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“Learn never known the age, time, and place. Moreover, life is a sharing,” My Parent said. 

The voice still echoes in the mind   
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Chapter 1 Introduction  

1.1 Background  

A natural disaster is a significant adverse event resulting from natural processes of the 

Earth, i.e., flooding, landslide, tsunami, earthquake, and drought. As the most Natural disaster 

in Indonesia based on Indonesian National Disaster Management (BNPB) from 2011 – 2015, 

there are drought, forest fire, earthquake, flooding, and Landslide. Landslide is the natural 

hazard which causes a significant number of human lost in Indonesia.  Landslide is a significant 

geological hazard worldwide, accounts for a high number of human casualties and an enormous 

amount of property loss, and causes severe damage to natural ecosystems and human-built 

infrastructures. Both environmental and triggering factors control landslide events. The 

environmental factors comprised of topography (e.g. elevation, slope, aspect, and curvature), 

geological settings (e.g. rock types, faults, and structural aspects), hydrological regimes (e.g. 

proximity to stream and drainage density), geomorphological situation (i.e. physiographic unit, 

terrain mapping units and geomorphological units) and human (e.g. land use change and 

distance to road). Eight hundred and fifty events of landslide caused 462 people die (Table 1).  

The landslide in Indonesia caused by heavy rainfall, weak material, steep slope and land-use 

change (change on upland change from forest area to farming area). 

Table 1  Distribution of Natural Disasters Based on Indonesian National Disaster Management Agency in 

Indonesia (DIBI, 2016) 

No Natural Disaster Event People die 

1 Flooding 1112 343 

2 Drought 36 0 

3 Landslide 850 462 

4 Earthquake 1024 0 

5 Forest Fire 81 0 

 

Land use change (LUC) is a process by which human activities transform the landscape.  

LUC has been recognized throughout the world as one of the most critical factors influencing 

the occurrence of rainfall-triggered landslides (Glade, 2003), and LUC can have implication to 

https://en.wikipedia.org/wiki/Disaster
https://en.wikipedia.org/wiki/Natural_hazard
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landslide occurrence on a steep slope (Mugagga et al., 2012).  The correlation between intense 

rainfall and landslide initiation has been examined by many scholars (Crosta et al., 2004; 

Hasnawir et al., 2017), and triggering thresholds have been determined. In South Sulawesi 

Indonesia, LUC has been translated into numerous landslide incidents triggered by the intensity 

of rainfall compared to other factors such as earthquakes, especially in Ujung-Loe upper 

watershed. The topography is naturally very steep and mountainous (38.8% class slope >20 

degrees) and has a very high level of instability, especially during the rainy season (Rainfall: 

2,976 to 7,114 mm/year with average annual rainfall 4,524 mm/year; (Makassar Meteorology, 

Climatology, and Geophysical Agency, 2016). Moreover, the primary occupation of social 

community in that area is farming and located in the mountainous area and steep slope.  It is 

hard to avoid this agricultural practices because this has become people's culture for agriculture 

in mountainous regions and have made it hereditary. This primary characteristic of location 

makes different from the other location and need to analysis for mitigation disaster especially 

by introduce LUC as a new causative factor to produce susceptibility map. 

Geographic information system (GIS) as a tool used to build a map of landslide inventory 

and causative factor. Moreover, GIS is used to build landslide susceptibility.  Quantitative 

methods employ mathematical models to estimate the probability of landslide occurrence in a 

region and thus define hazard zones on a continuous scale. To achieve an accurate estimation 

of the probability of slope failure, a recent landslide inventory map, and complete information 

on the past mass movements are necessary. Quantitative methods include bivariate statistical 

models such as frequency ratio, multivariate statistical techniques such as discriminant analysis, 

and linear and logistics, as well as expert choices such as certainty factor and non-linear 

methods such as artificial neural networks. 

In this research, we divide the processes into three-steps to compare the performance of 

LUC as a new causative factor. There three-steps were derivate factor for LUC to landslide 

occurrence; performance of LUC causative factor on landslide susceptibility map (LSM) by 
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using frequency ratio (FR) and logistics regression (LR) with 9 causative factor, and 

performance of LUC using FR, LR, and introduce expert choice analysis with certainty factor 

(CF) with 11 causative factor; and optimization of causative factor using LR and artificial 

neural network (ANN) method for landslide susceptibility assessment. Furthermore, we also 

conduct four landslide susceptibility maps from different landslide susceptibility models in GIS 

environment (FR, LR, CF, and ANN). 

1.2 Disaster management in Indonesia  

The shift in disaster management paradigm from focusing on disaster response to 

enhancing disaster risk reduction was started in 2007 by the enactment of Undang-Undang 

(Law) 24/2007. Scientific society and government awareness drove it after post-tsunami 

emergency response and subsequent rehabilitation and reconstruction phase. The momentum 

was also appeared by the experiences of Nabire Earthquake 2004, Nias Earthquake 2005, and 

Yogyakarta Earthquake 2006 emergency responses. However, the initiative to reform the 

Disaster Management Law has been started before the earthquake and tsunami of 26 December 

2004. There was a discussion forum between BAKORNAS PB (National Disaster Management 

Coordination and Agency), NGO’s and MPBI (Indonesian Society for Disaster Management) 

to promote national disaster management. Before the enactment Law 24/2007, the disaster 

management in Indonesia was focusing on crisis management and disaster response 

coordinated by BAKORNAS PB.  

The Disaster Management Law 24/2007 enforces a systematic approach to disaster risk 

reduction that contains three phases of the disaster management cycle as follows:  

1. pre-disaster planning and preparedness, including disaster risk reduction, 

mitigation, preparedness, risk assessment and contingency planning  

2. emergency response, including evacuation, search and rescue, providing 

immediate assistance, assessing damage and disaster relief  

3. post-disaster management, including rehabilitation and reconstruction.  
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The law also mandates the creation of the “new BAKORNAS PB,” later called as BNPB 

(National Disaster Management Agency), as a national coordinating agency for disaster 

management that is responsible for pre-disaster planning, emergency response, and post-

disaster management. BNPB must coordinate all contingencies, preparedness, mitigation, 

prevention, disaster management training, risk assessment and risk zoning. In the emergency 

response phase, BNPB has a responsibility to coordinate government, NGO’s and international 

organization during the emergency response phase. BNPB must also coordinate damage and 

loss assessment and coordinate rehabilitation and reconstruction in the post-disaster phase.  

However, with the high responsibility for conducting disaster management, BNPB needs 

partners to provide all the technical support, to train technical personnel, and to create 

preventive disaster risk reduction culture in Indonesia. One of the representative partners to 

provide technical expertise in the full spectrum of disaster-related fields is the university partner. 

It is expected to be an intellectual capital, which can provide technical assistance in disaster 

risk reduction including the research and technology development of early warning systems, 

damage assessment, and risk analysis.  

Risk analysis, as a basis for disaster risk reduction, is an essential issue in the Law 

24/2007. Disaster prevention planning should include disaster risk data documentation and risk 

analysis. Development activities which may have high risk must be equipped with risk analysis. 

The implementation of risk analysis is closely related to spatial planning or land use planning. 

Two other laws were also enacted in 2007, i.e., Law 26/2007 spatial planning and Law 27/2007 

on coastal zone management and small islands. Both have a secure attachment to disaster 

mitigation. Law 26/2007 dictates that spatial plan documents should be based on the 

consideration of disaster mitigation measures. Law 27/2007 states that disaster reduction 

strategy has to be included in the coastal zones and small islands spatial plan. Spatial planning 

at national, provincial and regency levels is developed for 20 years and can be reviewed once 

in 5 years. If a disaster happens due to the development in a high-risk area which is not equipped 
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with disaster risk analysis, the responsible parties can be fined for up to US$ 26000 or jailed up 

to 3 years.  

Thus, spatial planning based on disaster risk reduction is one of the primary issues of 

Indonesia’s national development agenda to promote sustainable development due to the 

increasing frequency of disasters and continuing environmental degradation. Regarding 

landslide disaster risk reduction, regional development and disaster mitigation are well 

approached by landslide susceptibility, hazard and risk zoning.  

1.3 Landslide susceptibility analysis in developing country: lack of data availability  

Landslide risk analysis involves several steps, i.e., scope definition, landslide hazard 

identification and risk estimation. Scope definition addresses several issues including 

delineating the study area, elements at risk identification, and methodology selection. Landslide 

hazard identification addresses several issues on understanding the physical characteristic of 

study area regarding landslide processes such as understanding geology, geomorphology, 

hydrogeology, and climate. It also includes collecting landslide data, such as landslide 

classification, area, volume, travel distance, date occurrence, and elements at risk. Hazard 

identification activities are mostly related to landslide inventory. Risk estimation deals with 

consequence analysis and frequency analysis.  

Landslide inventory is critical in the landslide risk analysis because it gives information 

related to the frequency of occurrences, landslide typology, landslide extents and damage 

of elements at risk. Estimation of spatial probability, temporal, probability and magnitude 

probability is not possible without landslide inventory containing sufficient data of past 

landslide events. In Indonesia, especially where this research was undertaken, adequate 

landslide inventory is not available because the landslide locations were very remote area. 

It is a central problem of quantitative landslide risk analysis in Indonesia. Thus, producing 

landslide inventory maps and developing approaches of using those maps for landslide risk 

zoning in Indonesia are challenging tasks that this research focuses.  
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1.4 Research Scope and Objectives  

Landslide is defined, as general terminology, to describe the movement of rock, debris or 

soil down a slope due to gravitational process (Fell et al., 2008). However, the terminology of 

landslide, in this research, is used interchangeably to define shallow and deep-seated slide. 

Landslide hazard and risk analysis, as a soft preventive countermeasure, is a vital tool for 

disaster risk reduction in Indonesia because of the shifting paradigm of its disaster management 

from focusing on disaster response to enhancing disaster risk reduction. However, the primary 

drawback of generating landslide risk analysis is the unavailability of landslide inventory data, 

which makes difficulties in estimating the spatial probability, temporal probability, and 

magnitude probabilities.   

The landslide in Indonesia caused by heavy rainfall, weak material, steep slope and LUC 

(change on upland change from forest area to farming area).  LUC has been recognized 

throughout the world as one of the most critical factors influencing the occurrence of rainfall-

triggered landslides (Thomas Glade, 2003), and LUC can have implication to landslide 

occurrence on a steep slope (Mugagga et al., 2012).  The correlation between intense rainfall 

and landslide initiation has been examined by many scholars (Hasnawir et al., 2017; Kubota, 

2010), and triggering thresholds have been determined. In South Sulawesi Indonesia, LUC has 

translated into numerous landslide incidents triggered by the intensity of rainfall compared to 

other factors such as earthquakes, especially in Ujung-Loe upper watershed. The topography is 

naturally very steep and mountainous (38.8% class slope >20 degrees) and has a very high level 

of instability, especially during the rainy season (Rainfall: 1,436 to 5,052 mm/year with average 

annual rainfall 3,739 mm/year on Apparang Hulu rain gauge (Agency for Meteorology, 2016). 

Moreover, the primary occupation of social community in that area is farming and located in 

the mountainous area and steep slope.  It is hard to avoid this agricultural practices because this 

has become people's culture for agriculture in mountainous regions and have made it hereditary. 

Based on this primary characteristic of location make different from the other location and need 
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to analysis for mitigation disaster especially by introducing LUC as a new causative factor to 

produce susceptibility map.   

This research will distinguish its analysis based on the availability of landslide causative 

factors. Thus, the objectives of this research are:  

(1) To examining to quantify the LUC in the study area during 2004 to 2011 and 

establish the relationship between LUC, topographic parameters (slope) and landslide 

occurrence. 

(2) To examining the performance of land use change as a causative factor to produce 

landslide susceptibility map using frequency ratio, and logistic regression and comparing 

with 9 causative factor 

(3) To examining the effect of land use change to produce landslide susceptibility map 

using frequency ratio, logistic regression, and certainty factor method and comparing with 

11 causative factor 

(4) To optimize causative factors by using logistic regression and artificial neural 

network (ANN) and combination to produce landslide susceptibility map.  

1.5 Thesis Organization  

The thesis comprises of the following 7 chapters (Figure 1).  Chapter 1 is an 

introduction; chapter 2 is study area. Chapter 3 is preliminary analysis to see the 

relationship between land use change and landslide occurrence. Chapter 4 and 5 are a 

central body to see the performance of land use change to produce landslide susceptibility 

map (LSM).  Chapter 6 is an optimized causative factor to produce LSM.  Chapter 7 is a 

summary and conclusion. 

Chapter 1 introduces (1) The important of land use change causative factor for analysis 

for landslide susceptibility map in Ujung-Loe Watershed, South Sulawesi Indonesia, (2) 

the shifting disaster mitigation policy in Indonesia, (3) the problems in landslide risk 
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zoning in Indonesia, (4) the scope and objectives of this study, and (5) the organization of 

the thesis.  

Chapter 2 introduces the condition of the study area, i.e., soil and land use/land cover, 

geology and geomorphology, rainfall condition and socio-economic conditions.  

Chapter 3 consist of preliminary analysis to see the relationship between land use 

change and landslide events and slope factor in Ujung-Loe Watersheds, South Sulawesi, 

Indonesia. 

Chapter 4 consists of analysis the performance of land use change causative factor to 

produce landslide susceptibility map in comparason with two different landslide 

susceptibility analysis using bivariate frequency ratio, and multivariate logistic regression 

with using 9 causative factors (elevation, slope, aspect, curvature, lithology, distance to 

faults, distance to river, drainage density and land use change). Landslide data were 

separated into training data (70%) and validation data (30%).  In an analysis to produce 

landslide susceptibility map, we use causative factors with and without LUC to see the 

performance. The produced landslide susceptibility maps were compared to evaluate the 

accuracy of each map in the study area of Ujung-Loe Watersheds, South Sulawesi, 

Indonesia.  

Chapter 5 consists of  analysis performance of land use change causative factor to 

produce landslide susceptibility map in comparison with three different landslide 

susceptibility analysis using bivariate frequency ratio, multivariate logistic regression and 

introduce expert choice analysis with certainty factor (CF) with 11 causative factors 

(elevation, slope, aspect, curvature, lithology, distance to faults, distance to river, drainage 

density, land use change, precipitation and distance to road). Landslide data were separated 

into training data (70%) and validation data (30%).  The produced landslide susceptibility 

maps were compared to evaluate the accuracy of each map in the study area of Ujung-Loe 

Watersheds, South Sulawesi, Indonesia  
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  Chapter 6 consists of optimized landslide causative factors (input data) to increase 

the accuracy of the landslide susceptibility map in Ujung-Loe Watershed, South Sulawesi, 

Indonesia by using logistic regression and artificial neural network approach. There is 3 

type of optimized, i.e., optimized by logistic regression (forward stepwise), artificial neural 

network (ANN) and combination between logistic regression (forward stepwise) and ANN.  

Chapter 7 summarizes and concludes the results and achievements of the study. 

Problems are also highlighted for future studies.  

 
 

Figure 1 Flowchart of thesis organization 
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Chapter 2 Study Area  

2.1 Introduction  

Upper of Ujung-Loe Watersheds was a mountainous area and located in Bulukumba and 

Sinjai Regency, South Sulawesi Province, Indonesia (figure 2). It opposites with Jeneberang 

watershed with the big caldera of bawakaraeng. This location provides a fertile land but 

frequently suffers from landslide disasters.  Landslide disasters occur almost every year, 

especially during the rainy season, which induces flash floods and debris flows in the upstream.   

The upper of Ujung-Loe Watersheds is located at 119° 55' 42.34"E to 120° 8' 43.12"E 

and 5° 18' 19.07" S to 5° 24' 43.33" S with the altitude of 255 – 2,860 meters above sea level 

with areas of 79.79 km2.  It provided forests covering and area of cultivation and farming.  

Some areas are, particularly in the upstream part.  The slope is around 38.8% with slope class 

>20 degrees including a particular area at the upstream with very steep (>40 degrees). 

Figure 2 Study Area 
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2.2  Soil and Land Use/Land Cover 

 According to map land system from Departemen Transmigrasi Indonesia (1987), soil 

type of the study area is dystrandepts and ustropepts (Table 2 and Figure 3).     

 Dystrandepts and ustropepts is an inceptisol soil.  Inceptisols commonly occur on 

landscapes that are relatively active, such as mountain slopes, where erosional processes are 

actively exposing unweathered materials, and river valleys, where relatively unweathered 

sediments are being deposited. The different is Dystrandept with andepts formed chiefly in 

volcanic ash or regoliths with high componence of ash and ustropets with tropepts formed an 

ustic moisture regime and receive dominantly summer precipitation, or they have an isomesic, 

hyperthermic, or warmer temperature regime.  They formed mostly in Pleistocene or Holocene 

Table 2 Soil (great group) according to land system Sulawesi 1982 in the study area 

Number Soil (great group) Area (hectare) 
1 Dystrandepts 4,061 
2 Ustropepts 3,918 

Grand Total 7,979 

Figure 3 Soil Map 
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deposits. Some of the soils that have steep slopes formed in older deposits (Resources and 

Service, 1999) 

Table 3 Land use/Land cover  2015 in the study area  

Number Land use/Land cover Area (hectare) Percentage 

1 Primary Forest 2,527 31.67 
2 Secondary Forest 2,176 27.27 
3 Savanna 1,342 16.82 
4 Scrub 87 1.09 
5 Farming Area 1,410 17.67 
6 Open Area/Paddy Field include settlement 159 1.99 
7 Open Area/Paddy Field 251 3.15 
8 Open Area 28 0.35 

Total            7,979   

Source: interpretation of Landsat 8 image recorded 2015   

 

. 

Concerning to the type of land use/land cover in the current research, 31,67% of the land 

surface has a primary forest cover, and 27.27 % has a secondary forest in the upper to the middle 

of watersheds. Moreover, land surface has a cover by savanna, farming area, paddy field and 

open area with 41.07% from upper to downstream of watersheds (Table 3 and Figure 4). 

Figure 4  Land use/Land cover  2015 in study area 
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2.3 Geology and General Geomorphology 

High relief characterizes the morphology of Upper Ujung-Loe Watershed, extreme slope 

(Figure 5), a high degree of weathering as well as erosion activities as soil movement and 

landslides.  The base map on the location according to geological maps of Sulawesi consists of 

Quarter Lompobattang Vulcanic (Qlv), Lompobattang Vulcanic center (Qlvc), and Quarter 

Lompobattang Vulcanic Breccia (Qlvb)(Sukamto and S. Supriatna, 1982). 

  

 

 

The formation of lithology in current research was dominated by Quarter Lompobattang 

Vulcanic (Qlv) with 70.72%, then Quarter Lompobattang Vulcanic Breccia (Qlvb) and Quarter 

Lompobattang Vulcanic center (Qlvc) with 24.63% and 4.65% respectively (Table 4 and Figure 

Table 4 Formation of Lithology according to land system Sulawesi 1982 in the study area  

Number Lithology Area (hectare) Percentage 

1 Quarter Lompobattang Vulcanic Breccia (Qlvb) 1,965 24.63 
2 Quarter Lompobattang Vulcanic (Qlv) 5,643 70.72 

3 Quarter Lompobattang Vulcanic center (Qlvc) 371 4.65 

Grand Total 7,979  

   

Figure 5 Geology Map 
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5).  The Qlv and Qlvc consist of extrusive, mafic, and polymict, which form a broad 

stratovolcano and quarter lompobattang volcanic were estimated starting from the last of 

Pliocene to early Pleistocene of volcanic rock.  Qlvb consists of extrusive, mafic, and polymict, 

and are estimated to start from first Pleistocene to early Holocene of volcanic rock (Sukamto 

and S. Supriatna, 1982). 

2.4 Rainfall condition 

In the current research, there are three rain gauge stations, i.e., Bulo-bulo, Apparang Hulu 

and Malino.  In Malino rain gauge station, the monthly rainfall ranges from 41 mm in August 

to 772 in December with period 2002 until 2015.  The intense rainfall usually occurs from 

November to June (rainy season).  There are two distinct seasons, i.e., dry and rainy. The dry 

season from July to October.  The yearly rainfall ranges from 319 mm in 2012 to 5474 mm in 

  

  

  

Figure 6  Graph of Rainfall by Year and Average Rainfall by Month From 2002 Until 2015 

in Three Rain Gauge Station, i.e., Malino, Apparang Hulu, And Bulo-Bulo 
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2013 with average 3570 mm/year. Its annual rainfall tends to be stable in the period 2002 to 

2015. In Apparang Hulu rain gauge station, the monthly rainfall ranges from 117 mm in August 

to 528 in December with period 2002 until 2015.  The intense rainfall usually occurs from 

October to August (rainy season).  The dry season is only in September.  The yearly rainfall 

ranges from 1436 mm in 2004 to 5052 mm in 2013 with average 3739 mm/year.  Its annual 

rainfall tends to increase in the period 2002 to 2015.  In Bulo-bulo rain gauge station, the 

monthly rainfall ranges from 51 mm in September to 417 in June with period 2002 until 2015.  

The intense rainfall usually occurs from November to July (rainy season).  The dry season from 

August to October.  The yearly rainfall ranges from 2010 mm in 2012 to 5711 mm in 2010 with 

average 3187 mm/year.  Its annual rainfall tends to be stable in the period 2002 to 2015.  Its 

annual rainfall tends to increase in the period 2002 to 2015 (Figure 6) (Agency for Meteorology, 

2016). 

According to polygon Thiessen analysis, Apparang Hulu station covered area 68.81% area, 

Bulo-bulo station covered 23.14%, and Malino station covered 7.75% (Table 5 and Figure 8).        

Figure 7 Rainfall Map with Polygon Thiessen 

 

 

Figure 2. 1  Population Density MapFigure 2. 7 Rainfall Map with Polygon Thiessen 
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2.5 Socio-economic conditions  

 The study area is located in Bulukumba, and Sinjai regency, South Sulawesi Province, 

Indonesia.  Socio-economic of intermediate status comparing to nearby city and regency 

including Makassar, Bantaeng, and Gowa. Bulukumba regency with three districts (Bulukumpa, 

Kindang, and Rilau Ale district) with five villages. Sinjai regency with two districts (Sinjai 

Barat and Sinjai borong district) with five villages.  In this current research area, the highest 

population located in Anrang village (1,963 people/km2) and Borong Rappoa village (1,553 

people/km2) (Table 6 and Figure 8).  There is 70.09% of the total population located in 

Bulukumba regency and only 29.91% in Sinjai regency (Badan Pusat Statistik, 2016a, 2016b).   

  

Table 5 Rain gauge station in the study area 

Number Rain Gauge Station Area (hectare) Percentage 

1 Bulo-bulo 1,870 23.44% 
2 Apparang Hulu 5,490 68.81% 

3 Malino 619 7.75% 

Grand Total 7,979  

Table 6 Population data of in current research location 

Number Regency District Village 
Area 

(Ha) 

Percentage 

Area (%) 

Population 

(People) 

Percentage 

Population(%) 

Population 

(People/Km2) 

1 Bulukumba Bulukumpa Sapo Bonto 527 6.61 3,738 10.93 361 

  Kindang Borong Rappoa 221 2.77 3,430 10.03 1,553 

   Kahayya 1,276 15.99 1,238 3.62 97 

   Kindang 1,085 13.60 3,032 8.86 279 

   Tamaona 417 5.23 2,567 7.50 616 

  Rilau Ale Anrang 259 3.25 2,493 7.29 1,963 

   Bajiminasa 192 2.41 3,165 9.25 331 

   Bonto Lohe 410 5.14 2,384 6.97 254 

   Bonto Matene 386 4.83 1,929 5.64 232 

 Sub Total Of Bulukumba Regency 4,773 59.82 23,976 70.09 632 

2 Sinjai 
Sinjai 

Barat 
Barania 477 5.97 1,965 5.74 105 

   Gunung Perak 1,931 24.20 3,115 9.11 136 

  
Sinjai 

Borong 
Batu Belerang 69 0.86 1,772 5.18 197 

   Bonto Tengnga 313 3.92 1,423 4.16 211 

   Kassi Buleng 417 5.23 1,956 5.72 369 

 Sub Total Of Bulukumba Regency 3,206 40.18 10,231 29.91 204 

 Grand Total 7,979 100.00 34,207 100.00 418 
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The topography of the disaster-prone area in the upstream of Ujung-loe watershed is 

mountainous.  Paddy and corn fields are limited only along the river and in terrace area.   

Plantations of coffee, coconut, cacao, clove, candlenut, cashew, vanilla, pepper as well as paddy 

and corn fields dominate the village industry.  The vegetable is grown mostly for self-

consumption.  They also raise cow, horses, and goats (Badan Pusat Statistik, 2016a, 2016b) 
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Chapter 3 Land Use Changes on the Slopes and the Implications 

for the Landslide Occurrences in Ujung-Loe 

Watersheds South Sulawesi Indonesia  
 

3. 1  Introduction 

Land use change (LUC) is a process by which human activities transform the landscape.  

LUC has been recognized throughout the world as one of the most critical factors influencing 

the occurrence of rainfall-triggered landslides (Thomas Glade, 2003), and LUC can have 

implication to landslide occurrence on a steep slope (Mugagga et al., 2012).  The correlation 

between intense rainfall and landslide initiation has been examined by many scholars (Bacchini 

and Zannoni, 2003; Crosta and Frattini, 2003), and triggering thresholds have determined. 

In South Sulawesi Indonesia, LUC has been translated into numerous landslide incidents 

triggered by the intensity of rainfall compared to other factors such as earthquakes, especially 

in Ujung-Loe upper watershed. The topography is naturally very steep and mountainous (38.8% 

class slope >20 degrees) and has a very high level of instability, especially during the rainy 

season (annual rainfall 1436 mm/year – 5052 mm/year period 2002 to 2015 at Apparang Hulu 

rain gauge (Meteorology, climatology and geophysics Makassar, 2016)). The primary 

occupation of social community in that area is farming and located in the mountainous area. It 

is hard to avoid this agricultural practices because this has be become people's culture for 

agriculture in mountainous regions and have made it hereditary.  Rudiarto and Doppler (2013) 

said that in Indonesia, where many upland areas can found, land use/cover change for the 

extension of agriculture activity commonly occurs. 

The objectives of the study are examining to quantify the LUC in the study area during 

2004 to 2011 and establish the relationship between LUC, topographic parameters (slope) and 

landslide occurrence. 
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3. 2  Material and Method 

This study utilized Landsat satellite images on scene path 114 row 064 of 2004 and 2011. 

Landsat 5 TM (date recorded September, 21th 2004) and Landsat 7 ETM+ (date recorded 

October, 11th 2011) images, each with a 30 m resolution, and Aster DEM 30m, are collected 

from United States Geological Survey (USGS) at website http://earthexplorer.usgs.gov/.  

Resolution of pixel was 30 x 30 meter with total pixel 88,879 and 383 pixels for a landslide.  

Landsat images have been registered and geo-corrected from the source. The atmospheric 

correction has been conducted with the use of vegetation delineation function was through to 

the ArcGIS software package version 10.3. Also, the radiometric correction has been carried 

out by using the Landsat calibration function within the tools of Arc GIS 10.3 software.  

Remote sensing and GIS (RSGIS) techniques have shown great potential in land use 

mapping and monitoring due to its advantages over traditional procedures regarding cost-

effectiveness and timeliness in the availability of information over larger areas (Armentaras et 

al.,2003; Franklin, 2001).  RSGIS techniques were employed to classify land use. The 

unsupervised classification method is applied to classify land use.  The unsupervised 

classification consists of three step: (1) Creation of N spectral-class maps using Iterative Self-

Organizing Data Analysis Technique Algorithm; (2) development of Land use (LU) maps with 

assistance of reference data; and (3) accuracy assessments of all the LU maps using independent 

reference data and selection of one LU map with the highest accuracy (Ruili et. al., 2008). This 

method is applied to classify land use into seven classes, i.e., open area, paddy field, farming 

area, scrub, savanna, secondary forest and primary forest.  The certified maps, which were 

generated, classified and validated by using ground control points method in the same year of 

Landsat images and google earth pro imagery map, were used to measure the accuracy 

assessment. Overall accuracy values of 86%, 90% and Kappa values of 0.83, 0.88 were 

achieved for the unsupervised classified maps of 2004 and 2011, respectively. In this research, 

land use was analysis by unsupervised classification and classify in five classes. The five class 
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were no vegetation (open area), sparse vegetation (paddy field), medium vegetation (farming 

area and shrub, savana), high vegetation (secondary forest) and dense vegetation (primary 

forest) is conducted.  Slope was divided into 6 clases i.e. 0 -10, 10-20, 20-30, 30-40, 40-50 and 

>50 degrees by analysis in software ArcGIS 10.3 (Fig. 3b).  Historical landslide inventory was  

delineated in google earth pro with high-resolution image time series from 2012 to 2014 (Figure 

10 and Figure 11). Moreover, the framework of this research follows Figure 9.  To see the 

correlation between the LUC, slope and landslide occurrence was conducted by statistical 

analysis (binary logistic regression). Categorical data were arbitrarily coded to convert it to 

nominal data. Binary logistic regression formula is Equation 3.1; 

𝑃 =
1

1+exp−∑βi x ij
                                                             (3.1) 

where P is Probability, β is regression coefficients, and ij is variable at observation (LUC and 

slope). 

 

Figure 9 Research framework 
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3. 3   Results and Discussion 

Based on GIS and remote sensing analysis, it is found that the highest increasing land use 

change (LUC) was medium-vegetation with 45.29% from 2004 to 2011, follow by high 

vegetation and sparse vegetation, with increasing 41.64% and 19.08 respectively. Moreover, 

the highest decreasing was no vegetation with 60.69%.  Then dense vegetation with 45.72% is 

declining (see Table 7, Figure 12).  The significant trend of increasing average rate of LUC 

a) 
 

b) 
 

Figure. 3. a) Landslide inventory b) Slope study area in degree  
 

Figure 10 a) Landslide inventory b) Slope study area in degree 

Figure 11 Landslide photo 
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were medium vegetation and high vegetation with the mean rate of change 5.66% and 5.21% 

respectively. Moreover, the significant trend of decreasing average rate of LUC was no 

vegetation and dense vegetation with the mean rate of change -7.59% and -5.71% respectively.  

LUC confirmed the growth of the medium-vegetation class from 25.22% from total area in 

2004 to 36.64% in 2011 with the highest change from high vegetation; it happened because of 

the increased rates of farming areas (Figure 13). This rising rate can attribute to the growing 

population in need of agricultural land in the study area. Moreover, the increasing population 

rate was 1.15%, primarily by farm workers and people with education below junior high school 

(Central Bureau of Statistics of South Sulawesi Indonesia, 2013). On the other hand, the class 

of dense vegetation decreased from 1,685 ha in 2004 to 914 ha in 2011 or decreased 96.27 ha 

per year because of open land for farming and illegal logging in dense forest areas. Perceived 

susceptibility and severity of land degradation strongly influence farmers’ awareness of and 

attitude toward environmental problems (Bayard et. Al., 2006). 

Landslides have occurred 128 times in 2012 to 2014. The highest landslides were in 2013 

with 93 times. They were happening with rainfall with 5,052 mm/year and intensity 27.8 

mm/day in 2013 (Meteorology, climatology and geophysics Makassar, 2016). The significant 

derivate factor of land use/cover change to landslides in the study area was shown in Figure 14.   

Results of the land use/cover to landslides occurrence analysis confirmed the highest of LUC 

from high vegetation to medium vegetation on the slope >30 degrees with 82 landslides 

occurrence with the high intensity of rainfall, particularly in 2013.  It happens because the 

decrease in the vegetation can make adverse influence to the stability slope as Kubota et al. 

(2007) said that land with forest by the root system would reinforce the soil strength and 

stabilize the slope. Moreover, the probability of landslide occurrence, particularly shallow 

landslides increases and is very sensitive to short-lasting high intensive rainfall (Hasnawir and 

Kubota, 2012; Aditian and Kubota, 2017). 
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Table 7 Land Use Change from 2004 to 2011 

Land Use Density 

Class 

2004 Land Use Density 

Class area 

2011 Land Use Density 

Class area 

Change 

between 2004 

to 2011 

Average rate of 

change 

    pixels ha % pixels ha % ha % ha/year % 

No Vegetation 15470 1392 17.41 6081 547 6.84 -845 -60.69 -105.63 -7.59 

Sparse Vegetation 25021 2252 28.15 29794 2681 33.52 430 19.08 53.70 2.38 

Medium Vegetation 22416 2017 25.22 32568 2931 36.64 914 45.29 114.21 5.66 

High Vegetation 7255 653 8.16 10276 925 11.56 272 41.64 33.99 5.21 

Dense Vegetation 18717 1685 21.06 10160 914 11.43 -770 -45.72 - 96.27 -5.71 

Grand Total 88879 7999 100.00 88879 7999 100.00     

 

 

Figure 12  Landsat 5 TM recorded 2004 band 543; b) Landsat 5 TM recorded 2011band 543; c) Land 

use 2004 (7 classes); d) Land use 2011 (7 classes); e) Land use 2004 (5 classes); and f) 

Land use 2004 (5 classes) 
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Figure 13 Histogram of Land Use Change from 2004 to 2011 

 

 

Figure 14 Land Use Change from 2004 to 2011 on Landslide Occurrence 

 

Figure 15 Slope and Land Use Change from 2004 to 2011 on Landslide Occurrence 
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Figure 16 General land use change from 2004 to 2011 on landslide occurrence  

Table 8 Variables in the Equation of Slope and Land Use Change 

 

B S.E. Wald df Sig. Exp(B) 

Step 1a slope .662 .034 384.242 1 .000 1.939 

Land use change .312 .108 8.327 1 .004 1.367 

Constant -7.729 .160 2319.998 1 .000 .000 

a. Variable(s) entered on step 1: slope, land use change. 

 

Logistic regression analysis indicates that LUC (from the dense vegetation to high 

vegetation, high vegetation to medium vegetation respectively, and so on) has influences on 

landslide occurrences. Further statistical analysis showed that in term of influence to landslide 

occurrences, slope showed greater influence (B-intercept: 0.662) compared to individual LUC 

(B-intercept: 0.312) (Table 8 and Figure 16). It was like as Bergueria and Santiago (2005) that 

LUC affects with the landslide occurrences.  

3. 4    Conclusion 

Based on the obtained results and subsequent discussions, the following conclusions are 

presented:  

1. The significant decrease of land use change (LUC) in 2004 to 2011 was observed at 

Ujung-Loe watersheds in no vegetation (-7.59%), and dense vegetation class (-5.7%) 

while the increased LUC was found in the class of medium vegetation (5.66%) and high 

vegetation (5.21%).  
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2. Landslides have occurred most dominantly in the one with the LUC from high 

vegetation to medium vegetation on slope 30 – 40 degrees.   

In general, LUC in Ujung-Loe watershed indicates a significant effect on landslides occurrence 

and slope instability. 

3. 5  References 

Aditian, Aril, and Kubota, Tetsuya, 2017. The influence of Increasing Rainfall Intensity on Forest Slope 

Stability in Aso Volcanic Area, Japan.  International Journal of Ecology and Development vol. 

32 number 1 page 66-74 

Armentaras, D., Gast, F., Villareal, H., 2003. Andean forest fragmentation and the representativeness of 

protected areas in the Eastern Andes, Colombia. Biological Conservation 113, page 245–256. 

Bacchini, M., Zannoni, A., 2003. Relations between rainfall and triggering of debris flows: case study 

of Cancia (Dolomites, north-eastern Italy). Natural Hazards and Earth System Sciences 3, page 

71–79. 

Bergueria, Santiago, 2005.  Changes in land cover and shallow landslide activity: A case study in the 

Spanish Pyrenees. Elsevier: Geomorphology 74, page 196– 206. 

Buddy Bayard, Curtis M. Jolly, Dennis A. Shannon, Alejandro A. Lazarte, 2006.  Low-income Farmers’ 

Behavior Toward Land Degradation: The Effects of Perceptions, Awareness, Attitude, and Land 

Use. International Journal of Ecological Economics and Statistics, vol. 6 number 3 page 56-63. 

Central Bureau of Statistics of South Sulawesi Indonesia, 2013.  Sulawesi Selatan 2013 in Figures. 

Badan Pusat Statistik Provinsi Sulawesi Selatan, Makassar. 

Crosta, G.B., Frattini, P., 2003. Distributed modeling of shallow landslides triggered by intense rainfall. 

Natural Hazards and Earth System Sciences 3, 81–93. 

Franklin, S., 2001. Remote sensing for forest management. Lewis, FL. 

Hasnawir and Tetsuya Kubota, 2012. Rainfall threshold for shallow landslide in Kelara Watersheds, 

Indonesia. Internasional Journal of Japan Erosion Control Engineering Technical Note 

5(No.1):86-92 

Agency of Meteorology, climatology and geophysics Makassar, Indonesia, 2016. Rainfall data from 

2002 to 2016. BMKG, Makassar, Indonesia 

Mugagga, F., Kakembo, V., Buyinza, M., 2012. Land use changes on the slopes of Mount Elgon and 

the implications for the occurrence of landslides. Catena 90, page 39-46. 

Rudiarto I, Doppler W.,2013. Impact of land use change in accelerating soil erosion in Indonesian 

upland area: A case of Dieng Plateau, Central Java – Indonesia. International Journal of 

AgriScience Vol. 3(7): 558-576. 

Ruili Lang, Guofan Shao, Bryan C. Pijanowski, Richard L. Farnsworth, 2008. Optimizing unsupervised 

classifications of remotely sensed imagery with a data-assisted labeling approach. Computer and 

Geoscience vol 34 page 1877-1885. 

Tetsuya Kubota, Omura, H., and Devkota, B.D., 2007. Influence of The Forest on Slope Stability with 

Different Forest felling Condition. EGU General Assembly 2007 Vienna. 

Thomas Glade, 2003.  Landslide occurrence as a response to land use change: a review of evidence from 

New Zealand. Catena vol 51 page 297 – 314.  



29 
 

Chapter 4  Performance of Land Use Change Causative Factor on 

Landslide Susceptibility Map in Upper Ujung-Loe 

Watersheds South Sulawesi Indonesia 

 

4. 1   Introduction 

Land use changes (LUC) has increased the level of vulnerability to landslides, especially 

in mountainous regions. It is recognized throughout the world as one of the most critical factors 

influencing the occurrence of rainfall-triggered landslides (Glade, 2003).  It implies to landslide 

occurrence on a steep slope (Mugagga et al., 2012).   

In South Sulawesi Indonesia, especially in Ujung-Loe upper watershed, LUC has been 

translated into numerous landslide incidents triggered by the intensity of rainfall compared to 

other factors such as earthquakes. The topography is extremely steep and naturally mountainous 

(38.8% class slope >20 degrees). It has a very high level of instability, especially during the 

rainy season. The annual rainfall can reach 1,436 to 5052 mm/year with average annual rainfall 

of 3,739 mm/year. The main occupation of social community in that area is farmer. Most of 

them live and do their activity in mountainous area. Avoiding this agricultural practice is hard. 

It has become people's culture for agriculture in mountainous regions, and they have made it 

hereditary (Soma and Kubota, 2017). 

Landslide susceptibility was defined as quantitative or qualitative assessment 

classification, volume (or area), and the spatial distribution of landslides or potentially may 

occur in the zone. Susceptibility can also include a description of the speed and intensity of 

existing or potential landslides (Fell et al., 2008). Using scientific analysis of landslides, we can 

assess and predict landslide susceptibility and decrease landslide damage through proper 

preparation (Lee et al., 2002). 

A few studies have evaluated land use change (LUC) that contributed to landslide 

occurrence (García-Ruiz et al., 2010; Glade, 2003; Mugagga et al., 2012; Soma and Kubota, 
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2017). However, the use of LUC as a causative factor to see the performance of LUC and to 

build landslide susceptibility has not yet been implemented. Therefore, the LUC will be as a 

new causative factor to change a land use as a human factor.  Land use is implemented merely 

to look at the current time and it is different with the LUC.  LUC can prepare what land has 

used before.  For example, first case, LUC was from primary forests to farmland, and second 

case, LUC was from open area to farmland, from these cases have different slope stability. 

Based on these factors, previous researchers have not drawn the performance of land use 

changes as a causative factor.  The objective of the study was to examine the performance of 

land use change as a causative factor to produce landslide susceptibility map using frequency 

ratio, and logistic regression and comparison each models. 

 

4. 2  Data and Methods 

4. 2. 1 Preparation of data 

Data selection is the crucial thing in the preparation of the landslide susceptibility map 

(LSM). The excellent data selection for analysis helps to find satisfactory results. Management 

and collection or selection using Arc GIS© 10.3 must be accurate in establishing a spatial data 

landslide inventory and also a causative factor.  The analysis of the frequency ratio (FR) 

calculation was carried out using Microsoft Excel©, while the logistic regression (LR) used the 

program Statistical Package for Social Sciences (SPSS©).  More detail of the research, it is 

shown in Figure 17. 

 

4. 2. 2 Landslide inventory 

Landslides inventory can involve field surveys, expression of morphological, and 

interpretation of remote sensing images based on spectral characteristics, shape, and contrast 

(Kanungo et al., 2006).  This study used data landslide from 2012 to 2016 using air photography 

of Google Earth Pro© and ground survey (Figure 18).  The purpose was to find a correlation 
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between the occurrence of landslides and land use change from 2004 to 2011.    The study area 

was limited to the upper of Ujung-Loe Watersheds.  A total of 188 landslides were identified 

covering an area of 43.65 hectares (0.44 km2).  Most of the landslides are of the shallow type 

with minimum and maximum landslide area of 137 m2 and 15,600 m2, respectively.  Using the 

landslide data from the survey and digitizing high-resolution from Google Earth Pro© to Arc 

GIS© 10.3, we digitized the time series imaging data by image interpretation landslide, and 

these files were saved as GIS compatible format as extension kml. Then, the data was again 

subsequently changed into shapefile and raster format 10x10 meter.  Figure 19 shows the 

location of all landslide data divided into two group, i.e., landslide for training at 2,873 pixels 

(70%) and a landslide for validation at 1,230 pixels (30%). 

Figure 17 Research framework 
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Figure 18 Landslide inventory a) old landslide, b) new landslide 

4. 2. 3 Landslide causative factors 

In susceptibility map, the most critical assumption that the incidence of landslides will 

occur in the same condition is affected by the cause of the landslides that have been occurred. 

There are no strict guidelines for the selection of causative factors to be used in logistic 

regression analysis and certainty factor, and as such, the selected covariates vary widely 

between studies (Ayalew and Yamagishi, 2005; Dou et al., 2015). Correspondingly, the 

determination of landslide causative factors was associated with the availability of data. 

Therefore, we selected causative factors based on the general knowledge found in previous 

studies and its availability in the target location. The entire landslide causative factors have 

been used for the independent variable in the landslide susceptibility mapping (Figure 20).  The 

independent variable was nine causative factors including elevation, slope, aspect, curvature, 

lithology, distance from fault, distance to river, drainage density, and land use change (LUC). 
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Figure 19 Map of Landslide Occurrence 

Elevation, slope, aspect, and curvature were extracted from contour data with digital interval 

12.5 meters.  Contour data of Rupa Bumi Indonesia (RBI) on map scale 1: 25000 from Badan 

Geospatial Indonesia (BIG) was obtained using arc toolbox raster surface in ArcGIS 10.3 and 

elevation, slope, aspect, and curvature were extracted from contour. By using the uniform 

isotropic material, increased slope correlates with increased likelihood of failure. In this study, 

we have used six slope categories (0–10°, 10–20°, 20–30°, 30–40°, 40–50°, and above 50°) 

which were considered and represented in the form of slope thematic data layer.  Likewise, the 

aspect map plays a significant role in slope stability assessment (Chauhan et al., 2010). In this 

study, aspect was divided into nine classes namely, flat, North, Northeast, East, Southeast, 

South, Southwest, West, and Northwest.  Curvature was classified using the curvature of the 

profiles into three categories: concave, flat and convex.  In the case of profile curvature, it was 

related to the puddle condition after heavy rain. Moreover, the reason is that, following heavy 
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rainfall, a more upwardly concave or convex slope has more water and retains it longer (Lee 

and Lee, 2006).  

The geology of the area was obtained digital data produced by Indonesia Government, 

namely Geology Map by Geological Research Institute, at a scale of 1:250000. This map 

includes the current study area. The geology data consist of lithology, structure (fault or 

lineament), and rock type. Lithology is the primary data or parameters for analysis of the 

landslide map. Lithology is a standard variable that controls the landslide danger. It related to 

the strength of the material because lithological composition and structure vary for different 

types of rocks (Kanungo et al., 2006). In addition, resistance to the driving force depends on 

the strength of rocks and stones that will be more resistant. Faults are structural features, which 

describes the zones/areas of weakness, fractures, and lineament going higher susceptibility to 

landslides. It has been observed that the increased probability of landslide occurrence in a 

location close to faults not only affects the surface structure of the material but equally 

contributes to the permeability and cause slope instability. For this purpose, the distance from 

faults was used to analyze the incidence of landslides at a distance of faults. The proximity of 

the fault was obtained by buffering the map of faults (Rasyid et al., 2016). 

Both drainage lines and landslide occurrence in the hilly area had a strong association due 

to erosional activity in this location. Buffering analysis of streamlines has calculated the 

distance from the river. This information was derived from a topographic map of scale 1:25000 

called Peta Rupa Bumi Indonesia ((RBI) prepared by Badan Informasi Geospasial (BIG) 

Indonesia at 2012.  The class of distance to river was grouped in five classes i.e. 0 – 100 m, 100 

– 200 m , 200 – 300 m, 300 – 400 m and >400m. Similarly, drainage density was calculated 

using Arc Toolbox kernel density in km/km2. The class of drainage density was grouped in five 

classes i.e. 0 – 1 km/km2, 1 – 2 km/km2 , 2 - 3 km/km2 , 3 – 4 km/km2 and >4 km/km2. 

Besides topographic factors and geology, land use (cover) is an essential element/factor 

responsible for landslide occurrences. The incidence of the landslide is inversely related to the 
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vegetation density. This research used land use change (LUC) as vegetation density.  LUC was 

as a new causative factor to change land use pattern to build a landslide susceptibility mapping.  

To the critical slope, LUC triggered a series of shallow and profound landslides (Mugagga et 

al., 2012).  The LUC map was derived from overlaying land use 2004 and land use 2011. Land 

use was derived from interpretation Landsat 5 TM© (date recorded on September, 21th 2004) 

and Landsat 7 ETM+© (date recorded on October, 11th 2011) images, each with a 30 m 

resolution, collected from United States Geological Survey (USGS). The unsupervised 

classification method was applied to classify land use.  Unsupervised classification consists of 

three steps: (1) the map creation of N spectral class using Iterative Self-Organizing Data 

Analysis Technique Algorithm, (2) the development of land use (LU) map with the help of 

reference data, and (3) the accuracy measurement of the ratings of all LU reference map using 

independent data and selection of a map LU with the highest accuracy (Lang et al., 2008).  This 

method was applied to classify land use into seven such as Soma and Kubota (2017) types: 

Figure 20 Eleven causative factor of landslide 
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open area, paddy field, farming area, scrub, savanna, secondary forest and primary forest.  

Overall accuracy values of LU 2004 and LU 2011 were 86% and 90%, respectively. Kappa 

values of 0.83 and 0.88 were achieved for the unsupervised classified maps of LU 2004 and 

LU 2011, respectively. Moreover, LUC was built by classifying once more LU 2004 and 2011 

in four classes: one (open area, paddy field), two (farming area and shrub, savanna), three 

(secondary forest) and fourth (primary forest). In the next step, each other was overlaid using 

ARC GIS 10.3 and were founded 13 classes as LUC.  They were 1 – 1 (from open area and 

paddy field to open area and paddy field) , 1 – 2 (from open area and paddy field to farming 

area and scrub, savanna), 2 – 1(from farming area and scrub, savanna to open area and paddy 

field),  2 – 2 (from farming area and scrub, savanna to farming area and scrub, savanna), 2 – 3 

(from farming area and scrub, savanna to secondary forest), 3 – 1 (from secondary forest to 

open area and paddy field), 3 – 2 (from secondary forest to farming area and scrub, savanna), 

3 – 3(from secondary forest to secondary forest),  3 – 4(from secondary forest to primary forest), 

4 – 1 (from primary forest to open area and paddy field), 4 – 2, 4 – 3 (from primary forest to 

secondary forest), and 4 - 4 (from primary forest to secondary forest), and 4 - 4 (from primary 

forest to primary forest).  LUC was downgraded from pixel size of 30 x 30-meter to pixel size 

of 10 x 10 meter.   

Landslide was described as the dependent variable, and causative factor, i.e., elevation, 

slope, aspect, curvature, distance to river, drainage density, lithology, distance to faults and 

LUC were described as the independent variables (Figure 20).  Independent and dependent 

variables were used as a map input and then processed to turn it into a raster map with a pixel 

size of 10 m × 10 m.  The study area included 795,227 pixels and the landslide data used in the 

model included 2,873 pixels (70% of Landslide) and 1,230 pixels (30%) for validation. 
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4. 2. 4 Data Analysis 

There are two analyses methods to understand the performance of each causative factor 

(frequency ratio, and logistic regression) to produce landslide susceptibility map. Frequency 

ratio analysis was implemented to define the performance of class of each causative factor and 

logistic regression methods could describe the performance of each causative factor to the 

susceptibility of landslide occurrence. 

4.2.4.1 Frequency Ratio 

The landslide and the causes were related, and it can be concluded areas of the landslide 

occurs with the causative factors of landslides.  Simple statistical method to determine the 

closeness of the relationship have been applied to the frequency ratio (FR) approach.  FR for 

each causative factor was calculated by dividing the landslide occurrence rate by the area ratio. 

If the ratio is more significant than 1.0, the relationship between the landslide and the causative 

factor is higher, and, if the relationship is less than 1, the connection is low (Lee and Lee, 2006). 

A ratio value in each class shows the level of relationship and the frequency ratio value is 

calculated by the following Equation 4.1, 

 

𝐹𝑅 =
PxcL(nm)/∑PnxL

Pixel(nm)/∑Pnx
                                                                      (4.1) 

 where, Pxcl(nm) number of pixel with landslide within class n of j parameter, Pixel(nm) 

Number of pixel in class n of m parameter, ΣPnxL total pixel of m parameter, and ΣPnx whole 

pixel of the area). 

To create an index of landslides susceptibility, all causative factors in the form of raster 

maps of the value FR then summed by using Equation 4.2., 

 

LSI = FR1 + FR2 + … + FRn                                                                (4.2) 

 

where FR1, FR2, FR3… FRn is the frequency ratio raster maps of landslide causative 

factors.  
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4.2.4.2 Logistic regression 

Logistic regression resulted in landslide susceptibility index. A simple introduction to 

logistic regression is available in Chau and Chan (2005) which defines the probability 

occurrence of landslides divided by the probability of no occurrence of landslides.  It is useful 

to predict the presence or absence of a characteristic or outcome based on values of a set of 

variable predictors. Generally, in the logistic regression, spatial prediction can be modeled 

using the independent and the dependent variables (Shirzadi et al., 2012).  It is useful when the 

variable is a binary or dichotomous.  Variables can be continuous, or discrete, or a combination 

of the two types and they do not always have a normal distribution. The probability of 

regression can be understood as the possibility of state-dependent variables.  Data analysis 

created iteration in ten tests using same proportion data of landslide and no landslide.  Using 

an equal proportion of data occurrence of landslide and no landslide will result better and fair 

for logistic regression analysis (Rasyid et al., 2016). They were restricted to fall within a range 

of values from 0 to 1 (Xu et al., 2013). The value of zero shows the probability of 0% landslide 

occurrences, and one shows a 100% probability (Dai et al., 2004). The logistic regression 

followed on logistic function –z expressed by the following Equation 4.3., 

 

𝑃 =
1

1+exp−Z
                                                                          (4.3) 

 

Z = C0 + C1CF1 + C2CF2 + …+ CnCFn                                                     (4.4) 

 

where: P is the probability of landslide occurrence that estimated values vary from 0 to 

1. Variable Z is landslide causative factors and assumed as a linear combination of the causative 

factors i (i = 1, 2,…n).  Moreover, Z is calculated by using Equation 4.4. C0 is the intercept, 

and C1, C2, ., Cn are coefficients, which measure the contribution of independent factors (CF1, 

CF2, . . ., CFn) to the variations in Z. 
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4. 2. 5 Validation and verification 

In addition to increase the prediction of accuracy and probability, validation can improve 

the reliability. During the modeling predictions, the most essential and critical component is to 

carry out the validation of the results of prediction (Chung and Fabbri, 2003).  In this study, the 

landslide inventories were divided into two parts; one for training and the other for validation. 

This study used a 2,873 pixel (70%) inventories landslides to produce models and 1,230 (30%) 

of pixels for validation. The assumptions to selection landslide of data for training and 

validation of the model were randomly taken on each part of landslide occurrence in the area 

of research and also based on the representation of the landslide area. By illustrating the 

procedure, a small portion of the landslide-prone areas was selected as the data for validation.  

Size, area, depth of landslides and distribution significantly varies from place to place. Also, 

we used the ROC curve to plot predicted probabilities in order to understand the problem of 

accuracy, selection criteria, and interpretation.  For validating the landslide susceptibility map, 

AUC curve was used as a measure of overall fit and comparison of modeled prediction. The 

area determines the success rate under the curve (AUC) of the training dataset, and predictable 

level calculated from the AUC of the validation dataset. ROC curves were used to evaluate the 

predictive accuracy of the model selected in the statistical approach, such as logistic regression 

(Gorsevski et al., 2006). The AUC obtained from the ROC plot statistics is the most preferred 

type that can influence rating (Akgun et al., 2012).  Predicted probabilities generated by logistic 

regression can be seen as an indicator to be continuously compared with a binary response 

variable observed.  In this study, the validation process further demonstrates the level of 

accuracy of landslide susceptibility map to calculate the ratio of the data for validation of 

landslides that fall into each class of vulnerability. It was assumed that most of the landslides 

for validation must occur on a high to very higher susceptibility class (H + VH). 
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Table 9 The value of Frequency Ratio and Certainty Factor for each landslide causative factors 

Factor Class Pixel Class* % Class Landslide pixel**  % Landslide Frequency Ratio 

Elevation (meter) 

<500 126010 15.85 0  0.00 0.00  

500 – 750 113821 14.31 0  0.00 0.00  

750 – 1000 117886 14.82 382  13.30 0.90  

1000 – 1250 99735 12.54 544  18.93 1.51  

1250 – 1500 80401 10.11 446  15.52 1.54  

1500 – 1750 73551 9.25 665  23.15 2.50  

1750 – 2000 62583 7.87 452  15.73 2.00  

2000 - 2250  63418 7.97 202  7.03 0.88  

2250 – 2500 38830 4.88 180  6.27 1.28  

>2500 18992 2.39 2  0.07 0.03  

Slope (degree) 

0 -10 277391 34.88 233  8.11 0.23  

10 – 20 193490 24.33 504  17.54 0.72  

20 – 30 142736 17.95 519  18.06 1.01  

30 – 40 114954 14.46 613  21.34 1.48  

40 – 50 56795 7.14 819  28.51 3.99  

>50 9861 1.24 185  6.44 5.19  

Curvature 

Concave 335269 42.16 1,614  56.18 1.33  

Flat 100826 12.68 158  5.50 0.43  

Convex  359132 45.16 1,101  38.32 0.85  

Aspect 

Flat 48980 6.16 43  1.50 0.24  

North 105139 13.22 963  33.52 2.54  

Northeast 140313 17.64 599  20.85 1.18  

East 128555 16.17 311  10.82 0.67  

Southeast 155292 19.53 191  6.65 0.34  

South 127354 16.01 515  17.93 1.12  

Southwest 48881 6.15 43  1.50 0.24  

West 11324 1.42 23  0.80 0.56  

Northwest 29389 3.70 185  6.44 1.74  

Lithology 

Qlvb 195818 24.62 0  0.00 0.00  

Qlv 562441 70.73 2,826  98.36 1.39  

Qvlc 36968 4.65 47  1.64 0.35  

Distance to Faults (meter) 

0 – 2500 228372 28.72 913  31.78 1.11  

2500 -5000 123498 15.53 1,333  46.40 2.99  

5000 – 7500 106243 13.36 472  16.43 1.23  

7500 – 10000 92127 11.58 155  5.40 0.47  

>10000 244987 30.81 0  0.00 0.00  

Distance to River (meter) 

0 - 100 325991 40.99 1,489  51.83 1.26  

100 – 200 240871 30.29 726  25.27 0.83  

200 – 300 139539 17.55 397  13.82 0.79  

300 – 400 59549 7.49 189  6.58 0.88  

400 – 500 19942 2.51 42  1.46 0.58  

>500 9335 1.17 30  1.04 0.89  

Drainage Density (km/km2) 

0 – 1  147677 18.57 698 24.30 1.31 

1 - 2 228100 28.68 635 22.10 0.77 

2 - 3 252005 31.69 829 28.85 0.91 

3 - 4 121676 15.30 512 17.82 1.16 

>4  45769 5.76 199 6.93 1.20 

LUC 
(1=Open area, Paddy area; 
2=Farming area, savanna, 
scrub; 3=Secondary Forest; 
4=Primary Forest) 

1 - 1 167966 21.12 608  21.16 1.00  

1 – 2 44883 5.64 276  9.61 1.70  

2 – 1 127015 15.97 134  4.66 0.29  

2 - 2 140425 17.66 215  7.48 0.42  

2 - 3 3971 0.50 2  0.07 0.14  

3 – 1 24542 3.09 157  5.46 1.77  

3 - 2 88061 11.07 513  17.86 1.61  

3 - 3 30715 3.86 158  5.50 1.42  

3 – 4 4602 0.58 26  0.90 1.56  

4 – 1 954 0.12 30  1.04 8.70  

4 – 2 19912 2.50 177  6.16 2.46  

4 – 3 55800 7.02 180  6.27 0.89  

4 – 4 86381 10.86 397  13.82 1.27  

*Total pixel area 795,227 **Landslide Training 2,873 
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4. 3  Result and Discussion  

4. 3. 1 Frequency ratio  

Table 9 indicates a correlation between landslide occurrence and each class of landslide 

causative factors. In the case of the relationship between landslide occurrence and LUC, class 

of primary forest to open area and paddy field (4-1) had the highest probability of landslide 

occurrence with frequency ratio 8.70.   Moreover, class of secondary forest to the farming area, 

savanna, scrub (4-2) had a frequency ratio 2.20.  The vegetation which causes this frequency 

ratio affects the stability of the slope.  Land with forest having the root system would reinforce 

the soil strength and stabilize the slope (Kubota et al., 2015). Forest clearance seems to have 

manifested primarily through increased rates of landslide activity (Glade, 2003).  

 In slope class, slope above 20° has a ratio of >1 which indicates a high probability of 

landslide occurrence.  Moreover, slope below 20° has a ratio of <1, which shows a very low 

probability of landslide occurrence.  

In class of elevation, the values between 1000 to 2000 meters (m) have indicated a high 

degree of likelihood of the landslide occurrence. In the class of curvature, the concave class has 

a higher probability of landslide occurrence with ratio value >1.  In the case of the class aspect, 

north, northwest, south and northeast-facing slopes have frequency ratio > 1, which shows a 

high rate of probability of the landslides occurrence. 

In the case of lithology, Quarter lompobattang volcanic (Qlv) has a ratio of >1, which 

indicates a high probability of landslide occurrence.  Qlv is one of the volcanic and sediment 

formations in South Sulawesi.  

Causative factor, i.e., distance to fault and rivers, the ratio of the distance/proximity is used to 

understand the degree of influence on the landslide. Distance to faults below 7500 m has a ratio 

> 1.  It shows that more close distance to the fault, the probability of landslide occurrence will 
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increase. Similarly, the distance to the river below 100 m has frequency ratio > 1. It indicates 

the probability of landslide will increase if the distance to the river is nearer.  

To create an index of susceptibility to landslides, all causative factors were mapped in the 

form of raster maps of the value FR then summed using Equation 4.2. The index value of 

frequency ratio of with LUC was in the range of 2.70 to 25.41 and without LUC was in the 

range of 2.46 to 17.97. The higher landslide susceptibility index (LSI) value showed higher 

susceptibility to landslides. The results showed that LUC change creates a higher value than 

without LUC meaning that LUC is better to predict of landslide occurrence (Table 13). 

4. 3. 2  Logistic regression 

 Hence, this study proposes to investigate ten tests to acquire best result and sense of 

fairness as shown in Table 10 and Table 11.  LUC as a new causative factor for landslide had a 

value of 0.589 (number test seventh) that affects landslide occurrence. Forest land with root 

system would reinforce the soil strength and stabilize the slope to reduce surface erosion or 

shallow landslides (Kubota et al., 2015). The highest value of 3.081 shows the distance to the 

river having the most significant effect on landslide occurrence. Moreover, the lowest value of 

elevation (0.353) indicated a small effect on landslide occurrence in this research. 

 

Table 10 Logistic regression coefficient of landslide causative factors using an equal proportion of landslide and 

a non-landslide pixel with LUC causative factor 

 

Number 
Test 

Variable in the equation 

Elevation Slope Aspect Curvature Lithology Distance to Faults 
Distance to 

River 
Drainage 
Density 

LUC Constant 

1 0.344 0.553 0.576 0.659 1.681 0.400 3.044 1.214 0.512 -10.496 

2 0.353 0.562 0.548 0.534 1.696 0.476 3.081 0.995 0.551 -10.355 

3 0.274 0.475 0.624 0.605 1.631 0.473 2.630 1.184 0.518 -9.882 

4 0.302 0.533 0.561 0.452 1.612 0.439 2.817 0.703 0.425 -9.304 

5 0.335 0.532 0.590 0.391 1.684 0.459 2.934 1.175 0.521 -10.136 

6 0.307 0.535 0.627 0.376 1.722 0.371 2.914 0.907 0.497 -9.741 

7 0.245 0.571 0.551 0.524 1.682 0.448 2.818 0.897 0.481 -9.693 

8 0.317 0.511 0.525 0.388 1.572 0.506 2.986 0.814 0.539 -9.638 

9 0.400 0.552 0.498 0.430 1.541 0.445 3.119 0.597 0.378 -9.421 

10 0.348 0.563 0.498 0.329 1.723 0.446 2.985 0.803 0.355 -9.530 
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Table 11  Table 3 Logistic regression coefficient of landslide causative factors using an equal proportion of 

landslide and non-landslide pixel without LUC causative factor 

4. 3. 3  Validation 

 Table 12 and Figure 21 show results of AUC curve for both success rate and predictive 

rate for each test. Some landslide and non-landslide pixels were used to obtain AUC success 

and predictive rate. 

 

Figure 21 AUC of ROC of landslide susceptibility with and without LUC causative factor using 

FR, and LR method; a) success rate and b) predictive rate 

Table 12 AUC of ROC curve of success and predictive rate and ratio of landslide validation on landslide 
susceptibility map using FR, and LR Method 

 Method FR 
Number Test of LR  

1 2 3 4 5 6 7 8 9 10 

With LUC: AUC Success rate 0.835 0.854 0.854 0.853 0.854 0.854 0.854 0.854 0.854 0.854 0.854 

 AUC Predictive rate 0.834 0.852 0.852 0.851 0.852 0.852 0.852 0.852 0.852 0.851 0.852 

 H+VH (%) 79.35 80.08 80.24 78.70 79.43 79.92 80.00 80.00 79.19 79.67 79.76 

Without LUC: AUC Success rate 0.833 0.850 0.851 0.850 0.,851 0.850 0.850 0.851 0.850 0.850 0.851 

 AUC Predictive rate 0.833 0.848 0.849 0.848 0.848 0.848 0.848 0.849 0.848 0.848 0.849 

 
H+VH (%) 78.46 77.97 77.56 77.24 78.38 77.40 77.97 79.19 77.07 79.19 78.94 

 
            

Number 
Test 

Variable in the equation 

Elevation Slope Aspect Curvature Lithology Distance to Faults 
Distance to 

River 
Drainage 
Density 

Constant 

1 0.486 0.587 0.554 0.671 1.618 0.376 2.983 1.317 -10.047 

2 0.509 0.600 0.533 0.537 1.643 0.442 3.026 1.130 -9.927 

3 0.409 0.509 0.603 0.635 1.566 0.448 2.573 1.325 -9.479 

4 0.417 0.562 0.544 0.472 1.578 0.419 2.791 0.814 -9.014 

5 0.471 0.568 0.576 0.406 1.617 0.428 2.902 1.317 -9.740 

6 0.448 0.571 0.611 0.393 1.669 0.342 2.892 1.031 -9.397 

7 0.372 0.605 0.533 0.538 1.647 0.422 2.793 1.032 -9.368 

8 0.464 0.546 0.504 0.411 1.503 0.481 2.916 0.956 -9.200 

9 0.504 0.579 0.485 0.446 1.517 0.422 3.090 0.698 -9.160 

10 0.453 0.591 0.491 0.341 1.680 0.424 2.985 0.931 -9.339 
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In general, the AUC of ROC curves representing excellent, good, and valueless tests were 

plotted on the graph. It classifies the accuracy of a diagnostic test i.e. the value ranges from 

0.50 to 0.60 (fail), 0.60–0.70 (poor), 0.70–0.80 (fair), 0.80–0.90 (good), and 0.90–1.00 

(excellent) (Rasyid et al., 2016). The results showed that the entire test of FR and LR methods 

both of with and without LUC are included in the good category. The value ranged from 0.833 

to 0.854 in success rate and 0.833 to 0.852 in predictive rate, respectively (Table 12 and Figure 

21). Moreover, success rate and predictive rate value for all methods were near to the interval 

of 0.02 indicating that all the methods were more reliable to a predictive landslide in the future. 

The proximity of success rate and predictive rate values show how the method helps in landslide 

prediction in the future (Meten et al., 2015).  

In this study, LR method conducted one more validation to choose the best statistical 

model for creating landslide susceptibility map and the best equation in logistic regression 

approach from the ten tests. The sum of FR value and equation of the LR models were used to 

create landslide susceptibility map (LSM). All LSM classes were created by reclassifying LSI 

of the models using natural breaks method. Overlaid landslide data validation on LSM 

described another level of accuracy besides AUC curve.  The natural breaks method or Jenks 

optimization method has been widely used mainly by planners. It is designed to determine the 

best arrangement of values into different classes. This approach maximizes the variance 

between classes and reduces the variation within classes. The description of landslide 

susceptibility level on location was grouped into five categories, namely very low, low, 

medium, high and very high.  A Landslide susceptibility map verified the accuracy of landslide 

susceptibility map by overlaying it with 30% of landslide data validation.  Validation on LSM 

for the LR model was better than FR model, and causative factor with LUC was better than 

without LUC (Figure 21).  Validation of FR method with LUC (0.835) in success rate value 

had slightly higher accuracy than without LUC (0.833). Similarly, the LR method LUC (0.854) 

had slightly higher accuracy than without LUC (0.851). These show that the FR and LR model 
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with LUC are useful model for identifying landslide as opposed to the model without LUC. In 

the case of AUC curve for predictive rate, FR method with LUC (0.834) value had slightly 

higher accuracy than without LUC (0.833), and LR method LUC (0.852) had slightly higher 

than without LUC (0.849). Both of FR and LR model with LUC is better without LUC. The 

curve of the model and validation proves that the susceptibility model is acceptable and the 

model could be applied to predict the potential landslides in the future. As an interesting point 

to be noticed in Table 12, the seventh tests for LR had a good result in AUC curve, which is 

0.857 in success rate and 0.856 in predictive rate, respectively. 

Figure 22 shows the landslide susceptibility map with and without LUC causative factor 

using FR, and the second test equation of LR model with LUC (Table 10) and seventh test 

equation of LR without LUC (Table 11). The LSM by LR model with LUC was obtained using 

the coefficient values of landslide causative factors as in the equation below; 

Z = -10.355 + 0.353 Elevation + 0.562 Slope + 0.548 Aspect + 0.534 Curvature + 1.696 

Lithology+ 0.476 faults + 3.081 Distance to River + 0.995 Drainage density + 0.551 

LUC 

 

The LSM by LR model without LUC was obtained using the coefficient values of 

landslide causative factors as in the equation below; 

Z = -9.368 + 0.372 Elevation + 0.605 Slope + 0.533 Aspect + 0.538 Curvature + 1.647 

Lithology+ 0.422 distance to faults + 2.793 Distance to River + 1.032 Drainage density  

 

The ranges of the index value of each model in five categories were established using 

natural breaks method.  Can et al. (2005) and Bai et al. (2010) stated two crucial guidance for 

validating landslide susceptibility map, i.e. (1) the high to very high classes should cover only 

small areas and 2) landslide data validation should lie in high or very high classes.  
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Figure 22 Landslide susceptibility map of with and without LUC causative factors using FR, 

and LR method 

 

Table 13 The characteristic of susceptibility classes on landslide susceptibility map using FR, and LR method 

with and without LUC causative factor 

Class Number Reclassified index value 
Vulnerability 

class 
Number of 

pixels 
% area 

covered 

Number of 
landslide 

validation pixel 

% area of landslide 
validation covered 

Frequency Ratio With LUC      
1 2.700  -  5.906 Very Low 187187 23.54 0 0.00 

2 5.906  -  8.578 Low 153294 19.28 19 1.54 

3 8.578  -  10.893 Moderate 208585 26.23 235 19.11 

4 10.893  -  13.476 High 181945 22.88 452 36.75 

5 13.476  -  25.410 Very High 64216 8.08 524 42.60 

Logistic Regression with LUC      
1 0.0019  -  0.1231 Very Low 292856 36.83 3 0.24 

2 0.1231  -  0.3069 Low 162173 20.39 62 5.04 

3 0.3069  -  0.5025 Moderate 133513 16.79 178 14.47 

4 0.5025  -  0.7137 High 113755 14.30 331 26.91 

5 0.7137  -  0.9992 Very High 92930 11.69 656 53.33 

Frequency Ratio Without LUC      

1 2.460 - 5.1971 Very Low 188730 23.73 0 
0.00 

2 5.1971 - 7.630 Low 150267 18.90 24 1.95 

3 7.630 - 9.820 Moderate 220097 27.68 241 19.59 

4 9.820 - 12.253 High 178338 22.43 466 37.89 

5 12.253 - 17.970 Very High 57795 7.27 499 40.57 

Logistic Regression without LUC      
1 0.0027  -  0.1228 Very Low 272313 34.24 4 0.33 

2 0.1228  -  0.3126 Low 171069 21.51 60 4.88 

3 0.3126  -  0.5063 Moderate 148090 18.62 192 15.61 

4 0.5063  -  0.7116 High 112403 14.13 322 26.18 

5 0.7116  -  0.9904 Very High 91352 11.49 652 53.01 
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Figure 23  Percentage of landslide susceptibility classes and rate of landslide susceptibility 

validation on landslide susceptibility of FR, and LR method 

 Table 13 shows the characteristics of susceptibility class for FR and LR models with and 

without LUC causative factors. It indicates that the ratio of high to very high vulnerability 

classes covers a small area or less than 32% for FR and less than 26% of the total area for LR.  

The data validation landslide included in the class shows the ratio below 10%.  The accuracy 

of the predicted future landslide from the LSM should have a lower ratio in low to very low 

classes and higher in the high to very high classes (Rasyid et al., 2016).  Figure 23 shows high 

to very high vulnerability classes for LR with LUC (80.24%) having a higher value for 

validation than LR without LUC (79.19%).   Moreover, FR with LUC (79.35%) had a higher 

value than FR without LUC (78.46%). It indicates that the performance of LUC as a causative 

factor both using FR and LR model gives a good result.  Taken together, the results suggested 

that changing the vegetation to another landscape causes slopes unstable and increases the 

probability of landslide occurrence. 

4. 4  Conclusion 

In conclusion, land use change (LUC) showed a good demonstration as a new causative 

factor to build landslide susceptibility map. The result indicated that LUC has the effect to 

produce LSM. Validation of landslide susceptibility was carried out in this study at both with 
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and without LUC causative factors. Firstly, performances of each landslide model were tested 

using AUC curve for success and predictive rate. The highest value of predictive rate was at 

with LUC in both FR and LR methods (83.4% and 85.2%, respectively). Secondly, the ratio of 

landslides on high to very high classes of susceptibility was obtained, which indicates the 

accuracy level of the method. LR method with LUC had the highest accuracy of 80.24 %. These 

results suggested that changing the vegetation to another landscape causes slopes unstable and 

increases the probability of landslide occurrence. 
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Chapter 5  Comparative Study of Land Use Change and Landslide 

Susceptibility Using Frequency Ratio, Certainty Factor, 

and Logistic Regression in Upper Area of Ujung-Loe 

Watersheds 

5. 1  Introduction 

Landslide susceptibility is defined as a “quantitative or qualitative assessment of the 

classification, volume (or area), and spatial distribution of landslides which exist or potentially 

may occur in an area” (Fell et al., 2008). Using scientific analysis of landslides, we can assess 

and predict landslide susceptibility and decrease landslide damage through proper preparation 

(Lee et al., 2002). 

Landslide susceptibility can be used to identify one or more landslide causes and triggers. 

The landslide causative factors are the reasons that a landslide occurred at that location and at 

that time. Several factors such as geomorphological, geological, hydrological and 

anthropogenic factors in addition to rainfall affect landslides occurrence.   Geomorphology 

factors are elevation, slope, aspect, and curvature. Geology factors are lithology and structure 

(fault of lineament). Hydrology factors are river and density of the river. Human factor are land 

use and road construction.  

A few studies have evaluated land use change (LUC) contribution to landslide (Glade, 

2003; García-Ruiz et al., 2010; Mugagga et al., 2012).  However, none of these researchers 

used LUC as a causative factor to build landslide susceptibility.  Therefore, LUC will be used 

as a new causative factor to produce landslide susceptibility map. LUC is different with land 

use.  Land use only looks at the current state, but it did not see the past land cover. LUC will 

not affect directly to landslide occurrence in one or two years but will be the effect after a few 

years. For example change the primary forest to farming area in steep slope, when the clear 

cutting the tree in primary forest to convert to farming area, in one or two year the stability 

slope still good, but after a few years when the roots were decay and make hole in soil, then the 
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rainfall fill the hole. It causes the slope unstable and landslide will occur. Kubota et al. (2007) 

point out that land with forest cover would reinforce the soil strength and stabilizes the slope 

due to its root system.  

LUC is a process by which human activities transform the landscape.  The latest 

intensification of land use changes has increased the level of susceptibility to landslides, 

especially in mountainous areas. LUC influences the occurrence of rainfall-induced landslides 

(Glade, 2003) and LUC can be related to landslide occurrence on a steep slope (Mugagga et al., 

2012). LUC influences the occurrence of rainfall-induced landslides (Glade, 2003) and LUC 

can be related to landslide occurrence on a steep slope (Mugagga et al., 2012) 

In South Sulawesi Indonesia, LUC has caused 31 landslide incidents from 2011 to 2015 

triggered by the intensity of rainfall (BNPB Indonesia, 2016), especially in the upper area of 

Ujung-Loe watershed. The topography is naturally very steep and mountainous (38.8% slope 

class of >20 degrees) and has a very high level of instability, especially during the rainy season 

(Rainfall: 2,976 to 5,052g mm/year with average annual rainfall 3,965 mm/year; (Meteorology, 

Climatology, and Geophysical Agency Makassar, 2016). The primary occupation of social 

community in that area is farming in the steep mountainous area. It is hard to avoid this 

agricultural practice because this has become people's hereditary for practicing agriculture in 

the mountainous region. In Indonesia, where many upland areas can be found, land use/cover 

change due to farming activity commonly occurs (Rudiarto and Doppler, 2013). 

  The objectives of the study are to examine the effect of land use change in producing 

landslide susceptibility map to provide a comparative evaluation of the models. 

5. 2  Material and method 

This research divided into three main stages, i.e., data preparation, data analysis and 

validation ( Figure 24). 
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5. 2. 1 Preparation of data 

In preparation data, management, collection, and selection must be accurate in 

establishing a spatial data landslide inventory and a causative factor. This preparation data using 

GIS tools with ArcGIS© 10.3.  For the analysis of the frequency ratio (FR) and the certainty 

factor (CF) calculation is done by Microsoft Excel©, while for the logistic regression (LR) 

using the Statistical Package for Social Sciences (SPSS©) software.  

5.2.1.1 Landslide inventory 

Inventory of landslides can include field surveys and interpretation of remote sensing images 

based on spectral characteristics, shape, contrast and morphological expression (Kanungo et al., 

2006). This study used landslide events during 2012-2016 to quantitatively evaluate the 

influences of land use change and landslide occurrences during 2004-2011.  Landslides from 

2012 to 2016 were collected by using air photography from Google Earth Pro© and ground 

survey (Figure 26). To identify landslides occurrence by year, we delineated image according 

to year, started from 2012 until 2016.  One hundred and eighty-eight landslides were identified, 

Figure 24 Research framework 
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covering area of 43.65 hectares (0.44 km2).  Most of the landslides are of the shallow type with 

minimum and maximum landslide area of 137 m2 and 15,600 m2 respectively.  The study area 

was limited to upper of Ujung-Loe Watersheds. Figure 25 shows the location of all landslide 

data that were divided into two groups, i.e., landslide for training 2,873 pixels (70%) and a 

landslide for validation 1,230 pixels (30%). The selection of training and validation data was 

using ARC GIS tool by random selection. 

Figure 25 Map of Landslide Distribution 

5.2.1.2 Landslide causative factors 

In landslide susceptibility map, the most critical assumption that the incidence of 

landslides that will occur in the same condition is affected by the cause of the landslides that 

have occurred. There are no strict guidelines for the selection of causal factors for use in logistic 

regression analysis and assurance factor analysis and have been widely using by many studies 

(Ayalew and Yamagishi, 2005; Dou et al., 2015). Also, the determination of landslide causative 

factors is heavily reliant on data availability. Therefore, we chose causative factors based on 

the general knowledge found in previous studies (Rasyid et al., 2016) and data availability in 
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the target area. So according to past research and data availability, we use eleven causative 

factor, i.e., elevation, slope, aspect, curvature, lithology, distance from fault, distance to river, 

drainage density, precipitation, distance from the road, and land use change (LUC)  (Figure 27).  

Causative factors, i.e., elevation, slope, aspect, curvature were extracted from digital 

contour data with an interval of 12.5 meters.  Digital contour data was derived from RBI 

(Indonesia Terrain) map with a scale of 1: 25,000 from Badan Informasi Geospasial (Geospatial 

Information Agency).  

In this study, we used six classes of slope, i.e., 0–10°, 10–20°, 20–30°, 30–40°, 40–50°, 

and above 50°, which considered and represented in the form of slope thematic data layer. 

Likewise, the aspect map plays a significant role in slope stability assessment (Chauhan et al., 

2010). Aspect was divided into nine classes namely, flat, north, northeast, east, southeast, south, 

southwest, west, and northwest. Profile curvature was classified into three categories; concave, 

convex, and flat. The value of the arch represents topographic morphology. In the case of profile 

curvature, it is associated with inundation conditions after heavy rains. Curvature slope profiles 

contain more water and hold water from high rainfall for more extended periods (Lee and Lee, 

2006). 

The geology data consists of lithology and fault lines. It is related to the strength of the 

material, because lithologic composition and structure vary for different types of rocks 

(Kanungo et al., 2006), and resistance to the driving force depends on the strength of rocks. 

Faults are structural features, which describes the zones/areas of weakness, fractures, and 

among lineament going higher susceptibility to landslides. It has been observed that the 

probability of landslide occurrence increased in a location close to faults, and it was not only 

affect the surface structure of the material but also contributes to the permeability and cause 

slope instability (Rasyid et al., 2016). For this purpose, the distance to faults was used to analyze 

the incidence of landslides occurrence. The distance to fault is done by buffering the map of 

faults. 
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Figure 26 Landslide inventory a) old landslide, b) new landslide 

 Distance to river and landslide occurrence in the hilly area have strong association due 

to erosion process. Closer to the river, the soil conditions will be more humid, and with soil 

moisture, soil fertility will be high so that the soil bonds are not stable so erosion and landslides 

will quickly occur, especially during the rainy season. The distance from the river was 

calculated by buffering the map of the river in ARC GIS 10.3. River layer derived from a 

topographic map of scale 1:25.000. The classification of distance to river starts from 0 to 100 

m and ends with > 500 m. Similarly, distance from the river, distance from the road also derived 

from the topographic map by interval 500 m in nine classes, and the class starts from 0 to 500 

meter and ends with >4000 meters.  Moreover, drainage density calculated by using Arc 

Toolbox kernel density in km/km2.  Drainage density was classified into five classes and start 

from 0 to 1 km/km2 and ends with >4 km/km2. 

In addition to topographic and geological factors, land use change is a crucial 

element/factor responsible for landslide events. The incidence of landslides is inversely 

proportional to the density of vegetation. This research used land use change (LUC) factor as 
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identification of vegetation density. Change in land use to the critical slope triggered a series 

of shallow and profound landslides (Mugagga et al., 2012).  The LUC map was derived from 

overlaying land use 2004 and land use 2011. Land use data were derived from interpretation 

Landsat 5 TM (date recorded September, 21th 2004) and Landsat 7 ETM+ (date recorded 

October, 11th 2011) images, each with a 30 m resolution, collected from United States 

Geological Survey (USGS). The unsupervised classification method is applied to classify land 

use.  The unsupervised clasification was consisted of three steps: 1) Creation of N spectral class 

map using the self-organizing iterative data analysis algorithm; 2) development of land use map 

(LU) with the aid of reference data; and 3) the accuracy of all LU assessments which will 

validate with reference maps using independent data (Lang et al., 2008). This method is applied 

to classify land use into seven classes, i.e., open area, paddy field, farming area, scrub, savanna, 

secondary forest and primary forest.  LU was validated by using ground control points method 

in the same year of Landsat images, and Google Earth Pro© imagery map was used to measure 

the accuracy. Accuracy assessment was using random sampling. Overall accuracy values of LU 

2004 and LU 2011 were 86% and 90% respectively. Kappa values of 0.83, 0.88 were achieved 

for the unsupervised classified maps of LU 2004 and LU 2011, respectively. Moreover, LUC 

built by classifying LU 2004 and 2011 in four classes, i.e., one (open area, paddy field), two 

(Farming area and Shrub, Savana), three (secondary forest) and four (primary forest) again. 

Then, overlay each other using ArcGIS© 10.3 and founded 13 classes LUC. i.e.,  1 – 1 (no 

change of  open area and paddy field) , 1 – 2 (from open area and paddy field to farming area 

and scrub, savanna), 2 – 1(from farming area and scrub, savanna to open area and paddy field),  

2 – 2 (no change on farming area and scrub, savanna), 2 – 3 (from farming area and scrub, 

savanna to secondary forest), 3 – 1 (from secondary forest to open area and paddy field), 3 – 2 

(from secondary forest to farming area and scrub, savanna), 3 – 3(no change of secondary 

forest),  3 – 4 (from secondary forest to have similar density of primary forest), 4 – 1 (from 

primary forest to open area and paddy field), 4 – 2, 4 – 3(from primary forest to secondary 
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forest), and 4 - 4 (no change on primary forest).  LUC in pixel 30 x 30-meter wasresampled to 

pixel 10 x 10 meter.   

Landslide occurrence is described as the dependent variable, and causative factor, i.e., elevation, 

slope, curvature, distance to river, drainage density, lithology, distance to faults, precipitation, LUC and 

distance to roads are described as the independent variables. Independent variables and the dependent 

variable were used as an input for analysis landslide susceptibility map with a pixel resolution of 10 m 

× 10 m. We can see the causative factor map in Figure 27. 

5. 2. 2 Data Analysis 

Three analyses methods were conducted to produce landslide susceptibility map, i.e., 

frequency ratio (FR), certainty factor (CF) and logistic regression. 

Figure 27 Eleven causative factor of landslide 
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5. 2. 2. 1 Frequency Ratio 

The relationship between the area of the landslide and the causes can be inferred from the 

relationship between the area of the landslide and non-landslide and considering the causative 

factors. Frequency ratios for each causative factor type or range were calculated by dividing 

the landslide occurrence ratio by the area ratio. If the ratio is more significant than 1.0, the 

relationship between the landslide and the causative factor is higher, and, if the relationship is 

less than 1, the relationship between the landslide and each causative factor is low (Lee and 

Lee, 2006). A ratio value in each class shows the level of relationship and the frequency ratio 

value calculated by the following 5.1; 

𝐹𝑅 =
PxcL(ij)/∑PixL

Pixel(ij)/∑Pix
                                                         (5.1) 

where, PxcL(ij) number of pixel with landslide within class i of j parameter, Pixel(qij) 

number of pixel in class i of j parameter, ΣPixL total pixel of j parameter, and ΣPix total pixel 

of the area. 

5. 2. 2. 2 Certainty factor  

The certainty factor (CF) is a rule-based expert system method developed by Shortliffe 

and Buchanan (1975).  The CF values range between -1 to 1, indicating a measure of belief and 

disbelief and can be calculated using the following function as Equation 5.2.  Here, higher CF 

value indicates a higher relationship with landslide occurrences; 

 

CF =

{
 

 
𝑃𝑃𝑎 − 𝑃𝑃𝑠

𝑃𝑃𝑎(1 − 𝑃𝑃𝑠)
 𝑖𝑓 𝑃𝑃𝑎 ≥ 𝑃𝑃𝑠

𝑃𝑃𝑎 − 𝑃𝑃𝑠

𝑃𝑃𝑠(1 − 𝑃𝑃𝑠)
 𝑖𝑓 𝑃𝑃𝑎 < 𝑃𝑃𝑠

                                           (5.2) 

 

where; PPa is the probability of landslides in class and PPs is the prior probability of a total 

number of landslides in the study area. 
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5. 2. 2. 3 Logistic regression 

A simple introduction to logistic regression is available in Chau and Chan (2005) which 

defines the probability occurrence of landslides divided by the probability of non-occurrence 

of landslides.  It is useful to predict the presence or absence of a characteristic or outcome based 

on values of a set of predictor variables. Generally, in the logistic regression, spatial prediction 

is modeled by the independent variables and the dependent variable (Shirzadi et al., 2012).  It 

is useful when the variable is a binary or dichotomous.  Variables can be continuous, or discrete, 

or a combination of the two types and they do not always have a normal distribution. The 

probability of regression can be understood as the probability of state-dependent variables. 

They are restricted to fall within a range of values from 0 to 1 (Xu et al., 2013); Zero shows 

probability of 0% landslide occurrences, and one showed a 100% probability (Dai et al., 2004). 

The logistic regression based on logistic function –z is expressed by the following Equation 

5.3; 

 

𝑃 =
1

1+exp−Z
                                                                     (5.3)                                                            

where P is the probability of landslide occurrence which varies from 0 to 1. Variable Z is 

landslide causative factors and assumed as a linear combination of the causative factors xi (i = 

1,2,…n). 

Fixing the sample size to create an equation in logistic regression analysis can be done 

using an equal number of landslide data and no landslide data to reduce bias in the sampling 

process. The constant and coefficient of independent variables provided by logistic regression 

analysis were estimated using SPSS (Rasyid et al., 2016). 

5. 2. 3 Validation and verification 

During the modeling predictions, the most essential and critical component is to carry out 

the validation of the results of prediction (Chung and Fabbri, 2003). Data for validation were 

selected randomly on each part of landslide occurrence without including the training dataset. 
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To illustrate the procedure, a small portion of the landslide- areas were selected as the data for 

validation.  Size, area, depth of landslides and distribution significantly vary from place to place. 

Also, we used the ROC curve to plot predicted probabilities to estimate the model's accuracy. 

For validating the landslide susceptibility map, area under curve (AUC) was used as a measure 

of overall fit and comparison of modeled predictions. The model with higher AUC is considered 

to be the best. If the area under the AUC is close to 1, the result of the test is excellent. On the 

other hand, if the model does not predict well, then this value will be close to 0.5. The area 

determines the success rate AUC of the training dataset, and predictable level calculated from 

the AUC of the validation dataset. ROC curves are used to evaluate the predictive accuracy of 

the model selected in the statistical approach of dichotomous, such as logistic regression 

(Gorsevski et al., 2006), and AUC was obtained from the ROC plot statistics which give most 

preferred types and influence rating (Akgun et al., 2012). Predicted probabilities generated by 

logistic regression can be seen as an indicator continuously to compare with a binary response 

variable observed.  Furthermore, further validation processes show the accuracy of landslide 

vulnerability maps is to calculate the ratio of landslide data that fall into each class of landslide 

susceptibility. It was assumed that most of the landslides for validation must occur on a high to 

very high susceptibility class (H + VH). 

5. 3  Results and discussion 

5. 3. 1 Frequency ratio  

Table 14 indicates a correlation between landslide occurrence and each class of presence 

and absence landslides inventories for class of landslide causative factors. In the case of the 

relationship between landslide occurrence and LUC, LUC from primary forest to open area and 

paddy field (4-1) has the highest probability of landslide occurrence with frequency ratio 8.70.  

Moreover, LUC from primary forest to farming area, savanna, scrub (4-2) with frequency ratio 

2.46.  It is happening because the vegetation affects the stability of the slope.  Land with forest 

by the root system would reinforce the soil strength and stabilizes the slope (Kubota et al., 
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2007), and forest clearance seems to have manifested primarily through increased rates of 

landslide activity (Glade, 2003). Then, in slope class, slope above 20° has a ratio of >1 which 

indicates a high probability of landslide occurrence.  Slope below 20° has a ratio of <1, which 

indicates a very low probability of landslide occurrence.  

The class of elevation 1000 to 2000 meters (m) shows the highest correlation with 

landslide with landslide occurrences. In the class of curvature, the values represent the 

topographic morphology. A convex indicates a positive value, concave showed negative, and 

the value of zero indicates a flat surface. Accordingly, the value of the concave frequency ratio 

(1.33) has a higher likelihood of landslide than concave (0.85) and flat (0.43).  In the case of 

the class aspect, north, northwest, south and northeast-facing slopes have the frequency ratio> 

1, which shows a high rate of probability of the occurrence of landslides. 

In the case of lithology classes, only Qlv has a ratio of >1 among the three lithology 

classes, which indicates a high probability of landslide occurrence.  Quarter lompobattang 

volcanic (Qlv) is one of the volcanic and sediment formations in South Sulawesi area. In this 

case, the distance of the fault, rivers, and roads, the ratio of the distance/proximity are used to 

understand the degree of influence on the landslide. Distance from the faults below 7500 m has 

a ratio>1. It shows that as the distance from the fault decrease, the probability of landslide 

occurrence increases. Also the distance from the river below 100 m has frequency ratio >1. The 

distance from the road above 500 m has a ratio of >1. In the event of distance from roads, the 

landslide densities are higher for distance classes far away.  

In precipitation class, class precipitation 4,528 mm/year has a ratio >1, which indicates a 

high probability of landslide occurrence. Moreover, it indicated more precipitation would 

induce more landslide occurrence. Aditian and Kubota (2017) point out that increasing rainfall 

rate; it is possible to become unstable and prone to landslide disaster. 

To create an index of landslides susceptibility, causative factor in the form of raster maps 

of the value FR then summed by using Equation 5.4; 
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Table 14 The value of Frequency Ratio and Certainty Factor for each landslide causative factors 

Causative factor Class Pixel Class* % Class 
Landslide 
pixel** 

% Landslide 
Frequency 

Ratio 
PPa PPs CF 

Elevation 
(meter) 

<500 126010 15.85 0  0.00 0.00  0 0.003612805 -1.000 
500 – 750 113821 14.31 0  0.00 0.00  0 0.003612805 -1.000 

750 – 1000 117886 14.82 382  13.30 0.90  0.003240419 0.003612805 -0.103 
1000 – 1250 99735 12.54 544  18.93 1.51  0.005454454 0.003612805 0.339 
1250 – 1500 80401 10.11 446  15.52 1.54  0.005547195 0.003612805 0.350 
1500 – 1750 73551 9.25 665  23.15 2.50  0.009041345 0.003612805 0.603 
1750 – 2000 62583 7.87 452  15.73 2.00  0.007222409 0.003612805 0.502 
2000 - 2250  63418 7.97 202  7.03 0.88  0.003185216 0.003612805 -0.119 
2250 – 2500 38830 4.88 180  6.27 1.28  0.004635591 0.003612805 0.221 

>2500 18992 2.39 2  0.07 0.03  0.000105307 0.003612805 -0.971 

Slope 
(degree) 

0 -10 277391 34.88 233  8.11 0.23  0.00083997 0.003612805 -0.768 
10 – 20 193490 24.33 504  17.54 0.72  0.002604786 0.003612805 -0.280 
20 – 30 142736 17.95 519  18.06 1.01  0.003636083 0.003612805 0.006 
30 – 40 114954 14.46 613  21.34 1.48  0.005332568 0.003612805 0.324 
40 – 50 56795 7.14 819  28.51 3.99  0.014420283 0.003612805 0.752 

>50 9861 1.24 185  6.44 5.19  0.018760775 0.003612805 0.810 

Curvature 
Concave 335269 42.16 1,614  56.18 1.33  0.004814045 0.003612805 0.250 

Flat 100826 12.68 158  5.50 0.43  0.001567056 0.003612805 -0.567 
Convex  359132 45.16 1,101  38.32 0.85  0.003065725 0.003612805 -0.152 

Aspect 

Flat 48980 6.16 43  1.50 0.24  0.000877909 0.003612805 -0.758 
North 105139 13.22 963  33.52 2.54  0.009159303 0.003612805 0.608 

Northeast 140313 17.64 599  20.85 1.18  0.004269027 0.003612805 0.154 
East 128555 16.17 311  10.82 0.67  0.002419198 0.003612805 -0.331 

Southeast 155292 19.53 191  6.65 0.34  0.001229941 0.003612805 -0.660 
South 127354 16.01 515  17.93 1.12  0.004043846 0.003612805 0.107 

Southwest 48881 6.15 43  1.50 0.24  0.000879687 0.003612805 -0.757 
West 11324 1.42 23  0.80 0.56  0.002031084 0.003612805 -0.439 

Northwest 29389 3.70 185  6.44 1.74  0.006294872 0.003612805 0.428 

Lithology 
Qlvb 195818 24.62 0  0.00 0.00  0 0.003612805 -1.000 
Qlv 562441 70.73 2,826  98.36 1.39  0.005024527 0.003612805 0.282 

Qvlc 36968 4.65 47  1.64 0.35  0.00127137 0.003612805 -0.649 

Distance to 
Faults (meter) 

0 – 2500 228372 28.72 913  31.78 1.11  0.003997863 0.003612805 0.097 
2500 -5000 123498 15.53 1,333  46.40 2.99  0.010793697 0.003612805 0.668 

5000 – 7500 106243 13.36 472  16.43 1.23  0.004442646 0.003612805 0.187 
7500 – 10000 92127 11.58 155  5.40 0.47  0.00168246 0.003612805 -0.535 

>10000 244987 30.81 0  0.00 0.00  0 0.003612805 -1.000 

Distance to 
River (meter) 

0 - 100 325991 40.99 1,489  51.83 1.26  0.004567611 0.003612805 0.210 
100 – 200 240871 30.29 726  25.27 0.83  0.003014061 0.003612805 -0.166 
200 – 300 139539 17.55 397  13.82 0.79  0.002845083 0.003612805 -0.213 
300 – 400 59549 7.49 189  6.58 0.88  0.003173857 0.003612805 -0.122 
400 – 500 19942 2.51 42  1.46 0.58  0.002106108 0.003612805 -0.418 

>500 9335 1.17 30  1.04 0.89  0.003213712 0.003612805 -0.111 

Drainage 
Density 
(km/km2) 

0 – 1  147677 18.57 698 24.30 1.31 0.004726532 0.003612805 0.236 
1 - 2 228100 28.68 635 22.10 0.77 0.002783867 0.003612805 -0.230 
2 - 3 252005 31.69 829 28.85 0.91 0.003289617 0.003612805 -0.090 
3 - 4 121676 15.30 512 17.82 1.16 0.004207896 0.003612805 0.142 

>4  45769 5.76 199 6.93 1.20 0.004347921 0.003612805 0.170 

Precipitation  
(mm/year) 

3187 186406 23.44 0  0.00 0.00  0 0.003612805 -1.000 
3570 61646 7.75 84  2.92 0.38  0.00509709 0.003612805 0.292 
3739 547175 68.81 2,789  97.08 1.41  0.001362619 0.003612805 -0.624 

LUC 
(1=Open area, 
Paddy area; 
2=Farming 
area, savanna, 
scrub; 
3=Secondary 
Forest; 
4=Primary 
Forest) 

1 - 1 167966 21.12 608  21.16 1.00  0.00361978 0.003612805 0.002 
1 – 2 44883 5.64 276  9.61 1.70  0.006149322 0.003612805 0.414 
2 – 1 127015 15.97 134  4.66 0.29  0.001054994 0.003612805 -0.709 
2 - 2 140425 17.66 215  7.48 0.42  0.001531066 0.003612805 -0.577 
2 - 3 3971 0.50 2  0.07 0.14  0.000503651 0.003612805 -0.861 
3 – 1 24542 3.09 157  5.46 1.77  0.006397197 0.003612805 0.437 
3 - 2 88061 11.07 513  17.86 1.61  0.005825507 0.003612805 0.381 
3 - 3 30715 3.86 158  5.50 1.42  0.005144066 0.003612805 0.299 
3 – 4 4602 0.58 26  0.90 1.56  0.005649718 0.003612805 0.362 
4 – 1 954 0.12 30  1.04 8.70  0.031446541 0.003612805 0.888 
4 – 2 19912 2.50 177  6.16 2.46  0.008889112 0.003612805 0.596 
4 – 3 55800 7.02 180  6.27 0.89  0.003225806 0.003612805 -0.107 
4 – 4 86381 10.86 397  13.82 1.27  0.004595918 0.003612805 0.215 

Distance to 
Road (meter) 

0 – 500 407277 51.22 940  32.72 0.64  0.002308012 0.003612805 -0.362 
500 – 1000 115348 14.51 449  15.63 1.08  0.003892569 0.003612805 0.072 

1000 – 1500 34878 4.39 405  14.10 3.21  0.011611904 0.003612805 0.691 
1500 – 2000 24877 3.13 167  5.81 1.86  0.006713028 0.003612805 0.463 
2000 – 2500 23831 3.00 105  3.65 1.22  0.004406026 0.003612805 0.181 
2500 – 3000 23799 2.99 189  6.58 2.20  0.00794151 0.003612805 0.547 
3000 – 3500 23266 2.93 101  3.52 1.20  0.004341099 0.003612805 0.168 
3500 – 4000 23477 2.95 110  3.83 1.30  0.004685437 0.003612805 0.230 

>4000 118474 14.90 407  14.17 0.95  0.003435353 0.003612805 -0.049 

*Total pixel area 795,227 **Landslide Training 2,873 
 

   

 



63 
 

 

LSI = FR1 + FR2 + … + FRn                                                                 (5.4) 

 

where FR1, FR2, FR3… FRn is the frequency ratio raster maps of landslide causative 

factors.  

The index value of frequency ratio falls in the range of 3.34 to 29.66. The higher LSI 

value showed a higher susceptibility to landslides and if the LSI lower showed lower 

susceptibility. 

5. 3. 2 Certainty Factor  

Table 14 indicates a correlation between landslide occurrence and each class of presence 

and absence landslides inventories for class of landslide causative factors. In the case of the 

relationship between landslide occurrence and LUC, LUC from primary forest to open area and 

paddy field (4-1) has the highest belief of probability of landslide occurrence with certainty 

factor (CF) 0.888. Moreover, LUC from primary forest to farming area, savanna, scrub (4-2) 

has CF value 0.596.  It is also same with FR is happening because the vegetation affects the 

stability of the slope. Then in slope class, slope class above 50°, 40° - 50°, 30° - 40° and class 

20° - 30° has a CF value 0.810, 0.752, 0.325 and 0.006 respectively, which indicates a 

significant belief of probability of landslide occurrence.  Slope below 20° has a CF value <1, 

which indicates a very low probability of landslide occurrence. 

In elevation class, elevation between 1000 to 2000 meters (m) stated belief to the 

likelihood of landslide occurrence.  In curvature class, only concave has a conviction of 

probability of landslide occurrence with CF value 0.250.  In the case of aspect class, the north, 

northwest, south, and northeast facing slopes, CF value is >0, which indicates a belief in the 

probability of landslide occurrence.  

In the case of lithology classes, only Qlv has a ratio of >0 among the three lithology 

classes, which indicates a belief of probability of landslide occurrence.  In the case of the 

distance from the fault, rivers, and roads used to understand the ratio of the distance/proximity 
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to the level of influence on the landslide.  For distance from fault below 7500 m has a ratio of 

>0. It shows that as the distance from the fault decrease has a belief of probability of landslide 

occurrence.  Also the distance from the river below 100 m has CF value >0. In the case of the 

distance from the road above 500 m has a CF value >1. In the event of distance from roads, the 

landslide densities are higher for distance classes far away, and its mean that distance to the 

road is not to effect to the landslide in this case. In precipitation class, only class precipitation 

4528 mm/year has a CF >0, which indicates a belief of probability of landslide occurrence.  

Under increasing rainfall rate, it is possible for many forest slopes to become unstable and prone 

to landslide disaster shortly (Aditian and Kubota, 2017). 

Landslide susceptibility index was created by combining pairwise layers according to the 

integration rules (Pourghasemi et al., 2013). The combination of CF values of two thematic 

layers ‘Z’ is expressed by the following equation as given by (Binaghi et al., 1998) as Equation 

5.5.  

Z = {

𝐶𝐹1 + 𝐶𝐹2 − 𝐶𝐹1𝐶𝐹2  𝐶𝐹1, 𝐶𝐹2 ≥ 0
𝐶𝐹1 + 𝐶𝐹 + 𝐶𝐹1𝐶𝐹2  𝐶𝐹1, 𝐶𝐹2 < 0

𝐶𝐹1 + 𝐶𝐹2

1 − min(|CF1|, |CF2|)
𝐶𝐹1, 𝐶𝐹2, 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑔𝑛𝑠 ≥ 0

                              (5.5) 

 

The certainty factor values are computed by overlaying each thematic layer with the 

landslide map and calculate the landslide frequencies. Each thematic layer is reclassified 

according to the certainty factor value calculated and is combined pairwise to generate the 

Table 15 Example is illustrating the calculation of certainty factor values for the combination of thematic 

layers using integration rules. 

No CFe CFs CFes CFa Cfes-a 

1 0.600 0.320 0.728 0.110 0.758 

2 0.220 -0.280 -0.077 -0.440 -0.483 

3 0.340 -0.280 0.083 0.110 0.184 

4 -0.100 -0.770 -0.793 0.110 -0.767 

5 0.220 0.750 0.805 -0.660 0.426 

6 0.220 0.010 0.228 -0.440 -0.275 
CFe: Certainty factor value for elevation; CFs: Certainty factor value for slope; CFa: Certainty factor value for aspect; CFes: 

Combined certainty factor value of elevation and slope after integration for the various combination; Cfes-a: Combined 

certainty factor value combination of elevation-slope and aspect after integration for the various combination. 
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landslide susceptibility map using the integration rule of Equation 5.5.  Table 15 illustrates the 

integration using a parallel combination.  

5. 3. 3 Logistic regression 

 Hence, this study proposes ten iterations logistic regression coefficient (Table 16).  Ten 

interations for logistic regression analysis will obtain the best result and sense of fairness with 

the same proportion of data landslide between the landslide and non-landslide event like as 

Rasyid et. al. (2016).  Logistic regression method was conducted to compute the landslide 

occurrence probability, and if values are closer to one, landslides are more likely to occur.  Land 

use change as a new causative factor for value was the distance to the river with coefficient 

2.837 in iteration 7th that shows the distance to the river has the highest effect on landslide 

occurrence. Moreover, the lowest value was the distance to the road with -0.148, that indicates 

this causative factor is not influential in landslide occurrences. Moreover, according to 

likelihood ratio test LR indicates slope has the highest effect to landslide occurrence with chi-

square value 417.299 and LUC on the 5th place from eleven causative factors after distance to 

river, distance to faults and aspect with value 85.065 (Table 17).  

 

 

 

 

Table 16 Logistic regression coefficient of landslide causative factors using equal proportion of landslide and 

non-landslide pixel  

Number 
Test 

Variable in the equation of LR of Each Causative Factor 

Elevation Slope Aspect Curvature Lithology 
Distance to 

Faults 
Drainage 
Density 

Distance to 
River 

Precipitation 
Distance to 

Road 
LUC Constant 

1 0.261 0.593 0.571 0.429 1.453 0.469 0.977 2.84 0.597 -0.168 0.378 -9.97 

2 0.248 0.574 0.576 0.408 1.37 0.457 0.653 2.989 0.839 -0.164 0.57 -10.177 

3 0.195 0.593 0.525 0.503 1.439 0.573 0.862 3.05 0.749 -0.162 0.661 -10.661 

4 0.401 0.554 0.526 0.445 1.219 0.489 0.794 2.632 0.722 -0.187 0.623 -9.825 

5 0.351 0.561 0.498 0.634 1.535 0.483 0.901 2.624 0.638 -0.183 0.441 -10.126 

6 0.22 0.617 0.513 0.554 1.374 0.491 0.786 2.92 0.708 -0.143 0.596 -10.275 

7 0.332 0.548 0.501 0.449 1.184 0.52 1.031 2.837 0.734 -0.148 0.589 -10.175 

8 0.314 0.538 0.507 0.473 1.167 0.546 0.684 2.647 0.801 -0.185 0.479 -9.561 

9 0.383 0.572 0.568 0.379 1.235 0.5 0.733 2.738 0.644 -0.201 0.539 -9.674 

10 0.312 0.545 0.478 0.539 1.212 0.484 0.97 2.775 0.76 -0.083 0.502 -10.088 
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5. 3. 4 Validation 

 Table 18 shows results of AUC curve for both success rate and predictive rate for each 

test. In general, the AUC of ROC curves representing excellent, good, and missing values tests 

were plotted on the graph. The classification of the accuracy diagnostic test i.e. the value ranges 

from 0.50 to 0.60 (fail), 0.60–0.70 (poor), 0.70–0.80 (fair), 0.80–0.90 (good), and 0.90–1.00 

(excellent) (Rasyid et al., 2016). The results show that the entire test of FR, CF and LR methods 

fall into the good category because the value ranges from 0.828 to 0.857 in success rate and 

0.827 to 0.856 in predictive rate. Moreover, success rate and predictive rate value for all method 

were a closeness with interval 0.01 that indicates all the method more reliable to a predictive 

landslide in the future. The closeness of success rate and predictive rate values show how the 

method helps in landslide prediction in the future (Meten et al., 2015). 

Table 18 AUC of ROC curve of success and predictive rate and the ratio of landslide validation on landslide 

susceptibility map using FR, CF and LR Method 

Table 17 Likelihood Ratio Tests using Logistic Regression 

Causative Factor 
Likelihood Ratio Tests 

  Chi-Square 

Slope   417.229 

Distance to River   291.508 

Distance to Faults   164.011 

Aspect   128.522 

LUC   85.065 

Lithology   53.832 

Drainage Density   35.265 

Precipitation   27.894 

Elevation   22.557 

Curvature   13.893 

Distance to Road   7.405 

    

Method FR 
 

CF 
Number Test of LR 

 1 2 3 4 5 6 7 8 9 10 

AUC Success rate 0.828  0.831 0.857 0.857 0.857 0.836 0.856 0.857 0.857 0.857 0.857 0.857 

AUC Predictive rate 0.827  0.83 0.855 0.856 0.856 0.835 0.855 0.856 0.856 0.855 0.855 0.856 

H+VH (%) 81.46  85.28 81.63 82.03 80.98 72.85 81.87 80.73 82.11 80.65 80.57 79.59 
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    In this study, LR method conducts one more validation to choose the best statistical model 

for creating landslide susceptibility map and the best equation in logistic regression approach 

from the ten tests. The sum of FR value and equation of the LR models were used to create 

landslide susceptibility map (LSM). Moreover, CF was used Equation (5.5) to produce 

landslide susceptibility map (LSM).  All LSM classes are created by reclassifying LSI of the 

models using natural breaks method, and overlaid landslide data validation on LSM will 

describe another level of accuracy besides AUC curve. The natural breaks method or Jenks 

optimization method has been used widely especially by planners, and it is designed to 

determine the best arrangement of values into different classes. This approach maximizes the 

variance between classes and reduces the variance within classes. The five classes include very 

low, low, moderate, high and very high describing the level of landslide susceptibility 

(proneness) in the study area. The level of accuracy of the landslide susceptibility map was 

verified by overlaying with the landslide data for validation.  Table 18 shows the results of 

Figure 28 Landslide susceptibility map of FR, CF, and  LR method 7th iterations 
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overlaid landslide data for validation on LSM.  LR method 7th iterations ratio (0.857) in AUC 

success rate were better than the ratio of FR (0.828) and CF (0.831), which shows that LR 

model is better of a model of identifying landslide. In predictive rate, LR method 7th iterations 

ratio was also better than the ratio of FR (0.827) and CF (0.830), which shows that LR model 

is better to predict of landslide occurrence. On the other hand, validation with the percentage 

of landslide falls into class high and very high of LSM, and CF model (85.28%) was better than 

the percentage of FR (81.46%) and LR model (82.1%). The curve of the model and validation 

proves that the susceptibility model is acceptable and the model could be applied to predict the 

potential landslides in future. As an interesting point to be noticed in Table 18, 0.857 is success 

rate and 0.856 is predictive rate. 

 

Figure 28 shows the landslide susceptibility map using FR, CF and LR method 7th iterations. 

The LSM by LR model was obtained using the coefficient values of landslide causative factors 

as in the equation below; 

Z = -10.175 + 0.332 Elevation + 0.548 Slope + 0.501 Aspect + 0.449 Curvature + 1.184 Lithology+ 

0.52 faults + 1.031 Drainage density + 2.837 Distance to River + 0.734 Precipitation - 0.148 Distance 

to Roads + 0.589 LUC 

 

Table 19 The Characteristic of susceptibility classes on landslide susceptibility map using FR, CF, and LR 
method 

Class Number Reclassified index value 
Susceptibility 

class 
Number 
of pixels 

% area 
covered 

Number of 
landslide 

validation 
pixel 

% area of 
landslide 

validation 
covered 

Frequency Ratio       
1 3.34  -  7.16 Very Low 177234 22.29 0 0.00 
2 7.16  -  10.36 Low 143392 18.03 8 0.65 
3 10.36  -  13.04 Moderate 201593 25.35 220 17.89 
4 13.04  - 16.14 High 188458 23.70 428 34.80 
5 16.14  -  29.66 Very High 84550 10.63 574 46.67 

Certainty Factor       
1 -1  -  -0.7647 Very Low 369510 46.47 31 2.52 
2 -0.7647  -  -0.2785 Low 75038 9.44 70 5.69 
3 -0.2785  -  0.2626 Moderate 48592 6.11 80 6.50 
4 0.2626  -  0.7096 High 80360 10.11 148 12.03 
5 0.7096  -  0.9997 Very High 221727 27.88 901 73.25 

Logistic Regression       
1 0.0011  -  0.1186 Very Low 282841 35.57 4 0.33 
2 0.1186  -  0.3026 Low 163178 20.52 43 3.50 
3 0.3026  -  0.5063 Moderate 138129 17.37 173 14.07 
4 0.5063  -  0.7216 High 114794 14.44 336 27.32 
5 0.7216 - 0.9997 Very High 96285 12.11 674 54.80 
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 The ranges of the index value of each model in five classes were established using natural 

breaks method.  Can et al. (2005) and Bai et al. (2010) stated two crucial guidance for validating 

landslide susceptibility map, i.e., 1) the high to very high class should cover only small areas 

and 2) landslide data validation should lie in high or very high classes. 

 

Figure 29 Percentage of landslide susceptibility classes and percentage of landslide 

susceptibility validation on landslide susceptibility of FR, CF and LR method 

Table 19 shows the characteristics of susceptibility class for FR, CF and LR models. It 

indicates that the ratio of high to very high susceptibility class covers a small area. It was 

generated by dividing the number of pixels in each class on LSM to the total number of pixels. 

Furthermore, the ratio of landslide data for validation that fall on the LSM has a high value on 

high to very high class compared to very low to low class. The ratio calculated by dividing the 

number of a landslide for validation pixels, which lies on each susceptibility class to the total 

number of a landslide for validation pixels. This method is similar to FR, and CF model or the 

density method.  In general, the procedure of creating landslide susceptibility map begins with 

the use of data of landslide occurrence as the dependent variable and landslide causative factors 

as the independent variables. Logically, landslide data covers a small area and occasionally in 

the form of scattered areas in the entire study area. The accuracy of the predicted future 

landslide that laid on the LSM should have a lower ratio in the class of low to very low class 

and higher in the high to very high class (Rasyid et al., 2016).  Figure 29 shows, the ratio of the 

area with the classification of low to very low grade in LSM from FR, CF, and LR models have 

a total average of more than 40% of the total area, and the data validation landslide that fell on 
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the class shows the ratio below 10%.  Also, the proportion of the area with the classification of 

high to very high grade in landslide susceptibility map from FR, CF, and LR model has a total 

average of more than 40% of the total area, and the data validation landslide that fell on the 

class shows the ratio of 80%.  The highest values were 85.38% in the CF model. It indicates 

that the CF is better than others for validation by LSM with the landslide at high and very high-

class.    

5. 4  Conclusions 

In conclusion, by using land use change (LUC) as a novel causative factor to produce 

landslide susceptibility map, LUC is influential in the creation of LSM.  It can be inferred from 

the results of FR and CF, LUC has the highest value on both at LUC from primary forest to 

open area and paddy field. However, in logistic regression method, LUC has on the 5th place 

from eleven causative factor, according to likelihood ratio test with chi-square value 85.065 

after slope, distance to river, distance to faults and aspect.  This research comparatively 

evaluates the performance of FR, CF and LR models as well. Two-step of validation was carried 

out in this study. First, performances of each landslide model were tested using AUC curve for 

success and predictive rate, which is more than 82 % with the highest at LR Model. In the 

second, the ratio of landslides falling on high to a very high class of susceptibility was obtained, 

which indicates the level of accuracy of the model. The CF model has highest accuracy with 

85.28 % landslides fall in the range of high to very high class while in LR and FR model, it is 

82.11% and 81.46%.  By the two-step of validation that LR shows highest accuracy in step 1 

and CF show the highest in step 2.  
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Chapter 6 Optimization of Causative Factor Using Logistic 

Regression and Artificial Neural Network Models for 

Landslide Susceptibility Assessment in the Mountainous 

area of Ujung Loe Watershed South Sulawesi Indonesia 

6. 1  Introduction 

Landslide susceptibility map (LSM) plays a vital role in assisting land-use planning and 

managing landslide hazard and their mitigation measures. The landslide susceptibility/hazard 

mapping relies on a thorough understanding of the complex slope movements and their 

controlling factors. The reliability of landslide susceptibility or hazard map is highly dependent 

on the number and quality of existing data, the scale of the input data, data analysis, and 

selection of appropriate models. The process of making this map involves several qualitative 

or quantitative approaches (Aleotti and Chowdhury, 1999; Cardinali et al., 2002; Dou et al., 

2015). Quantitative methods investigate the relationship between landslide occurrence and 

causative factors to predict the occurrence probabilities. 

A wide range of quantitative methods has been successfully used for landslide 

susceptibility mapping by researchers around the world. The widely used methods are  bivariate 

and multivariate statistical methods including logistic regression (LR) (Ayalew and Yamagishi, 

2005; Rasyid et al., 2016; Soma and Kubota, 2017a), fuzzy logic (Demicco and Klir, 2004; 

Ercanoglu and Gokceoglu, 2004; Tien Bui et al., 2017), support vector machines (Ballabio and 

Sterlacchini, 2012; Chen et al., 2017; Pourghasemi et al., 2013; Yao et al., 2008) and artificial 

neural network (Chauhan et al., 2010; Ermini et al., 2005; Pradhan et al., 2010; Pradhan and 

Lee, 2010). The statistical method of bivariate and multivariate to estimate landslide 

probabilities is based on correlation analysis between causative factors and historical landslide 

events, whereas the deterministic methods assess slope failures using the factor of safety (FoS) 

(Bahsan et al., 2014; Jamsawang et al., 2015). Logistic regression (LR) is considered to be the 

most commonly used methods for the assessment of the probability of occurrence of landslides 
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at medium and regional scales (Meinhardt et al., 2015; Shahabi et al., 2013). The advantage of 

logistic regression (LR) over other multivariate analysis methods is that LR is independent of 

data distribution and also it can handle a variety of data such as continuous, categorical, and 

binary data (Dou et al., 2015).   Artificial neural network (ANN) is computational information 

processing units inspired by the structure and behavior of real biological neurons whose 

architecture mimics the knowledge acquisition and organizational skills of human brain cells. 

According to Yilmaz (2009), Artificial Neural Networks with their remarkable ability to derive 

meaning from complicated data, can be used to extract patterns and detect trends that are too 

complex to be noticed by either humans or other computer techniques.  Artificial neural 

networks can be considered as 'experts' in the information category.  It has been used to provide 

projections given new situations of interest and answer the question 'what if' and other 

advantages are adaptive learning, organizing their own real-time operation and fault tolerance 

through redundant coding of information. 

Also, many scientists randomly and subjectively select factors such as geology, hydrology 

and human factor such as distance to road, and especially with land use change factors (Soma 

and Kubota, 2017a) to produce landslide susceptibility maps.  Therefore, the selection of 

landslides causative factors is an essential point in the study of landslide susceptibility maps. 

In this research, we address this issue by proposing the LR, ANN and their Combination method 

that has rarely been used for feature selection of optimized causative factor to produce LSM 

studies. 

 The study area is located in the mountainous area of upper Ujung Loe watershed. The 

topography is naturally mountainous and steeper (38.8% of the slope class is higher than 20 

degrees) and very high rainfall with 2,976 to 7,114 mm/year.  These two landslide causative 

factors contribute significantly to the landslide occurrence in the study area. Besides this, the 

land use changes from primary forest to an open area, paddy field, and farming area has made 

the area more prone to landslides (Soma and Kubota, 2017b). The primary occupation of the 
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community in the study area is farming in this mountainous area, thereby enhancing erosion 

and groundwater infiltration followed by land sliding. It is hard to avoid this agricultural 

practices because this has become people's culture, means of existence and practice that has 

been inherited from their ancestors (Soma and Kubota, 2017b).   Based on these premises, the 

primary objective of this study was to optimize the landslide causative factors using logistic 

regression and artificial neural network to produce the landslide susceptibility maps and select 

the best one among the two maps. Under this primary objective, the specific objectives include 

preparing landslide causative factor maps. 

6. 2  Data and Methods 

Landslide susceptibility analysis in the present study has been carried out in three main 

steps (Figure 30), i.e. (1) Data Preparation, (2) Data Analysis, (3) Validation.    

Figure 30  Research framework 
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6 . 2. 1 Data Preparation 

Data selection is the critical thing in the preparation of the landslide susceptibility map. 

The excellent data selection for analysis helps to find satisfactory results. Management and 

collection or selection using Arc GIS© 10.3 must be accurate in establishing a spatial data 

landslide inventory and also a causative factor.   

6. 2. 1. 1 Landslide inventory 

Based on these premises, the primary objective of this study was to optimize the landslide 

causative factors using logistic regression and artificial neural network to produce the landslide 

susceptibility maps and select the best one among the two maps. Under this primary objective, 

the specific objectives include preparing landslide causative factor maps (Kanungo et al., 2006).  

This study used landslide data extracted from 2012 to 2016 Google Earth Pro© images and 

ground surveys (Figure 31 and Figure 32).  The study area was limited to the upper Ujung Loe 

watershed.  A total of 188 landslides were identified covering an area of 43.65 hectares (0.44 

km2).  Most of the landslides are of the shallow type with minimum and maximum landslide 

Figure 31 Landslide inventory a) old landslide, b) new landslide 
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area of 137 m2 and 15,600 m2, respectively.  Landslide inventory generated from the survey 

and digitizing high-resolution from Google Earth Pro©, by digitized the time series imaging 

data by delineate the landslide, and these files were saved as GIS compatible format as 

extension kml. Then, the data was again subsequently changed into shapefile and raster format 

10x10 meter.    

6. 2. 1. 2 Landslide causative factors 

The most critical assumption in landslide susceptibility map is that the landslide 

occurrence was caused by causative factors. There are no strict guidelines for the selection of 

causative factors to be used in logistic regression analysis and artificial neural network (Ayalew 

and Yamagishi, 2005; Dou et al., 2015; Ermini, 2005, Aditian and Kubota, 2017, Soma and 

Kubota, 2017b). Correspondingly, the determination of landslide causative factors was 

associated with the availability of data. Therefore, we selected causative factors based on the 

general knowledge found in previous studies and its availability in the target location. The entire 

landslide causative factors have been used for the independent variables in the landslide 

Figure 32 Map of Landslide Distribution 
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susceptibility mapping (Figure 33).  The independent variables were eleven of causative factors 

including elevation, slope, aspect, curvature, lithology, distance from fault, distance to river, 

drainage density, precipitation, distance to road and land use change (LUC) from 2004 to 2011.  

Figure 33 Eleven causative factors of landslide 

Table 20 Landside causative factors and their classes 
No Landside causative factors Class 

1 Elevation (m) (1)[>500]; (2)[500,750]; (3)[750,1000]; (4)[1000,1250]; (5)[1250,1500]; 

(6)[1500,1750]; (7)[1750,2000]; (8)[2000, 2250]; (9)[2250, 2500]; (10)[>2500] 
2 Slope (degree) (1) [0,10]; (2) [10,20]; (3)[20,30]; (4) [30,40]; (5) [40,50]; (6) [>50] (Chauhan et al., 

2010) 
3 Aspect (1) flat; (2) north; (3) northeast; (4) east; (5) southeast; (6) south; (7) southwest; (8) west; 

(9)northwest (Chauhan et al., 2010) 
4 Curvature (1) Convex; (2) Flat; (3) Concave 

5 Lithology (1) Quarter Lompobattang Vulcanic center (Qlvc); (2)  Quarter Lompobattang Vulcanic 

(Qlv); (3)  Quarter Lompobattang Vulcanic Breccia 

6 Distance to Faults (m) (1)[0,2500]; (2)[2500,5000]; (3)[5000,7500]; (4)[7500,10000]; (5)[>10000] 

7 Distance to River (m) (1)[0,100]; (2)[100,200]; (3)[200,300]; (4)[300,400]; (5)[>400] 

8 Drainage Density 

(km/km2) 

(1)[0,1]; (2)[1,2]; (3)[2,3]; (4)[3,4]; (5)[>4] 

9 Precipitation (mm/year) (1)[3538]; (2)[3933]; (3)[4528] 

10 Distance to Road (m) (1)[0,500]; (2)[500,1000]; (3)[1000,1500]; (4)[1500,2000]; (5) [2000,2500]; 

(6)[2500,3000]; (7)[3000,3500]; (8)[3500,4000] (9)[>4000] 

11 Land Use Change (LUC) 

(1=Open area, Paddy area; 

2=Farming area, savanna, 

scrub; 3=Secondary 
Forest; 4=Primary Forest) 

(1)[1-1]; (2)[1-2]; (3)[2-1]; (4)[2-2]; (5) [2-3]; (6)[3-1]; (7)[3-2]; (8)[3-3] (9)[3-

4];(10)[4-1]; (11) [4-2]; (12)[4-3]; (13)[4-4] (Soma and Kubota, 2017b) 
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Elevation, slope, aspect, and curvature were extracted from contour digital data with 12.5 

meter interval.  Contour data of Rupa Bumi Indonesia (RBI) on map scale 1: 25000 from Badan 

Geospatial Indonesia (BIG) were obtained using arc toolbox raster surface in ArcGIS 10.3©.   

The geology of the area was obtained from the digital geologic map of Indonesia 

produced by Geological Research Institute at a scale of 1:250,000. The geologic data consists 

of lithology (rock type) and structures (fault and lineament). Lithology is the primary data or 

parameter for analyzing the probability of landslide occurrence. It related to the strength of the 

material because lithological composition and structure vary for different types of rocks 

(Kanungo et al., 2006). In addition, resistance to the driving forces also depends on the strength 

of rocks. Faults are structural features that describe the zones or areas of weakness following 

fractures or joints in a certain rock type posing a higher degree of susceptibility to landsliding. 

It has been observed that the probability of landslide occurrence will increase close in areas 

close to faults because faults not only affect the surface configuration and strength of the rocks 

but also increases the permeability and hence cause slope instability. For this purpose, the 

proximity faults were obtained by buffering the fault map of the area (Rasyid et al., 2016).    

Both distances to river and drainage density in the hilly area had a strong association with 

landslide occurrence due to erosional activity in this location. The distance from the river was 

calculated by buffering analysis of streamlines and drainage density calculate by using line 

density in ArcGIS 10.3©.  Distance to the road has good correlation with landslide occurrence 

when the road is under construction because the stability of the slope will be affected due to 

slope toe undercutting.  Distance to the road has been calculated by Euclidean distance analysis 

in ArcGIS 10.3©. This information was derived from a topographic map of scale 1:25000 called 

Peta Rupa Bumi Indonesia (RBI) prepared by Badan Informasi Geospasial (BIG) Indonesia in 

2012.   

Precipitation had a good correlation with landslide occurrence as a trigger of landslide.   

Precipitation map was generated by using "create Thiessen polygon" tool from three rain gauge 
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stations in the study area.  Moreover, land use change has a good correlation with landslide 

occurrence because changing the vegetation to another landscape causes slopes unstable and 

increases the probability of landslide occurrence especially in Ujung Loe watershed (Soma and 

Kubota, 2017a).  LUC causative factor were applied using the data from Soma and Kubota 

(2017a).   The classification of each causative factor can be seen in Table 20. 

The landslide was considered as a dependent variable while the causative factors like 

elevation, slope, curvature, distance to river, drainage density, lithology, distance to faults, 

precipitation, distance to road and LUC, was described as the independent variables.  

Independent and dependent variables were used as input maps and then processed to turn into 

a raster map with a pixel size of 10 m × 10 m. The causative factor maps can be seen in Figure 

33.  Generally, the study area contains 795,227 pixels. The landslides contain a total of 4,103 

pixels in which 2,873 pixels (70% of the landslides) were used for training/prediction/ while 

1,230 pixels (30% of the landslides) were used for validation purpose. 

6 . 2. 2 Data Analysis 

There are two main ideas in this analysis, i.e., first to understand the performance of each 

causative factor and second to optimize causative factors to produce landslide susceptibility 

maps.  In order to understand the performance of each causative factor, the two statistical/ 

probabilistic methods, i.e., logistic regression (LR) and Artificial neural network (ANN) were 

used. However, to optimize causative factors LR, forward stepwise (likelihood ratio) logistic 

regression (FSLR), ANN and a combination between FSLR and ANN were used to eliminate 

the less critical causative factors and produce landslide susceptibility map using the optimized 

causative factors. The analysis of LR and ANN was also partly conducted in SPSS© software. 

6. 2. 2. 1 Multivariate Logistic regression  

A simple introduction to logistic regression is available in Chau and Chan (2005) which 

defines the probability occurrence of landslides divided by the probability of non-occurrence 

of landslides.  It is useful to predict the presence or absence of a characteristic or outcome based 
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on values of a set of predictor variables. Generally, in the logistic regression, spatial prediction 

can be modeled using dependent and independent variables (Shirzadi et al., 2012).  It is useful 

when the variable is a binary or dichotomous.  Variables can be continuous, or discrete, or a 

combination of the two types and they do not always have a normal distribution. The probability 

of regression can be understood as the possibility of state-dependent variables.  Data analysis 

created iteration in ten tests using same proportion of data landslide between landslide and no 

landslide occurrence.  Using same proportion of data landslide between landslide and no 

landslide occurrence will result better and fair for logistic regression analysis (Rasyid et al., 

2016). LR resulted in landslide susceptibility index. The logistic regression followed on logistic 

function –z expressed by the following equation 6.1 and 6.2; 

𝑃 =
1

1+exp−Z
                                                                (6.1)                                                  

Z = C0 + C1CF1 + C2CF2 + …+ CnCFn                                          (6.2) 

where P is a probability of landslide occurrence, and its values are varying from 0 to 1. 

Variable Z is landslide causative factor and is assumed as a linear combination of the causative 

factors Xi (i = 1, 2, …).  Moreover, Z calculates using Equation (6.2).  C0 is the intercept, and 

C1, C2, Cn are coefficient, which measures the contribution of independent factors (CF1, CF2, 

. . ., CFn) to the variations in Z.   

 

6. 2. 2. 2 Artificial Neural Network (ANN) 

ANN is an information processing system which is inspired by the models of biological 

neural networks through the network during the training phase (Sheela and Deepa, 2013). ANN 

is widely used in many areas because of its essential features such as the high capacity of 

nonlinear mapping, high accuracy for learning, and good robustness (Kanungo et al., 2006; 

Sheela and Deepa, 2013). Artificial neural networks (ANN) are computational information 

processing units inspired by the structure and behavior of real biological neurons whose 

architecture mimics the knowledge which is an essential variable of different units. The 

normalization of data is essential as the variables of different units. The normalization data is 
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extended to allow it to accommodate new types of data, and the pre-existing aspects of the 

database structure can remain mostly or entirely unchanged. As a result, applications interacting 

with the database are minimally affected. The data are scaled within the range of 0 to 1. The 

scaling is carried out to improve the accuracy of subsequent numeric computation and obtain a 

better output (Sheela and Deepa, 2013). The normalization of data is obtained by the following 

equation 6.3; 

𝑋𝑖
′ = (

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
) (𝑥𝑚𝑎𝑥

′ − 𝑥𝑚𝑖𝑛
′ ) + 𝑥𝑚𝑖𝑛

′                                                   (6.3)          

where 𝑋𝑖
′  is normalized input, 𝑋𝑖, 𝑋min, 𝑋max are the actual input data, minimum and 

maximum input data. 𝑥𝑚𝑎𝑥
′ , 𝑥𝑚𝑖𝑛

′  be the minimum and maximum target value. 

 

In this study, multi-layer perceptron (MLP) was applied. Each hidden and output layer 

neuron processes its inputs by multiplying each input (xi) by a corresponding weight (wi), 

summing the product with Equation 6.4; 

Then processing the sum (if that exceeds the neuron threshold, the neuron is then 

activated) using a non-linear activation function to produce a result (yi), which is the output 

node with Equation 6.5; 

 

A three-layer feed-forward network consisting of an input layer (11 neurons), one hidden 

layer (10 neurons) and two output layer was used as a network structure of 11-10-2 (Figure 34). 

There are many rule-of-thumb methods for determining an acceptable number of neurons to 

use in the hidden layers, such as the number of hidden neurons should be between the size of 

the input layer and the size of the output layer (Sheela and Deepa, 2013). The reason sigmoid 

function is chosen is that exponential functions are similar to handle mathematically and since 

learning algorithms involve lots of differentiation, thus choosing a function that is 

𝑛𝑒𝑡 =∑𝑤𝑖

𝑛

𝑖=0

𝑥𝑖                                                                            (6.4) 

𝑦𝑖 = 𝐺(𝑏2 +𝑊2(𝑠(𝑏1 +𝑊1𝑖)))                                           (6.5)  
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computationally cheaper to handle is quite good.  The sigmoid function has been using 

commonly for studies (Conforti et al., 2014; Kanungo et al., 2006; Nefeslioglu et al., 2008; 

Pham et al., 2017; Pradhan et al., 2010). The initial value of the learning level is the gradient 

descent algorithm. A higher learning rate means that the network will train faster, possibly at 

the cost of becoming unstable, for this analysis set to 0.65. The initial momentum parameter is 

the gradient descent algorithm. The momentum term helps to prevent instabilities caused by a 

too-high learning rate, for this analysis set to 0.95 with interval center set to 0 and interval offset 

set to 0.5.  The number of iterations was set to 1,000, and the RMSE value used for the interrupt 

of the training phase was set to 0.001.  

 

Figure 34 Architecture of artificial neural network in this research 

 

6. 2. 2. 3 Optimized Causative Factor 

Optimizing of causative factor was conducted by using 3 types of methods, i.e. (1) FSLR, 

(2) ANN; and (3) Combination FS-LR and ANN (FSLR-ANN). Optimizing causative factors 

with LR-FS was conducted by eliminating one by one from 11 factors to eight factors with the 

least essential effect by the likelihood ratio test values from FSLR analysis, and then the 

landslide susceptibility map was prepared using LR method. Optimizing causative factors with 

ANN was conducted by eliminating one by one factor from 11 factors to eight factors with least 
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significant effect by normalized importance value from ANN analysis and make landslide 

susceptibility map using ANN method. Optimizing causative factor using Combination FS-LR 

and ANN (FSLR-ANN) was conducted by eliminating one by one factor from 11 until eight 

factors with the least essential effect by the likelihood ratio test value from LR-FS analysis and 

make each susceptibility map used ANN method. 

6 . 2. 3 Validation  

During the modeling predictions, the most crucial component is to carry out a validation 

of the prediction result, and without some validation, the prediction model was useless and 

hardly any scientific significance (Chung and Fabbri, 2003).  In this study, the landslide 

inventories were divided into two parts; one for training and the other for validation. 2,873 

landslide pixels (70% of the landslide inventory) were used to produce the predictive models, 

and about 1,230 landslide pixels (30% of the landslide inventory) were used for validation 

purpose. Landslide inventory data was classified into training and validation datasets on a 

random basis from each landslide by taking the spatial distribution into account (Meten et al., 

2015).  Size, area, depth, and distribution of landslides vary from place to place. We also used 

the receiver operating characteristic (ROC) curve to plot predicted probabilities to understand 

the problem of accuracy, selection criteria, and interpretation.  For validating the landslide 

susceptibility map, AUC curve was used as a measure of overall fit and comparison of the 

predictive model. The area determines the success rate under the curve (AUC) of the training 

dataset, and validation was possible from the AUC of the validation dataset. ROC curves were 

used to evaluate the predictive accuracy of the predictive accuracy of the selected statistical 

model like as logistic regression (Gorsevski et al., 2006). The AUC obtained from the ROC 

plot is the most preferred type that can influence the rating of model performance (Akgun et 

al., 2012).  In this study, another possibility to validate the reliability of the predictive landslide 

susceptibility map from the training dataset was to overlay the validation landslides. This 
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procedure showed that most of landslides fall under high and very high susceptibility classes 

showing the high level of accuracy and performance of our models. 

6. 3  Result and Discussion 

6. 3. 1 Logistic regression  

In Logistic regression (LR), it does little good to combine data with different measuring 

scales (Ayalew and Yamagishi, 2005), so to see the relationship between the landslide 

occurrence area and the landslide causative factors could be deduced from the relationship 

between areas where landslide had not occurred and the causative factors. Frequency ratio  

values show a correlation between landslides and each class of landslide causal factors in 

numerical format (Rasyid et al., 2016), so input data of independent variable for logistic 

regression method was using data frequency ratio in Table 21.  In the present research, the 

highest frequency ratio was occurring in land use change (LUC) causative factor on LUC from 

primary forest to open area and paddy field (4-1) with ratio 8.70.  Moreover, class of secondary 

forest to the farming area, savanna, scrub (4-2) had frequency ratio 2.20.  The vegetation which 

causes this frequency ratio affects the stability of the slope.  Forest clearance seems to have 

manifested primarily through increased rates of landslide activity because land with forest 

having the root system would reinforce the soil strength and stabilizes the slope (Glade, 2003; 

Hasnawir et al., 2015). 

Hence, this study conducted ten tests in order to acquire the best result. Accordingly, the 

best validation result was found on the seventh test as can be seen from  Table 22.  LUC had a 

value of 0.589 (from the seventh test)) that affects landslide occurrence. Forest land with root 

system would reinforce the soil strength and stabilizes the slope to reduce surface erosion or 

shallow landslides (Hasnawir et al., 2015). The highest value of 3.081 shows the distance to the 

river having the most significant effect on landslide occurrence. Moreover, the lowest value of 

elevation (0.353) indicated a small effect on landslide occurrence in this research. 

The logistic regression that was obtained from the seventh test can be expressed as follows: 
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Table 21 The value of Ratio and Normalized of Landslide Occurrences for each landslide causative factors 

Factor Class Pixel Class* % Class(a) 
Landslide 

pixel**  
% Landslide 

(b) 
 Frequency 
ratio (b/a) 

Normalized 
of ratio 

Elevation (meter) 

<500 126010 15.85 0 0 0 0.000 
500 – 750 113821 14.31 0 0 0 0.000 
750 – 1000 117886 14.82 382 13.3 0.9 0.360 
1000 – 1250 99735 12.54 544 18.93 1.51 0.604 
1250 – 1500 80401 10.11 446 15.52 1.54 0.616 
1500 – 1750 73551 9.25 665 23.15 2.5 1.000 
1750 – 2000 62583 7.87 452 15.73 2 0.800 
2000 - 2250 63418 7.97 202 7.03 0.88 0.352 
2250 – 2500 38830 4.88 180 6.27 1.28 0.512 
>2500 18992 2.39 2 0.07 0.03 0.012 

Slope (degree) 

0 -10 277391 34.88 233 8.11 0.23 0.000 
10 – 20 193490 24.33 504 17.54 0.72 0.099 
20 – 30 142736 17.95 519 18.06 1.01 0.157 
30 – 40 114954 14.46 613 21.34 1.48 0.252 
40 – 50 56795 7.14 819 28.51 3.99 0.758 
>50 9861 1.24 185 6.44 5.19 1.000 

Curvature 
Concave 335269 42.16 1,614 56.18 1.33 1.000 
Flat 100826 12.68 158 5.5 0.43 0.000 
Convex 359132 45.16 1,101 38.32 0.85 0.467 

Aspect 

Flat 48980 6.16 43 1.5 0.24 0.000 
North 105139 13.22 963 33.52 2.54 1.000 
Northeast 140313 17.64 599 20.85 1.18 0.409 
East 128555 16.17 311 10.82 0.67 0.187 
Southeast 155292 19.53 191 6.65 0.34 0.043 
South 127354 16.01 515 17.93 1.12 0.383 
Southwest 48881 6.15 43 1.5 0.24 0.000 
West 11324 1.42 23 0.8 0.56 0.139 
Northwest 29389 3.7 185 6.44 1.74 0.652 

Lithology 
Qlvb 195818 24.62 0 0 0 0.000 
Qlv 562441 70.73 2,826 98.36 1.39 1.000 
Qvlc 36968 4.65 47 1.64 0.35 0.252 

Distance to Faults 
(meter) 

0 – 2500 228372 28.72 913 31.78 1.11 0.371 
2500 -5000 123498 15.53 1,333 46.4 2.99 1.000 
5000 – 7500 106243 13.36 472 16.43 1.23 0.411 
7500 – 10000 92127 11.58 155 5.4 0.47 0.157 
>10000 244987 30.81 0 0 0 0.000 

Distance to River 

(meter) 

0 - 100 325991 40.99 1,489 51.83 1.26 1.000 
100 – 200 240871 30.29 726 25.27 0.83 0.368 
200 – 300 139539 17.55 397 13.82 0.79 0.309 
300 – 400 59549 7.49 189 6.58 0.88 0.441 
400 – 500 19942 2.51 42 1.46 0.58 0.000 
>500 9335 1.17 30 1.04 0.89 0.456 

Drainage Density 

(km/km2) 

0 - 1 147677 18.57 698 24.3 1.31 1.000 
1 - 2 228100 28.68 635 22.1 0.77 0.000 
2 – 3 252005 31.69 829 28.85 0.91 0.259 
3 – 4 121676 15.3 512 17.82 1.16 0.722 
>4 45769 5.76 199 6.93 1.2 0.796 

Precipitation  (mm

/year) 

3187 186406 23.44 0 0 0 0.000 
3570 61646 7.75 84 2.92 0.38 0.270 
3739 547175 68.81 2,789 97.08 1.41 1.000 

LUC   (1=Open 

area, Paddy area; 

2=Farming area, 
savanna, scrub; 

3=Secondary 
Forest; 4=Primary 

Forest) 

1 - 1 167966 21.12 608 21.16 1 0.100 
1 – 2 44883 5.64 276 9.61 1.7 0.182 
2 – 1 127015 15.97 134 4.66 0.29 0.018 
2 - 2 140425 17.66 215 7.48 0.42 0.033 
2 - 3 3971 0.5 2 0.07 0.14 0.000 
3 – 1 24542 3.09 157 5.46 1.77 0.190 
3 - 2 88061 11.07 513 17.86 1.61 0.172 
3 - 3 30715 3.86 158 5.5 1.42 0.150 
3 – 4 4602 0.58 26 0.9 1.56 0.166 
4 – 1 954 0.12 30 1.04 8.7 1.000 
4 – 2 19912 2.5 177 6.16 2.46 0.271 
4 – 3 55800 7.02 180 6.27 0.89 0.088 
4 – 4 86381 10.86 397 13.82 1.27 0.132 

Distance to Road 

(meter) 

0 – 500 407277 51.22 940 32.72 0.64 0.000 
500 – 1000 115348 14.51 449 15.63 1.08 0.171 
1000 – 1500 34878 4.39 405 14.1 3.21 1.000 
1500 – 2000 24877 3.13 167 5.81 1.86 0.475 
2000 – 2500 23831 3 105 3.65 1.22 0.226 
2500 – 3000 23799 2.99 189 6.58 2.2 0.607 
3000 – 3500 23266 2.93 101 3.52 1.2 0.218 
3500 – 4000 23477 2.95 110 3.83 1.3 0.257 
>4000 118474 14.9 407 14.17 0.95 0.121 
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Z seventh = -10.175 + 0.332 FR Elevation + 0.332 FR Slope + 0.501 FR Aspect + 0.449 FR Curvature + 

1.184 FR Lithology + 0.52 FR Distance to faults + 1.031 FR Drainage Density + 2.837 FR Distance 

to river + 0.734 FR Precipitation       + 0.589 FRLUC - 0.148FR Distance to road 

where: FR Elevation is the frequency ratio value of elevation class. FR Slope is the frequency 

ratio value of slope class. FR Aspect is the frequency ratio value of slope aspect class. FR Curvature 

is the frequency ratio value of curvature class. FR Lithology is the frequency ratio value of 

lithology class. FR Distance to faults is the frequency ratio value of the distance to faults class. FR 

Drainage Density is the frequency ratio value of drainage density class.  FR Distance to the river is the 

frequency ratio value of the distance to river class. FR Precipitation is the frequency ratio value of 

precipitation class. FR LUC is the frequency ratio value of land use change class. FR Distance to the 

road is the frequency ratio value of the distance to road class.  Then input Z seventh value into  

equation 1, and we got the probability of landslide occurrence with an index value from 0.001 

to 0.999.   

The landslide susceptibility maps were reclassified using natural break classification 

system in 5 class. The outcome was an interpretable map showing increasing spatial possibility 

of future landslide incidence consisting of very low, low, moderate, high and very high 

susceptibility classes (Figure 35a). 

The Hosmer–Lemeshow test revealed that the logistic regression equation's goodness of 

fit could be accepted if the significance of Chi-square is larger than 0.05. The value of Cox and 

Snell (R2) and Nagelkerke (R2) showed that the independent variables could explain the 

dependent variables (Table 23). 

 

Table 22 Logistic regression coefficient of landslide causative factors using an equal proportion of landslide and 
non-landslide pixel 

Number 
Test 

Variable in the equation 

Elevation Slope Aspect Curvature Lithology 
Distance to 

Faults 
Drainage 
Density 

Distance 
to River 

Precipitation 
Distance 
to Road 

LUC Constant 

1 0.261 0.593 0.571 0.429 1.453 0.469 0.977 2.84 0.597 -0.168 0.378 -9.97 

2 0.248 0.574 0.576 0.408 1.37 0.457 0.653 2.989 0.839 -0.164 0.57 -10.177 

3 0.195 0.593 0.525 0.503 1.439 0.573 0.862 3.05 0.749 -0.162 0.661 -10.661 

4 0.401 0.554 0.526 0.445 1.219 0.489 0.794 2.632 0.722 -0.187 0.623 -9.825 

5 0.351 0.561 0.498 0.634 1.535 0.483 0.901 2.624 0.638 -0.183 0.441 -10.126 

6 0.22 0.617 0.513 0.554 1.374 0.491 0.786 2.92 0.708 -0.143 0.596 -10.275 

7 0.332 0.548 0.501 0.449 1.184 0.52 1.031 2.837 0.734 -0.148 0.589 -10.175 

8 0.314 0.538 0.507 0.473 1.167 0.546 0.684 2.647 0.801 -0.185 0.479 -9.561 

9 0.383 0.572 0.568 0.379 1.235 0.5 0.733 2.738 0.644 -0.201 0.539 -9.674 

10 0.312 0.545 0.478 0.539 1.212 0.484 0.97 2.775 0.76 -0.083 0.502 -10.088 

             

Table 23  Logistic regression model summary  

-2 Log likelihood Cox & Snell R2 Nagelkerke R2 Overall Percentage 

5244.425a .377 .503 78.2 

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than .001. 
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6. 3. 2  Artificial neural network 

ANN was analyzed using normalized data in Table 21. This study carried out ten tests in 

order to acquire the best result, and this was found from the sixth test result analysis as can be 

seen from the sense of fairness and the normalized importance of each landslide causative factor 

as presented in Table 24.   The final landslide susceptibility map was produced by multiplying 

each causative factor with the independent variable importance calculated through the ANN 

analysis, and then an overlay of these layers was performed using equation Equation 6.6; 

𝐿𝑆 𝐴𝑁𝑁 =∑𝑓𝑤𝑖

𝑛

𝑖=1

𝑥𝑗                                                                                              (6.6) 

where LS ANN is the final landslide susceptibility map calculated for each pixel, fwi is the 

weight of each causative factor and wi, j is the normalized weight for the category j of factor i.   

 

Figure 35 Landslide susceptibility maps (LSM).  (a) LSM multivariate logistic on test 

seventh; (b) LSM artificial neural network (ANN) on sixth test models 

 

 

Table 24 The importance value derived from the artificial neural network (ANN) 

Causative Factor Number test of ANN 

1 2 3 4 5 6 7 8 9 10 

Elevation 0.057 0.073 0.053 0.075 0.052 0.045 0.067 0.041       0.072        0.060  

Slope 0.231 0.197 0.207 0.178 0.193 0.192 0.181 0.166       0.203        0.178  

Aspect 0.094 0.088 0.078 0.081 0.067 0.067 0.069 0.082       0.089        0.076  

curvature 0.021 0.023 0.021 0.025 0.029 0.024 0.024 0.025       0.021        0.033  

Lithology 0.094 0.094 0.101 0.101 0.123 0.128 0.091 0.068       0.088        0.107  

Distance to Faults 0.125 0.125 0.131 0.123 0.114 0.115 0.128 0.140       0.123        0.116  

Distance to River 0.142 0.137 0.137 0.133 0.121 0.131 0.124 0.116       0.144        0.125  

Drainage Density 0.044 0.031 0.035 0.038 0.038 0.033 0.042 0.028       0.035        0.049  

Precipitation 0.052 0.074 0.086 0.061 0.068 0.079 0.076 0.076       0.067        0.072  

LUC 0.105 0.123 0.125 0.154 0.159 0.153 0.161 0.215       0.121        0.150  

Distance to Road 0.036 0.036 0.029 0.032 0.036 0.034 0.036 0.042       0.038        0.034  
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 The obtained ANN equation on test sixth is as follows: 

LS ANN sixth = 0.045 ANN Elevation + 0.192 ANN Slope + 0.067 ANN Aspect + 0.024 ANN Curvature + 0.128 

ANN Lithology + 0.115 ANN Distance to faults + 0.033ANN Drainage Density + 0.131ANN Distance to 

river + 0.079 ANN Precipitation       + 0.153 ANN LUC + 0.034 ANN Distance to road 

 

The landslide susceptibility index values from LS ANN six ranges between 0.0026 to 

0.8297 and this landslide susceptibility index map was reclassified into 5 classes using natural 

breaks classification system. The outcome was an interpretable map showing increasing spatial 

possibility of future landslide incidence ranging from very low, low, moderate, high and very 

high susceptibility to landslide (Figure 35b). 

6. 3. 3   Comparison between LR and ANN 

6. 3. 3. 1 The relationship between susceptibility maps and training/validation data 

Landslide susceptibility maps were validated by comparing landslide areas to 

susceptibility classes that show the likelihood of landslide occurrence in a specific region. It 

was observed that the smaller goodness of fit in the low and very low susceptibility classes. 

The higher values of the goodness of fit were found to be in the high and very high susceptibility 

classes for the landslide susceptibility maps produced by the two models. 

Analysis from logistic regression training dataset showed that about 82.67% of the total 

landslide pixels fall in the very high and high susceptibility classes while 17.33% of the total 

landslide pixels fall in the very low and moderate susceptibility classes (Figure 35a). The 

validation set for the LR model generated a good correlation with the occurrence of landslides. 

It is evident from the presence of landslides on high and very high susceptibility being 82.12% 

and 19.9% occurring in the very low, low and moderate susceptibility class. A reasonable 

degree of fit is obtained for the overlay analysis of the validation and training set for the LR-

derived maps, which shows a constant increase from the very low to very high susceptibility 

classes. 

Analysis data of the training and validation datasets over the ANN-derived susceptibility 

map showed better results among the susceptibility categories derived using other methods like 
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LR (Figure 35b). Among the training data set, 92.59% of the landslide pixels occur in the high 

and very high susceptibility classes and that only 7.41% in the very low, low and moderate 

susceptibility classes. However, in the case of validation data sets, 92.68% of the landslide 

pixels occur in the high and very high susceptibility classes while 7.32% of the landslide pixels 

occur in the very low, low and moderate susceptibility classes. It is evident that there is a 

variation between results produced by the validation and training datasets for the high and very 

high susceptibility classes showing a difference of 0.09%. 

6. 3. 3. 2 Receiver Operating Curves 

A standard validation analysis to compare prediction performance of various classifiers 

is the Receiver Operating Curve (ROC) and the calculation of Area Under Curve (AUC) 

(Akgun et al., 2012; Tien Bui et al., 2012). The ROC is a useful method for representing the 

quality of deterministic or probabilistic landslide susceptibility models. ROC graph is plotting 

pairs of sensitivity versus (1−specificity) at all possible values for the decision threshold when 

sensitivity and specificity are calculated non-parametrically, which represents the percent of 

correctly classified landslide pixels by the model against specificity, which is the proportion of 

predicted landslide pixels over the total study area. The AUC represents the quality of the 

models to predict the occurrence or the non-occurrence of landslides in a reliable manner. 

A good fit model has an AUC value from 0.5 to 1. The ideal model performs an AUC 

value close to 1.0 (perfect fit), whereas a value close to 0.5 indicate inaccuracy in the model 

(random fit), (Carvalho et al., 2014). In general, the AUC of ROC curves representing excellent, 

good, and valueless tests were plotted on the graph. It classifies the accuracy of a diagnostic 

test i.e. the value ranges from 0.50 to 0.60 (fail), 0.60–0.70 (poor), 0.70–0.80 (fair), 0.80–0.90 

(good), and 0.90–1.00 (excellent).  Table 6 shows the ROC of LR and ANN models for the 

training and validation sets. The measurement of how well the model performs is represented 

in the success rate curve (training data) and the capability of the model to predict is represented 

in the prediction rate curve (validation data). It is observed that both LR and ANN models have 
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success rates expressed by their respective AUC values of 0.857 and 0.845. In the case of the 

prediction rate curve, LR and ANN model also show a similar result with AUC value of 0.856 

and 0.844, respectively. 

Based on each validation, it can be concluded that using ANN model produces a better 

landslide susceptibility map as compared to LR model.  Aditian and Kubota (2017) has also 

proved that ANN model has superior accuracy and performance in landslide susceptibility 

mapping compared to LR and FR models.  Artificial neural network (ANN) is useful for 

problem-solving and successfully applied in various science and engineering applications 

including the fields of landslide susceptibility, hazard, and risk mapping. ANN, is a machine 

learning method, has achieved more satisfactory results on landslide susceptibility mapping 

compared to other statistical models, e.g., logistic regression (Pradhan et al., 2010); Chauhan 

et al., 2010; Kanungo et al., 2006; Yilmaz, 2009).     

6. 3. 4 Optimized Causative Factor 

6. 3. 4. 1 Optimized using Logistic Regression (Forward stepwise) (FSLR) 

 Optimizing causative factors using FSLR helped us to eliminate the less effective 

causative factors using the likelihood ratio by observing the least coefficients from chi-square 

test and Akaike's information criterion (AIC) (Table 25).  To produce LSM from LR model, 

first equation 2 was calculated using the coefficients of each causative factor followed by 

inserting the results of equation 6.2 in equation 6.1  (Table 26).  Finally, the optimized 3 LSMs 

using LR model were obtained by using ten causative factors (Figure 37a), with nine causative 

factors  (Figure 37b), and with eight causative factors  (Figure 37c). Optimization using FSLR 

indicated more causative factors would give best optimization model. 
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Table 27 Important value of each causative factor and constant of optimizing causative factor using Artificial 

neural network (ANN) 

Number Causative Factor Importance 11 causative factor by ANN 

 ten causative factor nine causative factor eight causative 

factor 
1 Slope  0.187 0.221 0.260 

2 Distance to River  0.141 0.138 0.185 

3 Distance to faults  0.133 0.097 0.178 

4 LUC  0.054 0.081 0.080 

5 Lithology  0.083 0.074 0.074 

6 Aspect  0.074 0.052 0.070 

7 Precipitation  0.115 0.128 0.095 

8 Elevation  0.149 0.156 0.059 

9 Distance to Road  0.014 0.054 eliminated 

10 Drainage Density  0.050 eliminated eliminated 

11 curvature  eliminated eliminated eliminated 

      

 

6. 3. 4. 2 Optimized using artificial neural network (ANN) 

 

Optimizing causative factors using ANN helped to eliminate causative factors with least 

ANN values as can be seen in Table 27.  The causative factor eliminated in step one was 

Table 25 Likelihood Ratio Tests using Logistic Regression 

Effect 
Model Fitting Criteria Likelihood Ratio Tests 

AIC of Reduced Model   Chi-Square   

Slope 5433.213   417.229   

Distance to River 5307.492   291.508   

Distance to Faults 5179.995   164.011   

Aspect 5144.506   128.522   

LUC 5101.049   85.065   

Lithology 5069.815   53.832   

Drainage Density 5051.248   35.265   

Precipitation 5043.878   27.894   

Elevation 5038.540   22.557   

Curvature 5029.877   13.893   

Distance to Road 5023.388   7.405   

Table 26   Coefficient of Each Causative Factor and Constant of Optimizing Causative Factor Using Forward 

Stepwise (Likelihood Ratio) Logistic Regression 

Causative Factor The coefficient value of causative factor  

 10 9 8 

Elevation  0.271 0.271 eliminated 

Slope  0.538 0.548 0.553 

Aspect  0.489 0.501 0.515 

Curvature  0.439 eliminated eliminated 

Lithology  1.196 1.206 1.302 

Distance to Faults  0.495 0.493 0.556 

Drainage Density  1.066 1.051 0.945 

Distance to River  2.848 2.928 2.840 

Precipitation  0.752 0.737 0.857 

Distance to Road  eliminated eliminated eliminated 

LUC  0.574 0.583 0.653 

Constant  -10.248 -9.876 -9.771 
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curvature; in step two were curvature and drainage density and in step 3 were curvature, 

drainage density, and distance to road. LSM from ANN model was produced using equation 5 

for each step using the coefficient of each causative factor as can be seen in Table 27. By using 

the optimized causative factors, three LSMs were produced from the ANN model, i.e.,   LSM 

ANN using ten causative factors (Figure 37d), LSM ANN with nine causative factors (Figure 

37e), and LSM ANN with eight causative factors (Figure 37f). 

6. 3. 4. 3 Optimized using combination FSLR and ANN (FSLR-ANN) 

Optimizing causative factors using a combination of FSLR and ANN technique can be 

done in two steps.  Firstly, the least essential causative factors were eliminated until eight 

causative factors are remained by using FSLR and coefficient of the chi-square test, and 

Akaike's information criterion and secondly, landslide susceptibility maps were produced using 

ANN model in each step. 

In the first step, distance to the road was eliminated. In the second step, distance to road 

and curvature were eliminated, and in the third step, distance to road, curvature, and elevation 

were eliminated using likelihood ratio with less coefficient of chi-square test and Akaike's 

information criterion( Table 25).  LSM was produced using ANN method using equation 5 for 

Table 28  Important value of each causative factor and constant of optimizing causative factor using 

Artificial neural network (ANN) after eliminating causative factor by Forwarding Stepwise 

Logistic Regression 

 

Number Causative Factor Importance of causative factor by ANN 

 10 9 8 

1 Slope  0.191 0.220 0.159 

2 Distance to Fault  0.158 0.056 0.151 

3 Distance to River  0.133 0.138 0.117 

4 Precipitation  0.093 0.087 0.091 

5 Lithology  0.091 0.065 0.106 

6 Aspect  0.068 0.062 0.072 

7 LUC  0.064 0.196 0.269 

8 Drainage Density  0.041 0.030 0.035 

9 Elevation  0.144 0.146 Eliminated 

10 Curvature  0.017 Eliminated Eliminated 

11 Distance to Road  Eliminated Eliminated Eliminated 
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each step from the coefficient of each causative factor in Table 28.  From the optimized 

causative factors, three LSMs were produced using ANN model, i.e., LSM FSLR-ANN with 

ten causative factors (Figure 37g), LSM FSLR-ANN with nine causative factors (Figure 37h), 

and LSM FSLR-ANN with eight causative factors (Figure 37i).     

Optimization using FSLR-ANN model indicated collaboration between FSLR and ANN 

which give the best correlation of causative factor with landslide occurrence would result in the 

best optimization model likely in FSLR-ANN model with 9 causative factors.     

 

 

Table 29 Validation data using Area under curve (AUC) values  and percentage fall landslide occurrence on 

high and very high susceptibility class of the three landslide models for the training and validation 

dataset 

Number Optimized Landslide Susceptibility Model Number of causative factors 
10 9 8 

AUC Value 

Training dataset  

1 Logistic regression 0.857 0.856 0.856 

2 Artificial neural network 0.836 0.832 0.839 

3 Combination FS-LR and ANN 0.838 0.847 0.839 

Validation dataset 

1 Logistic regression 0.855 0.854 0.855 

2 Artificial neural network 0.832 0.827 0.837 

3 Combination FS-LR and ANN 0.835 0.844 0.8 

Percentage Fall Landslide Occurrence into High and Very High Susceptibility Class (%) 

Training dataset 

1 Logistic regression 81.38 81.20 79.32 

2 Artificial neural network 89.66 79.57 89.28 

3 Combination FS-LR and ANN 88.97 91.09 92.69 

Validation dataset 

1 Logistic regression 80.57 81.46 78.94 

2 Artificial neural network 88.78 79.11 89.76 

3 Combination FS-LR and ANN 87.97 91.30 90.08 

     



95 
 

 

Figure 36 Validation data using Area under curve (AUC) and percentage of landslide occur 

falling into each class of landslide susceptibility of the three landslide models for the training 

and validation dataset.  a) Success rate curve, b) Predictive rate curve, c) Percentage landslide 

occur of training dataset falling into Landslide Susceptibility Class (%) and d) Percentage 

landslide occur of validation dataset falling into Landslide Susceptibility Class (%). 
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6. 3. 4. 4 Models validation 

In general, the AUC of ROC curves are produced from optimized causative factors of 

each model for both the training and validation datasets range between 0.8 and 0.9 (Table 29 

and Figure 36 ) showing a high accuracy of prediction and validation. From overlay analysis, 

the comparison between validation and training datasets using FSLR-ANN susceptibility map 

shows the best result among all susceptibility categories, with an excellent validation accuracy 

in the range between 90% to 100% (Table 29 and Figure 36). In addition, the landslide 

susceptibility maps from LR and ANN models that were produced from their respective 

optimized causative factors, show landslide occurrence in the high and very high susceptibility 

classes for both the training and validation datasets with an AUC/ROC values ranging between 

0.8 and 0.9 shown in Figure 36.  However, the best landslide susceptibility map was obtained 

from the nine optimized causative factors (Figure 37h) using the combination method (FSLR-

ANN) in which 91.09% of the training- and 91.3% of the validation landslide datasets are 

falling in the high and very high susceptibility classes. 

In comparison of logistic regression with a bivariate statistics approach and found the 

logistic regression method to be the most accurate of these techniques like propose by Nandi 

and Shakoor(2010), Meten et al. (2015) and  Rasyid et al. (2016), but several investigators have 

compared neural network models with logistic regression using different datasets with some 

researchers finding superior performance for the neural networks than logistic regression such 

as Yesilnacar and Topal (2005), Nefeslioglu et al. (2008), Yilmaz (2009) and Pradhan and Lee 

(2010b).  In the current research, combine between Logistic regression and ANN model in this 

current research to optimization causative factor had given best result with 9 causative factor 

than the other models. 
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6. 4  Conclusion 

The preparation of accurate landslide susceptibility maps and landslide susceptibility 

assessments according to specific susceptibility indices is essential for supporting disaster 

warning systems. Studies have suggested numerous statistical methods and landslide causative 

factors to optimize when producing landslide susceptibility maps. In this study, the 

effectiveness of landslide susceptibility map production was assessed using Artificial Neural 

Network (ANN) and Logistic Regression (LR). We found that ANN outperforms LR when 

producing landslide susceptibility maps with eleven causative factors. Furthermore, optimizing 

of causative factors was done using three distinct methods: FSLR, ANN, and a combination of 

 

Figure 37 Landslide susceptibility map (LSM) of optimized causative factors using LR, ANN 

and combination FSLR-ANN.  a) LSM LR with ten causative factor; b) LSM LR 

with nine causative factor; c) LSM LR with eight causative factor; d) LSM ANN 

with ten causative factor; e) LSM ANN with nine causative factor; f) LSM ANN 

with eight causative factor; g) LSM Combination FSLR-ANN with ten causative 

factor; h) LSM Combination FSLR-ANN with nine causative factor; i) LSM 

Combination FSLR-ANN with eight causative factor 
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the these (FSLR-ANN). The causative factors were optimized using each method by 

eliminating factors one by one, from 11 factors to eight, eliminated with the least value of 

correlation of causative factors to landslide occurrence, then producing a landslide 

susceptibility map using each method. Optimizing of causative factors using the combination 

FS-LR and ANN (FSLR-ANN) model with nine causative factors (slope, distance to faults, 

distance to river, precipitation, lithology, aspect, land use change (LUC), drainage density, and 

elevation) gave the best result. In conclusion, Artificial Neural Network (ANN) was the best 

method to produce landslide susceptibility map. The best Optimization of Causative Factors 

was a combination of FSLR -ANN with nine causative factors with AUC success rate 0.847, 

predictive rate 0.844 and validation with landslide fall into high and very high class with 

91.30%. For this reason, this is an encouraging preliminary model towards a systematic 

introduction of FSLR-ANN model for optimization causative factors in landslide susceptibility 

assessment in the mountainous area of Ujung Loe Watershed. 
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Chapter 7 Conclusions and Future Works   

7. 1  Conclusions  

The increasing development in South Sulawesi as a gate to the east of Indonesia will 

increase pressure to the population and economic which will bring the finding of this study to 

the most relevance. Due to this, land use change as one impact of exploitation of the natural 

resources impacted to the landslide evident.  In South Sulawesi, the land use change was many 

cases located in the mountainous area, like in current research in upper Ujung-loe Watersheds. 

Increasing the land use change in mountainous area affects the slope stability and landslide 

occurrence. It is also worthy to be mentioned that landslide susceptibility study is still limited 

in the study area as a result of many unreported landslide cases. Due to this, current research 

conducted assessment on the close correlation of land use change with landslide occurrence and 

the performance of LUC to produce landslide susceptibility using geographic information 

system and multivariate qualitative prediction model  

The produced landslide susceptibility map is expected to be useful for government 

officials and urban planner in planning the development of the region. Geographic information 

systems are tools in disaster risk reduction planning which is one of the main issues of 

Indonesia's national development agenda to promote sustainable development and reduce the 

frequency of disasters and environmental degradation. Regarding landslide disaster risk, 

reduction and disaster mitigation are well approached by landslide susceptibility, hazard, and 

risk. 

Based on the previous chapters and the subsequent discussions the following significant 

conclusions are presented:  

1. Significant land use changes from 2004 to 2011 observed in the Ujung-Loe watershed 

that experienced a decline were no vegetation and dense vegetation classes, while those 

that have increased are medium vegetation and high vegetation classes.  Landslides have 
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occurred 128 times during 2012 to 2014, and the most frequently occurred in 2013 and 

is mostly dominated by the one with the land use change from high vegetation to 

medium vegetation.  The general land use change in Ujung Loe watershed indicates 

significant effect to landslides occurrence and slope instability. 

2. Using land use change (LUC) as a new causative factor to produce landslide 

susceptibility map (LSM), LUC has a good effect. The result indicated that producing 

LSM with LUC was better than without LUC. Performances of each landslide model 

were tested using AUC curve for success and predictive rate, which had the highest 

value of predictive rate with LUC in both frequency ratio (FR) and logistic regression 

(LR) method (83.4% and 85,2%, respectively) and 80.24% of landslides validation fell 

in the class of high to very high. These results suggested that changing the vegetation to 

another landscape causes slopes unstable and increases the probability of landslide 

occurrence. LR method is better than FR to produce LSM. LUC affects landslide 

susceptibility in the study area; it was observed that the change in vegetation type to 

another landscape destabilized slopes. Validation of landslide susceptibility was carried 

out by calculating the area under the curve (AUC) of receiver operating characteristic 

curve (ROC). Firstly, LR shows the highest accuracy in both success and predictive rate 

(85.6%). Secondly, the frequency of landslides in high to a very high class of 

susceptibility was calculated, which indicates the level of accuracy of the method. CF 

returns the highest accuracy of 85.28 %. 

3.  Using LUC have an excellent effect to produce landslide susceptibility map. When we 

use FR and certainty factor (CF), LUC has the highest value on both at LUC from 

primary forest to open area and paddy field.  In logistic regression method, LUC has the 

effect of landslide occurrence with significant value 0.589. Besides creating landslide 

susceptibility maps, this research illustrates the performance of frequency ratio (FR), 

certainty factor (CF) and logistic regression (LR) models as well. Two-steps of 
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validation were carried out in this study.  First, performances of each landslide model 

were tested using AUC curve for success and predictive rate, which is more than 82 % 

with the highest at LR Model.  In the second, the ratio of landslides falling on high to a 

very high class of susceptibility was obtained, which indicates the level of accuracy of 

the model. The CF model have highest accuracy with 85.28 % landslides fall in the 

range of high to very high class while in LR and FR model, it is 82.11% and 81.46%.   

4. Artificial Neural Network (ANN) was the best method to produce landslide 

susceptibility map. The best optimization of causative factors was a combination of 

forward stepwise logistic regression (FSLR) - ANN with nine causative factors with 

AUC success rate 0.847, predictive rate 0.844 and validation with landslide fall into 

high and very high class with 91.30%.  For this reason, this is an encouraging 

preliminary model towards a systematic introduction of FSLR-ANN model for 

optimization causative factors in landslide susceptibility assessment in the mountainous 

area of Ujung Loe Watershed. 

7. 2  Future works  

Based on the present study, further improvement could be included such as:  

1. Improving the landslide inventory as the base data for landslide 

susceptibility assessments in the study area by using remote sensing 

analysis.  Landslide inventory is one of the key input in landslide 

susceptibility mapping.  

2. Further studies should also employ the high accuracy of DTM, i.e., LIDAR 

data to obtain better accuracy of simulation and zoning in a landslide.
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Appendices  

Appendix 1. Study area in Ujung Loe Watershed, South Sulawesi, Indonesia  
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Appendix 2. Soil map in Ujung Loe Watershed, South Sulawesi, Indonesia  
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Appendix 3. Geology map in Ujung Loe Watershed, South Sulawesi, Indonesia  
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Appendix 4. Land use/land cover in 2015 at Ujung Loe Watershed, South Sulawesi, Indonesia  



109 
 

 
Appendix 5. Elevation map in Ujung Loe Watershed, South Sulawesi, Indonesia  
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Appendix 6. Slope map in Ujung Loe Watershed, South Sulawesi, Indonesia  
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Appendix 7. Map of Polygon Thiessen of Rainfall in Ujung Loe Watershed, South Sulawesi, Indonesia 
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Appendix 8. Map of Population Density in Ujung Loe Watershed, South Sulawesi, Indonesia 
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Appendix 9. Graph of Rainfall data period from 2002 to 2015 in Malino Rain Gauge Station 
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Appendix 10. Graph of Rainfall data period from 2003 - 2015 in Apparang Hulu Rain Gauge Station  
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Appendix 11. Graph of Rainfall data period from 2002 - 2015 in Bulo-bulo Rain Gauge Station 
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Appendix 12. Map of Nine Causative Factors  
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Appendix 13. Map of Eleven Causative Factors  
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Appendix 14. Landslide susceptibility map of with and without LUC causative factors using FR, and LR method with nine 

causative factor in Ujung Loe Watershed, South Sulawesi, Indonesia 
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Appendix 15.  Landslide susceptibility map of with eleven causative factors using FR, CF, and LR method in Ujung Loe Watershed, 

South Sulawesi, Indonesia 
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Appendix 16. Landslide susceptibility maps (LSM).  (a) LSM multivariate logistic on test seventh; (b) LSM artificial neural network (ANN) with eleven 

causative factor 
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Appendix 17. Landslide susceptibility maps of the best Optimized causative factor using a combination of forward stepwise (likelihood ratio) 

logistic regression to eliminated causative factor and artificial neural network (FSLR-ANN) with nine causative factor 
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Appendix 18. Image of survey location 
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Appendix 19. Image of survey location 
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Appendix 20. Image of survey location 
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Appendix 21. Image of survey location
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