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Abstract

In this thesis, we study a text line extraction method with user-intention and complete

text line extraction methods. As a crucial prerequisite, text line extraction plays an im-

portant role in Optical Character Recognition (OCR) applications. Text line extraction

with user-intention focuses on user-interested text line extraction to improve the user

experience. The text size, skew angle of text line, and reduction ratio are estimated to

perform the text line extraction. Then, the user-intention text line path is accumulat-

ed according to the local and global permutation relationship of text characters. The

complete text line extraction formulates the text line extraction problem as a global

optimization solution by taking advantage of the particular structure of constructed di-

rected graph upon the text characters. The directed graph imitates the human reading

sense and left to right text spatial arrangement. The text line paths are included in the

directed graph, which constructs the relationship and eliminates the disorder of candi-

date text characters. The text line path global optimization produces the text line paths

with minimum cost value iteratively by augmenting previous text line paths. Global op-

timization can identify the text line number automatically to avoid exhaustive searching,

and it benefits various appearances of text lines. Furthermore, we improve the text line

extraction performance with complementary usage of red, green, and blue channels. Ex-

perimental results on ICDAR2011 demonstrate that we achieved a promising f-measure

as high as 0.825, which is competitive with state-of-the-art methods.
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Chapter 1

Introduction

1.1 Background

With the growing requirement and rapid increasing usage of image capturing devices,

texts embedded in images and text line extraction have received increasing attention in

recent years. Up to now, a large number of approaches have been proposed to extract the

text in images. As mentioned in [1, 2], text in images and videos contain exact semantic

information (e.g., advertisements, street names, road signs). Sematic information can

describe image content accurately and make the image “communicable” and “readable”

by devices. Therefore, the text in images can be utilized in many image recognition and

understanding applications, such as multilingual translation [3], book digitization [4],

and image indexing and retrieval [5].

In general, a typical OCR system [6] consists of three steps. The first step is text

line extraction to localize the exact text line boundary. The second procedure is to

segment each symbol in the extracted text lines. Finally, the segmented symbol can

be fed into an OCR recognition engine [7] to recognize and decode the text lines to

1



Chapter 1. Introduction 2

device-readable symbols. The text line extraction localizes the exact text bounding

box by grouping individual characters into text lines according to character similarities.

The text character similarities include color [8, 9], gradient [10–12], stroke [13–15], and

texture [16–18], which can discriminate the text characters from a complex background.

However, fast and accurate text line extraction is a challenging task due to the large

diversity of text fonts, orientation, low contrast, and complex background, which are

difficult to handle by using conventional methods. Several text line examples from the

International Conference on Document Analysis and Recognition (ICDAR) competition

database are shown in Figure 1.1. Generally, text line extraction can further be decom-

posed into three primary steps, namely, candidate text character detection, false text

candidate removal, and text line accumulation. Candidate character extraction attempt-

s to extract the connected component of characters in different ways [13, 19, 20]. The

connected component is a connected region that has only two possible values for each

pixel. In false text candidate removal, noise text candidates are removed by discriminant

features extracted on the image character patch [21, 22]. Finally, the text candidates

are “greedy” accumulated into text lines [23–25].

The conventional text line extraction methods suffer from the following typical draw-

backs:

• The user may be interested in only some text line information in the image rather

than all the text line information. The text line extraction for all text lines will

increase complexity and decrease efficiency. Meanwhile, the redundant text line

information maybe encumbrance and confuse users.

• The conventional methods often suffer from numerous false positives in the can-

didate text character extraction step to achieve approved recall. Obviously, it is
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Figure 1.1: Text line examples from International Conference on Document Analysis
and Recognition (ICDAR) database.

hard to remove all the false positives for a high precision and the non-text noises

will degrade the text extraction precision and recall. To make matters worse, the

detected character candidates are independent of each other, leaving a challenging

task to text line extraction.

• In the text line extraction step, most existing techniques accumulate the detected

text components greedily to text lines by using knowledge-based heuristic rules

[26]. The text line extraction may fail and affect the robustness when the scenes

change for real applications.

• The conventional methods have difficulty determining the number of text lines in

images due to unknown text line information. The situation is exacerbated by

complex non-character noises, and exhaustive searching will lead to a low text

extraction precision.

In conclusion, due to the drawbacks and challenges in text line extraction, new meth-

ods expect text line extraction with user-intention, construction of relationship among

character candidates, text line paths optimization, and automatic determination of the
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number of text lines. With these issues in mind, we firstly perform text line extraction

with user-intention. The character size, skew angle of text line, and reduction ratio are

estimated to extract the text line in a sub-region of an image. Then, text candidate

components are accumulated to a text line according to local and global relationships.

We also propose a complete text line extraction method based on the global optimal of

text line paths algorithm. Complete text line extraction extracts all the text lines auto-

matically without any user interaction. In globally optimal text line extraction, unlike

the conventional methods with unstructured text candidates and exhaustive searching,

we integrate all the candidate text components into a directed graph inspired by the hu-

man reading sense. The directed graph can efficiently describe the human reading habit

and the corresponding relationship of each characters in a text line. Besides, text line

paths optimization can avoid exhaustive searching and ignore the potential noise paths

similar to the text line path planning. Through these operations, the proposed globally

optimal text line extraction is supposed to solve the problems of text line extraction.

1.2 Conventional Methods — Region-based Methods

In the literatures, a large number of state-of-the-art text line extraction methods have

been proposed. These methods can be roughly classified into two categories [27]: region-

based and connected components (CC)-based methods.

Region-based methods attempt to extract discriminative hand-crafted features in sliding

windows and classify the local windows into text and non-text regions by using well-

trained classifiers. Ye et al. [28] combined detection process, color, texture, and OCR

statistic features to discriminate texts from non-text patterns. These text properties are

used to group text pixels into candidate text lines. Hanif et al. [29] proposed a complete
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text localization boosting framework integrating feature and weak classifier selection

based on computational complexity to construct the text detectors, and a neural network

to learn the necessary rules for localization. Minetto et al. [30] described a robust and

accurate multi-resolution approach to detect and classify text regions in scenarios. The

segmented regions are filtered out by using shape-based classification, and neighboring

characters are merged to generate text hypotheses.

Li et al. [31] implemented a scale-space feature extractor that feeds an artificial neural

processor to detect text blocks, which can be used for tracking and refinement. Zhong

et al. [32] localized captions in JPEG compressed images and the I-frames of MPEG

compressed videos by using the intensity variation information encoded in the DCT

domain. Gllavata et al. [33] applied a wavelet transform to images and calculated the

distribution of high-frequency wavelet coefficient to statistically character text and non-

text areas. Ye et al. [34] calculated a wavelet energy feature to locate text pixels and

connected these pixels into regions by a density-based region growing method. Pan et

al. [35] extracted candidate text regions by a boosted region filter in each pyramid layer.

Then, the text lines are segmented by multi-orientation projection analysis.

Shivakumara et al. [36] presented new Fourier transform-based features in RGB space

with statistical features, which are subjected to K-means clustering. Kim et al. [37]

generated a transition map based on transient colors for overlay text regions between

inserted text and its adjacent background. Goto et al. [38] grouped homogeneous

regions to avoid multiple and redundant speech syntheses or braille conversions to a

wearable camera system for the blind. Ye et al. [39] leveraged both the appearance and

consensus of connected components, which were represented with color and spatial layout

features. Gomez et al. [40] built a perceptual organisation framework. It exploited

collaboration of proximity and similarity laws to create text hypotheses. Sung et al. [41]
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performed extremal region tree construction, sub-path partitioning, sub-path pruning,

and character candidate selection sequentially. Then, heuristics were used to group

the character candidates into text lines. Risnumawan et al. [42] introduced an ellipse

growing process based on a nearest neighbor criterion to extract text components.

Zhang et al. [43] exploited the symmetry property of character groups and allowed

for direct extraction instead of single characters or strokes properties. Huang et al.

[44] claimed a novel framework to tackle the low-quality texts by taking advantage

of the Maximal Stable Extremal Region (MSER) and sliding window-based method.

The MSERs operator can dramatically reduce the number of windows scanned, and

the sliding window with convolutional neural network (CNN) can correctly separate

the connections of multiple characters in text components. Lee et al. [45] extracted

six different classes features of text, and used AdaBoost with multi-scale sequential

search. Wang et al. [46] presented an end-to-end scene text recognition with a two-

stage pipeline consisting of text detection followed by a leading OCR engine. Coates et

al. [47] applied large-scale algorithms to learn the features automatically from unlabeled

data to construct highly effective classifiers for detection. Wang et al. [48] combined

the representational power of large, multi-layer neural networks to train highly accurate

text detector modules.

In the above trials of region-based methods, a large number of windows need to be

classified to achieve approved recall. Therefore, the methods are often computationally

expensive with complex classification methods. Moreover, region-based methods are

very difficult for scene text images with complex backgrounds to remove all the false

positives to achieve a high precision, and non-text noises will degrade the text extraction

precision. To make matters worse, there is no relationship and structure for independent

text candidates, it will leave another heavy task for text line extraction.
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1.3 Conventional Methods — Connected Components-based

Methods

As opposed to the region-based methods, CC-based methods attempt to extract con-

nected components from images, and then group them into text lines. Wang et al. [49]

generated the text lines from hierarchical edges reconstruction and cut by local linearity

in the MSER spanning tree, and then the cut multi-components are re-connected based

on the text line energy minimization in terms of text line consistency and fitting error.

Yin et al. [50] extracted MSERs as character candidates using minimizing regularized

variations, and then the candidates are grouped into text lines by the single-link clus-

tering algorithm. Tian et al. [51] proposed a unified scene text detection system named

text flow by utilizing the minimum cost flow network model, which can solve the error

accumulation problem at both character and text line levels effectively.

Wang et al. [52] segmented character connected components by markov random field

with local contrasts, colors, and gradients in multi-channels. Liolios et al. [53] improved

the connected components method for skew detection accuracy. Fletcher et al. [54]

generated the connected components and applied Hough transform to group them into

logical character strings that can be separated from the graphics. Tsai et al. [55]

generated a count of connected components extracted from the respective scale set for

each spatial bin from the multiple level image.

Shi et al. [56] formulated the text detection as a bi-label (text and non-text regions)

segmentation problem. It used a undirected graph model built upon MSERs to incor-

porate various text information sources into one framework, and the cost function could

be optimally minimized via graph cut algorithm to get the final MSERs labeling results.

Lee et al. [57] generated text lines through a modified K-means clustering algorithm
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by referring texture features, edge information and color information. Pan et al. [58]

designed a text region detector to segment and estimate the text confidence, and then

grouped the text components into text lines with a learning-based energy minimization

method. Koo et al. [59] trained an AdaBoost classifier to determine the adjacency rela-

tionship and cluster CCs by using their pairwise relations. Neumann et al. [60] applied

an exhaustive search with feedback loop to group extremal regions into words and select

the most probable character segmentation. Li et al. [61] separated the text and non-text

interferences by leveraging the surrounding context in an information-theoretic fashion,

and then yielded the text lines by minimizing the energy cost function.

Although CC-based methods have been proposed with promising performance, those

methods still have drawbacks when applied to text line extraction. Firstly, the CC-

based methods group the text components into text lines greedily until all positives are

identified, it is hard to determine the number of text lines in images due to the unknown

text line information, and the exhaustive searching will lead to a low precision of text

line extraction. Secondly, the “greedy” grouping usually applies geometrical spatial

arrangement or heuristics rules of text components. It may fail when the scenes change,

which will impact the robustness in real applications. Therefore, the new methods should

overcome the mentioned drawbacks in text line extraction.

1.4 Contribution and Organization of the Thesis

Unlike conventional trials of text line extraction, a text line extraction with user-

intention and complete text line extraction methods are proposed to address these limi-

tations. The text line extraction with user-intention focuses on user interested text line

only. While, the complete text line extraction is to extract all the text lines in the image
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without user interaction. The text lines are extracted by a path optimization strategy

instead of extracting individual text line one by one through geometric grouping. We

can expect that this approach is beneficial to avoid inconsistent extraction results.

The contributions include the following:

• The text line extraction with user-intention focuses on user interested text infor-

mation, thereby decreasing the complexity of text line extraction, and the user

interaction will improve the performance of text line extraction.

• The human reading sense-based directed graph can effectively construct the spatial

relationship structure among adjacent character components and eliminate the

disorder of candidate character components in the graph model.

• The path optimization of text lines is similar to the human reading ability in plan-

ning of a text line path sequentially. We demonstrate that the text line extraction

can be solved by text line paths optimization with intrinsic consistency of the same

text line.

• The text line paths optimization can produce the text lines iteratively to avoid

exhaustive searching and obtain the global optimized number of text lines.

In summary, the text line extraction user-intention and complete text line optimization

are good solutions for the limitations in the text line extraction. Experimental results

demonstrate the effectiveness of the text line paths optimization method in comparison

with state-of-the-art methods. In the following part, the text line extraction with user-

intention and global text line paths optimization-based methods will be introduced, and

the analysis will also be conducted.



Chapter 1. Introduction 10

The remainder of this thesis is organized as follows: Chapter 2 describes the text line

extraction with user-intention on an image, which focuses on a single user interested

text line. Chapter 3 introduces the directed graph construction upon the extracted text

candidates for text line extraction. The detailed analysis of directed graph construction

is presented in order to find out how it eliminates the disorder of characters and builds

the relationship of candidates. In Chapter 4, we describe the k-shortest paths global

optimization based text line extraction on the constructed text directed graph. The

performances on widely used ICDAR2011 and ICDAR2013 database are demonstrated

in order to show the effectiveness of the global text paths optimization based method in

the text line extraction task. In Chapter 5, the text line path optimization is extended

to different channel combinations to improve the performance. In Chapter 6, the op-

timization is further applied to improve the channel combination efficiency of text line

extraction. In Chapter 7, we conclude thesis.



Chapter 2

Text Line Extraction with

User-intention

2.1 Introduction

Text line extraction with user-intention pays attention to user interested text line rather

than all appearance of text lines in the image. The user-guided text line extraction plays

an important role in human computer interaction. Commercial mobile OCR translation

App [62] has been released with user-interested text line. Text line extraction with

user-intention is the first step for these applications.

Our particular focus in this chapter is reliable scene text line extraction with user-

intention in terms of swipe and tap gesture as shown in Figure 2.1. In case of swipe

gesture, the bounding box of swipe gesture is used as an initialized user-intention text

line region. In case of tap gesture, the tap gesture is converted into a swipe gesture with

default width of 100 pixels and height of 1 pixel when the width of an image is larger

11
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Figure 2.1: Text line extraction examples with user-intention of tap and swipe gesture.

than the default size. The text line extraction provides user interested text line rather

than detecting the whole text content.

In the followings, a fast and accurate text detection with user-intention is introduced,

the flowchart of which is presented in Figure 2.2 (tap gesture is used for demonstration).

Firstly, we design a sub-region detector to extract a sub-region of the target image based

on the estimated size of character, skew angle of text line, and reduced ratio. The yellow

mask in Figure 2.2 illustrates the sub-region. Secondly, the sub-region is decomposed

into connected components, whose heuristic and texture features are fed into a cascade

Gentle Adaboost classifier to eliminate the non-text elements. Then, the connected

component overlapping with user-interaction is defined as seed character component. If

no seed character component is extracted, the width of the user-interaction gesture will

be enlarged until at least one seed connected component is extracted. Finally, candidate

texts that satisfy the local and global permutation relationship with seed character

components, are accumulated to a user-intention text line.

The proposed method is supposed to have the following advantages in comparison with

conventional methods:

• Text line extraction can incorporate with user interaction by different gestures in
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Figure 2.2: Flowchart of the proposed system and samples in each step.

terms of swipe and tap, which will focuses only on the user-interested text line to

improve the user experience.

• Text line extraction with user-intention produces text lines in a local region of

the target image, which will decrease the computation complexity of text line

extraction.

• Text line extraction with user-intention will generate promising text line extraction

performance with human help and interaction.

2.2 Methodology of Text Line Extraction with User-intention

With the improving performance of mobile devices, high-resolution images are captured,

and fast text line extraction becomes a challenging task due to the limited computing

ability of mobile devices and large variation of text size, especially small text. Users do

not want to receive any delayed response from the service. Therefore, we aim to cut
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a sub-region of an image based on user-intention to provide a fast and accurate text

detection service without reducing the resolution of images for mobile devices.

2.2.1 Sub-region detector

Given a captured image and a user tap or swipe interaction, the top and bottom locations

of a sub-region are calculated according to the center of user-intention and the skew angle

of the target text line. Then, we expand the top and bottom region by the increment and

the character size of the target text line. The sub-region detector extracts a sub-region

Rs with user-intention interaction

Rs = p(s, φ) + ξ, (2.1)

where p(·) defines a region according to the given parameters. s, φ, and ξ denote the

estimated character size, skew angle of the target text line, and increment, respectively.

We estimate these text line parameters on local user-intention regions rather than the

whole image to speed up the operation. Firstly, edge connected components are gen-

erated with adaptive threshold based on the initialized user-intention text line region.

Two advantages exist; the edge character component is suitable for two polarity texts,

namely, black text on white background and white text on black background. Mean-

while, the adaptive threshold is appropriate for different quality images, especially low

contrast images. Double-edge symmetry of edge [63] is utilized to filter out the non-text

edges.

We employ the cascade windows to estimate the text size as shown in Figure 2.3. The

cascade windows comprise a series of windows with various levels. If no text is detected
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Figure 2.3: Double edge symmetry with cascade window.

in the current level, then, the size of window is enlarged, which is adaptive for various

text scales. All the cascade windows are normalized to a resolution 100 × 100. The

procedure is summarized as follows:

• Step 1: Initialize the first level of the cascade window and user region to a nor-

malized size.

• Step 2: Normalize the current window and extract the edge character components

using adaptive canny threshold.

• Step 3: Obtain the edge character components overlapping with user region.

• Step 4: When the detected texts touch the border, enlarge cascade window, and

go to step 2 until the detected text is located far from the border.

2.2.2 Estimation of skew angle

The skew angle is a crucial parameter for text line with user-intention. The optimal

skew angle is calculated by minimizing an energy cost function.

Firstly, the image coordinate is converted to a world coordinate with a central point of

detected edge character component set as zero coordinate, and then rotate the coordinate

axis to calculate the energy of each rotation. Given a candidate edge x and the detected

text character components X(x ∈ X), we define the energy Ex(θ) as the projection
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location of x in the given skew angle θ. The estimated skew angle of the target text line

φ is minimized as follows:

φ = argmin
θ

L∑
i=−L

|i| ·N(Ex(θ)), (2.2)

where L denotes the interval of projection, and N(·) calculates the number of detected

text edges that fall to a corresponding projection axis.

On the basis of the estimated size, orientation, and skew angle with increment ξ, we can

extract the user-interested text line in the sub-region of an image, and the sub-region

contains all the user-interested text. Finally, the sub-region of the image is reduced to

a normalized text size by the reduction ratio r defined as follows:

r =
min(ws, hs)

∥S∥
, (2.3)

where ∥S∥ denotes the normalized text size, and ws and hs denote the width and height

of the detected seed character components, respectively.

Through this operation, the processing time of text line extraction is reduced consider-

ably in comparison with text detection on the whole image without accuracy loss. The

larger resolution of image and text size become, the more we can speed up the processing

time. This characteristic is suitable for high-resolution image and low computing ability

of mobile device.
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2.3 Elimination of Noise Connected Components

A set of candidate character components is extracted by using Adaptive Sauvola method [20],

and then all the candidate character components are classified into two categories: text

character and non-text noise. Two-level features, fast heuristic features and accurate

texture feature, are fed into Gentle Adaboost classifier, which was selected because of

its fast and good classification performance.

2.3.1 Heuristic and texture features

The heuristic features are designed to effectively discard a large proportion of non-text

candidates with very small computational expense, while the texture feature is useful to

remove noise non-texts accurately. Heuristic features comprise the aspect Ratio, occupy

ratio, margin ratio, mean gray value ratio, stroke width ratio, and variance of stroke

width. The texture feature of Histogram of Oriented Gradient (HOG) is extracted for

the Gentle Adaboost classifier.

• Aspect Ratio (AR): AR is the ratio between the width and height of a connected

component and defined as:

AR = max(w/h, h/w), (2.4)

where h and w are the height and width of the connected components, respectively.

For a character component, h has no huge difference from w and thus AR ∼ 1.

For noise, there might be a large deviation from 1.

• Occupy Ratio (OR): OR is the ratio between the number of foreground pixel and

the number of total pixels, and defined as:
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OR = N(f)/N(c), (2.5)

where N(f) and N(c) represent the number of foreground pixels and the number

of total pixels of the connected component, respectively. A character component

has no huge difference of OR. For noise, there might be a large deviation from

OR.

• Margin Ratio (MR): text character components often share a uniform margin ratio,

which is similar to occupy ratio:

MR = N(m)/N(f), (2.6)

where N(m) and N(f) represent the number of margin pixels and the number of

foreground pixels, respectively.

• Mean Gray value Ratio (MGR): MGR represents the difference between the fore-

ground and the background

MGR = max(g(f)/g(b), g(b)/g(f)), (2.7)

where g(f) and g(b) are the average gray value of foreground and background

pixels, respectively.

• Stroke Width Ratio (SWR): Text character is composed of strokes, and the Mean

value of Stroke Width (MSW) is often stable with the width and height of the

connected component.

SWR =
MSW

w + h
. (2.8)
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• Variance of stroke width: Candidate character components with large stroke width

variance are likely to be non-text noise.

• Histogram of Oriented Gradient (HOG): The good performance of HOG has been

demonstrated in many fields by characterizing the distribution of local intensity

gradient. The HOG feature in terms of 144 dimensions is sent to Gentle Adaboost

to classify the candidate character components accurately.

2.3.2 Gentle Adaboost

To reduce computation and ensure good classification ability, the Gentle Adaboost clas-

sifier is used to discriminate the text and non-text noise with the extracted heuristic

and texture features. Instead of building a complex classifier, the boosting algorithm

attempts to select a cascade of better performing weak classifiers from a pool of weak

classifiers and construct a strong classifier by using a linear combination of simple classi-

fiers. The candidate CC is discarded when any classifier rejects it. Therefore, the overall

detection rate D and false positive F can be summarized as follows:


D =

∏M
i di

F =
∏M

i fi,

(2.9)

where di and fi denote the detection rate and false alarm rate of the ith layer with M

classifiers in the cascade, respectively.

The Gentle Adaboost uses weighted least-squares regression rather than fitting a class

probability to provide a more stable and reliable ensemble. The Gentle Adaboost clas-

sification algorithm [64] is described as Algorithm 1.
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(a) (b) (c)

Figure 2.4: Noise candidate character components elimination. (a) Binarization im-
age; (b) Fast noise removal by Gentle Adaboost with heuristic features; (c) Accurate

noise removal by Gentle Adaboost with HOG feature.

Algorithm 1 Gentle Adaboost classification algorithm.

Input:

S = {s1, s2, · · · , sn} with si = (xi, yi) as the training data and the maximum number

of classifiers M.

Output:

A classifier H(x) suited for the training data.

1: Initialize the weights wi = 1/n, i ∈ {1, 2, · · · , n}.

2: for classifier i = 1 to M do

3: Train Hm(x) by weighted least-squares of (xi, yi) with weight wi.

4: Update H(x) = H(x) +Hm(x).

5: Update wi ← wi · e(−yiHm(xi)) and normalize weights to
∑n

i wi = 1.

6: end for

7: return Output: H(x) =sign(
∑

Hm(x))

We first use the boosting training scheme to train a strong classifier by using a lin-

ear combination of heuristic features. These simple heuristic features can filter out a

large amount of non-text noises roughly with less computation, and each weak classi-

fier responds to only one heuristic feature. For the past text character components,

another cascade classifier trained by HOG feature is utilized to remove the non-text

character components for further accuracy improvement. Note that only text connected

components approved by all the cascade classifiers can be regarded as text character

components.
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2.4 Text Line Accumulation with User-intention

Candidate text character components are retained and non-text noises are filtered out

by Gentle Adaboost classifier using heuristic and texture features. The text line accu-

mulation with user-intention aims to accumulate candidate character components and

adjacent seed character components together into a meaningful text line.

For initialization, candidate character components overlapping with user-intention are

set as the seed character components, and then character components sharing the same

similarity with seed character components are assembled together based on the local

and global constraints.

2.4.1 Text character similarity

The text characters in a text line should share similarities of stroke width and gray

value information. To exploit this observation for the separation of candidate character

components in the same line, we define the gray value similarity f(cc) of current character

components cc with seed connected components sc. The similarity can classify the

candidate components to text line character components s or non-text line character

components s.

f(cc) =


s |GVcc −GVsc| ≤ |GVcc −GVb|,

s otherwise,

(2.10)

where GVcc, GVsc, and GVb denote the mean gray value of current character component,

seed character components, and background, respectively. The stroke width similarity
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between current character component swc and seed character components sws is defined

as |swc − sws|/sws.

2.4.2 Text line accumulation

The characters in meaningful text line share similarities, namely, character distance and

overlapping ratio in the line direction, which can be defined as local constraint. Each

character is one member of a text line, and we can use the character similarity in one

text line to define the global constraint. All candidate character components that satisfy

the local constraint and global constraint are accumulated to a text line.

2.4.2.1 Local constraint

Local constraint rules are designed to update the candidate character components to

text line character components. The updating operation is repeated until no candidate

text character component can be accumulated in text lines. The parameters in the local

constraint are decided experimentally.

• The distance dcs between the candidate character component and the seed character

components should be smaller than twice maximum distance das of neighboring seed

character components. Thus, we impose the following constraint:

dcs < 2 · das . (2.11)

• The vertical overlapping area Oc
s between candidate character component and

seed character component should be smaller than half of the candidate character

component area Ac. Thus, we impose the following constraint:
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Oc
s < 0.5 ·Ac. (2.12)

• The maximum width and height of the candidate character component should be

larger than half of the maximum of the width and height of the seed character

components. Thus, we impose the following constraint:

max(wc, hc) > 0.5 ·max(ws, hs). (2.13)

2.4.2.2 Global constraint

The global constraint attempts to restrict every character to the text line. As shown in

Figure 2.5, two parallel lines l1, l2, which are close to the text foreground with the slope

set as skew angle of the text line, are defined to present the global constraint. All the

text character components in the text line “RIVERSIDE” should be restricted in the

estimated border text lines l1 and l2.

Given a set of seed character components S and parallel lines l1, l2, we define its text

line region Rl1,l2 that encloses S. The probability of the candidate character component

Pcc belonging to the text line is defined by the ratio of character component foregrounds

falling into the text line region. The candidate character component belongs to the text

line if the probability is larger than the setting threshold

Pcc =
Fcc ∩Rl1, l2

Fcc
. (2.14)

where Fcc denotes the foreground pixels of candidate character component. After new

candidate character components are grouped into the text line, the new parallel lines
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Figure 2.5: Global constraint for user-intention text line between two green parallel
lines l1 and l2.

l1, l2 should be updated until no candidate can be grouped. Finally, we obtain the whole

user-intention text line.

2.5 Experiments and Analysis

To evaluate the effectiveness and robustness of the proposed text line extraction with

user-intention algorithm in terms of swipe and tap gesture, we apply the proposed

method to the public ICDAR2003 database [65], which contains 258 images in the train-

ing set and 251 images in the test set. The Gentle Adaboost classifiers are trained on

the training database with heuristic and HOG features, and the performance of the

proposed method is evaluated on the test database. The user-intentions of swipe and

tap gestures are made by volunteers to indicate the target text line randomly on the

ICDAR2003 database.

2.5.1 Experimental results and analysis

The traditional precision criterion [66] is used to evaluate the performance of text line

extraction with user-intention. It should be noted that the user-intention target texts
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are text lines rather than a single character. The precision criterion compares the match

similarity between the detected text line bounding rectangle and the annotated ground

truth text line bounding box. The text line region matching area, m(i, j), between the

ith ground-truth text line region and the jth extracted text line region is given as follows:

mr(Gi, Ej) = f(Gi ∩ Ej ∩ I), (2.15)

where I is the image region, and Gi and Ej denote the ith ground truth region and the

jth extracted text line region, respectively. f(·) is a function computes the intersection

area of the text line region. Then, the best matching of the extracted text line region

and ground truth text line region can be computed by the following equation:

MatchE(Ej) = max
i=1,...,|G|

2×mr(Gi, Ej)

|Gi|+ |Ej |
. (2.16)

The precision criterion is calculated on each image independently, and then an average

value over all images is calculated as the performance of the proposed method. We count

the number of matches according to the overlapping of the labeled text lines and the

ground truth text lines

precision =

∑|E|
j MatchE(Ej)

|E|
. (2.17)

Table 2.1 illustrates the performance of scene text detection with user-intention in terms

of tap gesture. Our method achieves the precision of 0.81 on ICDAR2003 test database,

which is 9.0% higher than Du’s method. Compared with state-of-the-art method, the

proposed method achieved encouraging performance.
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Table 2.1: Precision of the proposed text line extraction with user-intention in terms
of tap gesture on the ICDAR2003 database.

Method precision

Du [62] 0.72

The proposed method 0.81

Table 2.2: Precision of text line extraction with user-intention in terms of swipe
gesture on the ICDAR2003 database

Method precision

Du [62] 0.77

Sun [67] 0.79

The proposed method 0.84

Table 2.2 illustrates the precision performance of scene text detection with user-intention

in terms of swipe gesture. Our method achieves a precision of 0.84 on the ICDAR2003

test database, which is improved by 5.0% in comparison with Sun’s method. Meanwhile,

the performance of text line extraction with user-intention by swipe gesture is 3.0%

higher than that of tap gesture, this performance is reasonable because more information

is captured than tap gesture.

Figure 2.6 demonstrates successful and failure examples of text line extraction with

user-intention on different images with different orientation and skew. The text line

extraction focuses on a user-interested text line rather than the whole text lines in the

image. The red point and skew line denote the tap and swipe gesture, respectively.

The green box and red box present the successful and failure examples of text line

extraction with user-intention, respectively. The images in the first row give the text

line extraction with tap gesture, and the images in the second row present the text line

extraction with swipe gesture. We observe that the proposed method is accurate and

robust for complex natural scene images with various fonts and sizes, and low contrast.

The proposed method can also be applied in the handhold devices for human-computer



Chapter 2. Text Line Extraction with User-intention 27

(a) (b) (c)

(d) (e) (f)

Figure 2.6: Successful and failure examples of text line extraction with user-intention
on the ICDAR2003 competition database.

interaction.

Although text line extraction with user-intention achieves competitive results, some

failures still exist. Some user-interested text lines are not successfully extracted, as

shown in Figure 2.6(c) and (f), due to the failure of text character extraction. This

limitation can be corrected by user-labeling the complete text line.

2.6 Conclusion

The purpose of this chapter is to extract text line with user-intention in terms of tap and

swipe gesture. The proposed method makes full use of the user-intention and designs

a sub-region detector by using the estimated text property. The decomposed character

components are discriminated into text character components and noises through the

cascade of Gentle Adaboost classifiers with extracted heuristic and texture features.

Finally, text candidate character components, which share the same similarity of gray
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value and stroke width constraints, are accumulated to a text line according to the local

and global relationship with seed character components. The experimental results on

the public ICDAR2003 competition database demonstrate the effectiveness of our text

line extraction with user-intention in natural scene images.



Chapter 3

Character Candidates Extraction

and Directed Graph Construction

for Multiple Text Line Extraction

3.1 Introduction

As mentioned in Chapter 1, most of the conventional methods [50, 57, 59, 60] usual-

ly group the text components into text lines exhaustively without any structure due

to the difficulties of the construction of text candidate structure. Some of methods

[51, 56, 58] build a undirected graph to simply integrate the text components. These

difficulties include text line alignment, text variation, and scene complexity, making the

text candidates relationship construction a challenge task.

• Text line alignment: the text lines can show horizontal, skew, or non-planar align-

ment, and various perspective distortions. As a result, no priori knowledge can be

29
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Figure 3.1: Construction of the directed graph based on the spatial arrangement of
connected components.

used to construct the text component relationship.

• Text variation: the size and font of text characters can greatly vary even in the

same text line, making it difficult to build relationship. To make matters worse, the

broken or touching text components will increase the difficulties of the relationship

construction of text components.

• Scene complexity: in natural scene environments, the text characters are surround-

ed by numerous text-like false positives, such as bikes, tires, leaves, and fences,

which are very difficult cases for building relationships among text components.

This chapter focuses on the disorder elimination of text components and attempts to

discover possible solutions by observing and analyzing the pattern of local text line ar-

rangement. Inspired by how humans read text lines from left to right, we construct

a directed graph from the extracted text candidates as shown in Figure 3.1. The red

bounding boxes and green arrows denote the vertices and edges in the directed graph.

The vertices comprise all the connected components that may be single characters,

touching characters, broken characters, and noises due to uncorrect character extrac-

tion process. The directed edges connect the vertices based on the arrangement of the

vertices from left to right. The correct text lines are assumed to be included as paths
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in the directed graph. We can obtain a globally optimal text line extraction results by

extracting those paths that give the minimum overall cost.

This method is supposed to offer the following advantages over the conventional methods:

• The directed graph designed from the candidate text component nodes can be used

to construct the relationship structure and eliminate the disorder of candidate text

components in the graph model.

• Compared with the undirected graph, the directed graph designed from the can-

didate text component nodes can greatly reduce the computational complexity for

text line path global optimization.

• The maximal stable extremal region-based text components extraction method

can extract most text components even from low-quality images to achieve the

approved recall. Meanwhile, the designed Convolutional Neural Networks (CNN)

can effectively remove the noisy false positives to achieve a promising precision.

3.2 Text Candidate Extraction

3.2.1 Extraction of maximal stable extremal region

In OCR technologies, connected components of foreground pixels are extracted to be

text character candidates. This is so-called text character extraction. Text character

extraction is conducted by discriminating the text components from image backgrounds.

Such extraction should be robust to the effects of color, illumination, degradation, and

texture variation in the foreground and background. The extracted text components

can be utilized for text localization, verification, or recognition in each OCR step.
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Figure 3.2: Example of text character components extraction from background.

Each image has two text character polarities, namely, black text characters on white

background and white text characters on black background. A color image is initially

converted into the gray channel. Then, the two polarities of text characters are extracted

by using the MSER method. The black text characters on a white background indicate

that the pixel intensity of text characters in the image is lower than the intensity of

background boundary pixels. Similarly, the white text characters on a black background

indicate that the pixel intensity of text characters in the image is larger than the intensity

of background boundary pixels. Both of black text characters and white text characters

must be extracted for text line extraction in OCR application.

Given an input image I, the text character extraction binarizes a set of contiguous

regions R = {r1, r2, ..., rn} on an input. The bounding box of each region can be used as

a text character node in the construction of directed graph and as text nodes in a text

line. Figure 3.2 illustrates the extraction of text characters from the target image. As

can be seen in the figure, a set of text characters {“P”, “e”, “a”, “c”, “o”, “c”, “k”, “s”}

are discriminated from the texture background.

In the text components extraction, we employ the MSER method to extract the text

character candidates. The MSER based character region extraction method [19] has

been considered as one of the best candidate connected components extraction method
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[68–70], which has won the first place in the ICDAR2011 [71] and ICDAR2013 [72]

competitions and achieved promising performance. The MSER can be regarded as a

virtually unchanged local binarization over a large range of thresholds. The MSER

method shows high efficient in both multi-scale detection and low quality connected

components with near-linear complexity [73].

An Extremal Region (ER), whose special case results in MSER, is well defined as a

connected component region Ri if the intensity values of all sets are either larger or

smaller than its outer boundary intensity. The local minima intensity will appear and

two local minima regions will merge into a new extremal region with the threshold level

increasing. Let ∆ be the parameter of threshold step, the variation of an ER Ri is

defined as follows:

v(Ri) =
|Ri+∆ −Ri|
|Ri|

. (3.1)

An ER Ri is an MSER when it is maximally stable, that is, it has a minimum of variation

and if its variation is lower than that of its parent Ri−1 and child Ri+1.

Figure 3.3 illustrates an example of the MSER root tree with an increasing threshold

level. Firstly, the text characters in “Home” are adhesive in one connected component

in the assigned threshold. Secondly, as the threshold increases, the text character “H”

is separated from the adhesive connected component, and then the touching connected

component consists of the three character “ome”. Finally, the characters “o,” “m,”

and “e” are discriminated from the adhesive connected component “ome” in the MSER

rooted tree.
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Figure 3.3: Text candidates extraction in the MSER rooted tree.

The performance of an MSER is controlled by five parameters, which are defined as

below:

(a) maxWH: it prunes those component regions whose maximum of width and height

bigger than “maxWH”,

(b) minWH: it prunes those component regions whose minimum of width and height

smaller than “minWH”,

(c) maxVariation: it prunes those regions with sizes similar to those of its children,

(d) minDiversity: it cuts off those MSERs with diversity values below the set value, and

(e) ∆: it represents the parameter for the threshold step.

In the MSER rooted tree, any connected component that satisfies the MSER definition

will be extracted as a text candidate. However, text characters have exclusive charac-

teristics that discriminate text characters from other MSERs. Therefore, we apply the

aspect ratio characteristic to penalize too large or too small aspect ratio [50]. Suppose

that vr is the variation of region r and ar is the aspect ratio of region r, we can define

the regularized variation v∗r with the text character aspect ratio falling into [amin, amax]

as follows:
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v∗r =



vr − λ · (ar − amax) ar > amax

vr − λ · (amin − ar) ar < amin

vr otherwise.

(3.2)

3.2.2 Character and non-character classification

Although the MSER method can achieve a promising recall and extract most of the

candidate text components even in low quality images, this technique suffers from many

false positives, which result a low precision. Any non-text objects, such as bikes, leaves,

and tires, will generate noisy MSER connected component regions. In this section,

character and non-character classification is described to identify and eliminate the non-

character noises for the text line extraction. The false positive MSER components are

removed by using CNN classifiers [74].

CNN is regarded as one of the most promising techniques that achieve state-of-the-

art performance in solving many data-driven problems, such as character recognition

[75–77], face recognition [78–80], speech recognition [81–83], and natural language un-

derstanding [84–86]. The CNN is a hierarchical architecture with multiple layers of

feature convolutions. Unlike conventional hand-engineered features [87, 88], the CNN is

capable of meaningful high-level features and semantic representation for text character

components automatically.

We design one CNN to discriminate the text characters and non-characters as shown

in Figure 3.4. The designed CNN consists of three convolutional layers, each of which

is followed by a Rectified Linear Units (ReLU) layer and a max-pooling layer. Then, a

fully-connected layer is followed by a softmax classifier. The convolutional layer can be

regarded as a feature extractor that converts the text candidate regions into “feature
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Figure 3.4: The designed CNN structure for character and non-character classifica-
tion.

maps” that represent various text features, including strokes, edges, spatial distributions

or textures. Three convolutional layers produce 32, 64, and 128 feature maps, respec-

tively, which are convolved by a shifting window with 3 × 3 kernels in one stride. The

output feature maps will be reshaped as input feature maps for the next convolutional

layer.

The ReLU layer is the non-saturating activation function f(x) = max(0, x) to enhance

the non-linear properties of the feature maps and to accelerate the CNN training on

large and complex datasets.

In the max-pooling layers, the non-linear down-sampling strategy is employed to reduce

the spatial size of the feature maps and to control the over-fitting. For each 3× 3 sub-

region in the feature map, we apply the overlapped pooling strategy with a stride of

2. The maximum value of the sub-region is then outputted for successive layers in the

CNN architecture.

Each neuron in the fully-connected layer has connections to all activations with the

previous layer. Two fully-connected layers with 1024 and 2 neurons, respectively, are

then concatenated in sequence after the convolutional layers. The fully-connected layer

that is followed by a softmax classifier computes the score probability of classifying one

candidate region into either text character or non-text noise.
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Figure 3.5: Character and non-character classification strategy for touching charac-
ters and non-touching characters.

Given an extracted binary MSER with an aspect ratio smaller than 2.0, it is normalized

into 40x40 pixels while maintaining the aspect ratio. The minimum width and height

are padded by the bounding pixels. The resized regions are fed into the designed well-

trained CNN to predict the character or non-character score probability. Those character

regions whose score probabilities exceed the set threshold T = 0.9 are retained as true

positives, while those character regions with score probability smaller than threshold are

removed as noises.

For the touching characters (with an aspect ratio larger than 2.0 in the experiment),

the minimum width and height is normalized to 40 pixels. The left and right patch

segments are recognized afterward for average voting. Figure 3.5 presents an example

of the touching character classification strategy. The characters in “ome” are touching

together in one MSER, the left segment “o” and right segment “e” are segmented from

the touching characters according to the height of MSER. These two segments are fed

into the designed CNN to calculate the score probability and the probability of touching

character is calculated by the average probability score of these two segments.
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3.3 Directed Graph Construction

The directed graph construction aims to build the structure of a graph like Figure 3.1.

The vertices of the graph comprise the candidate text characters which are extracted

by the procedure of Section 3.2. The directed edges of the graph connect the candidate

text characters which satisfy some constraints. The text lines are assumed to be path

segments in the directed graph.

3.3.1 Constraints of the potential directed graph edges

The text characters in an image are spatially arranged in a text line, and the neighboring

text characters share similar spatial properties. Obviously, we can use these constraints

to filter out the unnecessary edges in the directed graph. Two constraints, namely,

distance constraint and overlapping constraint, are defined for the potential directed

graph edges, and any two text candidate components in the directed edge must satisfy

the criteria.

3.3.1.1 Distance constraint

Given that two neighboring text characters, mi and mj , are located close to each other

in a text line, we restrain the Euclidean distance D(mi,mj) between two neighboring

text characters lower than the threshold td as follows to avoid unnecessary edges in the

directed graph:

td = α ·min(max(wi, hi),max(wj, hj)), (3.3)
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Figure 3.6: Distance constraint for the directed graph construction.

where wi, hi and wj , hj denote the width and height of the bounding boxes of the mi

and mj , respectively, and α is a control parameter for the distance constraint.

Figure 3.6 illustrates the effectiveness of the distance constraint. Each character is set

as one vertex of the directed graph. The green and red arrows denote the potential

directed edges and impossible directed edges, respectively. For the source vertex of text

character “C” with blue rectangle, we can build the potential directed edges from the

source character “C” to characters “O”, “L”, and “C” due to short distance. Obviously,

building directed edges from the source vertex “C” to characters “H”, “E”, “S”, “T”,

“E”, and “R” is unnecessary because the source character “C” is located far from the

target characters.

3.3.1.2 Overlapping constraint

We observe that the text characters are spatially arranged as a straight, skewed or curved

text line. The overlapping between two neighboring text characters exists between these

two neighboring characters. Therefore, we apply the overlapping constraint in the as-

signed direction from left to right as shown in Figure 3.7. The length of the overlapping
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Figure 3.7: Overlapping constraint between two neighboring text connected compo-
nents.

range oi,j must be larger than 0, which is considered reasonable for the arrangement

of the text lines. Any two MSER components that satisfy these two constraints are

potentially linked in the text line directed graph.

3.3.2 Directed graph construction

Given that any two or more text characters can be treated as a text line in an image,

and the disorder in the candidate characters can make text line extraction a challenging

task. Meanwhile, the heuristic rules can decrease the robustness of text line extraction

when the text line situation changes. Therefore, we construct one directed graph upon

the candidate text characters by applying the weak universal knowledge of the text line

in order to effectively build the relationship structure and eliminate the disorder of text

characters. The text lines are assumed to be text line paths in the directed graph, and

the text line extraction can be formulated as a solution to the optimization of paths in

the directed graph.

Suppose each MSER component is a vertex vi, and a directed edge ei,j is located between

vi and vj in the directed graph. We can construct a directed graph GD = (V,E)

composed of text character vertices V and directed edges E that connect vertices of

text characters. The vertices and edges set of the directed graph can be expressed

as V = {vi}ni=1 and E = {ei,j}, respectively, where n denotes the number of MSER

components vertices.
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Figure 3.8: Construction of directed graph upon the MSER text character compo-
nents.

The vertices of the directed graph represent the locations of MSER components, and each

vertex can be the starting or the ending location of a text line. Therefore, two additional

virtual vertices vsource and vsink are added to the directed graph, where vsource is the

possible graph source point and vsink is the text line sink point. A directed edge esource,i

is located from the virtual source vertex to each MSER component and a directed edge

ei,sink is located from each MSER component vertex to the sink vertex. The cost value

of these edges are set to 0 to allow each MSER component to be the start or end location

of the text line at no cost.

The directed graph edges are built in the assigned text line direction from left to right

according to the spatial position relationship of the center MSER vertices. This arrange-

ment mirrors the behavior of humans in reading text character by character. For vertex

vi, we firstly check the text line direction from left to right. The x-coordinate cxj of

vertex vj must be larger (cxj > cxi) than the x-coordinate cxi of vertex vi. We also
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verify the distance and overlapping constraint to build the candidate vertex pair pi,j

from vertices vi to vj . Finally, we identify the nearest MSER component vertex vj from

the set of candidate vertex pair {pi,j} and build one directed edge ei,j from the current

vertex vi to the selected MSER vertex vj . The details of the directed graph construction

are given in Algorithm 2.

Algorithm 2 Directed graph construction.

Input:

The set of extracted text character component vertices, V = {vi}ni=1.

Output:

Constructed directed graph, GD = (V,E).

1: for i = 1 to n do

2: Build an directed edge esource,i from virtual source vertex vsource to vertex vi;

3: Build an directed edge ei,sink from vertex vi to virtual sink vertex vsink;

4: for j = 1 to n, j ̸= i do

5: if cxj > cxi then

6: Verify the text character pair by the distance and overlapping constraints,

described as 4.1;

7: Build the component pair pi,j between vertex vi to vj , and add it to the

candidate set {pi,j};

8: end if

9: end for

10: Find the nearest vertex vj with minimum distance in the set of {pi,j};

11: Build an directed edge ei,j from vertex vi to vertex vj ;

12: end for

13: return GD = (V,E).

Figure 3.8 presents an example of the built directed graph. In the figure, the blue and

purple dashed arrows denote the directed edges from the virtual source vertex to the

MSER vertex and the MSER vertex to the virtual sink vertex, respectively, while the

green arrows represent the directed edges from the start to end vertices, The text lines

“Station” and “car park” are included in the directed graph in the form of directed
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paths p1=v“S”, v“t”, v“a”, v“t”, v“i”, v“o”, v“n” and p2=v“c”, v“a”, v“r”, v“p”, v“a”, v“r”,

v“k”, respectively.

3.3.3 Cost function of graph edges

Each directed edge is assigned an appropriate cost value in the directed graph to measure

the importance of the relationship among the text components, and the directed edge

cost function c(ei,j) calculates the cost value from one MSER vertex to another in the

directed graph edge. Specifically, the following unary and pairwise cost functions are

employed to calculate the cost of each directed edge.

1. Unary cost function: the unary cost function measures the cost value of classifying

the candidate MSER vertex into text. The probability of recognition engine and

variation of MSER are used to define the unary cost function.

(a) Probability of recognition engine: the probability given by the CNN-based

recognition engine in Section 3.2.2 is a strong feature that discriminates the

text character from noises.

(b) Variation of MSER: the text MSER component is virtually unchanged over

a large range of thresholds to distinguish it from the background. Therefore,

the text MSERs tend to show small variations of MSER components.

2. Pairwise cost function: the pairwise cost function measures the cost value of the

discontinuity of two linking text candidates in one text line. The location distance,

overlap, and gray value similarity of the adjacent vertices are applied to define the

pairwise cost function.
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(a) Location distance of adjacent vertices: the text line comprises some individual

characters that are arranged in a specific order. The adjacent MSER compo-

nents in the text line are separated by a small distance, while the noises do

not follow any regular pattern.

(b) Overlap of adjacent vertices: all components in the text line are arranged

straightly, and an overlap is observed between the adjacent text components

as shown in Figure 3.7. The overlap between adjacent vertices is calculated

as:

roi,j =
oi,j

hi + hj
. (3.4)

(c) Gray value similarity of adjacent vertices: adjacent text vertices in the same

text line have a similar gray vale, which is calculated by the mean gray value

of foreground:

gi,j = |gi − gj |. (3.5)

The directed edge ei,j from vertices vi to vj is assigned the cost value cei,j , which is

calculated as:

cei,j = − log

(
ct

1− ct

)
, (3.6)

where ct is calculated by the above unary cost and pairwise cost with equal weight. Note

that there is no cost for directed edges between each MSER vertex and virtual source

vertex, and the same as sink vertex.
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Table 3.1: Parameter setting of the text character extraction by using the MSER
method.

Parameter ∆ maxWH minWH maxVariation minDiversity

Setting 4 10 600 0.5 0.5

3.4 Experiments and Analysis

The experiment results of the text character extraction and directed graph construction

are demonstrated in this section to show the effectiveness of the proposed method.

The analysis of the experimental results highlights the importance of constructing the

directed graph construction on the text characters.

3.4.1 Experiment setting

We use five parameters to control the text character extraction performance. These

experiment parameters are listed in Table 3.1. Given that the MSER regions are being

produced in the root tree, we increase the threshold step by 4 pixels and prune those

regions with a “maxVariation” larger than 0.5 and a “minDiversity” smaller than 0.5.

The maximum width and height in the experiment are both set to 600, thereby limiting

the extraction to those text characters whose maximum width and height are smaller

than 600 pixels. Meanwhile, the minimum width and height are set to 10, thereby

further limiting the extraction to those text characters which width and height do not

go below 10 pixels. These settings are deemed reasonable because too large or too small

text character candidates are tend to be noisy and need to be filtered out.

We observe that the aspect ratio of text characters are often within a certain range.

Having a too large or too small aspect ratio indicates that the MSER region tends to be

noisy or touching each other. Obviously, we can penalize the variations in the MSER with
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Table 3.2: Parameter setting of variation penalization in the MSER root tree.

Parameter λ amax amin

Setting 0.33 3 0.33

a too large or too small aspect ratio. The parameters of the MSER variation penalization

are listed in Table 3.2. Suppose that the regular aspect ratio of text characters are

located in [0.33, 3], we can penalize the too large or too small MSER regions with the

coefficient of 0.33.

The neighboring text characters in the text line are adjacent to one another and the

Euclidean distance of potential linking text characters is small enough for the text line

arrangement. Therefore, the noisy directed edges can be effectively filtered out from the

constructed graph by the distance constraint. We set the parameter k to 3.0 to remove

the potential directed edges as defined in Equation 3.3.

To train the CNN parameters, we harvest the training samples by applying the MSER

text character detector on the ICDAR2011 [71] and SVT [89] training databases. For the

positive samples, we manually label the text character regions extracted by the MSER

method in each image. Similarly, the MSER regions that do not overlap with the ground

truth text characters are harvested as negative samples. Each sample is padded by 2

pixels to avoid losing the boundary features. Figure 3.9 presents some negative samples

from the non-character region in the training database, while Figure 3.10 presents some

positive text character samples that can either be single text characters or touching

characters.
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Figure 3.9: Negative CNN training samples for character and non-character classifi-
cation.

3.4.2 Results of character candidates extraction

Figure 3.11 presents some results of text character extraction by using the MSER

method. The images on the first, second, and third rows are the source images, the

results of black text character extraction on a white background, and the results of

white text characters extraction results on a black background, respectively. The im-

ages on the first column show that the text characters have various sizes and styles. For

instance, the text characters “JAVA” are much larger than “3RD” and “EDITION.” As

for the images on the second column, the intensity of the text characters “go create” is

much higher than that of the adjacent characters because of the highlights. The images

on the third column show that the MSER method has successfully extracted the two

polarities text characters. The images on the fourth column reveal that the contrast

between the text characters and background is fairly small to discriminate these two

from each other. Consequently, the MSER method can effectively extract text charac-

ters with various sizes, highlights, different polarities and low contrast text characters

in images.

Figure 3.12 illustrates some examples of CNN-based false positive removal. The green,

blue, and red bounding boxes represent the retained black text characters, white text



Chapter 3. Character Candidates Extraction and Directed Graph Construction for
Multiple Text Line Extraction 48

Figure 3.10: Positive CNN training samples for character and non-character classifi-
cation.

Figure 3.11: The results of extracting text characters from different images by using
the MSER method. The images on the first, second, and third rows are the gray
image, the extracted black text characters, and the extracted white text characters,

respectively.

characters, and removed noise non-characters, respectively. Most of the noise non-

characters are removed except for some noise regions with features that are similar to

those of text characters. As shown in the figure, the text character can be retained

due to the high classification ability of CNN. The outputs of CNN-based non-character

removal are fed into the directed graph construction procedure to build the relationship

among the text characters.

As shown in Figure 3.12, the MSER-based text character extraction method can achieve



Chapter 3. Character Candidates Extraction and Directed Graph Construction for
Multiple Text Line Extraction 49

Figure 3.12: Examples of text character and non-character classification by a well-
trained CNN.

a promising recall and extract most text characters even in low quality images. How-

ever, this method can produce many noises and reduce the precision of text character

extraction. In the text line extraction procedure, it will leave a challenge task of solving

the paths optimization in the directed graph. Therefore, we employ a CNN to effectively

discriminate the text characters from the non-characters.

3.4.3 Result of directed graph construction

Figure 3.13 illustrates the construction of the directed graph based on all extracted

regions. The virtual source and sink vertex are ignored to simplify the explanation. The

red arrows denote the directed path from one character to an adjacent text character.

The false positive regions will also be added into the directed graph and assumed to

be one vertex that will be solved in the text line paths optimization procedure. The

candidate text characters that are located far away from the other regions are isolated

and have no connections.

As depicted in the figure, the directed graph can construct the relationships. After the

CNN-based non-character removal, the directed graph constructs the relationship among
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Figure 3.13: Construction of the directed graph based on all the candidate character
regions.

all candidate regions according to the spatial arrangement of text lines in an image.

The directed edge connects two vertices of text characters from left to right. Obviously,

the vertices and directed edges will produce the directed graph among characters and

include the text line paths for optimization. There are still spurious vertices and edges.

These vertices and edges will be added into the directed graph, and the k-shortest paths

optimization can automatically remove these noisy vertices in the optimized text line

paths.

3.5 Conclusion

This chapter aims to construct the relationships among the candidate text characters

and to eliminate the disorder of candidate text characters. The key idea is to construct a

directed graph based on the text character nodes that are spatially arranged in the text

lines. Through the observation of human reading sense from left to right, we consider

the spatial arrangement of adjacent text characters in constructing the directed graph.
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In the directed graph, the text line paths are also included as paths that flow from the

virtual source vertex to the sink vertex. Our experiments demonstrate that the directed

graph can be constructed successfully based on well-extracted text characters and the

text lines can be extracted by solving the text line paths global optimization problem

in the graph.



Chapter 4

K-Shortest Paths Optimization

for the Extraction of Multiple

Text Lines

4.1 Introduction

Text line extraction is a crucial step for OCR applications where the text character

candidates are concatenated into text lines based on the extracted text character com-

ponents. As mentioned in Chapter 1, most of the conventional methods [50, 57, 60]

group the text character components into text lines. However, given that such “greedy”

grouping often employs the heuristics rules of text characters, the robustness of the text

line extraction will be decreased when the scenes change. Moreover, the lack of text

line information, it is hard to determine the number of text lines in an image, and the

exhaustive search leads to low precision until all text characters are identified in the text

lines.

52
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Figure 4.1: Text line extraction system based on text line paths global optimization.

This chapter focuses on the global optimization of text line paths by taking advantage of

the constructed directed graph described in Chapter 3. Figure 4.1 presents the flowchart

of text line extraction based on text line paths optimization. We formulate the text line

paths optimization problem as k-shortest paths optimization in the directed graph. The

text line paths are similar to human reading ability in planning of a text line path

sequentially [90–92].

The text line paths global optimization tries to discover the global solution of multiple

text lines in an image. As shown in Figure 4.2, two paths with thicker arrows p1=vsource,

v“S”, v“t”, v“a”, v“t”, v“i”, v“o”, v“n”, vsink and p2=vsource, v“c”, v“a”, v“r”, v“p”, v“a”, v“r”,

v“k”, vsink are extracted based on global optimization. The global optimization can

exclude the vertex of noises and the directed edge from the vertex of character “n” to

the vertex of noise automatically from the text lines. This method initially produces one

text line with a minimum cost in the directed graph. Afterward, the text line paths are

iteratively augmented to multiple text lines, similar to the behavior of humans reading

ability in planning text line paths sequentially.
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Figure 4.2: Text line extraction based on k-shortest paths optimization.

This chapter discusses the global optimization of text line paths upon the constructed

directed graph. This procedure offers the following advantages over the conventional

methods:

• The k-shortest paths global optimization can produce the text lines iteratively

to avoid an exhaustive search. Therefore, the text line paths optimization-based

method is suitable for various appearances of text lines in a given image.

• The number of text lines can be obtained automatically through the optimization

process. The noisy candidate components can be excluded in the global optimiza-

tion, thereby reducing the number of extracted noise text lines.

• As revealed in the later experimental results, we demonstrate that the text line

extraction problem can be solved by using k-shortest paths global optimization in

the constructed directed graph.

4.2 Methodology of the K-Shortest Paths Optimization

A text line can be considered as a path flow from the source text character node to

the sink text character node in the constrict direction. The directed text line path is
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determined by a sequence of text character vertices V = v1, v2, ..., vn. The directed edges

in the text line path connect these vertices into the sequence E = ev1,v2 , ev2,v3 , ..., evn−1,vn .

Figure 4.2 presents an example of the text line paths. Two paths p1=vsource, v“S”, v“t”,

v“a”, v“t”, v“i”, v“o”, v“n”, vsink and p2=vsource, v“c”, v“a”, v“r”, v“p”, v“a”, v“r”, v“k”, vsink

arrange from the virtual source vertex to the sink vertex. The character “p” is treated

as a single vertex in the text line path p2 but cannot be treated as a single vertex in

p1. Given that no overlapping vertex is observed in either of these two text line paths,

thus each character cannot be shared by two or more text lines, and the text line paths

are node-disjoint in the given image. In sum, we can formulate the text line extraction

problem as a results of the global path flow optimization on the constructed directed

graph.

The text line paths can be optimized by using the generic Linear Program (LP) method

[93]. However, this approach is only suitable for moderately-size problems with a high

time complexity. The k-shortest paths optimization is more efficient than the LP method

by taking advantage of the particular structure of the constructed directed graph. The

average time complexity of this method is nearly linear with the number of nodes.

The k-shortest paths optimization aims to find a given number k of these paths, and the

minimum total cost is subjected to the node-disjointness path by utilizing a minimal cost

flow algorithm [94]. The node disjoint paths can be also used in communication networks

to facilitate the transmission between a given source and sink nodes. The K shortest

paths are found inductively from previous optimal path solutions P = p1, p2, ..., pk−1 by

using a shortest path algorithm at each step. This method is not just a greedy algorithm

that finds the shortest path in a one-by-one way. In each iteration, the previously

detected paths still have a chance to be revised for the globally optimal solution.
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Figure 4.3: Node disjoint paths.

Figure 4.4: Path difference between P2 and P1 in Figure 4.3.

Figure 4.3 and Figure 4.4 present the example of the path difference between two paths.

Suppose that the shortest path is p1 = v1, v2, v3, v4 from vertex v1 to vertex v4 and that

the optimal node disjoint paths are v1, v2, v4 and v1, v3, v4 (as shown in Figure 4.3). A

signed positive label “+” is assigned to edge whose direction coincides with the direction

of the shortest paths, while all the other edges are assigned with the negative label “-”.

The logical difference P2 ⊖ P1 turns out to be a path from v1 to v4 in Figure 4.4 when

the different signs of directed edges are cancelled. The path cost in Figure 4.4 represents

the cost difference of P2 and P1.

In the text line path extraction problem, the text line path difference always includes

the virtual source vsource and sink vsink vertices with “+” and “-” labels, respectively.

The total cost of a signed text line path is the total cost of its positively labeled edges

subtracting the total cost of its negative labeled edges. The basic idea of k-shortest

paths optimization is to augment the text line paths in the minimum flow problem.

After extracting the shortest text line path, a successive labeling procedure produces an

optimal of node disjoint path P2 and continuing inductively. Conclusively, the optimal
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K − 1 node disjoint text line paths produce an optimal set of K node disjoint text line

paths.

In initialization, the Bellman-Ford algorithm [95] is used to generate the single shortest

text line path. At the Kth iteration, the K shortest text line paths are updated by the

previous K − 1 shortest text line paths in three steps, namely, graph transformation,

interlacing generation, and path augmentation. Algorithm 3 summarizes the text line

extraction based on k-shortest paths optimization. The basic idea is to find the optimal

text line paths P = p1, p2, ..., pk inductively by applying a shortest path algorithm. At

each iteration, the text line paths are augmented by the previous text line paths and the

interlacing of the transformed directed graph. Finally, the global optimal text lines can

be achieved when the total cost changes its sign, and then the optimal text line number

k can be obtained.

4.2.1 Directed graph transformation

The directed graph transformation is to define an equivalent networkG∗ from the original

directed graph GD. This procedure can be used to find n + 1 disjoint text line paths

inductively from the optimal Pn disjoint text line path solution by using a shortest path

algorithm at each iteration.

Each vertex vi in Pn, except for the virtual source and sink vertices, is split and intro-

duced to an auxiliary vertex v′i. All outputs on vi are then assigned as outputs on v′i.

The cost value of the auxiliary directed edge ei,i′ from vertex vi to v′i is set to 0. Then,

the direction and algebraic sign of edge cost in Pn, including the auxiliary edges, are

subsequently revised. It leaves all paths and edges exactly the same as in the directed

graph, but the path cost in the directed graph is now defined strictly in terms of edge
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Algorithm 3 Text line extraction based on k-shortest paths global optimization.

Input:

The set of extracted text character vertices, V = {vi}ni=1.

Output:

The optimal set of text line paths Pi = p1, p2, ..., pi between the virtual source vsource

and sink vertices vsink.

1: Construct the directed graph GD based on the extracted text characters and calcu-

late the cost value of each edge

2: Calculate the shortest path p∗1 between vsource and vsink in the directed graph

3: P1 ⇐ p∗1

4: for i = 2 to n do

5: Transform the directed graph G∗ ⇐ GD

6: Transform the cost of the edges G∗
c ⇐ G∗

7: Calculate the interlacing p∗ of the transformed directed graph

8: Augment the text line paths Pi+1 ⇐ Pi
⊕

p∗

9: if cost(Pi+1) ≤ cost(Pi) then

10: return Pi = p1, p2, ..., pi

11: end if

12: end for

cost. The vertex split addresses the node disjoint criteria, which are relaxed to edge dis-

jointness. The direction and algebraic signed reversion indicate a transformation from

signed paths to directed unsigned paths.

One example of directed graph transformation is shown in Figure 4.5. In the original

directed graph, the shortest path p = vsource, vi, vj , vsink is extracted in the first iteration.

We split the vertices vi and vj to auxiliary vertices v′i and v′j after excluding the virtual

source and sink vertices, and then revise the direction and algebraic sign of the edge

cost including the auxiliary edges.

Additionally, we apply the directed edge cost transformation to graph G∗ by revising the

negative cost of directed edges to a non-negative edge cost. This procedure generates
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(a) One shortest path in the original graph

(b) Graph transformation result

Figure 4.5: An example of directed graph transformation.

a canonic equivalent graph G∗
c . For the cost value of an edge cost cei,j from vertex

vi ∈ V to vertex vj ∈ V , suppose that the transformed cost value c∗ei,j is calculated by

the shortest path cost from vsource to vi, vj and that the cost value cei,j before graph

transformation can be computed as

c∗ei,j = cei,j + cpsource,i − cpsource,j , (4.1)

where cpsource,i denotes the cost value from vsource to vi. Conclusively, the cost of trans-

formed graph G∗ can be calculated by the shortest path cost of the vertices in the

original graph G. The signed path cost after the transformation is unchanged between

the source and sink vertices. As one of its advantages, the cost transformation reduces

the complexity of shortest path computation by converting the unsigned directed graph

into a signed directed graph.

4.2.2 Interlacing generation

Let Pi be the optimal set of i paths at iteration i. The interlacing generation aims

to extract a node-simple shortest signed directed path p∗, called interlacing of Pi. The

signed path p∗ interlaces Pi in the given transformed graph and comprises i node disjoint



Chapter 4. K-Shortest Paths Optimization for the Extraction of Multiple Text Lines 60

directed paths form the virtual source vertex to the sink vertex at iteration i. This path

must satisfy the following two criteria:

• the interlacing directed edge should be common to both p∗ and Pi if and only if it

has a negative label; and

• the interlacing vertex should be common to both p∗ and Pi if and only if it is

incident to a directed edge with a negative label.

The first criterion is necessary to obtain the edge disjoint text line paths in i-th iteration

yet is not sufficient to extract the node disjoint text line paths. The second criterion

can exclude the signed text line paths with a single vertex overlapping with Pi−1, which

is a complement for node disjoint paths.

In our implementation, we apply the Dijkstra’s single source shortest path algorithm to

generate the interlacing p∗. The shortest path algorithm is suitable for the transformed

directed graph due to the non-negative directed edge cost. Afterward, we can augment

K-shortest paths in the k iteration by using the K−1 shortest paths and the interlacing

of the transformed directed graph in iteration k − 1.

4.2.3 Path augmentation

Path augmentation aims to produce the k+1 shortest text line paths Pk+1 based on in-

terlacing p∗ and k shortest paths Pk in the previous iteration. This procedure adds edges

to Pk with positive interlacing labels and removes those edges from Pk with negative

interlacing labels:

Pk+1 = p∗ ⊕ Pk. (4.2)
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Figure 4.6: An example of path augmentation based on interlacing and previous
shortest paths.

Figure 4.6 illustrates an example of shortest path augmentation. Assume that the short-

est path is p1 = vsource, vi, vj , vsink and the shortest interlacing is p∗=vsource, va, vj , vi,

vb, vsink with the edge label {+,+,−,+,+}. The directed edges eva,vj and evi,vb will be

added into the shortest path P1, and the edge evi,vj will be removed from the shortest

path P1. Finally, the updated paths vsource, va, vj , vsink and vsource, vi, vb, vsink can be

obtained via path augmentation as defined in Equation 4.2.

4.2.4 Text line paths global optimization

Our text line extraction problem can be treated as a minimum cost flow problem with a

0-1 flow constraint. If 1, it suggests that the edge is part of a text line. The k-shortest

paths algorithm is well-studied and widely applied [96] for path selecting and routing

in the directed graph. We take advantage of the particular structure of the constructed

directed graph to obtain the global optimal by using the k-shortest paths optimization

algorithm. The target text line extraction problem aims to find the optimal solution

that minimizes the cost function between the source vsource and sink vertices vsink in

the directed graph. The optimal solution f of the k-shortest paths optimization can be

defined as:
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f = argmin
GD=(V,E)

∑
c(ei,j) · l(ei,j), (4.3)

where c(ei,j) and l(ei,j) denote the cost function and label of edges ei,j ∈ E for vertices

i ∈ V and j ∈ V in the directed graph GD, respectively.

The k-shortest paths global optimization algorithm tries to find k paths p1, p2, ..., pk

iteratively with the minimum total cost value in the constructed directed graph, where

k is settled. Any path between vsource and vsink in the directed graph represents a feasible

path flow of a text line. In our text line extraction case, no text MSER component can

be shared by two text lines, thereby suggesting that the extracted k paths must be vertex

disjoint and that each vertex must be included in one path at most. We assume that

Pk = p1, p2, ..., pk is the set of all k shortest paths calculated in iteration k and pl is one

of the shortest paths in the text line set of Pk. The cost value of the single shortest text

line path pl can be calculated as follows by the cost of all graph edges ei,j belonging to

the lth shortest path:

c(pl) =
∑

ei,j∈pl

c(ei,j). (4.4)

We can calculate the cost value of each shortest text line path l = 1, 2, 3, ..., k at iteration

k. The total cost value c(Pk) of the k-shortest paths at the kth iteration is formulated

as follows:

c(Pk) =

k∑
i=1

c(pi). (4.5)

We compare the total cost value c(Pn) of the new iteration n with the cost of the previous

iteration c(Pn−1) and observe that the total path cost is monotonically increasing. The
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Figure 4.7: Text line extraction based on k-shortest paths optimization.

global minimum is achieved when the cost value changes its sign and becomes decreas-

ing. Meanwhile, the optimal parameter is obtained as n which satisfies the following

conditions:


c(Pn−1) ≤ c(Pn)

c(Pn) ≥ c(Pn+1).

(4.6)

Figure 4.7 illustrates an example of the text line paths global optimization between the

virtual source and sink vertices. The blue and purple dashed lines denote the virtual

directed edges from the virtual source vertex to the text character, and from the text

character to the virtual sink vertex, respectively. The cost value of the virtual edges

is set to 0. The green path flows that connect the bounding box of the text character

components denote the route of text lines.
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4.3 Experiments and Analysis

In this section, we demonstrate the experimental results of k-shortest paths global opti-

mization to show the effectiveness of the proposed method. By analyzing these experi-

mental results, we find that the k-shortest paths optimization demonstrates competitive

performance in text line extraction.

4.3.1 Experiment setting

To evaluate the effectiveness and robustness of the proposed text line extraction method,

we perform the text line extraction experiments on the public benchmark scene text de-

tection database ICDAR2011 [71] and ICDAR2013 [72]. Afterward, we compare the

proposed method with the other methods for scene text detection on these two bench-

marks.

The ICDAR2011 database is extended from the earlier ICDAR2003 [65] and ICDAR2005

[97] databases. This database is used in competitions along with ground truth in XM-

L format and is publicly available at “http://algoval.essex.ac.uk/icdar/Datasets.html”.

The images in the database are captured by a digital camera using auto focus and nat-

ural lighting, and the text in these images is presented in various colors and fonts, on

many different complex backgrounds, and in various orientations. The ground truth

includes the bounding boxes of the coordinates of the text regions and is stored in a

separate file that corresponds to an image file. The ICDAR2011 database contains 484

images comprised of 229 images for training and 255 images for testing.

The ICDAR2013 database, which is a subset of ICDAR2011 database, comprises 229

training images and 233 testing images. This database removes a small number of
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duplicated images over the training and testing sets. Additionally, the ICDAR2013

database revises several ground truth annotations the in ICDAR2011 database.

4.3.2 Experimental results and analysis

The traditional performance metrics, namely, precision, recall, and f-measure [66], are

adopted to quantify the performance based on text line region matching. The metrics

compare the detected text lines with the annotated ground truth text lines. The text

line region matching mr(Gi, Ej) is given by Equation 2.15. The best matching of the

extracted text line region and ground truth text line region can be computed as:

MatchG(Gi) = max
j=1,...,|E|

2×mr(Gi, Ej)

|Gi|+ |Ej |
, (4.7)

MatchE(Ej) = max
i=1,...,|G|

2×mr(Gi, Ej)

|Gi|+ |Ej |
, (4.8)

where, I is the image region, and Gi and Ej denote the ith ground truth region and the

jth extracted text line region, respectively.

All performance measures are independently calculated on each image, and the average

value over all images is calculated as performance of the proposed method. Afterward,

we count the number of matches according to the overlap between the labeled text lines

and ground truth text lines. Two performance measures, namely, recall and precision,

are calculated as

recall =

∑|G|
i MatchG(Gi)

|G|
, (4.9)
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precision =

∑|E|
j MatchE(Ej)

|E|
. (4.10)

Recall measures the ratio between the extracted true positives and all true text lines,

while precision measures the ratio between the extracted true positives and all extracted

text lines. Both of these measures are defined based on the text line area matching. The

f-measure, as an overall measurement, is computed as follows by combining the recall

rate and precision rate for equal weight:

f =
2× recall × precision

recall + precision
. (4.11)

The performances of the proposed method on the ICDAR2011 database are shown in

Table 4.1. The proposed method achieves a recall performance of 0.716, precision per-

formance of 0.902, and f-measure of 0.798. Compared with state-of-the-art methods,

the proposed k-shortest paths optimization based text line extraction method achieves

a promising performance in terms of recall, precision, and f-measure. Although the re-

call performance is 4.6% lower than the best performance, the precision is 4.0% higher

than the best performance. The over-all f-measure is only 1.1% lower than the best

performance.

Figure 4.8 illustrates the iterative extraction of text lines based on k-shortest paths

optimization. The target image is given in Figure 4.8(a). In the first iteration, the path

“Mastering the JFC EDITION” (Figure 4.8(b)) is extracted from the directed graph and

the text lines “Mastering the JFC” and “EDITION” are combined into one path due

to minimum cost optimization. The k-shortest paths optimization updates the text line

paths iteratively. The new text line paths “graphic”, “JAVA”, and “3RD” (Figure 4.8(c)-

(e)) are updated successively from the second iteration to the fourth iteration by the
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Table 4.1: Experimental results of k-shortest paths optimization-based text line ex-
traction on the ICDAR2011 database.

Method recall precision f-measure

[98] 0.581 0.672 0.623

[60] 0.647 0.731 0.687

[56] 0.631 0.833 0.718

[59] 0.644 0.812 0.719

[99] 0.75 0.82 0.73

[50] 0.683 0.863 0.762

[43] 0.760 0.860 0.800

[51] 0.762 0.862 0.809

K-shortest paths optimization method 0.716 0.902 0.798

interlacing and previous path. In fifth iteration, the text line paths “Mastering the JFC”

and “3RD” (Figure 4.8(f)) are correctly revised from the first text line path “Master the

JFC EDITION” for the globally optimal solution. The total cost value of these paths

is monotonically increasing from the first iteration to the fifth iteration. We achieve

the global optimal and the optimal path flow number of text lines when the total cost

value changes its sign. In Figure 4.8, the five text lines “Mastering the JFC,” “graphic,”

“JAVA,” “3RD,” and “EDITION” are extracted.

The proposed method can extract the text line paths iteratively to produce the text line

paths as shown in Figure 4.9. Each character only appears in a single text line path

and cannot be shared by two text lines because of the node-disjoint of the k-shortest

paths optimization algorithm. Each ground truth text line path can be extracted by an

average of 1.94 iterations in the gray scale channel, thereby validating the effectiveness

of the proposed method.

Table 4.2 presents the performance of the proposed method on the ICDAR2013 database.
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(a) Target image (b) #iter 1

(c) #iter 2 (d) #iter 3

(e) #iter 4 (f) #iter 5

Figure 4.8: Iterative extraction of text lines based on k-shortest paths optimization.

We produce recall, precision, and f-measure values of 0.703, 0.898, and 0.789, respective-

ly. In sum, compared with state-of-the-art methods, the proposed text line extraction

method achieves a competitive performance in terms of recall, precision, and f-measure.

Figure 4.10 presents some successful and failure examples of successful and failed text
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Figure 4.9: Examples of text line paths extraction results.

Table 4.2: Experimental results of k-shortest paths optimization based text line ex-
traction on ICDAR2013 database.

Method recall precision f-measure

[100] 0.651 0.840 0.734

[101] 0.687 0.854 0.762

[102] 0.743 0.858 0.797

[43] 0.740 0.880 0.800

[51] 0.759 0.852 0.803

K-shortest paths optimization method 0.703 0.898 0.789

line extractions. The green, blue, and red text line bounding boxes represent the cor-

rect, false positive, and failed of text line extraction, respectively. Our method is robust

to skew text lines due to the overlap between the adjacent characters in the same tex-

t line as shown in Figure 4.10(e). Meanwhile, the experimental results illustrate that

the proposed method can also extract multiple (Figure 4.10(a)-(d)), low contrast (Fig-

ure 4.10(f)), highlighted (Figure 4.10(g)), and complex background (Figure 4.10(h)) text

lines.

Although the proposed method demonstrates promising performance, some limitations

need to be considered. Firstly, the k-shortest paths optimization-based text line ex-

traction method is incapable of dealing with single character text lines (Figure 4.10(i))

due to no path existing in the constructed directed graph. Secondly, some background

regions that resemble text characters can lead to a high text probability. This is because
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: Examples of the text line extraction results.

these false text characters appears as one of the text line path and consequently degrade

the precision. Thirdly, some text characters may not be extracted due to highlight or

complex backgrounds, which will lead to the failure (red text line in Figure 4.10(b)) of

text line extraction.

4.4 Conclusion

This chapter aims to optimize the text line paths by taking advantage of the particular

structure of the constructed directed graph. The basic idea is to formulate the text line
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extraction problem as k-shortest paths global optimization in the directed graph. This

procedure iteratively generates the text line paths with minimum cost by augmenting

the previous iteration. Our experimental results reveal that the text line paths global

optimization can successfully extract the text lines iteratively. The global optimization

can also identify the number of the text line automatically to avoid an exhaustive search,

which is suitable for various appearances of text lines in a given image. This method

can also reject the false positive noises in all of the text line paths, thereby reducing the

number of noisy text lines.



Chapter 5

Multi-Channel Paths

Optimization for Text Line

Extraction

5.1 Introduction

As mentioned in [60], only 85.6% of text characters can be extracted as MSERs in the

single gray channel due to the complex situation of natural scene images. Text character

extraction is the first step of text line extraction, and its performance determines the

text line extraction performance. Obviously, the recall measure is less than 85.6%,

and single channel characters is insufficient for text line extraction. The text characters

exhibit intensity disparity in different channels, and the intensity disparity can contribute

to extract various text character components in different channels. If other channels

of image can be combined, then the character recall performance can be significantly

72
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Figure 5.1: The disparity of pixel intensity in different channels.

improved up to 94.8%. Meanwhile, the text line extraction performance can be improved

further.

The global optimization of multi-channel text line paths aims to integrate various image

channels into one framework and extract the text line paths in a global way. As shown

in Figure 5.1, the text line “LION WALK” failed in gray channel will be successfully

extracted in blue channel. Therefore, the properties of multi-channel text characters

seem beneficial for high performance text line extraction.

This chapter introduces a method to optimize the multi-channel text line paths by

integrating the text character components of various channel into one directed graph.

As shown in Figure 5.2, we firstly extract the text character in gray, red, green, and

blue channels. Secondly, the multi-channel directed graph is built to incorporate all the

text characters from all channels. Thirdly, we explore the multi-channel text line paths

global optimization for text line extraction. Finally, the extracted text lines are certified

by various channels, and the noise duplicated text lines are removed.

The proposed method is supposed to have the following merits:
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Figure 5.2: Flowchart of our proposed multi-channel k-shortest paths optimization
for text line extraction.

• The constructed multi-channel directed graph can effectively combine the text

characters of various channel into one directed graph, and describe the relationship

structure of text character components between different channels.

• The text line paths can be globally optimized between different channels by the

multi-channel k-shortest paths optimization. Furthermore, the extracted text lines

can be verified by duplicated text lines from other channels.

• We demonstrate that the multi-channel k-shortest paths optimization-based text

line extraction method can effectively improve the performance of text line ex-

traction by incorporating candidate text components of various channels into one

framework.
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5.2 Multi-channel Text Character Extraction

We extract the candidate text components by the MSER method in gray, red, green,

and blue channels [60]. Each channel consists of two polarized text characters, which

are black and white text character embedded in the opposite background. Then, the

non-characters noises are removed by the designed CNN filter described in 3.2.2.

MSER extraction in red, green, and blue channels can make up for the deficiency of

the text character extraction of the gray image. Several missing text characters can be

extracted in the red, green, and blue channels due to the intensity disparity in various

channels. Thus, the channel combination is capable of improving the recall performance

of the candidate text components. Furthermore, the candidate text components can be

certified by various channels.

5.3 Multi-channel Directed Graph Construction

We incorporate the text characters of gray, red, green, and blue channels into one multi-

channel directed graph. Not only can the relationship of neighboring text characters from

each channel built, but the relationship of different channel text characters can also be

incorporated into one framework. Due to the absence of interaction of text characters

from various channels, the constructed multi-channel directed graph is channel-disjoint

and no directed edge connects different channels. The text line paths and their dupli-

cated paths are assumed to be directed path segments in the constructed multi-channel

directed graph.

We supposed that the constructed multi-channel directed graph is Gm = (Vm, Em),

where Vm and Em are the set of vertices and directed edges in the multi-channel directed
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Figure 5.3: Multi-channel directed graph comprised of gray, red, green, and blue
channels.

graph. The vertices {Vm|m = {gray, red, green, blue}} are comprised of text character

candidates from the gray, red, green, and blue channels. The directed edges build the

linking relationship of adjacent text characters at each channel.

Figure 5.3 illustrates the simplified results of the constructed multi-channel directed

graph. A total of four text character layers corresponding to gray (gray nodes), red

(red nodes), green (green nodes), and blue (blue nodes) channels. The text characters

that fail to be extracted in the gray channel may be extracted in the red, green, or blue

channels due to the intensity disparity at various channels. Note that the text characters

are extracted at each channel respectively, any text character cannot be shared by other

channels, and no interaction occurs between different channels.

Similar to the single channel directed graph construction, our method adds another

additional virtual source vertex vsource and sink vertex vsink to the multi-channel directed

graph. Our method allows each vertex to be the start or end location of one text line.

The vertex vsource is the directed graph source node and the first virtual character of

the text line. The vertex vsink is the directed graph sink node and last virtual character

of the text line. We build an directed edge esource,i from the virtual source vertex vsource

to vertex vi and ei,sink from vertex vi to vertex vsink for each vertex in all channels.
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The cost value of the directed edge with virtual vertices is set as 0 to allow each text

character to be the starting or ending location of the text line at no cost in all channels.

In the multi-channel directed graph, we also build the directed edge in the assigned text

line direction from left to right according to the spatial location of the text character

region, which is the same as the single channel directed edge. For each vertex vi in

the gray channel, the distance constraint and overlapping constraint are checked with

other vertices in the same channel to remove unnecessary computation. According to

the assigned text line direction, the x-coordinate cxj of target vertex vj should be larger

than that of source vertex vi in the directed edge. Then, the nearest text character

vertex vj is selected from all the candidate pairs of vertex pi,j to build the directed edge

ei,j . Finally, the directed edges in the red, green, and blue channels can be built by

the same method. Algorithm 4 provides the details of the multi-channel directed graph

construction.

Each directed edge in the multi-channel directed graph is attached a cost function com-

prised of unary cost function and pairwise cost function stated in Chapter 3.3.3. The

appropriate cost of each edge is set according to a probability that two vertices are

neighboring characters in a text line. Similarly, the cost value of directed edges with

virtual source and sink vertex is set to 0 to allow each text character to be the start

or end text at no cost in the multi-channel directed graph. The normalized item of

unary cost and pairwise cost is based on the total cost value of directed edge in the

multi-channel directed graph
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Algorithm 4 Multi-channel directed graph construction.

Input:

Set of extracted MSER vertices in the gray, red, green, and blue channels.

Output:

Constructed multi-channel directed graph, Gm = (Vm, Em).

1: for channel = {gray, red, green, blue} do

2: for i = 1 to nc do

3: Build an directed edge esource,i from virtual source vertex vsource to vertex vi;

4: Build an directed edge ei,sink from vertex vi to virtual sink vertex vsink;

5: for j = 1 to n, j ̸= i do

6: if xj > xi then

7: Verify the pair by the overlapping and distance constraints in the corre-

sponding channel;

8: Build the component pair pi,j between vertex vi to vj , and add it to the

candidate set {pi,j};

9: end if

10: end for

11: Find the nearest vertex vj with minimum distance in the set of {pi,j};

12: Build directed edge ei,j from vertex vi to vertex vj ;

13: end for

14: end for

15: return Gm = (Vm, Em).

5.4 Multi-channel K-shortest Paths Optimization

We can assume that the correct text lines are included as paths in the multi-channel

directed graph, and the target text line extraction problem can be formulated as a

minimum cost flow optimization with a 0-1 constraint in the multi-channel directed

graph. Then, we can obtain a globally optimal extraction result of the text lines. If

1, then the edge and two neighboring text character vertices are part of one text line.

Otherwise, these two text characters cannot be in one text line. The optimal solution
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f of the multi-channel k-shortest paths optimization between the source vertex vsource

and sink vertex vsink is defined as follows:

f = argmin
Gm=(Vm,Em)

∑
ei,j∈Em

c(ei,j) · l(ei,j), (5.1)

where c(ei,j) denotes the cost value of edge ei,j ∈ Em for vertex i ∈ Vm and vertex j ∈ Vm

in the multi-channel directed graph. The l(ei,j) denotes the label of edge ei,j ∈ Em and

the value of l(ei,j) is 0 or 1 for optimization.

We employ the same k-shortest paths optimization algorithm as single channel text line

extraction. This algorithm can extract k text line paths iteratively with minimum total

cost in the multi-channel directed graph. In the multi-channel text line extraction case,

no text character vertex can be shared by two channels and two text lines, it means

the extracted text line paths are vertex and channel disjoint. At each iteration, the

total cost value of extracted paths is compared with the previous one to find the global

optimal when the cost value changes sign and becomes decreasing.

5.5 Fusing Text Lines in Multiple Channels

We produce the text line paths in gray, red, green, and blue channels by the k-shortest

global optimization algorithm in the multi-channel directed graph. Some repeating text

lines may exist in other channels and the repeating text lines should be removed to avoid

repeat extraction. Therefore, we fuse the repeating text lines in different channels into

one text line. If all of the text components in the text line are included in the text lines

from other channels, then the included text line should be removed as repeating noise.
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Finally, only one text line will be retained for the repeating text lines in gray, red, green,

and blue channels.

5.6 Experiments and Analysis

In this section, the multi-channel text line extraction method is compared with gray

channel k-shortest paths optimization method and state-of-the-art methods on the IC-

DAR2011 and ICDAR2013 databases. The experimental results demonstrate that al-

though the precision result of the multi-channel k-shortest paths optimization method

is lower than that of the gray channel text line extraction, it achieves much higher recall

and f-measure performance. The results prove that the performance of the k-shortest

paths optimization for text line extraction can be improved by the combination of red,

green, and blue channels.

5.6.1 Experiment setup

In the multi-channel text line extraction experiments, we also use the same parameter

settings for MSER text character extraction, which is given in Table 3.1. Five parameters

named “∆”, “maxWH”, “minWH”, “maxV ariation”, and “minDiversity” are used to

control the text character extraction performance. The threshold step is set as 4 pixels

for region production in the MSER root tree. The minimum and maximum width and

height of the text character region are restricted between 10 and 600 pixels, respectively.

Meanwhile, the regions with “maxVariation” larger than 0.5 and “minDiversity” smaller

than 0.5 are pruned to obtain the text character with high probability.

To fairly compare the gray channel text line extraction and multi-channel text line ex-

traction method based on the k-shortest paths optimization, other parameters in the
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multi-channel text line extraction are set the same as the gray channel text line extrac-

tion. The coefficient λ of MSER variation penalization and distance parameter α of

potential neighboring vertices are set as 0.33 and 3, respectively. We evaluate these two

methods on the ICDAR2011 and ICDAR2013 databases. Furthermore, the same per-

formance metrics, namely, precision, recall, and f-measure, which are described in 4.3.2,

are applied to quantify the performance.

5.6.2 Experiment results and analysis

The experimental results of the multi-channel text line extraction on the ICDAR2011

database are shown in Figure 5.4. The single gray channel text line extraction can

achieve a recall of 0.716. When we add one red, green, or blue channel, the recall of the

two channel combination text line extraction can increase from 0.729 to 0.739, and the

recall performance can be improved by 1.8% on average. When we add two channels

of red, green, and blue channels, the recall of the three channel text line extraction can

be achieved from 0.745 to 0.753, and the recall performance can be improved by 3.3%

on average. After we integrate all the red, green, and blue channels for multi-channel

combination, we can achieve the recall performance of 0.781, which represents a 6.4%

improvement.

Among all the results, the single channel text line extraction has the lowest f-measure.

The multi-channel text line extraction achieves the highest f-measure by combining gray,

red, green, and blue channels, and the recall improves significantly by 6.4%. The reason

is that the multi-channel text line extraction can extract more text character candidates

and optimize the combined multi-channel directed graph. Through the comparison,

we may conclude that the multi-channel text line extraction method can improve the

performance of single channel text line extraction.
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Figure 5.4: Comparison of experimental results of multi-channel paths optimization-
based text line extraction on ICDAR2011 database.

Figure 5.5 illustrates an example of the comparison between single channel text line ex-

traction and multi-channel text line extraction. The target image has a total of three text

lines: “BRITAIN’s FAVOURITE DEPARTMENT STORE”, “www.debenhams.com”,

and “DEBENHAMS” in the target image. In the single channel text line extraction, the

text line “BRITAIN’s FAVOURITE DEPARTMENT STORE” can not be extracted due

to the enfoldment and light reflection. While in the multi-channel text line extraction,

we can extract the missing text line successfully in the red, green, or blue channels.

Obviously, the red, green, and blue channels can be supplements of gray channel text

line extraction.

Table 5.1 presents the performance comparison between the proposed multi-channel text

line extraction and other methods. We should note that the [60] method is multi-channel

method, and other methods in the table are not multi-channel methods. The text line

extraction in the gray channel is easy to be extended to the multi-channel mode by

combining the red, green, and blue channels. The performance of text line extraction

is expected to be improved by the multi-channel combination as a supplementary. Our
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(a) (b)

Figure 5.5: Text line extraction results of (a) gray channel k-shortest paths optimiza-
tion and (b) multi-channel k-shortest paths optimization method.

Table 5.1: Experimental results of k-shortest paths optimization-based multi-channel
text line extraction on ICDAR2011 database.

Method recall precision f-measure

[98] 0.581 0.672 0.623

[60] 0.647 0.731 0.687

[56] 0.631 0.833 0.718

[59] 0.644 0.812 0.719

[99] 0.75 0.82 0.73

[50] 0.683 0.863 0.762

[43] 0.760 0.860 0.800

[51] 0.762 0.862 0.809

Multi-channel combination method 0.781 0.863 0.820

k-shortest paths optimization-based multi-channel text line extraction method achieves

a recall of 0.781, and precision performance of 0.863 and f-measure of 0.820. Compared

with state-of-the-art methods, our multi-channel text line extraction method performed

better performance in terms of recall, precision, and f-measure. This result proves the

advantage of our method and encourages us to apply the proposed method in text line

extraction.

Table 5.2 shows the performance of the multi-channel text line extraction on the IC-

DAR2013 database. The multi-channel text line extraction method achieves a recall of
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Table 5.2: Experimental results of k-shortest paths optimization-based multi-channel
text line extraction on ICDAR2013 database.

Method recall precision f-measure

[100] 0.651 0.840 0.734

[101] 0.687 0.854 0.762

[102] 0.743 0.858 0.797

[43] 0.740 0.880 0.800

[51] 0.759 0.852 0.803

Multi-channel combination method 0.772 0.856 0.812

0.772, precision of 0.856, and f-measure of 0.812. These encouraging results proved that

our method outperforms the others.

Figure 5.6 presents the comparison examples between single channel and multi-channel

text line extraction. The green, blue, and red text line boxes denote the correct, false

positive, and failure of text line extraction results, respectively. The first and second

row images provide the examples of single channel text line extraction and multi-channel

text line extraction. In Figure 5.6(a) and (b), the text lines of “LION WALK” and

“BRITAIN’s FAVOURITE DEPARTMENT STORE” are missed due to the failure of

character extraction in the gray channel. The text line “ONLY” in Figure 5.6(c) is partly

extracted because of the failure of characters extraction of “ON”. However, these text

lines can be successfully extracted by the multi-channel text line extraction method.

Obviously, the multi-channel text line extraction can improve the text line extraction

performance of single channel text line paths optimization.

Although the proposed multi-channel text line extraction based on k-shortest paths

optimization achieves promising results, it has several limitations. Firstly, the multi-

channel text line extraction will decrease the precision performance due to additional

noises introduced in the red, green, and blue channels. Secondly, this method is also
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Examples of comparison between single channel and multi-channel text
line extraction by the k-shortest paths global optimization.

incapable of dealing with text lines with a single character because such a text line is

no path existing in the multi-channel directed graph.

5.7 Conclusion

In this chapter, the multi-channel text line extraction based on k-shortest paths opti-

mization is investigated in depth. The multi-channel text line extraction can achieve

promising performance through the complementary usage of the red, green, and blue

channels in the directed graph. The comparative study of various channel combinations

also shows the potential of the channel combination text line extraction method. With

various channel combinations, the multi-channel text line extraction can present a dif-

ferent performance. In our experiments, we show that the recall performance can be
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improved significantly when the red, green, and blue channels are combined in the text

line extraction.



Chapter 6

Efficiency Improvement of Path

Optimization in Multiple

Channels

6.1 Introduction

As mentioned in Chapter 5, the multi-channel text line paths optimization can combine

the characters of various image channels and extract the text line paths in a global

way. The multi-channel combination can be beneficial for improving text line extraction

accuracy. However, the repeating text characters introduced in the red, green, and blue

channels increase the complexity of the directed graph and text line paths optimization.

For the extracted text line in the gray channel, similar duplicate text lines or text line

segments may exist in the red, green, and blue channels. We remove the repeating the

path segments as noises to avoid repeating extraction. Thus, the number of vertices and

87
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Figure 6.1: The directed graph construction of multi-channels.

edges can be reduced and the efficiency of paths optimization in multiple channels can

be improved.

As shown in Figure 6.1, the characters in the text line “conditions” may be extracted

several times in multiple channels. The number of vertices and edges will be much larger

than that of the previous single channel directed graph. Suppose that we extract the

guiding text lines “con” and “tions” in the gray channel, the repeating unambiguous path

segment v“t”, v“i”, v“o”, v“n”, v“s” can be reduced to v“t”, v“s” in red and green channels.

The repeating unambiguous path segment v“i”, v“o”, v“n”, v“s” can be reduced to v“i”,

v“s” in blue channel. The repeating unambiguous path segment v“c”, v“o”, v“n” can be

reduced to v“c”, v“n” in red channel. Therefore, the complexity of vertices and edges in

the directed graph can be decreased, and the global k-shortest paths optimization in the

reduced directed graph can be facilitated.

In this chapter, we propose a novel integrated paths optimization in the integrated

directed graph to improve the efficiency. The integrated directed graph construction

aims to integrate different channels into one framework and eliminate the duplicate

path segments. The integrated text line extraction aims to extract text lines in the
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Figure 6.2: Flowchart of our proposed integrated k-shortest paths optimization-based
text line extraction.

integrated directed graph by paths optimization. To improve the efficiency and decrease

the complexity of the directed graph, we transform the directed graph of multi-channels

into a reduced graph guided by the extracted text lines of the gray channel. Finally, the

k-shortest paths optimization algorithm is utilized to extract the text lines by taking

advantage of the particular structure of the integrated directed graph. The flowchart of

the proposed method is shown in Figure 6.2.

In this chapter, we discuss the details of integrated directed graph transformation based

on multi-channel directed graph for text line extraction. The discussion discovers how

it performs to improve the efficiency of text line extraction. The main contributions are

described as follows in comparison with the text line extraction of multi-channels:

• The integrated directed graph can effectively describe the relationship structure

and eliminate the disorder of text components among different channels.
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• The integrated directed graph can be transformed guided by the extracted tex-

t lines in the gray channel, which can improve the efficiency and decrease the

complexity of the directed graph.

6.2 Methodology of Efficiency Improvement

For integrated text line extraction, we apply the same MSER and noise removal methods

as the multi-channel text line extraction in the gray, red, green, and blue channels to

extract the text character candidates. To incorporate different channels into one reduced

framework, we construct a reduced integrated directed graph on the red, green, blue

channels without the gray channel. The reduced directed graph is transformed based on

the certificated text line segments compared with the text line extraction results in the

gray channel. Therefore, the directed edges can be original or transformed edges. The

target text lines are assumed included as paths in the reduced integrated directed graph

and gray channel directed graph.

6.2.1 Integrated directed graph construction

The integrated directed graph GI = (VI , EI) is constructed upon the extracted text

components in the red, green, and blue channels. The assigned text line direction is

from left to right according to the text character space relationship. Firstly, the gray

channel directed graph is constructed and the text lines are extracted based on the k-

shortest paths optimization method as described in Chapter 4. Secondly, we construct

the integrated directed graph upon the text characters of the red, green, and blue chan-

nels. Then, the integrated directed graph is reduced and transformed based on the gray



Chapter 6. Efficiency Improvement of Path Optimization in Multiple Channels 91

(a)

(b)

Figure 6.3: The proposed text line extraction involves one gray-channel directed
graph and one integrated directed graph. (a) provides one example of the gray-channel

directed graph. (b) illustrates the integrated directed graph.

channel text lines verification. Algorithm 5 provides the directed graph construction

details.

Before the integrated directed graph reduction and transformation, the integrated di-

rected graph is constructed upon text characters in red, green, and blue channels. The

vertices of directed graph {VI |I = {red, green, blue}} are comprised of location of text

components at the target red, green, and blue channels. The directed edges are built

between any two linked vertices for each channel in the integrated directed graph. As

text cannot exchange channels and be shared by two channels, no directed edges ex-

ist between the channels, and the integrated directed graph is made of disconnected

channels as shown in Figure 6.3.

The directed edge linking method is the same as the multi-channel directed edges p-

resented in Chapter 5. For each vertex vi, we firstly check any other vertex vj whose

x-coordinate xj is larger (xj > xi) than the x-coordinate xi of vertex vi. Then, the

horizontal overlapping constraint shown in Figure 3.7 is certified to build the candidate

vertex pair pi,j from vertex vi to vj . Finally, we find the nearest text component vertex
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vj from the candidate pair set {pi,j} to build the directed edge ei,j from current vertex

vi to selected vertex vj . To allow each text component to be the start or end location

of the text line, two additional virtual vertices vsource and vsink are also added to the

integrated directed graph, where vsource and vsink denote the possible source and sink

point, respectively. Meanwhile, we build the directed edges esource,i from the virtual

vertex vsource to each vertex vi and ei,sink from each vertex vi to the sink vertex vsink.

To prevent overloading, the virtual source and sink vertices are connected to each vertex

in every channel, as illustrated in Figure 6.3.

6.2.2 Directed graph transformation

In the integrated directed graph, the computational complexity can be significantly re-

duced by grouping unambiguously text line vertices into tracklet. Firstly, the consistent

text paths are generated by the k-shortest paths global optimization algorithm on the

single gray channel commodity. We then reduce the integrated directed graph on the

red, green, and blue channel commodities. The key idea is to group the unambiguous

nodes into tracklets according to the extracted text lines in the gray channel. The trans-

formed directed graph is treated as a reduced directed graph with tracklets vertices and

individual vertices. Meanwhile, the cost value of directed edges in the reduced graph is

calculated based on previous edges. Finally, we apply the k-shortest paths optimization

algorithm on the reduced integrated directed graph to extract text line paths in the red,

green, and blue channels.

We assume that a text line path p1 = v1, v2, v3, v4, v5, v6, v7 (Figure 6.4(a)) is extracted

in gray channel by the k-shortest paths optimization algorithm. Then, we track the text

line path in the integrated directed graph. We suppose that a directed path segment

p2 = v8, v1, v2, v3, v4, v5, v6, v7, v9 exists in one channel of the directed graph and part of
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(a)

(b)

(c)

Figure 6.4: The directed graph transformation. We suppose the guiding text line
is extracted in gray channel and presented in (a). (b) presents the unambiguous path
segment tracked and found with a dashed bounding box. (c) illustrates the tracklet

with a dashed bounding box.

path segment (dashed bounding box in Figure 6.4(b)) is the same as text lines p1 in the

gray channel. In the transformation, we group the repeating path segment into tracklet

p∗1 = v1, v7 (dashed bounding box in Figure 6.4(c)). The reduced directed path segment

p∗2 = v8, v1, v7, v9 can be obtained by the transformation.

In the consistent text line paths generation step, we can obtain text line paths p1, p2, ..., pk

in the gray channel, which are set as the guiding text lines. We track each guiding text

line in each layer of the integrated directed graph to find the duplicate text line seg-

ments. Furthermore, the guiding text lines can be split into connected text line segments

to match the duplicate text line segments in the integrated directed graph.

We track the gray channel text lines in the integrated directed graph, and the tracked

text path segments are defined as unambiguous text line tracklets due to exact verifi-

cation in various channels. For each unambiguous text line tracklet, we disconnect all
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the directed edges between the first and last vertices, and build a virtual directed edge

etracklet from the first to the last vertex. The cost value of the directed edge cetracklet

can be calculated as follows by the cost of all edges E from the first to the last vertex

in the integrated directed graph:

c(etracklet) =
∑

ei,j∈E
c(ei,j). (6.1)

Algorithm 5 Integrated directed graph construction.

Input:

The set of extracted MSER vertices in gray, red, green, and blue channels: V ={
vic
}nc

i=1
.

Output:

Constructed integrated directed graph, G∗
I = (V ∗

I , E
∗
I ).

1: Build an directed graph for gray channel, described as Algorithm 2;

2: Extract n guiding text lines P = {p1, p2, ..., pn} by using the k-shortest paths opti-

mization, described as Algorithm 3;

3: Build the integrated graph GI = (VI , EI) for red, green, and blue channels, descried

as Algorithm 4;

4: for i = 1 to n do

5: Track the text line path pi in GI = (VI , EI) and find out the matched text path

segment ps;

6: Disconnect all the directed edges between the first and last vertices in ps;

7: Build one virtual directed edge etracklet from the first to the last vertex;

8: Calculate the cost value of directed edge c(etracklet);

9: end for

10: return G∗
I = (V ∗

I , E
∗
I );

6.2.3 K-shortest paths optimization in reduced directed graph

Similar to the multi-channel text line extraction, the k-shortest paths global optimization

method is applied a 0-1 constraint in the reduced directed graph. Note that the tracklet
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segments in the reduced directed graph should be recovered with original text character

vertices for text line paths. The cost function is minimized to find the optimal solution

in the directed graph from the virtual source vertex vsource to the sink vertex vsink by

the following equation. The optimal solution f of the k-shortest paths optimization in

the reduced directed graph can be written as follows:

f = argmin
G∗

I=(V ∗
I ,E∗

I )

∑
ei,j∈E∗

I

c(ei,j) · l(ei,j), (6.2)

where c(ei,j) denotes the cost value of edge ei,j ∈ E∗
I for vertex i ∈ V ∗

I and vertex j ∈ V ∗
I

in the reduced directed graph. The l(ei,j) denotes the label of edge ei,j ∈ E∗
I , and the

value of l(ei,j) is 0 or 1 for optimization.

In the integrated text line extraction, the text line paths in the gray, red, green, and blue

channels are produced by the k-shortest global optimization algorithm. The additional

channels not only produce the failure text lines in the gray channel but also produce

duplicate text lines. We remove the duplicate text lines as noises to avoid repeat extrac-

tion. If all of the text characters in the text line are included by other text lines, then

we remove the included text line as duplicate noise.

6.3 Experimental Results and Analysis

In this section, we compare the integrated text line extraction with the multi-channel

text line extraction and state-of-the-art methods on the ICDAR2011 and ICDAR2013

databases. The experimental results present that the vertices and directed edges can be

reduced significantly, and the processing time of the k-shortest paths optimization can be

accelerated. These results prove that the complexity of multi-channel text line extraction
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can be reduced significantly without sacrificing the performance by the directed graph

transformation.

6.3.1 Experiment setup

In the integrated text line extraction, we apply the same experimental settings as those

in the multi-channel text line extraction. The settings include the MSER text character

extraction, noise text character removal, directed graph construction, and k-shortest

paths optimization. Furthermore, we quantify the performance by the same metrics:

precision, recall, and f-measure to ensure fair comparison.

6.3.2 Experiment results and analysis

We firstly extract the guiding text lines on gray channel by applying the k-shortest

paths optimization algorithm, which is set as the baseline compared with the pro-

posed integrated path flow method. The baseline recall, precision, and f-measure per-

formance are 0.716, 0.902, and 0.798, respectively. As shown in Figure 6.5(a), the

text line “DEBENHAMS” and “www.debenhams.com” are extracted successfully by

the k-shortest paths optimization method. However, we cannot extract the text line

“BRITAIN’S FAVOURITE DEPARTMENT STORE” due to highlight and complex

background on the gray channel.

In the integrated directed graph, the guiding text lines “DEBENHAMS” and “www.de-

benhams.com” are employed to deal with the transformation. The directed graph path

p=v“D”, v“E”, v“B”, v“E”, v“N”, v“H”, v“A”, v“M”, v“S” is transformed into p∗=v“D”,

v“S” on all integrated channels. In each channel, the directed graph nodes are reduced

from nine to two, and the edges are reduced from eight edges to one edge. Meanwhile,
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(a) (b)

Figure 6.5: Text line extraction results. (a) shows the gray channel k-shortest paths
optimization result and (b) shows the text line extraction results of the integrated

k-shortest paths optimization method.

the cost value of directed edge c(eD,S) can be calculated by all the cost values of edges

from vertex v“D” to v“S”. We can perform a similar transformation for the guiding text

line “www.debenhams.com” in the integrated directed graph. Obviously, the integrated

directed graph transformation can effectively degrade the computation complexity. We

also observed 1.5 times acceleration of processing time in the integrated k-shortest paths

optimization compared with separated channels. Finally, we can extract the text lines in

the integrated directed graph comprised of different channels, as shown in Figure 6.5(b).

Table 6.1 presents the reduction ratio of the number of vertices and edges between

multi-channel directed graph and reduced integrated directed graph on the ICDAR2011

database. In the red channel, the number of vertices and edges can be decreased by

56.7% and 66.0% compared with the multi-channel directed graph, respectively. In the

green channel, the number of vertices and edges can be reduced by 62.8% and 72.8%

similar to the red channel. In the blue channel, we also observe 56.3% and 65.8%

reduction in the number of vertices and edges. Obviously, the multi-channel directed

graph complexity can be significantly reduced by grouping the unambiguous text path

segments into tracklets in the directed graph transformation.
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Table 6.1: Vertex and edge comparison between multi-channel directed graph and
integrated directed graph on ICDAR2011 database.

Reduced ratio V ertex Edge

Redchannel 56.7% 66.0%

Greenchannel 62.8% 72.8%

Bluechannel 56.3% 65.8%

Table 6.2: Experimental results of proposed text line extraction method on IC-
DAR2011 database.

Method recall precision f-measure

[13] 0.581 0.672 0.623

[60] 0.647 0.731 0.687

[56] 0.631 0.833 0.718

[99] 0.750 0.820 0.730

[50] 0.683 0.863 0.762

Baseline 0.716 0.902 0.798

[43] 0.760 0.860 0.800

[51] 0.762 0.862 0.809

Integrated k-shortest paths optimization 0.788 0.866 0.825

In Table 6.2, we illustrate the performance of the integrated k-shortest paths optimiza-

tion method, which achieves the recall, precision, and f-measure performance of 0.788,

0.866, and 0.825, respectively. Compared with the baseline, the proposed integrated

k-shortest paths optimization method can significantly improve the text line extraction

performance by incorporating different channels into one framework. Compared with

the multi-channel text line extraction, the complexity of directed graph is decreased and

the processing time of k-shortest paths optimization are accelerated with no performance

loss. We also achieve competitive text line extraction performance in comparison with

state-of-the-art methods in terms of recall and f-measure.

Figure 6.6 presents the successful and failure examples of the extracted text lines in

the same images of Figure 4.10. The green, blue, and red text line boxes denote the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6: Examples of text line extraction results in the integrated directed graph
by the k-shortest paths global optimization.

correct, false positive, and failure of text line extraction results, respectively. We can

achieve the same results as multi-channel text line extraction by k-shortest path global

optimization. Consequently, the directed graph transformation can reduce the graph

complexity without scarifying the performance.
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6.4 Conclusion

The objective of this chapter is to reduce the complexity of the multi-channel text line

extraction method by reducing the multi-channel directed graph. The reduced directed

graph can further reduce the complexity of k-shortest paths global optimization. The

basic idea is to transform the duplicate text line or segment with numerous vertices and

edges into two vertices and one directed edge based on the extracted text line in the gray

channel. In our experiments, the comparative results in terms of vertices and edges on

various channels demonstrate the significant complexity reduction. We can also expect

that the directed graph transformation can successfully reduce the complexity of the

k-shortest paths optimization for text line extraction.



Chapter 7

Conclusion

In this thesis, a text line extraction with user-intention and complete text line extraction

methods are studied in natural scene images. In the case of text line extraction with user-

intention, the character size, skew ratio of text line, and reduction ratio are estimated

on the sub-region of the image with the tap and swipe gesture, and then the character

components of user-interested text line are accumulated with seed characters. In the case

of complete text line extraction, we formulate the complete text line extraction problem

as a text line paths global optimization problem. The text line paths global optimization

takes advantage of the particular structure of the constructed directed graph upon the

extracted MSER text components.

The conventional text line extraction methods have many drawbacks, which limit the ap-

plication of content-based image understanding. These drawbacks include non-structure

construction of the isolated text candidates, lack of robustness with knowledge-based

heuristic rules, and exhaustive searching. Consequently, the text line extraction with

101
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user-intention and path optimization are supposed to overcome the aforementioned lim-

itations. The experimental results demonstrate that the text line extraction with user-

intention and text line paths optimization method are good solutions for the task of text

line extraction.

In Chapter 2, two types of user-intention gestures named swipe and tap are investigated

for text line extraction. We make full use of the user interaction information to estimate

the character size, skew ratio of text line, and reduction ratio. From the experimental

results, we achieve precision performance of 0.81 and 0.84 for text line extraction by

the tap and swipe gesture, respectively. Higher precision performance achievement by

swipe gesture than tap gesture is reasonable due to more information captured from the

user. Obviously, we can successfully extract the user interested text lines through the

interaction with the user.

In Chapter 3, the directed graph construction method was introduced and studied based

on the MSER-based text components. We filtered out the non-character noises by the

well-designed CNN. The text directed graph was constructed according to the spatial

arrangement in the text lines, which can build the relationship and eliminate the dis-

order of isolated MSER text components. The results showed that the directed graph

construction was reasonable and successful due to the observation of human reading

sense in the assigned direction from left to right. Obviously, the target text line paths

were included in the directed graph through the directed graph construction upon text

components.

In Chapter 4, the k-shortest paths global optimization was analyzed and evaluated on the

ICDAR2011 and ICDAR2013 databases for the text line extraction. The experimental



Chapter 7. Conclusion 103

results presented that the k-shortest paths global optimization method was compara-

ble with state-of-the-art methods. On the ICDAR2011, the proposed k-shortest paths

global optimization method achieved precision of 0.716, recall of 0.902, and f-measure

of 0.798. Our experimental results approved that we can successfully extract the text

line iteratively by applying the k-shortest paths global optimization method. Moreover,

the global optimization can determine the number of text lines automatically to avoid

exhaustive searching.

In Chapter 5, the k-shortest paths global optimization method was extended to the multi-

channel combination for text line extraction. According to the experimental results, the

path global optimization of the multi-channel combination achieved precision of 0.781,

recall of 0.863, and f-measure of 0.820, respectively. We observed that the recall of

7.2% and f-measure of 2.2% were improved with the complementary usage of red, green,

and blue channels in the directed graph and k-shortest paths global optimization. This

approved that the multi-channel text line extraction can achieve promising performance,

and the performance of text line extraction can be improved significantly by combining

the red, green, and blue channels by taking advantage of the structure of the multi-

channel directed graph.

In Chapter 6, the efficiency of the multi-channel k-shortest paths global optimization was

improved based on the multi-channel directed graph transformation. The experimental

results showed that the complexity of the multi-channel directed graph and path opti-

mization can be reduced significantly by grouping the duplicate text path segments into

tracklets. The number of green channel vertices and edges were reduced 2.69 and 3.67

times, respectively. Similarly, we also observed the reduction of vertex and edge com-

plexity in the red and blue channel. Furthermore, the processing time of the k-shortest
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paths global optimization was accelerated by 1.5 times, which proved the performance

of complexity reduction.

As the k-shortest paths global optimization has achieved promising performance, the

following improvements and extensions can be made in the future.

• Firstly, it is worth to use different structure of CNN classifier instead of the simple

CNN with 3-convolutional layers, which is used for the text character feature ex-

traction and classification of non-character noise removal. Many options are avail-

able, such as VGGNet, GoogleNet, and ResNet. These deep neural networks can

improve the performance of feature extraction and classification for non-character

noises removal in text line extraction. Besides, the CNN can incorporate with

the gray-scale or color-scale feature extraction and classification to improve the

performance of text line extraction.

• Secondly, we can try using a more effective text component detector to improve

the performance of k-shortest paths global optimization. In the thesis, the MSER-

based candidate text character extraction method was utilized for directed graph

construction. The main bottleneck of the proposed method is the limited accuracy

performance of text character extraction. Consequently, we need to find a more

accurate text character detector for k-shortest paths global optimization. With

the development of deep learning technology, We can apply deep learning based

text character detection, such as fast region-based convolutional neural network,

single shot multi-box detector, region-based fully convolutional neural networks.

As expected, the recall performance of text line extraction can be improved a lot

considerably.
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• Thirdly, in the future, we can apply the deep learning method in the false text

line removal to improve the precision. In the thesis, we extract the text lines by

the k-shortest paths global optimization upon the text characters in the directed

graph. The single false positive sample may be similar to the true text character,

and the false text line may be generated by the noise candidates with the same

similarity of text line. However, the texture of noise text line can make a significant

to the ground-truth text lines. Thus, we can discriminate the noise text lines from

the truth text lines by applying the deep learning technology. As expected, the

precision performance of text line extraction can be improved significantly.
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[60] Lukáš Neumann and Jǐŕı Matas. Real-time scene text localization and recognition.

In Proceedings of the IEEE International Conference on Computer Vision, pages

3538–3545, 2012.

[61] Yao Li, Chunhua Shen, Wenjing Jia, and Anton Van Den Hengel. Leveraging

surrounding context for scene text detection. In Proceedings of the International

Conference on Image Processing, pages 2264–2268, 2013.

[62] Jun Du, Qiang Huo, Lei Sun, and Jian Sun. Snap and translate using windows

phone. In Proceedings of the International Conference on Document Analysis and

Recognition, pages 809–813, 2011.

[63] Liuan Wang, Yutaka Katsuyama, Wei Fan, Yuan He, Jun Sun, and Yoshinobu

Hotta. Text detection in natural scene images with user-intention. In Proceedings

of the International Conference on Image Processing, pages 2256–2259, 2013.

[64] Artur Ferreira. Survey on boosting algorithms for supervised and semi-supervised

learning. Institute of telecommunications, 2007.



Bibliography 115

[65] Simon M Lucas, Alex Panaretos, Luis Sosa, Anthony Tang, Shirley Wong, Robert

Young, Kazuki Ashida, Hiroki Nagai, Masayuki Okamoto, Hiroaki Yamamoto,

et al. Icdar 2003 robust reading competitions: entries, results, and future direction-

s. International Journal of Document Analysis and Recognition, 7(2-3):105–122,

2005.

[66] Georgios Louloudis, Basilios Gatos, Ioannis Pratikakis, and Constantin Halatsis.

Text line and word segmentation of handwritten documents. Pattern Recognition,

42(12):3169–3183, 2009.

[67] Lei Sun and Qiang Huo. A component-tree based method for user-intention guid-

ed text extraction. In Proceedings of the International Conference on Pattern

Recognition, pages 633–636, 2012.

[68] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew Zisserman, Jiri

Matas, Frederik Schaffalitzky, Timor Kadir, and Luc J. Van Gool. A comparison

of affine region detectors. Computer Vision, 65(1-2):43–72, 2005.

[69] Weilin Huang, Yu Qiao, and Xiaoou Tang. Robust scene text detection with

convolution neural network induced mser trees. In Proceedings of the European

Conference on Computer Vision, pages 497–511, 2014.
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