assertion to the provenance store.

3. The Trusted Counter Server (TCS), that is the trusted entity that receives re-

quests for signed counters from the Provenance Store Interface (PSI), records

the request and replies with the number of requests that have been received

from the Provenance Store Interface (PSI).

173

174 Implementation and Experimental Results

A.1 Experimental Setup

We implemented the process executor with the Java SE 6 (JCE library for the

cryptographic functions: SHA1 for hash and DSA for signature). In our experi-

ments, the Process Executor sends the provenance assertions to the Provenance

Store Interface using the HTTP Post protocol. The Provenance Store Interface

is implemented with a PHP program that run in an Apache Web Server. The

Provenance Store is implemented with a Postgresql database.

The Provenance Store Interface (PSI) also uses HTTP Post method to send the

requests to the Trusted Counter Server (TCS). The TCS is also implemented

with a PHP and an Apache web server. The TCS uses a Postgresql database

for storing the counter. The cryptographic functions for the digital signature

(DSA) in the Provenance Store Interface and the TCS are implemented the using

OpenSSL library while the SHA1 supported natively by PHP. We also use an AES

implementation for Windows for encryption1.

We performed experiments in four computers where the first computer acts as a

Process Executor, the second computer acts as the Provenance Store Interface, the

third computer is the Trusted Counter Server (TCS) and the fourth computer is

the Provenance Store. All of them are connected by a LAN with speed 100MBps.

In Table A.1 below, we show the detail specification of the hardware and software

we used in the experiments.

Table A.1: Hardware and Software of experiment

Role Hardware Software
Process Dual-Core 2.50GHz, Java SE 6 (JCE lib.),
Executor 3GB RAM Windows XP
Provenance Dual-Core 2.50GHz, PHP 5.3.6, OpenSSL lib.
Store 3GB RAM ver. 0.9.8, Apache Web
Interface Server ver. 2.2.17, Postgresql

ver. 9.0.4, Windows XP
Provenance Core 2 Duo 1.4GHz, Postgresql 8.4.8,
Store 4GB RAM Linux 2.6.32

We performed 26 experiments to measure the performance of the scheme. For

each experiment, we executed the process executors that send the provenance

assertions to the Provenance Store Interface (PSI). After receiving each provenance

1http://www.aescrypt.com/

http://www.aescrypt.com/

Implementation and Experimental Results 175

assertion, the Provenance Store Interface (PSI) requests the counters and stores the

assertion to the Provenance Store. In our experiments, we simulated execution of

26 process executors where each process executor submits the provenance assertion

with the range of size from 10KB to 1237KB (each provenance assertion is a text

file that describes the execution of a process, the inputs, its outputs and the

executing agents). We executed each experiment 12 (twelve) times and measured

the execution times of various tasks that are needed to submit the provenance to

the Provenance Store. Those tasks are as follows:

1. Hash-sign: the execution time that is needed to create hash and signature of

the process documentation by the Process Executor.

2. Upload: the time to upload the signed provenance assertion and its signature

to the Provenance Store Interface.

3. Encrypt1: the execution time that is needed to generate the node key (KN)

and to encrypt the provenance assertion with the node key.

4. Encrypt2: the execution time that is needed to encrypt the provenance as-

sertion with the label key (KL).

5. Req-Counter: the execution time that is needed by the PSI to send the request

to the TCS and to receive the response from the TCS.

6. Counter: the execution time that is needed to calculate the counter by the

TCS.

7. Store: the execution time that is needed to upload the data to the Provenance

Store.

A.2 Results

Figures A.1, A.2, and A.3 show the average of the execution times of the tasks.

The X axis is the size of the process documentation (provenance assertion) in

kilobytes (KB), the Y axis is the execution time (in seconds) for each process

executor, Provenance Store Interface and the TCS. We summarize the complexity

of the the execution of each task relative to the size of the process documentation

A in Table A.2.

176 Implementation and Experimental Results

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Size of the provenance (kilobytes)
0 200 400 600 800 1,000 1,200 1,400

Hash-Sign
Upload

Figure A.1: Execution time of the Provenance Executor (in seconds)

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Size of provenance (kilobytes)
0 200 400 600 800 1,000 1,200 1,400

Encrypt1
Encrypt2
Store

Figure A.2: Execution time of the Provenance Store Interface (in seconds)

As described in Table A.2, for the process executor, the time to create the signature

is almost constant. This result shows that there is not much difference in the

execution time needed to create signature and hash of files in the range of size

of the process documentation A (10KB to 1237KB) and constant size of outputs.

The time to upload the provenance assertion to the Provenance Store Interface is

linear to the size of the process documentation. This result is natural because the

time needed to send the provenance assertion via the network is linear with the

size of the data.

Implementation and Experimental Results 177

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Size of provenance (kilobytes)
0 200 400 600 800 1,000 1,200 1,400

Counter
Req-Counter

Figure A.3: Execution time of the TCS (in seconds)

Table A.2: The complexity of each task (relative to the size of process docu-
mentation A)

Role Task Complexity
Process Hash-Sign Almost constant
Executor Upload Linear
Provenance Check-PrepReq Almost Constant
Store Encrypt1 Linear (with small growth)
Interface Encrypt2 Linear (with small growth)

Store Almost constant
TCS Counter Constant

ReqCounter Constant

As of the Provenance Store Interface, the time to encrypt and to store the prove-

nance assertions is slightly increased with size. An interesting result is the growth

of execution time to submit the provenance assertion to the provenance store is

almost constant, and this growth is different from the growth of time needed by

the process executor to upload the provenance assertion to the Provenance Store

Interface. These results show that the time that is needed to upload data using

HTTP Post protocol and to store the data to a filesystem that are used by the

process executor to send the provenance assertion to the Provenance Store Inter-

face is much slower than the protocol to store the data to a Postgresql database

using Postgresql library used by the Provenance Store Interface to submit the

provenance assertion to the Provenance Store.

The time that is needed by the TCS to compute the counter and the total time

178 Implementation and Experimental Results

to send request and to receive the counter to/from the TCS are also constant.

These results are natural because the times to check the signature, to increase

counter and to prepare the hash are constant. The time to prepare the hash is

also constant because the size of the requests is constant (the request consists

of the provenance’s id, the hash of the provenance assertion and a timestamp).

Because the size of the requests to the TCS and reply (counter) from the TCS are

constant, the time that is needed to send the request and to receive the response

using the network is also constant.

Our experimental results show the feasibility to implement our scheme in a real

system, because most of the execution times that are needed in the scheme (except

for the time needed to upload the provenance assertion to the provenance store)

are almost constant or with the small growth. Even in our hardware configuration

(which is a basic configuration) the time for the TCS to create the counter is

around 0.1 seconds and the total time including the network costs (receiving the

request and replying with the counter) is not more than 0.5 seconds while for

the Provenance Store Interface the total time for all tasks except requesting the

counter is not more than 0.6 seconds. As for the time to upload the provenance

assertion to the Provenance Store Interface, our results suggest the usage of a

better or a faster communication protocol and storage than the HTTPS protocol

and the normal filesystem.

Published Papers

Journal Papers

1. Amril Syalim, Takashi Nishide, Kouichi Sakurai. Securing Provenance of

Distributed Processes in an Untrusted Environment. IEICE Transactions

on Information and Systems, Vol. E95-D, No.7, pp.1894-1907, 2012.

2. Amril Syalim, Toshihiro Tabata and Kouichi Sakurai. Usage Control Model

and Architecture for Data Confidentiality in a Database Service Provider.

IPSJ Journal (Technical Note), Vol.47, No.2, pp.621-626, 2006.

International Conference Papers

1. Amril Syalim, Takashi Nishide, Kouichi Sakurai. Improved Proxy Re-encryption

Scheme for Symmetric Key Cryptography. Proceedings of International Work-

shop on Big Data and Information Security (IWBIS) 2017, IEEE, pp. 105 -

111, 2017. (Best Paper Award)

2. Amril Syalim, Kouichi Sakurai. How to Sign Multiple Versions of Digital

Documents. Proceedings of International Workshop on Big Data and Infor-

mation Security (IWBIS) 2017, IEEE, pp. 133 - 136, 2017.

3. Amril Syalim, Takashi Nishide, Kouichi Sakurai. Supporting Secure Prove-

nance Update by Keeping ”Provenance” of the Provenance. Proceedings of

the ICT-EurAsia 2013, Springer Verlag, LNCS 7804, pp. 363-372, 2013.

179

180 Published Papers

4. Amril Syalim, Takashi Nishide, Kouichi Sakurai. Realizing Proxy Re-encryption

in the Symmetric World. Proceedings of the International Conference on In-

formatics Engineering and Information Science (ICIEIS2011), Springer Ver-

lag, Communication in Computer and Information Science 251, pp. 259-274,

2011.

5. Amril Syalim, Takashi Nishide, Kouichi Sakurai. Preserving Integrity and

Confidentiality of a Directed Acyclic Graph of Provenance. Proceedings of

the 24th Annual IFIP WG 11.3 Working Conference on Data and Applica-

tions Security and Privacy (DBSec 2010), Springer Verlag, Lecture Notes in

Computer Science 6166, pp. 311-318, 2010.

6. Amril Syalim, Yoshiaki Hori, Kouichi Sakurai. Grouping Provenance Infor-

mation to Improve Efficiency of Access Control. Proceeding of the Third

International Conference and Workshops on Advances in Information Secu-

rity and Assurance (ISA 2009), Springer Verlag, Lecture Notes in Computer

Science 5576, pp. 51-59, 2009.

7. Amril Syalim, Yoshiaki Hori, Kouichi Sakurai. Comparison of Risk Analysis

Methods: Mehari, Magerit, NIST800-30 and Microsoft’s Security Manage-

ment Guide. The First International Workshop on Organizational Security

Aspects (OSA 2009), pp.726-731, 2009.

8. Amril Syalim, Toshihiro Tabata and Kouichi Sakurai. Usage Control Model

and Architecture for Data Confidentiality in Database Service Provider. In-

donesia Cryptology and Information Security Conference (INA-CISC) 2005,

pp. 155-160, 2005.

Bibliography

[1] Tyrone Cadenhead, Vaibhav Khadilkar, Murat Kantarcioglu, and Bha-

vani M. Thuraisingham. A language for provenance access control. In CO-

DASPY, pages 133–144, 2011.

[2] Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia

Tsasakou, and Luc Moreau. An architecture for provenance systems. Tech-

nical report, University of Southampton, November 2006.

[3] Vikas Deora, Arnaud Contes, Omer F. Rana, Shrija Rajbhandari, Ian Woot-

ten, Tamás Kifor, and László Zsolt Varga. Navigating provenance infor-

mation for distributed healthcare management. In Web Intelligence, pages

859–865, 2006.

[4] Kiran-Kumar Muniswamy-Reddy. Foundations for Provenance-Aware Sys-

tems. PhD thesis, Harvard University, Cambridge, Massachusetts, March

2010.

[5] Ragib Hasan, Radu Sion, and Marianne Winslett. Preventing history forgery

with secure provenance. ACM Transactions on Storage, 5(4):12:1–12:43,

December 2009.

[6] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and

atomic proxy cryptography. In In EUROCRYPT, pages 127–144. Springer-

Verlag, 1998.

[7] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Im-

proved proxy re-encryption schemes with applications to secure distributed

storage. ACM Trans. Inf. Syst. Secur., 9(1):1–30, 2006.

[8] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-

encryption. In Proceedings of the 14th ACM conference on Computer and

communications security, pages 185–194. ACM, 2007.

181

182

[9] M. Green and G. Ateniese. Identity-based proxy re-encryption. In Applied

Cryptography and Network Security, pages 288–306. Springer, 2007.

[10] Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext se-

cure proxy re-encryption. IEEE Transactions on Information Theory, 57(3):

1786–1802, 2011.

[11] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and

grid computing 360-degree compared. In Grid Computing Environments

Workshop, 2008. GCE’08, pages 1–10. Ieee, 2008.

[12] Maarten van Steen and Andrew S Tanenbaum. A brief introduction to

distributed systems. Computing, 98(10):967–1009, 2016.

[13] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy and survey

of cloud computing systems. In INC, IMS and IDC, 2009. NCM’09. Fifth

International Joint Conference on, pages 44–51. Ieee, 2009.

[14] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy

Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion

Stoica, et al. A view of cloud computing. Communications of the ACM, 53

(4):50–58, 2010.

[15] Subashini Subashini and Veeraruna Kavitha. A survey on security issues in

service delivery models of cloud computing. Journal of network and computer

applications, 34(1):1–11, 2011.

[16] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid:

Enabling scalable virtual organizations. The International Journal of High

Performance Computing Applications, 15(3):200–222, 2001.

[17] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a new computing

infrastructure. Elsevier, 2003.

[18] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A survey of data prove-

nance in e-science. In SIGMOD Record, pages 31–36, 2005.

[19] Roger S. Barga and Luciano A. Digiampietri. Automatic capture and effi-

cient storage of e-science experiment provenance. Concurrency and Compu-

tation: Practice and Experience, 20(5):419–429, 2008.

183

[20] Simon Miles, Paul T. Groth, Miguel Branco, and Luc Moreau. The require-

ments of using provenance in e-science experiments. J. Grid Comput., 5(1):

1–25, 2007.

[21] Simon Miles, Sylvia C. Wong, Weijian Fang, Paul T. Groth, Klaus-Peter

Zauner, and Luc Moreau. Provenance-based validation of e-science experi-

ments. J. Web Sem., 5(1):28–38, 2007.

[22] Tamás Kifor, László Zsolt Varga, Javier Vázquez-Salceda, Sergio

Álvarez-Napagao, Steven Willmott, Simon Miles, and Luc Moreau. Prove-

nance in agent-mediated healthcare systems. IEEE Intelligent Systems, 21

(6):38–46, 2006.

[23] Sergio Álvarez-Napagao, Javier Vázquez-Salceda, Tamás Kifor, László Zsolt

Varga, and Steven Willmott. Applying provenance in distributed organ

transplant management. In IPAW, pages 28–36, 2006.

[24] Min Wang, Marion Blount, John Davis, Archan Misra, and Daby M. Sow. A

time-and-value centric provenance model and architecture for medical event

streams. In HealthNet, pages 95–100, 2007.

[25] Ueli M. Maurer. New approaches to digital evidence. Proceedings of the

IEEE, 92(6):933–947, 2004.

[26] Martin Schäler, Sandro Schulze, and Stefan Kiltz. Database-centric chain-

of-custody in biometric forensic systems. In BIOID, pages 250–261, 2011.

[27] J A Simpson and E S C Weiner. The Oxford English dictionary. Oxford

University Press, 1989.

[28] Luc Moreau, Paul T. Groth, Simon Miles, Javier Vázquez-Salceda, John

Ibbotson, Sheng Jiang, Steve Munroe, Omer F. Rana, Andreas Schreiber,

Victor Tan, and László Zsolt Varga. The provenance of electronic data.

Communications of the ACM, 51(4):52–58, 2008.

[29] Wang Chiew Tan. Research problems in data provenance. IEEE Data Eng.

Bull., 27(4):45–52, 2004.

[30] Wang Chiew Tan. Provenance in databases: Past, current, and future. IEEE

Data Eng. Bull., 30(4):3–12, 2007.

184

[31] Luc Moreau. The foundations for provenance on the web. Foundations and

Trends in Web Science, 2(2-3):99–241, 2010.

[32] Paul T. Groth and Luc Moreau. Recording process documentation for prove-

nance. IEEE Trans. Parallel Distrib. Syst., 20(9):1246–1259, 2009.

[33] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul T.

Groth, Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth

Plale, Yogesh Simmhan, Eric G. Stephan, and Jan Van den Bussche. The

open provenance model core specification (v1.1). Future Generation Comp.

Syst., 27(6):743–756, 2011.

[34] Boris Glavic and Klaus R. Dittrich. Data provenance: A categorization of

existing approaches. In Datenbanksysteme in Business, Technologie und Web

(BTW 2007), pages 227–241, 2007.

[35] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where:

A characterization of data provenance. In International Conference on

Database Theory (ICDT 2001), LNCS 1973, pages 316–330, 2001.

[36] Simon Miles, Paul T. Groth, Steve Munroe, Sheng Jiang, Thibaut Assan-

dri, and Luc Moreau. Extracting causal graphs from an open provenance

data model. Concurrency and Computation: Practice and Experience, 20

(5):577–586, 2008.

[37] Yingwei Cui and Jennifer Widom. Practical lineage tracing in data ware-

houses. In Data Engineering, 2000. Proceedings. 16th International Confer-

ence on, pages 367–378. IEEE, 2000.

[38] Peter Buneman, Adriane Chapman, James Cheney, and Stijn Vansummeren.

A provenance model for manually curated data. In IPAW, pages 162–170,

2006.

[39] Bertram Ludascher, Norbert Podhorszki, Ilkay Altintas, Shawn Bowers, and

Timothy M. McPhillips. From computation models to models of provenance:

the rws approach. Concurrency and Computation: Practice and Experience,

20(5):507–518, 2008.

[40] Ragib Hasan, Radu Sion, and Marianne Winslett. Introducing secure prove-

nance: problems and challenges. In ACM workshop on Storage security and

survivability (StorageSS 2007), pages 13–18, 2007.

185

[41] Ragib Hasan, Radu Sion, and Marianne Winslett. The case of the fake pi-

casso: Preventing history forgery with secure provenance. In 7th Conference

on File and Storage Technologies (FAST 2009), pages 1–14, 2009.

[42] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A framework for

collecting provenance in data-centric scientific workflows. In IEEE Interna-

tional Conference on Web Services (ICWS 2006), pages 427–436, 2006.

[43] Shawn Bowers, Timothy M. McPhillips, Bertram Ludascher, Shirley Co-

hen, and Susan B. Davidson. A model for user-oriented data provenance in

pipelined scientific workflows. In International Provenance and Annotation

Workshop (IPAW 2006), LNCS 4145, pages 133–147, 2006.

[44] Uri Braun, Avraham Shinnar, and Margo Seltzer. Securing provenance. In

The 3rd USENIX Workshop on Hot Topics in Security (HOTSEC 2008),

USENIX HotSec, pages 1–5, Berkeley, CA, USA, July 2008. USENIX Asso-

ciation.

[45] Shirley Cohen, Sarah Cohen-Boulakia, and Susan Davidson. Towards a

model of provenance and user views in scientific workflows. In Data Integra-

tion in the Life Sciences, pages 264–279. Springer, 2006.

[46] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T Silva. Prove-

nance for computational tasks: A survey. Computing in Science & Engi-

neering, 10(3):11–21, 2008.

[47] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and P. Paulson.

The open provenance model. Technical report, University of Southampton,

2007.

[48] Luc Moreau, Juliana Freire, Joe Futrelle, Robert E. McGrath, Jim Myers,

and Patrick Paulson. The open provenance model: An overview. In IPAW,

pages 323–326, 2008.

[49] Marc J Rochkind. The source code control system. IEEE Transactions on

Software Engineering, (4):364–370, 1975.

[50] Alan L Glasser. The evolution of a source code control system. ACM SIG-

SOFT Software Engineering Notes, 3(5):122–125, 1978.

[51] Walter F Tichy. Rcsa system for version control. Software: Practice and

Experience, 15(7):637–654, 1985.

186

[52] Bryan O’Sullivan. Making sense of revision-control systems. Communica-

tions of the ACM, 52(9):56–62, 2009.

[53] Ben Collins-Sussman, Brian Fitzpatrick, and Michael Pilato. Version control

with subversion. ” O’Reilly Media, Inc.”, 2004.

[54] Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam Coppens, Paul T

Groth, Erik Mannens, and Rik Van de Walle. Git2prov: Exposing version

control system content as w3c prov. In International Semantic Web Confer-

ence (Posters & Demos), pages 125–128, 2013.

[55] David Koop, Emanuele Santos, Bela Bauer, Matthias Troyer, Juliana Freire,

and Cláudio T Silva. Bridging workflow and data provenance using strong

links. In International Conference on Scientific and Statistical Database

Management, pages 397–415. Springer, 2010.

[56] James Cheney, Stephen Chong, Nate Foster, Margo Seltzer, and Stijn Van-

summeren. Provenance: a future history. In Proceedings of the 24th ACM

SIGPLAN conference companion on Object oriented programming systems

languages and applications, pages 957–964. ACM, 2009.

[57] Harry Halpin and James Cheney. Dynamic provenance for sparql updates.

In International Semantic Web Conference, pages 425–440. Springer, 2014.

[58] T. Kifor, L.Z. Varga, S. Álvarez, J. Vázquez-Salceda, and S. Willmott. Pri-

vacy issues of provenance in electronic healthcare record systems. In Pro-

ceedings of the 1st Int. Workshop on Privacy and Security in Agent-based

Collaborative Environments (PSACE 2006), 2006.

[59] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and

Margo I. Seltzer. Provenance-aware storage systems. In USENIX Annual

Technical Conference, General Track, pages 43–56, 2006.

[60] Robert Ikeda and Jennifer Widom. Panda: A system for provenance and

data. IEEE Data Eng. Bull., 33(3):42–49, 2010.

[61] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: prin-

ciples and paradigms. Prentice-Hall, 2007.

[62] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for

grid computing. SIGMOD Record, 34(3):44–49, 2005.

187

[63] Jia Yu and Rajkumar Buyya. A taxonomy of workflow management systems

for grid computing. J. Grid Comput., 3(3-4):171–200, 2005.

[64] Johan Pouwelse, Pawe l Garbacki, Dick Epema, and Henk Sips. The bittor-

rent p2p file-sharing system: Measurements and analysis. In International

Workshop on Peer-to-Peer Systems, pages 205–216. Springer, 2005.

[65] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[66] Paul Groth, Simon Miles, and Luc Moreau. Preserv: Provenance recording

for services. In UK e-Science All Hands Meeting (AHM 2005), September

2005.

[67] Paul T. Groth, Michael Luck, and Luc Moreau. A protocol for recording

provenance in service-oriented grids. In OPODIS, pages 124–139, 2004.

[68] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.

Chapman and Hall/CRC Press, 2007.

[69] Oded Goldreich. Foundation of cryptography (in two volumes: Basic tools

and basic applications). 2001.

[70] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function

basics: Definitions, implications, and separations for preimage resistance,

second-preimage resistance, and collision resistance. In International work-

shop on fast software encryption, pages 371–388. Springer, 2004.

[71] Ralf Senderek. A discrete logarithm hash function for rsa signa-

tures, 2003. URL http://www.senderek.ie/research/pcp/release/doc/

discrete-logarithm-hash-for-RSA-signatures.ps.

[72] Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding sha-2 char-

acteristics: searching through a minefield of contradictions. In Advances in

Cryptology–ASIACRYPT 2011, pages 288–307. Springer, 2011.

[73] Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang.

Preimages for step-reduced sha-2. In Advances in Cryptology–ASIACRYPT

2009, pages 578–597. Springer, 2009.

[74] Somitra Kumar Sanadhya and Palash Sarkar. New collision attacks against

up to 24-step sha-2. In Progress in Cryptology-INDOCRYPT 2008, pages

91–103. Springer, 2008.

http://www.senderek.ie/research/pcp/release/doc/discrete-logarithm-hash-for-RSA-signatures.ps
http://www.senderek.ie/research/pcp/release/doc/discrete-logarithm-hash-for-RSA-signatures.ps

188

[75] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A concrete

security treatment of symmetric encryption. In Foundations of Computer

Science, 1997. Proceedings., 38th Annual Symposium on, pages 394–403.

IEEE, 1997.

[76] Matt Bishop. Computer security: art and science. Addison-Wesley Profes-

sional, 2003.

[77] Stallings William. Cryptography and Network Security: Principles and Prac-

tice (6th Edition). Pearson, 2013.

[78] Data Encryption Standard et al. Federal information processing standards

publication 46. National Bureau of Standards, US Department of Commerce,

4, 1977.

[79] NIST-FIPS Standard. Announcing the advanced encryption standard (aes).

Federal Information Processing Standards Publication, 197:1–51, 2001.

[80] Lars R Knudsen. Practically secure feistel ciphers. In International Work-

shop on Fast Software Encryption, pages 211–221. Springer, 1993.

[81] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[82] M. Dworkin. Recommendation for block cipher modes of operation. meth-

ods and techniques. Technical report, National Institute of Standards and

Technology, 2001.

[83] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the

ACM, 21(2):120–126, 1978.

[84] Taher ElGamal. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE transactions on information theory, 31(4):

469–472, 1985.

[85] Pascal Paillier. Public-key cryptosystems based on composite degree resid-

uosity classes. In International Conference on the Theory and Applications

of Cryptographic Techniques, pages 223–238. Springer, 1999.

[86] Ronald Cramer and Victor Shoup. A practical public key cryptosystem

provably secure against adaptive chosen ciphertext attack. In Annual Inter-

national Cryptology Conference, pages 13–25. Springer, 1998.

189

[87] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pair-

ing. In Annual international cryptology conference, pages 213–229. Springer,

2001.

[88] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature

scheme secure against adaptive chosen-message attacks. SIAM Journal on

Computing, 17(2):281–308, 1988.

[89] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures-

how to sign with rsa and rabin. In International Conference on the The-

ory and Applications of Cryptographic Techniques, pages 399–416. Springer,

1996.

[90] Taher ElGamal. A public key cryptosystem and a signature scheme based

on discrete logarithms. In Advances in cryptology, pages 10–18. Springer,

1984.

[91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal

of cryptology, 4(3):161–174, 1991.

[92] P Gallagher and C Kerry. Fips pub 186-4: Digital signature standard (dss),

2013.

[93] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil

pairing. Advances in CryptologyASIACRYPT 2001, pages 514–532, 2001.

[94] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted

aggregate signatures. In ICALP, pages 411–422, 2007.

[95] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and

integrity in outsourced databases. TOS, 2(2):107–138, 2006.

[96] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and

verifiably encrypted signatures from bilinear maps. In EUROCRYPT, pages

416–432, 2003.

[97] Mihir Bellare. Practice-oriented provable-security. In International Work-

shop on Information Security, pages 221–231. Springer, 1997.

[98] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A

paradigm for designing efficient protocols. In Proceedings of the 1st ACM

190

conference on Computer and communications security, pages 62–73. ACM,

1993.

[99] Victor Shoup. Sequences of games: a tool for taming complexity in security

proofs. IACR Cryptology ePrint Archive, 2004:332, 2004.

[100] Victor Shoup. Oaep reconsidered. Journal of Cryptology, 15(4):223–249,

2002.

[101] Yehuda Lindell. How to simulate it–a tutorial on the simulation proof tech-

nique. In Tutorials on the Foundations of Cryptography, pages 277–346.

Springer, 2017.

[102] Jean-Sébastien Coron. On the exact security of full domain hash. In Annual

International Cryptology Conference, pages 229–235. Springer, 2000.

[103] Roćıo Aldeco-Pérez and Luc Moreau. Securing provenance-based audits. In

IPAW, pages 148–164, 2010.

[104] Amril Syalim, Takashi Nishide, and Kouichi Sakurai. Preserving integrity

and confidentiality of a directed acyclic graph model of provenance. In IFIP

WG 11.3 Working Conference on Data and Applications Security and Pri-

vacy (DBSec 2010), LNCS 6166, pages 311–318, 2010.

[105] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital docu-

ment. J. Cryptology, 3(2):99–111, 1991.

[106] Ahto Buldas and Märt Saarepera. On provably secure time-stamping

schemes. In ASIACRYPT, pages 500–514, 2004.

[107] Ahto Buldas and Margus Niitsoo. Optimally tight security proofs for hash-

then-publish time-stamping. In ACISP, pages 318–335, 2010.

[108] Luiz M. R. Gadelha and Marta Mattoso. Kairos: An architecture for secur-

ing authorship and temporal information of provenance data in grid-enabled

workflow management systems. In 2008 IEEE Fourth International Confer-

ence on eScience, pages 597–602. IEEE, dec 2008. ISBN 978-1-4244-3380-3.

doi: 10.1109/eScience.2008.161.

[109] Paul T Groth. The Origin of Data: Enabling the Determination of Prove-

nance in Multi-institutional Scientific Systems through the Documentation

of Processes. PhD thesis, University of Southampton, 2007.

191

[110] Ian T. Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security

architecture for computational grids. In ACM Conference on Computer and

Communications Security, pages 83–92, 1998.

[111] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust manage-

ment. In IEEE Symposium on Security and Privacy, pages 164–173, 1996.

[112] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.

Role-based access control models. IEEE Computer, 29(2):38–47, 1996.

[113] Uri Braun and Avi Shinnar. A security model for provenance. Technical

report, Harvard University, 2006.

[114] Victor Tan, Paul T. Groth, Simon Miles, Sheng Jiang, Steve Munroe, Sofia

Tsasakou, and Luc Moreau. Security issues in a soa-based provenance sys-

tem. In International Provenance and Annotation Workshop (IPAW 2006),

LNCS 4145, pages 203–211, 2006.

[115] Artem Chebotko, Seunghan Chang, Shiyong Lu, Farshad Fotouhi, and Ping

Yang. Scientific workflow provenance querying with security views. In

WAIM, pages 349–356. IEEE press, 2008.

[116] Meiyappan Nagappan and Mladen A. Vouk. A model for sharing of confiden-

tial provenance information in a query based system. In International Prove-

nance and Annotation Workshop (IPAW 2008), LNCS 5272, June 2008.

[117] Qun Ni, Shouhuai Xu, Elisa Bertino, Ravi S. Sandhu, and Weili Han. An

access control language for a general provenance model. In Secure Data

Management, pages 68–88, 2009.

[118] Security Frameworks for Open Systems: Access Control Framework. Tech-

nical Report Recommendation X.812, ITU-T, 1995.

[119] Amril Syalim, Takashi Nishide, and Kouichi Sakurai. Securing provenance

of distributed processes in an untrusted environment. IEICE TRANSAC-

TIONS on Information and Systems, 95(7):1894–1907, 2012.

[120] Yumin Yuan, Qian Zhan, and Hua Huang. Efficient unrestricted identity-

based aggregate signature scheme. PloS one, 9(10):e110100, 2014.

192

[121] Mihir Bellare, Juan A Garay, and Tal Rabin. Fast batch verification for

modular exponentiation and digital signatures. In Advances in Cryptology

(EUROCRYPT 98), pages 236–250. Springer, 1998.

[122] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Se-

quential aggregate signatures from trapdoor permutations. In International

Conference on the Theory and Applications of Cryptographic Techniques,

pages 74–90. Springer, 2004.

[123] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Wa-

ters. Sequential aggregate signatures and multisignatures without random

oracles. In Annual International Conference on the Theory and Applications

of Cryptographic Techniques, pages 465–485. Springer, 2006.

[124] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum.

Ordered multisignatures and identity-based sequential aggregate signatures,

with applications to secure routing. In Proceedings of the 14th ACM con-

ference on Computer and communications security, pages 276–285. ACM,

2007.

[125] Di Ma and Gene Tsudik. Forward-secure sequential aggregate authentica-

tion. In Security and Privacy, 2007. SP’07. IEEE Symposium on, pages

86–91. IEEE, 2007.

[126] Yi Mu, Willy Susilo, and Huafei Zhu. Compact sequential aggregate signa-

tures. In Proceedings of the 2007 ACM symposium on Applied computing,

pages 249–253. ACM, 2007.

[127] Gregory Neven. Efficient sequential aggregate signed data. In Annual Inter-

national Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 52–69. Springer, 2008.

[128] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggregate

signatures with lazy verification from trapdoor permutations. Information

and computation, 239:356–376, 2014.

[129] Jia-Lun Tsai, Nai-Wei Lo, and Tzong-Chen Wu. New identity-based se-

quential aggregate signature scheme from rsa. In Biometrics and Security

Technologies (ISBAST), 2013 International Symposium on, pages 136–140.

IEEE, 2013.

193

[130] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Sequential aggregate signa-

tures with short public keys without random oracles. Theoretical Computer

Science, 579:100–125, 2015.

[131] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Sequential aggregate signa-

tures made shorter. In International Conference on Applied Cryptography

and Network Security, pages 202–217. Springer, 2013.

[132] Marc Fischlin, Anja Lehmann, and Dominique Schröder. History-free se-

quential aggregate signatures. In International Conference on Security and

Cryptography for Networks, pages 113–130. Springer, 2012.

[133] Oliver Eikemeier, Marc Fischlin, Jens-Fabian Götzmann, Anja Lehmann,

Dominique Schröder, Peter Schröder, and Daniel Wagner. History-free ag-

gregate message authentication codes. In International Conference on Secu-

rity and Cryptography for Networks, pages 309–328. Springer, 2010.

[134] Craig Gentry, Adam ONeill, and Leonid Reyzin. A unified framework for

trapdoor-permutation-based sequential aggregate signatures. In IACR In-

ternational Workshop on Public Key Cryptography, 2018.

[135] Susan Hohenberger and Brent Waters. Synchronized aggregate signatures

from the rsa assumption. 2018.

[136] Kaisa Nyberg and Rainer A Rueppel. A new signature scheme based on the

dsa giving message recovery. In Proceedings of the 1st ACM conference on

Computer and communications security, pages 58–61. ACM, 1993.

[137] Kaisa Nyberg and Rainer A Rueppel. Message recovery for signature schemes

based on the discrete logarithm problem. In Workshop on the Theory and

Application of of Cryptographic Techniques, pages 182–193. Springer, 1994.

[138] Kaisa Nyberg and Rainer A Rueppel. Message recovery for signature schemes

based on the discrete logarithm problem. Designs, Codes and Cryptography,

7(1-2):61–81, 1996.

[139] Atsuko Miyaji. A message recovery signature scheme equivalent to dsa over

elliptic curves. In International Conference on the Theory and Application

of Cryptology and Information Security, pages 1–14. Springer, 1996.

194

[140] Masayuki Abe and Tatsuaki Okamoto. A signature scheme with mes-

sage recovery as secure as discrete logarithm. Advances in Cryptology-

ASIACRYPT’99, pages 378–389, 1999.

[141] Debra L. Cook and Angelos D. Keromytis. Conversion and proxy functions

for symmetric key ciphers. In ITCC, pages 662–667, 2005.

[142] Burton S. Kaliski Jr., Ronald L. Rivest, and Alan T. Sherman. Is the data

encryption standard a group? (results of cycling experiments on des). J.

Cryptology, 1(1):3–36, 1988.

[143] Shoichi Hirose. On re-encryption for symmetric authenticated encryption.

In Computer Security Symposium (CSS) 2010, 2010.

[144] Ronald L. Rivest. All-or-nothing encryption and the package transform. In

In Fast Software Encryption, LNCS 1267, pages 210–218. Springer-Verlag,

1997.

[145] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In

EUROCRYPT, pages 92–111, 1994.

[146] Victor Boyko. On the security properties of oaep as an all-or-nothing trans-

form. In CRYPTO, pages 503–518, 1999.

[147] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sa-

hai. Exposure-resilient functions and all-or-nothing transforms. In EURO-

CRYPT, pages 453–469, 2000.

[148] Yevgeniy Dodis, Amit Sahai, and Adam Smith. On perfect and adaptive se-

curity in exposure-resilient cryptography. In EUROCRYPT, pages 301–324,

2001.

[149] Anand Desai. The security of all-or-nothing encryption: Protecting against

exhaustive key search. In CRYPTO, pages 359–375, 2000.

[150] Douglas R. Stinson. Something about all or nothing (transforms). Des.

Codes Cryptography, 22(2):133–138, 2001.

[151] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-

nathan. Key homomorphic prfs and their applications. In CRYPTO (1),

pages 410–428, 2013.

195

[152] Amril Syalim, Takashi Nishide, and Kouichi Sakurai. Realizing proxy re-

encryption in the symmetric world. In International Conference on Infor-

matics Engineering and Information Science, pages 259–274. Springer, 2011.

[153] Mihir Bellare and Phil Rogaway. The game-playing technique. International

Association for Cryptographic Research (IACR) ePrint Archive: Report, 331:

2004, 2004.

[154] Mohammad M Bany Taha, Sivadon Chaisiri, and Ryan KL Ko. Trusted

tamper-evident data provenance. In Trustcom/BigDataSE/ISPA, 2015

IEEE, volume 1, pages 646–653. IEEE, 2015.

[155] Liang Chen, Peter Edwards, John D Nelson, and Timothy J Norman. An

access control model for protecting provenance graphs. In Privacy, Security

and Trust (PST), 2015 13th Annual Conference on, pages 125–132. IEEE,

2015.

[156] Yulai Xie, Dan Feng, Zhipeng Tan, and Junzhe Zhou. Unifying intrusion

detection and forensic analysis via provenance awareness. Future Generation

Computer Systems, 61:26–36, 2016.

[157] Jiun Yi Yap and Allan Tomlinson. Provenance-based attestation for trust-

worthy computing. In Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 1,

pages 630–637. IEEE, 2015.

[158] Jun Chen, Tun Lu, Guo Li, Tiejiang Liu, Xianghua Ding, and Ning Gu.

Provenance based diagnosis for scientific workflows. In Computer Supported

Cooperative Work in Design (CSCWD), 2015 IEEE 19th International Con-

ference on, pages 549–554. IEEE, 2015.

[159] Richard McClatchey, Jetendr Shamdasani, Andrew Branson, Kamran Mu-

nir, Zsolt Kovacs, and Giovanni Frisoni. Traceability and provenance in big

data medical systems. In Computer-Based Medical Systems (CBMS), 2015

IEEE 28th International Symposium on, pages 226–231. IEEE, 2015.

[160] Fuzel Jamil, Abid Khan, Adeel Anjum, Mansoor Ahmed, Farhana Jabeen,

and Nadeem Javaid. Secure provenance using an authenticated data struc-

ture approach. Computers & Security, 73:34–56, 2018.

196

[161] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos

Papamanthou. Hawk: The blockchain model of cryptography and privacy-

preserving smart contracts. In Security and Privacy (SP), 2016 IEEE Sym-

posium on, pages 839–858. IEEE, 2016.

[162] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse.

Bitcoin-ng: A scalable blockchain protocol. In NSDI, pages 45–59, 2016.

[163] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,

Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer,

et al. On scaling decentralized blockchains. In International Conference on

Financial Cryptography and Data Security, pages 106–125. Springer, 2016.

[164] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and smart

contracts for the internet of things. IEEE Access, 4:2292–2303, 2016.

[165] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, pages 254–269.

ACM, 2016.

[166] Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander Pono-

marev, and Jan Mendling. Untrusted business process monitoring and ex-

ecution using blockchain. In International Conference on Business Process

Management, pages 329–347. Springer, 2016.

[167] Jan Mendling, Ingo Weber, Wil Van Der Aalst, Jan Vom Brocke, Cristina

Cabanillas, Florian Daniel, Søren Debois, Claudio Di Ciccio, Marlon Dumas,

Schahram Dustdar, et al. Blockchains for business process management-

challenges and opportunities. ACM Transactions on Management Informa-

tion Systems (TMIS), 9(1):4, 2018.

[168] Saveen A Abeyratne and Radmehr P Monfared. Blockchain ready manufac-

turing supply chain using distributed ledger. 2016.

[169] Haoyan Wu, Zhijie Li, Brian King, Zina Ben Miled, John Wassick, and

Jeffrey Tazelaar. A distributed ledger for supply chain physical distribution

visibility. Information, 8(4):137, 2017.

[170] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec:

Using blockchain for medical data access and permission management. In

197

Open and Big Data (OBD), International Conference on, pages 25–30. IEEE,

2016.

[171] Ariel Ekblaw, Asaph Azaria, John D Halamka, and Andrew Lippman. A case

study for blockchain in healthcare:medrec prototype for electronic health

records and medical research data. In Proceedings of IEEE Open & Big

Data Conference, volume 13, page 13, 2016.

[172] Xiao Yue, Huiju Wang, Dawei Jin, Mingqiang Li, and Wei Jiang. Health-

care data gateways: found healthcare intelligence on blockchain with novel

privacy risk control. Journal of medical systems, 40(10):218, 2016.

[173] Laure A Linn and Martha B Koo. Blockchain for health data and its poten-

tial use in health it and health care related research. In ONC/NIST Use of

Blockchain for Healthcare and Research Workshop, Gaithersburg, Maryland,

United States: ONC/NIST, 2016.

[174] Mike Sharples and John Domingue. The blockchain and kudos: A distributed

system for educational record, reputation and reward. In European Confer-

ence on Technology Enhanced Learning, pages 490–496. Springer, 2016.

[175] Janusz J Sikorski, Joy Haughton, and Markus Kraft. Blockchain technology

in the chemical industry: Machine-to-machine electricity market. Applied

Energy, 195:234–246, 2017.

[176] Yang Lu and Jiguo Li. A pairing-free certificate-based proxy re-encryption

scheme for secure data sharing in public clouds. Future Generation Computer

Systems, 2015.

[177] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of

public-key encryption at minimum cost. In Public Key Cryptography, pages

53–68. Springer, 1999.

[178] S Canard and J Devigne. Highly privacy-protecting data sharing in a tree

structure. Future Generation Computer Systems, 2016.

[179] Jun Shao, Rongxing Lu, Xiaodong Lin, and Kaitai Liang. Secure bidirec-

tional proxy re-encryption for cryptographic cloud storage. Pervasive and

Mobile Computing, 2015.

198

[180] Satsuya Ohata, Yutaka Kawai, Takahiro Matsuda, Goichiro Hanaoka, and

Kanta Matsuura. Re-encryption verifiability: How to detect malicious ac-

tivities of a proxy in proxy re-encryption. In Cryptographers Track at the

RSA Conference, pages 410–428. Springer, 2015.

[181] Zhiniang Peng, Shaohua Tang, and Linzhi Jiang. A symmetric authenti-

cated proxy re-encryption scheme with provable security. In International

Conference on Cloud Computing and Security, pages 86–99. Springer, 2017.

[182] Qin Liu, Guojun Wang, and Jie Wu. Time-based proxy re-encryption scheme

for secure data sharing in a cloud environment. Information Sciences, 258:

355–370, 2014.

[183] Kaitai Liang, Man Ho Au, Joseph K Liu, Willy Susilo, Duncan S Wong,

Guomin Yang, Yong Yu, and Anjia Yang. A secure and efficient ciphertext-

policy attribute-based proxy re-encryption for cloud data sharing. Future

Generation Computer Systems, 52:95–108, 2015.

[184] Yanjiang Yang, Haiyan Zhu, Haibing Lu, Jian Weng, Youcheng Zhang, and

Kim-Kwang Raymond Choo. Cloud based data sharing with fine-grained

proxy re-encryption. Pervasive and Mobile computing, 28:122–134, 2016.

[185] David Nuez, Isaac Agudo, and Javier Lopez. Proxy re-encryption. Journal

of Network and Computer Applications, 87(C):193–209, 2017.

Index

p-assertion, 22

access control, 81, 82

Access Control Decision Module, 88

Access Control Enforcement Module,

88

access policy, 82

Advanced Encryption Standard

(AES), 41

All or Nothing Transform (AONT),

130, 132, 137

AON-CPA, 135

assertion, 16, 60

audit, 17

auditor, 17, 32

Auditors (ADT), 32

availability, 1

block-chain, 170

CBC, 150

Certificate of Relationships, 77

Chosen-ciphertext attack (CCA), 48

Chosen-plaintext attack (CPA), 48

Ciphertext-only attack (COA), 48

classical cryptosystems, 38

cloud computing, 11

coarse-grained provenance, 14

collision resistant hash function, 38

Concurrent Versions Systems, 19

confidentiality, 1

cryptography, 37

CTR, 150

curated databases, 15

Data Encryption Standard (DES), 41

database as a service, 12

Database System (DB), 32

Database System Interface (DBI),

32

decrypt-and-then-encrypt, 128

digital signature scheme, 44, 101

directed acyclic graph, 17

discrete logarithm problem, 39

distributed system, 16

Electronic Healthcare Record, 22

Elgamal, 43

employee performance review, 84

employee’s performance review, 84

encrypted outsourced database, 128

EU provenance project, 21

everything as services, 11

Execution Manager, 28, 29, 32, 73

Execution Plan, 28, 32

Existential Unforgeability, 48

199

200

Extended Existential Unforgeability

Under Chosen Message

Attack (EEUF-CMA), 109

Extended Hash/Signature Chain, 71

Feistel, 41

fine-grained provenance, 14

Full Domain Hash (FDH), 56

functional composition, 131

Galois Counter Mode, 131

Game-based Security Proof, 49

grid computing, 12

hardware as a service, 12

health-care management, 22

in silico, 21

inconsistent claims, 62

inconsistent interpretations, 62

infrastructure as a service, 12

integrity, 1

Known-plaintext attack (KPA), 48

Left-or-Right Indistinguishability,

134

letter of recommendation, 84

LOR-CPA, 134

Merkle-Damgard, 40

modern cryptography, 38

Multilabels, 89

one-way function, 3, 38

Open Provenance Model, 18

open provenance model (OPM), 18

Order Unforgeability Under Chosen

Message Attack

(OUF-CMA), 110

pairing, 131

Panda: A System for Provenance

and Data, 26

permutation key generator, 140

Permutation Key Generator (PGen),

140

physician, 23

platform as a service, 12

PRF Advantage, 136

private key encryption, 40

process executor, 31, 73

process-oriented provenance, 14

provenance, 13, 59

Provenance Aware Storage System

(PASS), 36

provenance chain, 16

provenance store, 29, 30

Provenance Store (PS), 32

provenance store interface, 30

Provenance Store Interface (PSI),

32

Provenance-aware storage system

(PASS), 24

provenir, 13

PRP Advantage, 136

public key encryption, 42

random oracle model, 47

RBAC, 82

reference monitor, 2

RSA, 43

scalability, 12

scientific workflow, 85

security reduction, 46

security view, 85

semantic, 29, 33

201

semantic security, 50

service oriented architecture, 17

SHA-256, 40

Signature Aggregate, 105

Signature Chain, 105

Signature with Message-Recovery,

107

Simulation-based Security Proof, 56

SOA-Based provenance system, 84

software as a service, 12

Sprov Library, 25

Subversion, 19

supply chain, 171

The outsiders, 129

The previous users, 129

The proxy, 129

Time-Stamp Authority (TSA), 67

Total break, 48

TRACE, 83, 89

trace-based access control, 96

Trusted Counter Server (TCS), 63,

71, 72

Trusted Platform Module (TPM),

170

Trusted Time-Stamping Service

(TSS), 64

uniform DAG model, 34

Universal Forgery, 48

version control system, 19

virtualization, 11, 12

where provenance, 15

why provenance, 15

work of art, 13

workflow, 16, 17

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Summary of the Contributions
	1.1.1 An Integrity Scheme for the Provenance Recording System
	1.1.2 An Access Control Model for the Provenance Recording System
	1.1.3 A Method to Sign a Sequence of Digital Documents
	1.1.4 A Proxy Re-encryption Scheme for the Symmetric Key Cryptography

	1.2 Thesis Organization

	2 Background
	2.1 Cloud Computing
	2.2 Provenance Recording Systems
	2.2.1 What is the Provenance?
	2.2.2 Fine-grained vs Coarse-grained Provenance
	2.2.2.1 Fine-grained Provenance
	2.2.2.2 Coarse-grained/Workflow-based Provenance

	2.2.3 Open Provenance Model
	2.2.4 Provenance vs Version Control System
	2.2.5 Related Projects on the Provenance
	2.2.5.1 EU Provenance Project
	2.2.5.2 Provenance in Healthcare Management
	2.2.5.3 Provenance Aware Storage System (PASS)
	2.2.5.4 Sprov Library
	2.2.5.5 Panda: A System for Provenance and Data

	2.3 Modeling the Provenance Recording System
	2.3.1 Preliminaries
	2.3.2 Modeling the Distributed System
	2.3.3 Modeling the Storage
	2.3.4 Modeling the Parties
	2.3.5 Our Definition of Provenance
	2.3.6 Provenance Graph Model
	2.3.7 The Provenance Recording Protocol

	2.4 Basic Cryptography
	2.4.1 The Primitives
	2.4.1.1 Collision Resistant Hash Functions
	2.4.1.2 Private Key Encryptions
	2.4.1.3 Public Key Encryptions
	2.4.1.4 Digital Signatures

	2.4.2 How to Prove the Security of Cryptosystems
	2.4.2.1 Security Reduction
	2.4.2.2 Proofs in the Random Oracle Model
	2.4.2.3 Attack Scenarios
	2.4.2.4 Game-based Security Proof
	2.4.2.5 Simulation-based Security Proof

	3 An Integrity Scheme for the Provenance Recording System
	3.1 Introduction
	3.1.1 Motivation
	3.1.2 The Problems of ``Inconsistent Claims'' and ``Inconsistent Interpretations''
	3.1.3 Contributions

	3.2 Related Work
	3.3 Preliminaries
	3.3.1 Modeling the Security of the Provenance
	3.3.2 Definition of the Provenance

	3.4 Proposed Scheme
	3.4.1 Extended Hash/Signature Chain
	3.4.2 Labeling Each Assertion with Unique Counter
	3.4.3 Secure Provenance Recording Protocol

	3.5 Security Analysis
	3.6 Storage Requirements for the Integrity Schemes
	3.7 Beyond the Counter: Certificate of Relationships
	3.7.1 Including Certificate of Relationships
	3.7.2 How to recover the missing nodes

	3.8 Discussion: Public Key Infrastructure and Replay Attack
	3.9 Performance Analysis
	3.10 Conclusion

	4 An Access Control Model for the Provenance Recording System
	4.1 Introduction
	4.1.1 The Problem of Access Control to the Provenance
	4.1.2 Contributions

	4.2 Related Work
	4.3 Preliminaries
	4.3.1 Definition of the Provenance
	4.3.2 Provenance Storage
	4.3.3 Access Control Enforcement

	4.4 Proposed Access Control System
	4.4.1 TRACE and Multilabels
	4.4.2 Implementation of the Multilabels
	4.4.3 Implementation of the TRACE
	4.4.4 Access Control Decision
	4.4.5 Security Analysis
	4.4.6 Performance Analysis

	4.5 Alternative Implementation: Encryption-based Access Control
	4.5.1 Encryption Method
	4.5.2 Key Generation
	4.5.3 Provenance Recording Protocol
	4.5.4 Accessing the Provenance
	4.5.5 Access Control Policy
	4.5.6 Performance Analysis

	4.6 Conclusion

	5 A Signature Scheme for a Sequence of Digital Documents
	5.1 Introduction
	5.1.1 Problem Description
	5.1.2 Usage of the Proposed Scheme
	5.1.3 The Basic Method and Our Previous Attempts
	5.1.4 Contributions

	5.2 Related Work
	5.2.1 Plain Signature
	5.2.2 Signature Chain
	5.2.3 Signature Aggregate
	5.2.4 Signature with Message-Recovery

	5.3 Preliminaries
	5.3.1 Definition of the Signature
	5.3.2 Security Model
	5.3.2.1 Extended Existential Unforgeability Under Chosen Message Attack (EEUF-CMA)
	5.3.2.2 Order Unforgeability Under Chosen Message Attack (OUF-CMA)

	5.3.3 Complexity Assumptions
	5.3.3.1 Assumption about the Hardness of the RSA problem
	5.3.3.2 Assumption about the Hash Functions

	5.4 Proposed Scheme
	5.4.1 Notations
	5.4.2 Primitives: VPSign, VPPla, VPVer
	5.4.3 Signing the Sequence
	5.4.4 Correctness of the signature scheme
	5.4.5 Proving the order of the sequence
	5.4.6 Signature size

	5.5 Security Proofs
	5.5.1 Security under EEUF-CMA
	5.5.2 Security under OUF-CMA

	5.6 Comparison of Our Scheme with the Other Schemes
	5.7 Conclusions

	6 Proxy Re-encryption for Symmetric Key Cryptography
	6.1 Introduction
	6.1.1 Security Model
	6.1.2 Contributions

	6.2 Related Work
	6.2.1 Ciphertext Transformation and Proxy Re-encryption
	6.2.2 All or Nothing Transform
	6.2.3 Our Original Scheme

	6.3 Preliminaries
	6.3.1 Notion of Security
	6.3.2 PRF and PRP Advantages
	6.3.3 Difference Lemma

	6.4 The Primitives
	6.4.1 All or Nothing Transform (AONT)
	6.4.2 The functions PE, DP, and FC
	6.4.3 Permutation Key Generator (PGen)

	6.5 The Proposed Scheme
	6.5.1 Definition
	6.5.2 The Scheme
	6.5.3 Correctness of the Re-encryption Function RE

	6.6 Security Analysis
	6.6.1 Security Against Outsiders
	6.6.2 Security Against Previous Users
	6.6.3 Security Against Proxy
	6.6.4 A Note on Collusion Attack

	6.7 Performance Evaluation
	6.8 Discussion: Using CBC and CTR modes as Alternatives to AONT
	6.8.1 Using CBC mode
	6.8.2 Using CTR mode

	6.9 Proof of the Theorems
	6.9.1 Proof of Theorem 6.6
	6.9.2 Proof of Theorem 6.7
	6.9.3 Proof of Theorem 6.8
	6.9.4 Proof of Theorem 6.9

	6.10 Discussion: An Attempt to Develop a Secure Proxy Re-encryption Using Pure Symmetric Cipher
	6.10.1 Xor-scheme (Vernam Cipher)
	6.10.2 Stream cipher-like encryption
	6.10.3 Block cipher-like encryption

	6.11 Conclusion

	7 Conclusion
	7.1 Recent Research on the Provenance and the Signature Chain
	7.2 Recent Research on the Proxy Re-encryption
	7.3 Suggestions for the Future Work

	A Implementation and Experimental Results
	A.1 Experimental Setup
	A.2 Results

	Published Papers
	Bibliography
	Index

