
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Study on Computational Intelligence Approaches
for Design of Game Strategies

ワランユー, ワラチャート

https://hdl.handle.net/2324/1959137

出版情報：Kyushu University, 2018, 博士（工学）, 課程博士
バージョン：
権利関係：

Doctoral Dissertation of Engineering

博士 (工学)学位論文

Study on Computational Intelligence Approaches

for Design of Game Strategies

ゲーム戦略設計のための計算知能に関する研究

2018年 9月

3DS14027R Varunyu Vorachart

Kyushu University

九州大学

Abstract

We propose a framework for automatic game parameter tuning using a fuzzy

logic systems (FS) of a game player model and evolutionary computation (EC) that

optimizes the FS and adjusts game parameters through simulations.

Controlling the difficulty levels of games is an important process in a game

development. It is a crucial process to make the games attractive for a wider range

of game players; too difficult games may discourage novice gamers, and too easy

games may bore skilled gamers. Since the game difficulty is controlled by game

parameters, game parameter tuning has to find the balance among game parameters

that match a variety of gaming abilities.

Since a tuning process of game parameters is time-consuming and resource-

intensive, especially on a tight schedule in video game production, it requires auto-

mated methodologies under the guiding directions of game developers.

Our proposed framework uses two computational intelligence techniques, FS and

EC. A fuzzy rule-based game decision system, as a game player model, generates

strategic decisions and game commands. Insights from a game developer can be

integrated into the FS. We use an EC algorithm to optimize the parameters of

the player model to make the model stronger. In our evaluation of the proposed

framework, we focus on game parameter tuning in a turn-based strategy game and

implement the framework into a turn-based strategy text game called Star Trek.

We use an FS-based player model as a simulated game player to playtest the

game at various game parameter settings. To automate the playtesting, we suggest

using a coevolutionary algorithm to evolve both player models and game parameters

simultaneously. We expect that both the game and game player models mutually

evolve each other until reaching the balance. In this environment, player models with

ranges of gaming abilities may play a specific set of games equally well. Therefore,

we believe that our framework can fine-tune game parameters computationally for

a certain game difficulty that is suitable for game players with diverse skills.

概　要
ゲームプレーヤモデルのファジィシステム（FS）とそのFSを最適化する進化計

算を用いてゲームパラメータの自動調整をする枠組みを提案し，シミュレーション
実験で評価する．
難しすぎるゲームは初心者をめげさせてしまうし，易しすぎるゲームは熟練者を

飽きさせてしまうため，ゲーム開発においてゲームの難易度を調整することは必須
過程である．ゲームを幅広いプレーヤに対して魅力的にする必須の過程である．ゲー
ムの難易度はゲームパラメータで制御されるため，ゲーム能力に合ったパラメータ
間のバランスを取った調整が必要である．
ゲームパラメータの調整は時間もコストもかかり，特にビデオゲーム制作の厳し

い開発スケジュールでは，開発者のガイドラインに沿った自動調整手法が求められ
ている．
提案枠組みではFSと ECの二つの計算知能技術を用いる．ゲームプレーヤモデ

ルとしてのファジィルールベースのゲーム決定システムはゲーム戦略の決定とコマ
ンドを生成する．ゲーム開発者の知見を組み込むことも可能である．ECはプレー
ヤモデルを強くするためのモデルパラメータ最適化に用いる．提案枠組みを評価す
るために，ターン制戦略ゲームのパラメータチューニングに焦点を当て，提案枠組
みをターン制戦略テキストゲームである Star Trekゲームに組み込む．
色々なゲームパラメータ値に設定したゲームをテストするため，疑似ゲームプ

レーヤとして FSプレーヤモデルを用いる．ゲームパラメータ調整を自動化するた
めに，共進化アルゴリズムで疑似プレーヤモデルとゲームパラメータを同時に調整
することを提案する．共進化によって両者のバランスが取れるまでお互いが進化し
合うことが期待できる．このような共進化環境では，色々なレベルのゲーマー能力
を持ったプレーヤモデルが特定難易度のゲームになるようにゲームパラメータを仕
上げることができるため，提案枠組みは色々な能力差のあるゲームプレーヤ向けに
ゲーム開発に有用である．

Contents

1 Introduction 1
1.1 Background and Remaining Problems 1
1.2 Objectives and Approaches . 3
1.3 Chapter Structure . 4

2 Related Techniques and Research 7
2.1 Related Techniques . 7

2.1.1 Computational Intelligence . 7
2.1.2 Fuzzy Logic System . 7
2.1.3 Evolutionary Computation . 14
2.1.4 Differential Evolution . 16
2.1.5 Coevolutionary Algorithm . 22

2.2 Related Research . 27
2.2.1 Artificial Intelligence and Computational Intelligence in Games 28
2.2.2 Overview of Automatic Video Game Generation 32
2.2.3 Automatic Generation of Game Rules & Mechanics 33
2.2.4 Automatic Generation of Game Contents 34
2.2.5 Automatic Game Parameter Tuning 36

2.3 Chapter Summary . 39

3 Framework for Automatic Game Parameter Tuning 41
3.1 Introduction . 41
3.2 Game Parameter Tuning . 42

3.2.1 Game Difficulty . 42
3.2.2 Video Game Parameters . 43
3.2.3 Game Parameters in Turn-based Strategy Games 44
3.2.4 Conventional Game Parameter Tuning Process 46

3.3 Framework for Automatic Game Parameter Tuning 47
3.3.1 The Framework Components 47
3.3.2 The Framework Structure . 48
3.3.3 Comparison between the proposed Framework and Conven-

tional Practice . 49
3.4 Player Model for Turn-based Strategy Games 50
3.5 Evolving Fuzzy Logic Rule-based Player Model 51
3.6 Learning Player Model by Gradually Increasing Game Difficulty Levels 52
3.7 Coevolving Game Parameters with Player Model 53
3.8 Chapter Summary . 53

i

4 Game Player Model 55
4.1 Introduction . 55
4.2 Interaction with Video Game Environment 56

4.2.1 Game States and Interaction Flows 56
4.2.2 Hierarchy of Game Decisions 57
4.2.3 Levels of Game Information 58

4.3 Structure of Game Player Model . 59
4.3.1 Game Data Parser . 60
4.3.2 Game Decision Making . 62
4.3.3 Game Command Generator 65

4.4 Improvements to Game Player Model 66
4.4.1 Modular FS Tables . 67
4.4.2 FS Table Reevaluation . 69
4.4.3 Multi-output decision . 70

4.5 Example Implementation of Game Player Model in Star Trek Game . 70
4.5.1 The Star Trek Game Environment 70
4.5.2 The Interface Module for Star Trek Game 71
4.5.3 FS Rules for Decisions in Star Trek Game 73
4.5.4 FS Membership Functions . 78
4.5.5 Game Decision Callbacks . 79

4.6 Chapter Summary . 82

5 Evolving Fuzzy Logic Rule-based Player Model 85
5.1 Introduction . 85
5.2 Player Model Optimization with Evolutionary Computation 86

5.2.1 Differential Evolution Algorithm 87
5.2.2 Fitness Evaluation . 88
5.2.3 Encoding Representation . 89
5.2.4 Optimization of Player Model Parameters 90
5.2.5 Example Implementation of Player Model Optimization in

Star Trek Game . 93
5.3 Experiments on Evolving Player Model 96

5.3.1 Experimental Setups . 98
5.3.2 Experimental Results . 100
5.3.3 Discussions . 102

5.4 Chapter Summary . 104

6 Learning Player Model by Gradually Increasing Game Difficulty
Levels 105
6.1 Introduction . 105
6.2 Incremental Learnings of Game Difficulty 106

6.2.1 Scale-space Filtering . 106
6.2.2 Issues in Gradual Incremental Learning 108

6.3 Experiments on Incremental Learnings of Game Difficulty 109
6.3.1 Difficulty Levels and Star Trek Game Parameters 109
6.3.2 Fixed-interval Incremental Learning of Game Difficulty 110
6.3.3 Adaptive-interval Incremental Learning of Game Difficulty . . 113

ii

6.4 Chapter Summary . 117

7 Discussions 119
7.1 Toward the Generalization of Automatic Game Parameter Tuning . . 119
7.2 Human Decision Logs for Game Testing 121
7.3 Influence of FS Rule Complexity on the Incremental Learning 123
7.4 Chapter Summary . 125

8 Conclusion and Future Works 127
8.1 Future Works . 128
8.2 Limitations . 129
8.3 Conclusion . 130

Bibliography 132

Acknowledgements 136

Publication 138

A Star Trek Game 141
A.1 Overview . 141
A.2 Gameplay . 142
A.3 Game Commands . 147

Appendix:

B Simple FS Rules for Star Trek 153

C Extended FS Rules for Star Trek 155

iii

Chapter 1

Introduction

1.1 Background and Remaining Problems

Games have become a crucial part of human culture and one of the oldest forms

of human social interactions. Common characteristics of games include mutually

accepted rules and decisive goals, competition and cooperation, challenge and en-

joyment as well as chances and unpredictable outcomes. They are used as pastimes,

religious events, relationship-building activities, or teaching tools. Teaching func-

tionalities of games range from skill development to ethical and strategic thinking

lessons. Nowadays, people play games for various purposes and in numerous formats,

particularly board games and video games.

Video games are now playing an important role in entertainment industry with

the global revenues of US$79.7 billion in 2016 [11]. At 5.6% growth rate, the value

of video game industry will have probably reached US$100-billion by 2020. Only in

the United States, the world’s biggest market for video games, the industry earned

$16.8 billion in 2016; the Entertainment Software Association reported that more

than 60% of its population play video games. In average, US gamers are spending

8.1 hours per week (12% of their leisure time) playing games and US$20 per month

shopping on games [38]. Responding to the flourishing popularity of video game

playing, either as a pastime or a serious hobby, thousands of new video games are

commercially produced each year. In addition, hundreds of new games are available

to the public for free.

As pastime games in portable devices are getting more and more popular, the

number of game titles has been increasing and the production quality has been

improved. To cope with such a huge demand, video game production must be

developed faster with higher quality. In general, a blockbuster game for a serious

hobbyist may take approximately 18 - 36 months for the production time, while a

1

Design
Concept

Development
Implementation Testing & Tuning Release

Pre-production

(planning)

Production

(manufacturing)

Post-production

(testing)

Figure 1.1: Three major stages of game development process.

typical game for a typical player may take around 6 months or so [14].

To create a video game, the game development process comprises three major

stages: planning, manufacturing, and testing [48] as illustrated in Fig. 1.1. In the

planning stage, game developers initiate the concepts, work out the fundamental

rules and mechanics, establish the primary designs, and set up all necessary resources

for the game. After that the game contents, i.e. audio and visual elements, are

created and integrated during the production phases. Finally, playtesting and game

tuning are carried out to detect and resolve problems as well as to adjust the game

to meet its required quality standards. The testing and tuning stage, normally, tend

to delay the development of a video game due to the huge amount of work involved

[18].

The main purpose of game testing and tuning is to make sure that the game

will meet the required objectives when released. Usually, one of the most common

objectives in video game development is to create an entertaining game which should

neither be so difficult that a beginner is discouraged nor so easy that a skilled player

gets bored [47]. This kind of balance in playing a game challenges the game players

and engages their interest.

Many factors get involved in creating game engagement. The key point to en-

tertain the players is to adjust the game parameters properly. Game parameters

are variable settings in a video game which control the game difficulty. They are

constants or variables in the source code so cannot be directly set by the players.

To achieve a game balance since the beginning of the game, game parameter

tuning aims at determining the default values of game parameters while game de-

velopers are developing the game. This work is different from the dynamic game

balancing [1], in which the game parameters are adjusted dynamically to catch up

with the player’s skills while a player is playing.

As it is not easy to manually tune game parameters to create an enjoyable and

2

attractive game, the game designers must tweak them iteratively to achieve a balance

of game difficulty [45]. This is a truly laborious and time-consuming task.

If we can reduce game developers’ burdens and time wasted in a game testing

and tuning process, the production time will become shorter. This means more

chances for game developers to refine their games for better quality and deliver

their products in time. Hence, extra tools and novel methodology to facilitate and

boost up the testing and tuning processes are necessary.

1.2 Objectives and Approaches

Game parameter tuning is a crucial part of the game testing process. In a con-

ventional procedure, the data gathered from testing are investigated and analyzed

to improve the current version of the video game being tested. It is common to

carefully choose human players, either professionals or novices, who can meet the

objectives in verifying the games. This process, however, can be made automatic

with simulated players who, when equipped with diverse gaming skills, will make

automatic game parameter tuning feasible.

Our goal is to design a methodology to assist video game developers working

on a game tuning process. The system should allow the developers to easily make

use of their game expertise in the process. To waste less time in laboriously repet-

itive tunings, the system must perform automatically or semi-automatically with

minimum efforts from the developers.

To accelerate the tuning process in a controllable way, we use the developers’

game insights in guiding the tuning direction. Without prior knowledge, searching

for suitable game parameters is likely to take longer time due to a vast search

space. At the end, the results may be impractical for the real-world use. With

the guiding information, fortunately, the tuning process tends to produce faster and

more satisfying results.

Our approach uses computational intelligence (CI) techniques for knowledge-

based modelling and optimization capabilities to solve the problems, basing on em-

pirical models instead of analytical mathematical models. The methods can be

verified by observation or experience, rather than theory or pure logic. This is suit-

able to our main objective to employ prior knowledge from game developers. Some

CI techniques, such as fuzzy logic system (FS), require less technical skills for non-

technical persons, e.g. game designers, to express their expertise in the modeling

3

domain.

Although many artificial intelligence (AI) and CI applications are currently used

to automate game content generations, those for automatic game parameter tuning

are few [63]. Unlike other areas of automatic game generation which are conceptual

and self-contained, the work of game parameter tuning is considered game-specific

and the results are non-transferable.

Accordingly, we base our proposed methodology on a turn-based strategy (TBS)

video game. In our scope, TBS game is a battle game where a human player takes

turns in playing the game in a tactical duel with a computer-controlled player. The

game is different from current popular real-time strategy games in which all players

play the game simultaneously. Both kinds of games are originally derived from

traditional board games, e.g. chess, go or checkers. They are ones of the most

popular genres in the video game industry.

1.3 Chapter Structure

Following this introductory chapter, we present an overview of related CI techniques,

as well as related research on AI & CI in games and automatic video game generation

in section 2.1 and 2.2 of Chapter 2, respectively. The overview of our framework for

automatic game parameter tuning is presented in Chapter 3. We then discuss the

creation of our game player model designed for a TBS game in Chapter 4.

We improve the performance of the player model with CI-related optimization

techniques. The implementation of an optimized player model is presented thor-

oughly in Chapter 5. Next, we examine the interaction between the optimized

player model and manual game parameter adjustment in Chapter 6. In Chapter 7,

we draw some discussions from the experiments in previous chapters to support the

validity of our framework.

We wrap up our research in Chapter 8 for the conclusions and our future works.

Fig. 1.2 shows the chapter structure of this dissertation graphically.

4

Ch
ap

te
r

3
Fr

am
ew

or
k

fo
r

Au
to

m
at

ic
G

am
e

Pa
ra

m
et

er
 T

un
in

g

Ch
ap

te
r

4
G

am
e

Pl
ay

er
 M

od
el

Ch
ap

te
r

5
Ev

ol
vi

ng
 P

la
ye

r
M

od
el

Ch
ap

te
r

6
In

cr
em

en
ta

l L
ea

rn
in

g
of

 G
am

e
D

iff
ic

ul
ty

Ch
ap

te
r

7
D

is
cu

ss
io

ns

Ch
ap

te
r

8
Co

nc
lu

si
on

Ch
ap

te
r

2
Re

la
te

d
Te

ch
ni

qu
es

&
Pr

ev
io

us
 R

es
ea

rc
h

Ch
ap

te
r

1
In

tr
od

uc
tio

n
Ch

ap
te

r
1

In
tr

od
uc

tio
n

F
ig

u
re

1.
2:

C
h
ap

te
r

st
ru

ct
u
re

of
th

is
d
is

se
rt

at
io

n
.

5

Chapter 2

Related Techniques and Research

2.1 Related Techniques

2.1.1 Computational Intelligence

Computational intelligence (CI) is a modeling of biological and natural intelligence

created to solve complex problems. There are several main paradigms considered

as CI. For example, artificial neural network (ANN), a model of a biological neuron

analogous to signaling of the synapse in a human brain, searches for patterns or

human perceptions. Inspired by the study of colonies in social organisms, swarm

intelligence (SI) replicates social behavior of an individual organism in a swarm,

looking for efficient collective solutions. Mimicking Charles Darwin’s concept of

survival of the fittest, evolutionary computation (EC) simulates natural evolution

process to hunt for the best individual fitting our requirements. Fuzzy systems (FS)

allows human reasoning with ambiguity and uncertainty to become expressible and

computable.

Our proposed methodology for automatic game parameter tuning employs three

major techniques from two main paradigms: Fuzzy rule-based system from FS

paradigm as well as differential evolution (DE) and coevolution algorithm (CEA)

from EC paradigm. In this section, we describe these three techniques used in our

approach. In subsection 2.1.2, we begin with a fuzzy rule-based system which is the

main component of our game player model. After that, we briefly summarize EC

paradigm in subsection 2.1.3 before explaining DE and CEA algorithms in subsec-

tion 2.1.4 and 2.1.5, respectively.

2.1.2 Fuzzy Logic System

Fuzzy logic system (FS) is a rule-based system using fuzzy logic to express the

relationship between causes and consequences. Lofti Zadeh proposed the concept

7

of fuzzy logic and fuzzy sets in 1965 [65]. Since then, the idea has been furthered

in many research fields and applications including knowledge-based system, pattern

recognition, multi-objective optimization, evolutionary computation, etc. [55]

In this subsection, we present a fundamental concept of fuzzy logic and fuzzy

sets. After that, we discuss the fuzzy IF-THEN rules and the fundamental mecha-

nisms of fuzzy rule-based system. Finally, we examine some major concerns in the

implementation of FS applications.

2.1.2.1 Fuzzy Sets

A fuzzy set is a set that its members contain a degree of membership (DOM). The

DOM value is proportional to the likeliness of being a fuzzy set member. A mem-

bership function of a fuzzy set, µfuzzy, maps a given value x in the set U to the real

interval from 0 to 1, as shown in Eq. 2.1.

µfuzzy(x) : U → [0, 1] (2.1)

A classical set, or a crisp set, is a subset of the fuzzy set. As shown in Eq. 2.2,

the DOM value of a crisp set is either 1 or 0, i.e. existing or non-existing in the set.

For any x in a crisp set S,

µcrisp(x) =

{
1, if x ∈ S
0, otherwise

(2.2)

Membership functions of a fuzzy set may come in any arbitrary forms. However,

they are normally in smooth and continuous shapes. The shape of a membership

function defines the characteristics of a fuzzy set. Different views of vagueness

in the set can be expressed through different shapes of its membership functions.

Parameters that control the shape of a membership function are significant in an

interpretation of the fuzzy set. Thus, we can control the characteristics of the fuzzy

set via these parameters, which are often called membership function parameters.

2.1.2.2 Fuzzy Logic

Boolean logic, or two-valued logic {true, false} or {0, 1}, is an operation associated

with a crisp set. Both Boolean logics and crisp sets produce an exact reasoning

system. They enable binary computation to work, which plays an important role in

the development of a computer system.

Although Boolean sets and logics are very effective in a precise computation,

many real-world problems are imperfect and ambiguous. This is emphasized using

8

uncertain terminologies in human’s languages. Equipped with a degree of certainty,

fuzzy logic has became a crucial tool used to solve a lot of real-life problems and to

model human reasoning.

Like crisp sets, fuzzy sets contain similar operations acting upon the sets, but

with extra calculation on membership functions. The frequently used operations are

union (OR), intersection (AND), and complement (NOT). For a particular operator,

the resulting membership function is computed in different ways.

Union of fuzzy sets (OR): The union of two fuzzy sets contains all elements

from both sets. However, the degree of membership depends on the specific union

operator used. The example of commonly used union operators are:

• maximum: µA∪B(x) = max{µA(x), µB(x)}

• bounded summation: µA∪B(x) = min{1, µA(x) + µB(x)}

where U is a universe, A and B an arbitrary fuzzy set in U , x an arbitrary element

of U , and µA and µB membership functions of A and B, respectively.

Intersection of fuzzy sets (AND): The intersection of two fuzzy sets contains

any elements existing mutually in both sets. However, the degree of membership

depends on a specific intersection operator used. The example of commonly used

intersection operators are:

• minimum: µA∩B(x) = min{µA(x), µB(x)}

• product: µA∩B(x) = µA(x) · µB(x)

• bounded product: µA∩B(x) = max{0, µA(x) + µB(x)− 1}

Complement of fuzzy sets (NOT): The complement of fuzzy sets contains

the same elements, however, with the inverse degree of membership. This is a

generalization of the complement operation in a crisp set.

• complement: µ¬A(x) = 1− µA(x)

2.1.2.3 Linguistic Values and Linguistic Variables

We use a fuzzy set to represent a natural language term describing a quantitative or

qualitative concept, for instance “near”, “far”, “large”, “warm”, “rich”, “strong”,

etc. The term is often called a linguistic value, a fuzzy value, or a fuzzy label. A

group of linguistic values forms a linguistic variable or a fuzzy variable to express

9

the reasoning or information with imprecise or imperfect characteristics. Illustrated

in Fig. 2.1, a linguistic variable “walking distance” contains three linguistic values

“near”, “average”, “far” to express different levels of a distance in a human lan-

guage. In fuzzy logic applications, the linguistic values are often used to facilitate

the expression of facts and rules. A fuzzy variable is a basic building block of a

fuzzy rule.

0.00

1

0 4 km.1.30.8 3.0

0.17

0.83

1.67

(b)

walking
distance

NEAR

0.00

1
FARMEDIUM

0 4 km.2.01.0 3.0

0.33

0.67

1.67

(a)

walking
distance

NEAR FARMEDIUM

Figure 2.1: A linguistic variable walking distance contains three linguistic values
near, medium, and far. For the same linguistic value, different forms of membership
functions provide different interpretations and fuzzification values. At the distance
of 1.67 km., figure (a) has the membership values µnear(1.67) = 0.33, µmedium(1.67) =
0.67, and µfar(1.67) = 0.00, while figure (b) has µnear(1.67) = 0.00, µmedium(1.67) =
0.83, and µfar(1.67) = 0.17.

The expression “a station is near” forms a fuzzy statement in which we can

determine a degree of membership. We use the membership function associated

with “near” label in “walking distance” fuzzy variable to determine the quantitative

value of the closeness to the station. The process of mapping a given input value

(actual distance to the station) to its corresponding degree of membership in a fuzzy

label (quantitative value of the closeness to the station) is called fuzzification. Shown

in Fig. 2.1, applying fuzzification process with different shapes of the membership

function results to different degrees of the membership.

2.1.2.4 Fuzzy IF-THEN rules (Conditional fuzzy rules)

Fuzzy IF-THEN rules are used to express human knowledge very effectively. The

main advantage is that it allows linguistic reasoning with high interpretability, an

ability to understand the meaning. It is easy not only for an expert to create fuzzy

if-then rules from his or her skills in the domain, but also for an ordinary person to

understand the underlying wisdom in the field.

The fuzzy if-then rule is in a form of:

IF antecedence(s) THEN consequence(s).

10

or

IF condition term(s) THEN result term(s).

Antecedence is a causal statement or a combination of several causal statements

establishing a given condition. It defines the area of interest in the problem domain.

Consequence, on the other hand, is a result or a conclusion inferred from the given

antecedence(s). This is a very simple form to represent fuzzy rules. This section will

describe the fuzzy if-then rules along with a concrete example. It will also explain

all the processes to obtain the output result from the given rules.

Fuzzy Condition Statement (Antecedence): We can combine several single

fuzzy statements all together with fuzzy logic operations (AND, OR, NOT) to create

a compound fuzzy statement. This kind of statements is used as a causal statement

to describe an input condition in a fuzzy if-then rule structure. It is called an-

tecedence, or the IF-part of a rule. For example, a compound statement “IF a

station is NOT near AND money is large” applies NOT operation to the first state-

ment and combines two single statements with AND operation. To compute the

numerical value for this compound statement, we first perform fuzzification on each

single statement and apply fuzzy operators on each term afterward. This calculation

process of IF-part statements is called antecedent activation.

Fuzzy Result Statement (Consequence): The THEN part of a fuzzy if-then

rule is called consequence. It indicates the result of the input conditions (IF-part

statements). The process to calculate the resulting influence in each rule is called

implication. As the conclusion of each rule is drawn upon its inputs, we first deter-

mine the rule’s weight (or truth value) from antecedent activation process. Then,

use this weight to imply the consequence in the rule according to an implication

operator: minimum, product, etc.

The consequence can be defined in many forms that categorize the types of fuzzy

systems. Two major models are:

1. Mamdani model has fuzzy sets as a rule consequence. Mamdani proposed

this model in 1974 as fuzzy logic controller [34]. It is originally used to translate

human experience into controlling rules. The output consequences of this

model are linguistically defined with meaningful terms, leading to its high

11

interpretability. The rigidity of the linguistic values, however, limits the system

accuracy. Moreover, the computation to obtain the final results from fuzzy

outputs is costly. Thus, another model to overcome this problem is later

introduced.

2. Takagi-Sugeno-Kang (TSK) model has a function of input variables as

a rule consequence, instead of introducing new fuzzy output variables. The

output is now easier and more accurate to calculate, with the given function.

However, it is more difficult to understand the relationship between IF-clauses

and THEN-consequence function. This model is proposed in 1985 by Takagi

and Sugeno [56] then refined in 1988 by Sugeno and Kang [53].

There are several hybrid models constructed from both Mamdani and TSK mod-

els. One of the hybrid models worth mentioning is a singleton fuzzy system. This

model has a constant as a rule consequence. This constant is considered as a one-

value crisp set, i.e. a subset of fuzzy set, in Mamdani model or a constant value

of an output function in TSK model. The singleton model offers a good balance

between Mamdani and TSK model: fast computation with high interpretability.

Crisp Output: After applying implication process to all rules, we obtain several

fuzzy set outputs for each rule. To achieve a single decision, we then combine these

outputs into a single fuzzy output. This process is called aggregation. Two com-

monly used aggregation operators are maximum and bounded summation methods

for union operators (see union operation in subsection 2.1.2.2).

Finally, the fuzzy output from aggregation process should be converted into a

numerical value for the decisive result. This is an inversion of a fuzzification process.

Hence, we call the task as defuzzification. There are several defuzzification methods.

The most commonly used methods are center of area and mean of maxima [40].

2.1.2.5 Fuzzy rule-based system

A rule-based system uses some rules to describe the mechanism of an event or a

decision. Similarly, a fuzzy rule-based system uses the concept of fuzzy sets and

fuzzy logic to create the rules to describe the mechanism. The fuzzy rule defines the

causal relationship between linguistic input variables representing fuzzy sets and its

corresponding outcome(s).

12

The basic elements of fuzzy rule-based system comprise of 4 main components

as illustrated in Fig. 2.2.

1. A knowledge base (fuzzy rules + membership functions)

2. A fuzzifier converts crisp inputs into fuzzy values.

3. A reasoning engine calculate a fuzzy output according to fuzzy reasoning pro-

cesses.

4. A defuzzifier convert a fuzzy output back into a numerical result.

database

rule base

fuzzy knowledge base

fuzzifier
inference

engine
defuzzifier

fuzzy

input

fuzzy

output

numerical

input

numerical

output

Figure 2.2: A fuzzy rule-based system.

2.1.2.6 FS Implementation Concerns

The main concern of the FS implementations is the lack of scalability. The number

of fuzzy rules depends largely on the number of linguistic input variables and the

number of their corresponding linguistic labels. Suppose we have three linguistic

variables and each variable contains three linguistic labels. It requires 33 = 27

fuzzy rules to specify all relationship among them. When a new variable of three

linguistic labels is added to the system, we need to specify 34 = 81 rules to represent

all associations. Hence, the rule size grows exponentially. We can say that the fuzzy

rule-based system is suitable for a small number of input variables and a small

number of linguistic labels in each variable.

With Combs method [7], however, we can break down a single FS rule with a

number of ANDed fuzzy variables into several FS rules with a single FS variable.

That is:

IF a AND b THEN c ≡ (IF a THEN c) or (IF b THEN c)

13

where a and b are fuzzy statements. By limiting the rule to the Combs format, we

can create fuzzy rules of which their size can be scaled linearly on the number of input

states. However, the Combs method holds its validity as long as the decomposed

rules are all consistent [35].

To create efficient fuzzy rule-based systems, we depend essentially on the exper-

tise of the professionals. Human experts not only design the fuzzy rules from his

experiences, but also supply the relating membership functions to interpret linguistic

input variables for fuzzy reasoning.

An important thing to consider in creating fuzzy rules is choosing consequence

models: Mamdani, TSK, or hybrid model. This decision concerns the trade-offs

among rule interpretability, accuracy, and speed of the computation.

Creating membership functions is not an easy job for human experts. Very

fine details of membership functions are required to get most optimal results. We

usually get a good result from a set of human-supplied membership functions, but

not always the best one. The result may not be fully optimized to achieve the best

result due to the limited capability of human beings.

In summary, fuzzy rule-based systems provide an efficient way to allow human ex-

perts to produce the governing rules in a natural way using verbal expressions. The

system transforms qualitative statements into quantitative values for precise com-

putation. Unlike other black-box methods, e.g. neural networks and their variants,

fuzzy rule-based systems show the logic behind the thinking way in the controlling

rules. With such high interpretability, it is easy to create, understand, and maintain

the system for both rule developers and users.

2.1.3 Evolutionary Computation

2.1.3.1 Biological Evolution & EC Algorithms

In biology terminology, evolution represents changes in the heritable characteristics

of biological populations over successive generations. In 1859, Charles Darwin pub-

lished On the Origin of Species with the theory of evolution by natural selection.

The major element of natural selection is variation. Natural variation refers to dif-

ferences in genes of each individual population. The process of permanent alteration

in genes is called mutation. This also leads to diversity in physical characteristics.

Some variations may improve an individual’s chance of survival from threats in

competitions with enemies and environments. It is as if the dangers eliminate the

14

unfitted and keep only the well-adapted individuals. The process of survival from

fatal threats is called selection. The survivals, with special characteristics, tend to

create more offspring due to their longer lifetime. They transmit the special char-

acteristics to their offspring through the genetic inheritance. The process to create

new offspring by combining the parents’ genes is called crossover. The repetitive

adaptation of genes to survive over several generations creates the survival of the

fittest.

An EC algorithm adapts the above three main processes in biological evolu-

tion, i.e. crossover, mutation, and selection, to solve global optimization problems.

The algorithm contains a population of individuals. Each individual consists of a

sequence of genes representing a solution to the problem. The algorithm applies

biological evolution processes to the population iteratively. Each iteration tries to

improve the population and passes down the fittest sets of genes from one gener-

ation to the next. An EC generation represents an evolving population at a spe-

cific iteration during the evolution process. An EC algorithm is categorized as a

population-based, trial-and-error, stochastic problem solver.

To solve a problem with an EC algorithm, we randomly generate a set of can-

didate solutions as an initial generation. Next, for each successive generation, we

improve its population by removing less-desired individual solutions (aka selection)

and reproducing new solutions from the decent individuals (aka crossover). In addi-

tion, we also modify the new individuals by applying small changes stochastically to

search for a better solution (aka mutation). We apply these three processes repeat-

edly until reaching the target solutions or computation limits. The method offers a

metaheuristic approach to solve incomplete or imperfect optimization problems.

2.1.3.2 EC Implementation Concerns

In addition to three main natural evolution processes, there are several issues related

to the implementation of EC algorithms. For example,

• An encoding chromosome to solutions: The encoding maps a problem

representation into a parameter space in which we search for solutions. A good

encoding must represent the problem clearly and comprehensively in order to

make a search easily.

• An initialization of initial solutions: We begin with defining the boundary

constraints of an encoding parameter space. After that, we initialize an initial

15

population to cover the parameter space uniformly. With some knowledge in

the problem domain, we may initialize the initial population specifically to

accelerate a search process.

• A fitness evaluation function: We need a way to evaluate the fitness or the

survival strength of an individual. This function is often called an evaluation

function or a fitness function. It maps the quality of an individual solution to

a real number called fitness value. We use the fitness value to separate good

solutions from the bad ones. The evaluation function represents selection by

the nature.

• Search exploration and exploitation: On the one hand, search exploration

is the process that widely examines unknown regions in the search space look-

ing for a new prospect solution. On the other hand, search exploitation is the

process that locally investigates a previously visited region to refine the search

results in the highly-anticipated area. To achieve a good search, we need to

balance between exploration and exploitation. A general guideline is to focus

on exploration in the earlier search and exploitation in the later search. Each

of EC algorithms differs in its components contributing to exploration and

exploitation as well as the issue of when and how exploration and exploitation

are controlled [8].

2.1.4 Differential Evolution

2.1.4.1 Overview of DE Algorithm

A Differential Evolution (DE) is a stochastic, population-based search and an op-

timization technique inspired by an EC. Proposed by Rainer Storn and Kenneth

Price in 1997 [52], a DE algorithm is originally used for multi-dimensional, contin-

uous, real-value problems. The recent developments of DE have been applied to

discrete-valued, multi-objective, and multi-modal problems [9], [10].

The main difference between a DE and other EC algorithms is the use of direction

and distance information in the current population to guide the search process. We

obtain the direction and distance information in a form of a difference vector, which

hints the name of this algorithm.

16

2.1.4.2 Generic DE Algorithm

In a common DE implementation, we start with an existing individual in a popula-

tion. We refer to this individual as a target vector. A DE algorithm randomly picks

other individuals from the population and creates a difference vector. The difference

vector is a vector that originates from one random individual toward another ran-

dom individual. Next, the DE applies mutation process upon the difference vector

and a base vector, an individual in the population chosen by a DE control policy.

The mutation process creates a mutation vector. Next, the DE applies crossover

process between the mutation vector and the target vector. The crossover process

creates a trial vector which is a new location to be searched for a solution. Then,

we evaluate the fitness value of the trial and target vectors. Subsequently, the DE

applies selection process to preserve the better vector between the trial and target

vectors for the next generation.

We apply these procedures to all individuals in the current generation before

advancing to the next generation. The algorithm iterates the same procedures until

satisfying one of the following stop conditions: (i) the maximum number of gener-

ations, or (ii) the maximum count of fitness evaluations, or (iii) the specific fitness

value of the best individual.

Algorithm 1 shows a generic DE algorithm. The algorithm begins with the

initialization of its parameters between line 1 - 3. Then, the algorithm enters a

while-loop in line 4 to perform its searches for each generation of a DE population.

Here, the algorithm terminates if one of the stop conditions is met. After that, from

line 6 - 24, the algorithm iterates over each individual in the population and applies

mutation, crossover, and selction processes to the individual starting at line 6, 11,

and 19 respectively.

2.1.4.3 DE Mutation Process

The main objective of the DE mutation process is to generate a mutation vector. We

illustrate the mutation process in Fig. 2.3. First, a difference vector is created from

a difference between two random individuals, xr2 and xr3 . The difference vector is

rescaled by a control parameter, named a scaling factor F . The scaling factor is a

real value and is suggested to be between zero and two [52]. We add the difference

vector to another random individual xr1 , called a base vector, to create the mutation

vector.

17

Algorithm 1 Generic differential evolution (DE) algorithm.

1: Initialize generation counter: g = 0. . initialization
2: Initialize scaling factor F and crossover rate CR.
3: Randomly Initialize a population P of size NP with D-elements individuals.
4: while (stop condition is not true) do

5: for i=1 to NP do
6: Pick base vector xbase from P . . mutation
7: Pick random vectors xr1 , xr2 from P where r1 6= r2 6= i.
8: Calculate difference vector: xdiff = xr2 − xr1 .
9: Calculate mutation vector: vi = xbase + F × xdiff .

10: Let xi denotes target vector and ui trial vector. . crossover
11: Calculate random crossover point: jrand = rand(0, 1) ∗D
12: for j=1 to D do
13: if (rand(0, 1) ≤ CR) or (j == jrand) then
14: ui,j = vi,j
15: else
16: ui,j = xi,j

17: end
18: end

19: Evaluate fitness score of target vector f(xi). . selection
20: Evaluate fitness score of trial vector f(ui).
21: if (f(ui) is better than f(xi)) then
22: Store trial vector for the next generation: Pi = ui.

23: end
24: end

25: Advance to the next generation: g = g + 1. . next generation

26: end

18

x2

x1

mutation vector

difference

vector

x
r3

x
r2

x
r1
base vector

Figure 2.3: DE Mutation process generates a mutation vector, which is originated
from the base vector. Its direction is proportional to the direction of the difference
vector.

Equation(2.3) shows how to calculate a mutation vector, where v denotes a

mutation vector, F a scaling factor, and xr1 , xr2 , xr3 three random individuals from

the population.

v = xr1 + F × (xr2 − xr3) (2.3)

2.1.4.4 DE Crossover Process

The main objective of the DE crossover process is to generate a trial vector. To

help increase diversity of a searching location, we crossover the mutation vector

with the target vector to form the trial vector. Another control parameter, named a

crossover rate CR in Eq.(2.4), is introduced here as a threshold to randomly choose

the element values between the two vectors. This operation finally generates the

trial vector, a new searching location. Figure 2.4 shows two possibilities of the trial

vector generation in a two-dimensional search space.

Equation(2.4) shows the crossover process; where xj, vj, uj denote the jth element

of the target, mutation, and trial vector, respectively, and jrand is a random element

in the mutation vector.

uj =

{
vj, if randj(0, 1) ≤ CR or j = jrand

xj, otherwise
(2.4)

The second conditional term of j = jrand guarantees that at least one element of

19

x2

x1

Figure 2.4: DE crossover process generates a trial vector from two parent vectors,
i.e. the mutation and the target vectors.

the mutation vector is swapped to create the trial vector. This is to make sure that,

despite a low crossover rate CR, the trial vector is always different from the target

vector.

2.1.4.5 DE Selection Process

The main objective of the DE selection process is to determine a better individual

for the next generation, between a descendent and a parent vectors. The process

first evaluates the trial and the target vectors, then compares their evaluations, and

keeps the one with the better fitness score. Figure 2.5 shows the selection process

between the trial and the target vectors.

2.1.4.6 Variations of DE Algorithm

Variants of DE algorithms differ in the detail of mutation, crossover, and selection

implementations. We can modify the mutation operation, as shown in lines 6 - 9

of Algorithm 1, to control the exploration and exploitation behaviors of the DE

algorithm. By changing the way to create a mutation vector in Eq. 2.3, specifically

how to pick a base vector and how to create a difference vector, many behaviors

suitable for searching different types of fitness landscape can be achieved.

The notation of basic DE strategy, as explained in subsection 2.1.4.3, is called

DE/rand/1. The notation scheme in Table 2.1 is in the form of DE/x/y where x

represents how to pick a base vector, and y represents how many difference vectors

are used. The possible values of x include:

20

x2

x1

Figure 2.5: DE selection process selects the better between the trial and the target
vectors, according to its fitness evaluations.

• rand indicates a randomly selected base vector.

• best indicates the best individual of the population as a base vector.

• target-to-best indicates a base vector that originates from a target vector and

points toward the best individual of the population.

The table shows some variants of DE algorithms along with their corresponding

mutation equations and brief comments.

2.1.4.7 Control Parameters in DE Algorithm

According to Algorithm 1, the major control parameters are

• The population size NP from initialization in line 3,

• The scaling factor F from mutation process in line 9, and

• The crossover rate CR from crossover process in line 13

Many adaptive DE algorithms adjust these three parameters, in a specific combina-

tion, to accelerate the evolution results [44].

Creating a trial vector from a difference vector is a good strategy to automatically

balance between the exploration and exploitation searches. In the initial generation

of a DE algorithm, individuals are randomly initialized all over the search space. As

21

Table 2.1: Variations of DE algorithms. The second column shows a variant of
Eq.(2.3) where v denotes a mutation vector, x a target vector, xr1 , xr2 , xr3 , xr4 , xr5
random individuals different from x, xbest the best individual in a population, and
F a scaling factor.

Notation scheme Variants of mutation equation Eq.(2.3) remarks

DE/rand/1 v = xr1 + F × (xr2 − xr3)) A random individ-
ual encourages ex-
ploration behavior.

DE/rand/2 v = xr1 + F × (xr2 − xr3) + F × (xr4 − xr5) Two difference vec-
tors are generated
from four random
individuals.

DE/best/1 v = xbest + F × (xr1 − xr2) The best individ-
ual encourages ex-
ploitation behavior.

DE/target-to-best/1 v = x + F × (xbest − x) + F × (xr1 − xr2) A target-to-best
vector balances
both exploration
and exploitation.

a result, the algorithm creates difference vectors with large magnitudes due to the

scattering of its population. This allows trial vectors to spread out and explore the

search space during the early generations. After the population evolves over times,

individuals will converge to a potential optimal solution. In the later generations,

the magnitude of difference vectors becomes smaller than the earlier generations

due to the gathering of the DE population. The trial vectors gradually change from

exploring a wide area to examining a local region near the optimal solution. Hence,

the exploration automatically transforms into the exploitation in an accordance with

the population distribution in the search space.

2.1.5 Coevolutionary Algorithm

A Coevolutionary Algorithm (CEA) is a natural extension of an EC where each

individual is evaluated based on its interactions with other individuals. For standard

EC algorithms, an individual is evolved among its population in a fixed environment.

In contrary, CEA proposes that the environment is simultaneously influenced by all

populations which interact with one another independently. Hence, each population,

in addition to local adaptation within its own population, takes turn to evolve in

response to the ever-changing environment, caused by the evolving populations.

Unlike standard EC algorithms in which each individual is evaluated according

22

to an explicit fitness function, a CEA uses the performance comparison between

populations as an evaluation measure. The performance comparison measures the

interaction success of an individual in relation to other individuals of the same

population. This interaction measure is also called a relative fitness. With a CEA,

we can search for the solutions without prior knowledge of the problem domain

or an explicit fitness function of the population. Thanks to the interactions, the

relative performance comparison drives the coevolution process between interacting

populations [15].

One of the significant features of a CEA is to allow the individuals to escape from

stagnation in local optima. When the environment is gradually altering over time,

the algorithm perturbs the fitness landscape in such a way that some individuals

are able to migrate from the local optima [5].

In a CEA, different populations normally play different roles. We categorize

a CEA into two major groups: (1) competitive CEA and (2) cooperative CEA.

On the one hand, a competitive CEA establishes an arm race condition where an

advantage of a population implies a disadvantage of the other. Each population

focuses on outperforming the other. On the other hand, a cooperative CEA set ups a

symbiotic condition where all populations mutually benefit from their collaboration.

Both groups of CEAs contain different concepts of population interactions as well as

controlling policies. In the following subsections, we describe the generic algorithm

of coevolution, then explain the characteristics of both competitive and cooperative

CEAs. We focus on a competitive CEA because it is the basic mechanism for our

proposed methodology.

2.1.5.1 General CEA Algorithm

The algorithm 2 shows the idea of how coevolution works in general. For each gen-

eration, we first calculate the relative fitness of each individual in every population

group and then evolve each population group afterward. We can use any EC algo-

rithms to evolve each population group distinctively. To calculate relative fitness

of an individual, we select some individuals from the opponent groups as the com-

petitors/collaborators and use the competition/collaboration results to compute the

relative fitness.

23

Algorithm 2 Generic Coevolutionary Algorithm

1: Initialize generation counter: g = 0.
2: Initialize all populations P.
3: do
4: foreach population Pi ∈ P do . calculate relative fitness
5: Sample opponent individuals S from each populations {P− Pi}.
6: foreach invidiual Ci ∈ Pi do
7: Evaluate relative fitness of Ci with respect to sampling populations S

8: end
9: end

10: foreach population Pi ∈ P do . evolve using EC
11: Evolve population Pi to the next generation.

12: end
13: Advance to the next generation: g = g + 1.
14: while (stop condition is not true)
15: Select the best individual as the solution.

2.1.5.2 Competitive Coevolution

In this algorithm, we reward an individual when it works well against the other

populations. In this case, each population tries to compete with one another and

become better and better at its defensive and offensive strategies in each generation.

This is similar to a predator-prey model in biological systems, where a predator

keeps developing its attacking tactics while its prey keeps improving its escaping

strategies. Another analogy to the method is a host-parasite model, where a host

represents a solution to solve a problem with data sets defined by a parasite. A

solution host evolves to solve as many problems as possible, which, in turns, become

more and more difficult due to the adapting data sets [21].

Controlling Policies: In a competitive CEA, there are several controlling policies

to accelerate the coevolution. Two major concerns are of interest: (1) how to

evaluate a relative fitness of an individual in one population from the performance

comparison between several population groups, and (2) how to sample individuals

from one population to coevolve with the others.

Relative Fitness Evaluating Policies: A CEA supports interactions be-

tween different types of populations. The fitness evaluation is a relative measure

of each individual’s performance in the whole interacting environment. We can

measure this fitness in several ways. Below is the list of commonly used policies

24

[15]:

1. Simple fitness: For a given individual, we directly count the number of defeated

opponent individuals, as a relative fitness score. In this case, the most winning

individual is the fittest individual in the population.

2. Fitness sharing: For a given individual, we calculate a relative fitness score

from the simple fitness divided by the sum of its similarities in the winning

list. The most winning individuals may win over the same opponents similar

to others, and they all share the same amount of fitness rewards. In this case,

we oppose the similarity of the winning list and reward unusual individuals

containing the uniquely maximum winning list.

3. Competitive fitness sharing: In this policy, we first compute the competitive

fitness from the viewpoint of opponent individuals. For each opponent individ-

ual, the competitive fitness is inverse proportionally to the number of losses.

The most losing opponent has the lowest competitive fitness, while the least

losing opponent (aka the most winning opponent) has the highest competitive

fitness. Hence, for a given individual, a relative fitness score represents a sum-

mation of the competitive fitness from the opponents it can win. This policy

rewards the wins over the opponent that only a few other individuals could

beat.

These policies are specifically designed for the competitive CEA, where a loss in

one population group is a gain in the other group(s). This is contrary to the nature

of the cooperative CEA, where a collaboration is necessary and different measures

of relative fitness are required.

In addition to the fitness ranking for the selection process, we also use the rel-

ative fitness in the sampling policies to help reduce the computational expense of

coevolution process.

Sampling Policy: This is a policy to match an individual from one population

group to coevolve with individual(s) from different groups. The followings are the

common sampling policies normally used in a CEA [15].

1. No sampling: This is one of the simplest forms of the sampling policy. We

match all individuals in a population group to all individuals in the other, in

25

a round-robin fashion. It is the most time-consuming policy among all, yet

it always gives the satisfying results because all possibilities are paired. This

policy is good with a small-size population.

2. Random sampling: In this policy, we select a sample uniformly at random.

Thus, the coevolution processes are computationally minimized, yet the quality

of the coevolution is somewhat questionable.

3. Fittest sampling: To reduce the amount of coevolution while still preserving

the quality results, we select only the fittest individual from the other popu-

lation groups for the samples.

4. Tournament sampling: A tournament is a series of pair-wise matches where

the winner advances to the next round, until the most winning individual is

decided. We emulate a tournament of random matches to determine a sample.

5. Shared sampling: In this method, we select opponent individual(s) with most

wins over the opposing population groups as the samples. (see competitive

fitness sharing policy in the previous subsection.)

In addition to the competitive CEA, we can apply this sampling policies to the

cooperative CEA. The explanation for the cooperative CEA is given in the next

subsection.

2.1.5.3 Cooperative Coevolution

We reward an individual when it works well along with the other populations and

benefits the whole environment. Meanwhile, we punish an individual when it works

poorly with the others and spoils the environment.

Potter and De Jong proposed the cooperation approach of CEA in 1994 [42]. In

their approach, each population group represents a component of a solution, and a

collection of the best individual from these groups establishes a complete solution

to the problem. The cooperative CEA coevolves independent components more

efficiently than when the traditional EC evolves an entire solution. Algorithm 2 also

shows the main idea of the cooperative coevolution algorithm.

As cooperative CEA focuses on the collaboration between subcomponents, the

relative fitness evaluation should measure the effort contributed by an individual col-

laborator appropriately. We call this measurement a credit assignment policy. There

26

are many policies to faithfully evaluate an individual subcomponent corresponding

to its contribution. Three of the most often used policies are optimistic, hedge, or

pessimistic; in which we assign an individual the value of its best collaboration,

average collaborations, or worst collaboration, respectively [61].

2.1.5.4 CEA Implementation Concerns

Although the interactions among the population groups, both competitively and

cooperatively, may help the evolution process refrain from local stagnation, there

are times when the evolving process faces new dilemmas. Two of the most frequently

found CEA dilemmas are losses of gradients and cycling population dynamics [4].

Losses of gradients occurs when a population group reaches a state that makes

other groups lose fitness pressure to keep them from improving. For competitive

CEAs, imagine when one population group is much more superior to its component

group. In this case, the opponent group always loses and learns nothing from the

competition. For cooperative CEAs, if a population group somehow loses its di-

versity instantly, the search space of its collaborator groups is suddenly limited in

response.

Cycling population dynamics indicates a situation similar to the non-dominant,

cyclical wins in the game of rock, paper, scissors, where a population group evolves

back to the same state after several generations. There are several techniques to

solve this problem. The concept of hall of fame where the fittest individuals from the

previous generations are also included in the competitions is one of the well-known

practical solutions.

2.2 Related Research

In video game development, several intelligence algorithms and techniques can be

used to assist or automate the processes. In this section, we summarize previous

researches relating to the automatic fine-tuning of video game parameters. We begin

with a general survey of computational intelligence (CI) and artificial intelligence

(AI) techniques in generic games. After that, we conduct a survey regarding auto-

mated video game generation. Finally, the findings of the surveys regarding three

automation processes in game rules and mechanics, game content, and game tuning

27

are presented, respectively.

2.2.1 Artificial Intelligence and Computational Intelligence
in Games

AI and CI algorithms and techniques were proposed for several video game appli-

cations. Both techniques share the same goal in searching for machine intelligence,

a study of intelligent machines that work and react like humans. However, they

are different in the way they approach the problems. On the one hand, AI tries to

simulate intelligence that can be programmed effectively, but, on the other hand,

CI looks for a way that enables intelligence to emerge via statistical processes, usu-

ally driven by data or experience [32]. The two ways of thinking complement each

other, providing different advantages and disadvantages to tackle the same problem.

Nonetheless, this description is one of many explanations for the techniques and

other opinions does exist. The main purpose to describe them here is to point out

the main differences between the two commonly-used techniques in machine intel-

ligence for games. In this dissertation, we use the term machine intelligence when

refering to both AI and CI techniques in general. The mainstream usage of machine

intelligence for games is to construct game controllers, or game agents, that can play

a game well, without cheating the existing game rules.

2.2.1.1 Traditional Board Games and Machine Intelligence

Creating the automatic game controllers is one of the first efforts to implement

machine intelligence techniques. Historically, the attempts focused on a machine

playing a board game with a human being. Being widely recognized as a human-

intelligence representation, chess playing showed us many famous, infamous and

classic examples of the challenge. The controversial one is an automaton chess

player called the Mechanical Turk, which is originally dated back to 1770. The

machine turned out being a hoax with a human player hidden inside [16]! The

evidence of solving chess with a general-purpose computer is commonly credited

to Alan Turing, who suggested and commented on chess-playing as an opening

challenge for a new-era thinking machine [58]. Claude Shannon, later, took the idea

into practice and tackled the problem with a computer program. Since then, chess

playing has become widely used as a research target for machine intelligence. In

1970, Association for Computing Machinery (ACM) held the first computer chess

championship. This human vs machine competition in chess reached its peak on 11

28

May 1997, when Garry Kasparov, a World Chess Champion, closely lost to IBM’s

Deep Blue machine. Deep Blue is a supercomputer specifically built for the chess

competition using a brute-force approach [16]. The machine is highly optimized for

minimax-based algorithms and effective pruning techniques.

While sophisticated machines were outperforming human chess players, an in-

teresting case occurred in 2005 Freestyle Chess Tournament, which welcomed all

combined teams of human beings or computing machines. Two amateur chess play-

ers with three laptops won the tournament beating teams of grandmasters and su-

percomputers, from the qualifying rounds to the finals. To guide their moves, they

used the laptops to run the self-developed chess-analysis program equipped with

commercial chess software and custom-built database. This remarkable event shows

that, as Garry Kasparov pointed out [25], “Human strategic guidance combined

with computer tactical acuity was overwhelming.”

2.2.1.2 Minimax Algorithm

Machines now defeat human players in all popular traditional board games. The

common characteristics among these board games are, generally, alternate playing

between multiple players and fully observable information on a game board. The

rules of these game specify valid moves and well-founded interactions among the

game objects. The combinations of all these moves and interactions produce gigan-

tic game trees. A game tree is a directed graph in which each node represents game

object’s positions on the board and each edge represents a game object’s move. The

game tree is used to represent a whole game play, including all moves and interac-

tions. To portray an actual game competition, we use a game tree with alternate

moves that maximize one player’s benefits and minimize the other’s, consecutively

until reaching an endgame or a certain tree depth. Then, for our game decision, we

evaluate a positional cost for each decision path and determine the best one. This

method of decision making, which takes turns to minimize and maximize the profits,

is called minimax algorithm. Minimax is a fundamental algorithm for a turn-based

game with discrete state. It is often referred to as a brute-force approach, following

its intensive search of all possible decisions without learning behaviors.

When used in more complex games with excessive possibilities of valid moves,

a minimax search could be very expensive since all paths in every tree branches

must be evaluated. Thus, we need some heuristic methods to quickly cut down

29

under-performed tree branches, so called a pruning technique. The idea behind

the pruning is that, when a move on a branch is found worse than the previously

evaluated one, we stop searching the branch. The most popular technique to reduce

the tree search is an alpha-beta pruning. Alpha refers to the minimum scores from

the maximizing player, while beta refers to the maximum scores from the minimizing

player. Initially, alpha is a negative infinity, and beta is a positive infinity. When

both values cross, meaning alpha becomes greater than beta, we stop searching the

branch as the path is not worth playing anymore.

Another successful example of minimax with alpha-beta pruning algorithm is

in checkers playing. Jonathan Schaeffer’s Chinook program competed equally well

against Marion Tinsley, 21-time world champion, in 1992 and 1994 Man vs Machine

World Championship. Chinook employed a pre-programmed database for opening

and endgame (with eight pieces or fewer) moves or, otherwise, a form of minimax

search with alpha-beta pruning techniques. In 2007, Scheaffer et al. presented their

proof that the best outcomes playing against Chinook is now only a draw [46].

2.2.1.3 Machine Learning Algorithms

Instead of a brute-force approach and pre-programmed database sequences, another

approach is to learn game strategies from playing with humans or computers, includ-

ing the machine itself. This is similar to a play-based learning practice in children

education. Several algorithms from artificial intelligence (AI), computational intel-

ligence (CI), machine learning (ML) as well as statistical learning are invented and

implemented to find the appropriate solutions for each game challenge. For example,

David Fogels used a neuroevolutionary algorithm to evolve the weights of Artificial

Neural Networks with Evolutionary Algorithm in Blondie24, a checkers-playing pro-

gram [33].

Recently, unlike Deep Blue’s specific task machine with a brute-force approach,

DeepMind’s AlphaGo used deep neural networks, along with supervised learning and

reinforcement learning, to learn from human-played and self-played games, whatever

game it is [50]. This deep learning method astonishingly defeated Lee Sedol, the

2nd ranked international Go player, in March 2016. In 2017, DeepMind introduced

a superior AlphaGo Zero and AlphaZero that can learn solely from self-playing by

reinforcement learning, without human knowledge imposed beyond the game rules.

Within 3 days of self-learning, AlphaGo Zero surpassed the ability of AlphaGo, that

30

once beat Lee Sedol, by 100:0 wins. Generalized toward other games, AlphaZero

played Chess and Shogi and Go then bettered the world champion programs in all

three categories, after less than two days of self-learning.

Prior to this, the earlier versions of deep learning model from DeepMind com-

pany had already been capable of playing classic video games from Atari 2600, and

had achieved the same level as a human professional game tester [36]. Currently,

DeepMind is applying this method to play StarCraft II, a multiplayer, real-time,

partially-observable strategy video game. The existing algorithms, however, played

the game poorly, completely losing when playing against the hard-coded rule-based

game bots provided by the StarCraft publisher.

2.2.1.4 Video Games and Machine Intelligence

Contrary to traditional board games, video games operate on a more complex and

continuous space. With additional interactive elements, the dynamic and complica-

tion of game states hugely increase. In its early years, a video game often used a

decision tree or a finite-state machine (FSM) to control its agent’s state, action, or

reaction [35]. A decision tree is a tree-like structure where a node acts as a decision

point; an edge as a decision choice; and a leaf node as a decision. It is a very simple

and fast, yet static, mechanism for decision making. We may include a random

component into a node to break its predictable outcomes. On the other hand, FSM

is a directed graph where a node represents an agent’s state and a directed edge

represents a transition from one state to another. An agent remains in its current

state and carries out the same action, until a specific eventcondition occurs. Then,

according to the event and its corresponding transition, the agent will change its

state. We can combine other computation techniques with FSM to obtain some in-

teresting features. For example, a fuzzy state machine applies fuzzy logic property

into its components: a state transition triggered by a fuzzy logic, multiple current

states with different degrees of membership, etc.

Unlike early-era video games, the complexity in contemporary video games limits

the conventional use of a game tree and a state machine. Following the trend of

modern-day video games, shifting toward the internet and mobile gaming, a real-

time, massive-player game style is emerging. With very large branching factors and

parallelly continuous game states, an adaptive learning approach has become much

more promising [32]. This new method not only provides superior mechanism for

31

game controllers, but also opens novel possibilities in game design, development,

and analysis: exploring techniques to model human players’ feelings or emotions;

creating non-player character (NPC) controllers (that play much like real human

players or play a game amusingly to attract audiences); building automatic systems

to find exploits in games and help tuning the games toward specific intentions;

finding procedural methods to generate game content suitable for a specific player,

etc. [64]

2.2.2 Overview of Automatic Video Game Generation

Several attempts to automatically generate video games, both partially and entirely,

have been proposed and implemented largely in the past ten years. With emerging

machine intelligence algorithms and a strong demand in video game industry, the

researches in this area continue growing rapidly. Among the earliest efforts to solve

the problems, Nelson et al. viewed a game design as a problem-solving activity and

classified it into four interacting aspects [37].

1. Abstract game mechanics specify abstract game states and game state

transitions. The state transition dictates how a state changes from one to

another, either by intrinsic conditions within a game or extrinsic interaction

with a game player.

2. Concrete game representation specifies how to represent the abstract de-

sign in (1) to a game player in a game world. Generally, we map visual and

audio elements to represent each abstract game state into the concrete game

world. For example, we may represent a game time limit with an in-game

watch, an on-screen bar graph, an action of a game agent, or an increasing

tempo of background music.

3. Thematic content refers to the real-world references depicted on the game

application. This is where the actual visual and audio elements are generated,

as designed in (2).

4. Control mapping defines the relationship between player inputs and state

transitions. There are several kinds of player inputs in modern video games:

pressing a keyboard, pushing a joystick, saying a word, tapping a pad, moving

a body part, etc.

32

In addition to the above design aspects, Liapis et al. viewed video games as

another domain in computational creativity, among other existing domains such as

music, story-telling, painting [30]. He also pointed out the unique characteristics of

video games: highly interactive, dynamic, and content-intensive. It is a combination

of these features that engages and entertains game players. Thus, the measures of

feelings and emotions to quantitively evaluate game designs are required. Togelius

et al. surveyed the theories of fun and curiosity, i.e. Csikszentmihalyi’s concept of

flow, Schmidhuber’s theory of artificial curiosity, to measure fun in practice [57].

They applied these measures as a fitness function in a proof-of-concept experiment

to evolve game rules for a single-player video game.

2.2.3 Automatic Generation of Game Rules & Mechanics

Game rules define a player’s goals, including winning and losing conditions, and

provide the player freedom to act or interact within a game. These two functions

lead to the main structures for the game. With the help of game mechanics, action

and interaction between a game and a player occur. Game mechanics also modify

game data and transform game states. For example, in a platform game, the gravity

is used as a key mechanic on a character control. A game player controls a character

to run and jump over obstructive holes toward a destination. A game rule states that

a character must avoid falling into a hole or the player loses the game. Automatic

design of game rules and mechanics will help a game designer to create new games,

or unique game genres. It may enhance a new idea, on a human design process, and

exploration, for alternative solutions. The key concern for automatically generated

games, however, is the playability: the player must be able to win a generated game.

Yavalath, a two-player strategy board game invented by Cameron Browne’s Ludi

system in November 2007, is the first computer-generated game to be commercially

published [3]. Generated games in the Ludi system were described as symbolic ex-

pressions of game information units: number of players, board size, board shape,

winning and losing conditions, etc. The system used genetic programming to evolve

the sets of game rules in the self-play simulations. To search for new interesting

games for human players, the concept of game quality is incorporated into an evalu-

ation function. Major criteria in his game quality are related to playability tests and

dramatic gameplays. The playability quality includes less draw outcomes, no unbal-

anced advantages toward the players, no too early serious disadvantages in the game,

33

and suitable length of playing time. For the measurement of dramatic gameplays,

the differences of estimated strength between players were recorded throughout the

game. A close competition (less difference) or a comeback (winning after negative

difference) is a key indicator for dramatic moments which the game designers are

looking for.

An interesting remark on Ludi system is the creation of a game called Lammon-

thm, which is almost identical to Gonnect, the famous connection game [49]. The

only difference is on a single rule that is encoded in one gene. That means Ludi

system is only a mutation away from discovering a great game. However, the EC

mutation process, which is influenced greatly by randomness mechanisms, is not

guaranteed to perfect this incident.

Game rules are usually generated in a form of grammar-based compositions,

constructing a complete game from elementary units according to grammatical

constraints. In accordance to this approach, Video Game Description Language

(VGDL) offers generic and flexible constructs to describe various kinds of video

games. VGDL consists of four sections: level mapping, sprite setting, interaction

setting, and termination setting. Video games defined in VGDL are used in General

Video Game Playing Competition(GVG-AI), an annual competition of autonomous

game agents, playing a group of both known and unknown video games for the

machine intelligence algorithms. Having both automatic game-rule generations and

efficient agent-controlled algorithms, this competition provides a solid ecosystem for

advanced researches in video games.

2.2.4 Automatic Generation of Game Contents

2.2.4.1 Procedural Content Generation (PCG)

While well-designed rules and mechanics engage existing players for replays, carefully-

crafted game content attracts new players by giving them irresistible influence of

first impressions. Procedural Content Generation (PCG) is now a fast-growing area

in both technical game research and commercial game industry. PCG is the algo-

rithmic creation of game content with limited or indirect user assistance, either from

the designers or the game players. In a broader sense, the term content refers to

anything contained in games: characters, weapons, textures, music, maps, levels,

stories, quests, game rules, etc. The only exception content in PCG research is the

agent or game controller’s behavior, which was discussed in the earlier section, due

34

to its dominance in the research area. The unique characteristics of PCG, apart

from other generative arts, are the playability and design constraints for a specific

game genre.

PCG alleviates human designers’ roles and accelerates game development, re-

ducing costs while maintaining equivalent quality at lesser memory storage. It not

only adaptively produces new content suitable for a player, but also inspires or col-

laborates with a designer in a mixed-initiative system. However, according to the

current technology, game designers hardly use PCG in a real game production, due

to difficulty in controlling the content creation, following a required direction within

a short production time. There are severe tradeoffs between quality and speed as

well as diversity and reliability [49].

2.2.4.2 PCG with Search-based Algorithms

PCG uses search-based algorithms, mainly evolutionary computation (EC), to search

for good game content using a user-defined evaluation function. To create a success-

ful search using EC, there are three major points to think about. (i) The evaluation

function evaluates each candidate content then guides the evolution toward the op-

timal solution. The function should integrate intended features, e.g. playability,

aesthetics, and intricacy into an account. Thus, defining a decent evaluation func-

tion is a challenging task. Different evaluation functions normally lead to different

search results. (ii) The content representation, which is the landscape where an EC

algorithm takes place, is also equally important. The content representation defines

the search space for the algorithm and the way the searched content can be ex-

plored. (iii) The search algorithm itself has a crucial role in evolving results. Some

algorithms are best suitable for a specific type of problems. For example, when

there are multiple criteria opposing each other in decision making, a multi-objective

evolutionary algorithm like NSGA-II is recommended [49].

2.2.4.3 PCG with Machine Learning Algorithms

Another approach in PCG, a worth mentioning one, is machine learning (ML) tech-

niques, e.g. neural networks, Markov models, clustering, matrix factorization [54].

Trained by existing game content with supervised player response, PCGML is not

only able to automatically or collaboratively generate game content variations based

on training dataset, but also applicable to game content analysis as well as game

35

parameter tuning. We also benefit from other features of ML including clustering,

classification, identification, prediction, etc. Unlike evolutionary computation meth-

ods, where game content is converted into content representations, machine learning

mechanisms directly use the content to learn from; no more conversion to an un-

familiar medium for a designer. This significantly lessens a game designer’s work.

Moreover, in order to use its ability to evaluate game content automatically, we can

integrate PCGML with search-based PCG or other generative techniques.

Apart from the standard approaches mentioned above, some specific algorithms

can also be applied to generate a particular type of game content [49]. In computer

graphics area, fractal and gradient noise functions are used to create terrains, land-

scapes, textures, and cloud. Cellular automata are used in game-level generation,

especially for dungeons and mazes [24]. Various kinds of plants can easily be cre-

ated by Lindenmayer system (L-system). Planning algorithms are suitable for the

creation of game quests and storylines [17]. Obviously, several existing techniques

in other research areas are closely related to PCG in video games.

2.2.5 Automatic Game Parameter Tuning

2.2.5.1 Traditional Game Tuning with Human Playtesting

Game parameters are variables in a video game that directly control the players, en-

emies, and levels. They have strong influence on the game difficulty. Game tuning is

a process to adjust game parameters, without modifying game rules and mechanics,

to make the game fun, fair, and fascinating. In a video game production, this process

is done under a testing stage, in which a game in development is played thoroughly

to identify potential bugs and design flaws. Human testers provide feedbacks in a

form of written surveys or verbal interviews; the data must be exhaustively compiled

and carefully analyzed for necessary game tuning. Relying on iterative judgement,

game designers use their experience and intuition as well as user feedback to adjust

game parameters to reach the intended game difficulty. After all, a player’s percep-

tion on game difficulty reflects hisher ability on playing that game, and vice versa.

Used as a teaching tool, game difficulty is a key factor to train then evaluate a game

player’s specific skills.

Unlike dynamic difficulty adjustment (DDA), which automatically changes game

parameters in real time based on the player’s ability while playing, game tuning

determines a set of values for game parameters to match a player’s desirable level.

36

Generally, it is essential to set countable game content, e.g. the number of enemies,

the maximum time to do a quest, etc. to constant initial values. (Increasing enemies’

strength while fighting, due to DDA, is unnoticeable to a player. Increasing the

number of enemies while fighting, however, is unfair.) Different game parameter

settings bring different game variants, resulting to distinctive playing experience.

Fine-tuning game parameters to achieve the game balance for generic game players,

neither too easy nor too difficult, is laborious and time-consuming. Hence, we need

automatic game tuning methods to alleviate this burden.

2.2.5.2 Automatic Game Tuning in Minimal Action Games

Isaksen et al. explored game parameter space on minimal action games [23], a game

genre in which a player uses high skills on minimum control to play the game. He

applied score probability distributions, in a form of survival analysis, on single-player

Flappy Bird video game. By pressing a single button to emulate a bird’s flapping, a

player must navigate the bird through a series of pipes as far as possible. Each time

the bird flies through a pipe gap without crashing, the player scores a point. Isaksen

relied on these distance scores, as internal game matrices, to indicate the player’s

skill level. He created a player model based on human motor skills to imitate a

human playing.

It is worth mentioning here that a player model is a general term to represent

specific information when a game player interacts with a video game. There are

many kinds of player models with different intended purposes, scopes of application,

sources of derivation, and domains of finding [51]. For automatic game parameter

tuning, the player model is usually a static, objective, simulation-based, and player-

experience model.

With a huge amount of time spent for automatic playtesting, Isaksen generated

a histogram showing the number of surviving birds after flying pass each pipe. This

presents a probability distribution of a player’s scores for a specific game variant.

By varying game parameters, he obtained numerous survival statistics from various

game variants. With the survival analysis, he was able to understand the relation-

ship between each game parameter and the perceived game difficulty. Using this

technique, he explored game parameter space, looking for playable games, finding

interestingly unique variations [22], searching game parameters for specific difficulty,

etc. These applications are now really helpful for game designers to fine-tune game

37

parameters effectively.

Isaksen’s proposed survival analysis is useful for minimal action games, where its

difficulty is determined by a player’s motor skill. There are various kinds of game

difficulty depending on a game genre. Picture puzzle games demand a player’s vi-

sual skill and impose representational difficulty. Strategy games challenge a player’s

strategic skill, which can be measured by a deep look-ahead on a search tree, for ex-

ample. Thus, as Isaksen concluded, various types of game difficulty require different

models to accurately simulate and measure their effects [23].

2.2.5.3 Automatic Game Tuning in Two-player Action Games

The idea to use a player model for automatic playtesting is now proven as a solid

approach for game tuning. Nevertheless, building a custom game agent for a player

model is not an easy task and still time-consuming, not to mention a possible poor

performance due to unforeseen game scenario. Liu et al. proposed to use now-

available autonomous game agents designed for the General Video Game Playing

competition (GVG-AI) in place of a customized controller [31]. This annual competi-

tion provides an ever-growing collection of autonomous agents for both single-player

and two-player game tracks. The provided agents use several algorithms, ranging

from a random number generator, genetic algorithm to Monte Carlo tree search

(MCTS), as their controller. In her experiments, Liu used GVG-AI sample MCTS

agents to play a two-player space-battled clone of Spacewar video game. The game

is stochastic and fully observable.

Liu also suggested using the skill-depth of a game [27] as a fitness function in

place of Isaksen’s game difficulty. To demonstrate an automatic game tuning, she

used simple evolutionary algorithms to optimize game parameters in search of game

variants with high winning rates, which was used as estimating measures of deeper

skill-depth. Alternatively, some other interesting fitness functions can be used in

place of optimizing game parameters for skill-depth or game difficulty.

2.2.5.4 Automatic Game Tuning in Action-Adventure Games

Gaina et al. evolved game parameters for strategic diversity in an action-adventure

clone of Legend of Zelda video game [19]. Games with high strategic diversity pro-

vide more paths to achieve the same goal than low strategically diversified games.

Like Liu’s experiments, Gaina used the same GVG-AI autonomous agents and evo-

38

lutionary algorithm techniques. Interestingly, although this methodology produces

positive results computationally, human subjective tests were unable to statistically

differentiate such diversities. This may be the case that the GVG-AI autonomous

agents played the game differently from strategically wise human players. Although

computationally effective, the black-box model may contain low interpretability,

making it incapable to understand the underlying mechanism.

For each research works discussed in subsections 2.2.5.2-2.2.5.4, we list some

interesting features of the researches, including the target video game, the optimized

game parameters, as well as key techniques for both player models and optimization

process, in Table 7.1 in Chapter 7. The table also includes our methodology for

game parameter tuning to be proposed in the next chapter.

2.3 Chapter Summary

In this chapter, we first describe computational intelligence (CI) techniques to be

used in our framework and experiments, namely fuzzy logic system (FS), evolution-

ary computation (EC), differential evolution (DE), and coevolutionary algorithm

(CEA). Afterward, we present the survey of related researches in the themes of ar-

tificial intelligence (AI) and CI applications in games, focusing on the automatic

video game generation and parameter tuning.

Although automatic game parameter tuning is still an under-explored research

field [31], there have been several decent papers continuously published during the

past few years. It is interesting that those researches working on game parameter

tuning, including our method to be proposed in Chapter 3, share one same idea in

using simulated player models. With a suitable game-specific player model, we can

automate game playing simulations and repeatedly adjust game parameters, using

any appropriate AI or CI algorithm, to meet our intended objectives. The approach

to study the relationship between game parameters and game difficulty truly helps

game developers in their game tuning process. With in-depth knowledge in the

correlation between game parameters and game difficulty, we can create more inter-

esting video games and game contents which are not only entertaining for playing

but also educative for teaching and learning purpose.

39

Chapter 3

Framework for Automatic Game
Parameter Tuning

3.1 Introduction

In this chapter, we introduce our framework for automatic game parameter tuning.

In a typical video game tuning process, we adjust some settings of a video game to

make the game more fun for a wider range of game players. Our method focuses on

the popular game genre called turn-based strategy (TBS).

The term turn-based strategy in TBS games describes a game containing two key

features: turn-based and strategy. A turn-based game is a game where all players

take turns when playing, while a strategy game is a game that focuses on a player’s

planning and decision makings to resolve the game situations.

It can be said that a TBS game depicts real-life situations where both determi-

nations and fates play major roles to dictate an outcome. The structure of all TBS

games is a combination of luck and strategy in various degrees. On the one hand,

Tic-Tac-Toe, Scrabble, Chess, and Go depend entirely on a player’s skills. On the

other hand, Snakes and Ladders as well as most of other children games depend

completely on luck. However, many of TBS games, e.g. Backgammon, Monopoly,

Dungeons & Dragons, depend both on luck and skills. The familiar implementations

of luck include rolling a dice, shuffling a deck of cards, and calling a pseudo-random

number generator.

The outline of this chapter begins with the introduction of game parameter

tuning process in section 3.2. Then, in section 3.3, we propose the framework of

our automatic tuning process for TBS games. In the section, we explain the key

components and their relationship in developing the framework. Regarding the

player’s side, we discuss a game player model, including how to evolve a player

model, in section 3.4 and 3.5, respectively. As for the game’s side, in section 3.6, we

41

present how to adjust the game difficulty levels manually to create a player model

that learns from playing easier games first. We also discuss a coevolution between

a player model and game parameters in section 3.7. We summarize this chapter in

section 3.8

3.2 Game Parameter Tuning

In this section, we first discuss about game difficulty and its relationship with a

player’s gaming skills in subsection 3.2.1. Based on the game difficulty, we then

examine video game parameters in subsection 3.2.2. Subsection 3.2.3 explains the

game parameters in TBS games, which are the target of our automatic game tuning

framework. We finish this section with a conventional practice on a game tuning

process in subsection 3.2.4.

3.2.1 Game Difficulty

Game difficulty is an experience that game developers design to challenge their

target players in a game playing. Some games are intended to be more challenging

for a player’s learning experience, while others are expected to be less challenging

for a player’s relaxing experience. Game difficulty, depending greatly on a player’s

gaming skills, is a perceived experience that varies from players to players.

The theory of flow, illustrated in Fig. 3.1 (a), is a theoretical concept in Positive

Psychology. Purposed by Mihaly Csikszentmihalyi in 1975, it explains mental states

of a person with the focus on performing an activity. This theory is applied by Jenova

Chen in his video game design to create the playing immersion or the flow state [6].

Figure 3.1 (b) illustrates the flow state in video game playing as the relationship

between game difficulty and the player’s ability.

According to Fig. 3.1 (b), a player has his or her own flow zone where the game

challenge matches the player’s ability. This zone is flexible and different for each

player. A player maintains his or her focus in the game as long as the game balances

its difficulty with the player’s skills. On the one hand, once the player’s ability

increases beyond the zone, he feels dull and, finally, bored. On the other hand, once

the game challenge increases beyond the flow zone, the player feels uncomfortable

and, eventually, anxious. This concept, known as flow experience, is also used in

Dynamic Difficulty Adjustment (DDA) system, where a video game adjusts its game

difficulty adaptively, while being played, to maintain the player’s engagement.

42

Figure 3.1: Theory of flow, (a) a concept about immersive mental states in Positive
Psychology purposed by Mihaly Csikszentmihalyi, is applied to explain (b) the flow
state in video game players. Jenova Chen’s flOw video game uses this concept to
engage players in the cognitive level.

3.2.2 Video Game Parameters

A video game contains a lot of parameters to adjust various properties of its looks

and feels, e.g. player interfaces, game characters, background, sounds, motions, etc.

We call a group of parameters that control game difficulty as video game parameters.

Game parameters are internal constants or variables in the source code of a game

program. They cannot be set directly by game players. It is a game developer’s

task to set these game parameters properly during the game development process

to create a fun game.

Each game parameter contributes to game difficulty differently. Some game pa-

rameters, especially the ones directly related to the goal of the game, have obvious

effects on the game difficulty; others may relate to game difficulty indirectly or

partially to a certain degree. For example, for Star Trek game (see Appendix A),

increasing the number of Starbases, which supply energy and weapons to the Enter-

prise, makes the game easier to play. However, increasing too many Starbases does

not result in the game being much easier as the main goal is to destroy all Klingon’s

spaceships.

Game parameters are commonly related to one another. Changing one may

affect the others. Moreover, we can achieve similar levels of game difficulty with

many combinations of game parameter settings. This shared relationship of game

parameters complicates the game tuning process. For example, for Star Trek game,

43

either increasing the game time (Stardate) or decreasing the number of Klingon

spaceships makes the game easier to win. The combination of game time increment

and spaceship decrement both create easy games.

Basically, the game parameters being worth fine-tuning are the ones that closely

relate to the main goals of the game. Therefore, we can adjust game difficulty more

efficiently with these goal-oriented game parameters. They come in various forms,

domains, and ranges depending on the game genres. Table 3.1 shows some examples

of game parameters typically found in a TBS game. They are the subjects of our

proposed tuning method.

3.2.3 Game Parameters in Turn-based Strategy Games

Although a huge number of TBS games are available in the market, they differ

mainly in appearances, styles, and audio-visual designs. Most of them, however,

share some common game rules and mechanics which are unique and specific to the

TBS game genre. This helps reduce the learning curve when a gamer starts playing

a new TBS game.

The main designs of TBS game genre focus on the planning and strategies of

events or resources. To exhibit the events or resources in games, the representation

of space and time are often created in the form of a map and a player’s turn,

respectively. The games initially set up the scenario, establish some conflicts, then

assign the mission. It requires a player’s skills in strategic thinking and decision

making to accomplish the mission. The common TBS game design includes the

following four elements.

• Game Objects and Conflict: Game objects are common elements in all

TBS games. They are mainly classified into allies, opponents, and neutral

game objects. The game normally sets up conflicts between the opponents

and the game player, with assistance from the allies. Game objects contain

their own actions and interactions which establish dynamics in the game.

Typical game parameters for game objects are the quantity of game objects

and the ability levels in each object, e.g. energy level, health score, weapon

strength, etc.

• Map and Exploration: A game map displays the positional relationship

among game objects as well as other important game states. In some games,

44

a map terrain could be another type of game objects.

Similar to the board in a board game, the map in a video game is generally

shown in the top view. This view provides a big picture and helps create more

effective strategies. With advances in computer graphics, certain video games

offer different views of a game map. For example, isometric, oblique and 3D

views, which add depth information for a player.

For a game with a partially observable map, a player explores each area in the

map to complete a given task. In such a game, map-related game parameters

play a major role in adjusting game difficulty. The most common ones are

map sizes, divisions, points of view, etc. Galaxy map in Star Trek game is an

example of a partially observable, top-view map.

• Resource Management: Resource management or economic challenge is

the unique characteristic of TBS games. Quantity and types of resources

vary from game to game, e.g. energy, coins, vegetables, armies, etc. Some

games emphasize on resource acquisition and conversion, while others focus

on resource balance and usage.

For resource management games, the resources themselves are the main game

parameters. The frequently used parameters are the quantity of resources,

conversion rate or exchange ratio, distribution of resources throughout the

map, etc.

• Constraints: The constraints are the game mechanics to create excitement

and control the challenges. The best-known constraint in games, including

sports, is time. TBS games usually use time as (i) a game time to limit the

number of player’s turns or (ii) an interval time to limit the amount of time

given in each turn. Usually, the amount of time is linearly proportional to the

game difficulty, i.e. the longer period of game time, the easier to play and win

the game, and vice versa.

We summarize examples of game parameters according to the above common

design for TBS games in Table 3.1. We also show the corresponding Star Trek

parameters in the last column. The game rules and mechanics of Star Trek game

do not define conversion rate, exchange ratio, or interval time parameters in the

game. For the current implementation of Star Trek game, we use a pseudo-random

45

Table 3.1: Examples of game parameters typically found in a TBS game, categorized
by TBS game design elements. The last column shows the name of game parameters
in Star Trek game. Two Star Trek parameters, marked by an asterisk, are selected
to control game difficulty in our experiments.

Design
Elements

Game
Parameters

Domain Star Trek
Parameters

Default
Values

Game
Objects

quantity of
game objects

discrete number of Klingons∗,
number of Starbases

10 - 20
2

level of ability continuous initial energy 3000

Game
Map

map size &
map divisions

discrete quadrants in a galaxy,
sectors in a quadrant

8×8
8×8

Resource
Management

distribution of
resources

- distribution of
Klingons & Starbases

-

conversion rate
exchange ratio

continuous - -

quantity of
resources

discrete torpedo 10

Game
Constraints

game time continuous mission time∗ 30 - 50
(Stardates)

interval time continuous - (no limit) -

number generator to distribute game objects throughout the galaxy map. Although

we cannot control the distribution directly, we alter the random seed value of the

generator to achieve a unique distribution of game objects.

3.2.4 Conventional Game Parameter Tuning Process

In a game parameter tuning process, game developers adjust game parameters to

match their design objectives. The tuning process is a part of a game testing or

playtesting, in which the video game is assessed systematically and improved ex-

tensively by a number of game testers and game developers to make it conform

with overall requirements. In a conventional playtesting, human game players try

playing the games in development then share their gaming experience and opinions.

After that, game developers manually analyze the feedbacks and entirely improve

the game product, not only the game difficulty but also the overall gaming experi-

ence. Due to the high cost of game testing process, game developers usually conduct

this step close to the final stage of the production. This results in a very limited

time to revise the game for major modifications.

46

3.3 Framework for Automatic Game Parameter
Tuning

3.3.1 The Framework Components

The main task of game parameter tuning is to find suitable values for the key game

parameters according to the playtesting assessment. We design our framework based

on the conventional practice of the process. The proposed framework consists of two

major components.

1. Game Player Model: A game player model represents a player in a video

game. In our case, the player model plays the game in place of a human player.

The model is game-specific and varies from game to game.

The player model shares its underlying mechanism within the same game

genre. By tweaking the parameters of this underlying mechanism, we obtain

simulated player models with various levels of gaming skills. We use play-

ing results from the skill-adjusting model and the video game as feedbacks to

fine-tune game parameters.

2. Mutual Evolution: A mutual evolution is a joint development process be-

tween a player model and a video game environment, using an EC algorithm

to balance between the player model’s gaming skills and the video game’s re-

quired level of game difficulty. We use the feedbacks from the interactions

between the player model and the game to let them coevolve mutually until

reaching the balance state in which there is no more improvement between the

two.

We can apply several techniques for the mutual evolution process.

• Manual adjustment: The manual adjustment employs the investigative

skills of game developers to adjust the game parameters. An example is

a gradual incremental learning technique, explained in section 3.6. This

method ensures that the end result of the modification serves their re-

quirements well.

• Automated adjustment: Guided by the interaction between the game and

the player model, the method uses an algorithm to adjust the game pa-

rameters automatically. An example is a coevolutionary algorithm (CEA)

technique, explained in section 3.7. This method eases the burden on

47

game developers and gives them more possibilities to discover extraordi-

nary, either good or poor, results.

Therefore, each technique in a mutual evolution process differs largely on the

contribution effort of the game developers and the controlling direction of the

tuning results. In our proposed framework, we suggest a CEA technique as a

mutual evolution mechanism for automatic game parameter tuning.

3.3.2 The Framework Structure

video game

EC

optimization

EC

optimization

game player

model

as fitness

c t i o n s

game results

i n t e r a

Figure 3.2: The proposed framework for automatic game parameter tuning process.
The results from interactions between the video game and the game player models
are evaluated as the fitness function for EC optimizations to coevolve both sides.
The coevolutionary algorithm mutually evolves the difficulty-controlling game pa-
rameters and the multi-skilled player models. The game parameters are tuned to
match gaming skills of a wider range of game players.

A diagram in Fig. 3.2 shows the overview of our framework. Starting in the top

row, we let our player models play the video game repeatedly. Initially, the player

models are weak and play the game poorly, when compared to the human players.

We use the game results to improve the models iteratively by an EC algorithm.

When the models improve, we have numerous player models with various gaming

skills.

According to the results from playing with multi-skilled player models, the video

game acquires perceived information of its game difficulty. The different game dif-

ficulty is the consequence of different game parameter settings. Therefore, we can

examine the relationship between game parameters and the game difficulty within

our framework.

In the mutual evolution process, the bottom row of Fig. 3.2, our framework

adjusts game parameters to obtain the level of game difficulty that matches the

48

simulated player models. Because video game interaction is a dynamic system,

modifications in the game also lead to adaptations in the simulated players, and vice

versa. The mutual evolution occurs repetitively between the difficulty-controlling

game parameters and the multi-skilled player models. When the process reaches a

balance, we are able to find the suitable values of game parameters that match the

target level of game difficulty with various gaming skills automatically.

3.3.3 Comparison between the proposed Framework and
Conventional Practice

The conventional practice employs a lot of professional playtesters to examine the

game and generate intensive feedbacks through their experiences. Likewise, the

automatic tuning process uses a large number of simulated game player models to

play the game and generate the required data.

With simulated player models in place of human playtesters, we can separate

the parameter tuning process from the game testing process. Instead of running

the massive game testing process in the final stage of the production as shown in

Fig.1.1, we can integrate the computational tuning process into a production at the

earlier stage. We can perform the tuning process for any sets of game parameters

independently, at any suitable time during the game production. The automatic

tuning process lowers not only the testing cost but also the developing hours and

other resources, e.g. recruiting human playtesters, documenting the feedbacks, etc.

Furthermore, the process is capable to computationally examine shared relationship

among the game parameters [23]; this type of analysis is difficult to obtain directly

from human playtesters.

The main drawback of automatic game parameter tuning is that the technique

underlying the effective tuning process highly depends on the game genres. Each

game genre has its own characteristics and requires different gaming skills from

a player. Some examples from related researches have been discussed earlier in

section 2.2.5.

To investigate the feasibility and characteristics of our framework in details, we

conduct several experiments to examine various aspects of the framework. The

following sections present an overview of each experiment following the procedures

of the proposed framework in our dissertation.

49

3.4 Player Model for Turn-based Strategy Games

A game player model is a computational model that represents interactions between

a human game player and the video game environment from a specific point of view.

In a broader sense, the form of the representation can be cognitive, affective, or

behavioral [63].

Because the framework focuses on TBS game parameter tuning, our player model

represents human game players’ behaviors in playing a TBS game. In strategy

games, the main behaviors focus on a player’s decisions. Therefore, we create the

player model to replace a human player’s decision-making process. Figure 3.3(a)

shows a human game player playing a video game, while Fig. 3.3(b) illustrates a

replacement of the human player by a game player model in our framework.

Human game player(a)

Outputs

Video Game
Environment

Inputs

Player model

Decision
Makerinterface

game
parser

command
dispatcher

Outputs

Video Game
Environment

Inputs

(b)

Figure 3.3: (a) A human game player is replaced by (b) a player model to create a
simulated playtester for a game tuning process.

Our framework permits human game developers or skilled players to integrate

their game expertise in the tuning process. They use their expertise in TBS games to

design more efficient decision-making process which can play the game better. Our

framework supports their knowledge transfer by providing decision-making tools

that is convenient for them to use.

Our game player model uses a computational intelligence approach for the knowledge-

based decision making. Fuzzy logic system (FS) allows an expert player to express

his or her game decisions in human terms using Fuzzy rule-based system (see sub-

section 2.1.2.5). This FS approach establishes an FS decision-making system for our

TBS game player model.

In addition, the approach allows the game developers to tweak its parameters to

produce numerous player models of various game-playing performances. This results

in the simulated players of various gaming skills.

The FS decision-making system may not provide the best decision when com-

pared to other more sophisticated techniques, e.g. neural networks or deep learning

50

approach. However, its decisions are practical enough to use when playing against

typical TBS games with fair successes. Nevertheless, our main objective is not to

find the best player to play against computers or humans. It is a variation of gaming

skills of the player model, representing a wider range of game players from novices

to experts, which is more important in our framework.

The benefit of the FS rule-based system lies in the fact that the given FS rules are

human-understandable. Unlike other techniques of the black-box model, in which

the knowledge of its internal mechanisms is unknown, the FS rule-based approach is

easy for an expert to create, simple for a developer to maintain, and straightforward

for a person to understand. This is the key point in using the FS rule-based system

in our methodology.

We present additional details on the game player model in Chapter 4. The

chapter explains the motivating concepts behind the design of a player model. It

also demonstrates a sample implementation of a player model for the TBS game

named Star Trek.

3.5 Evolving Fuzzy Logic Rule-based Player Model

In a conventional method to create an FS rule-based system, a domain expert pro-

vides both FS rules and FS membership functions for a fuzzy knowledge base. FS

rules relate the game’s fuzzy conditions to the expert’s decision while FS member-

ship functions control the interpretation of fuzzy conditions. Adjusting membership

function parameters to control the function shape for the best decision is a tedious

and laborious task. Therefore, we use an EC algorithm as an optimization tool to

search for the optimal values of membership function parameters.

It has been confirmed that the player models with EC-optimized FS member-

ship functions perform better than some manually adjusted ones. We present our

experimental results to support this claim in Chapter 5. The chapter also discusses

more details on the evolving player model.

An EC algorithm in our framework lessens an expert’s tasks on specifying FS

membership functions. It pushes the system one step ahead toward an automatic

framework. The expert, however, still has to specify the FS rules to guide the

system in the preferred direction. The given rules also exhibit the expert’s behavior

characteristics, e.g. aggressive, preemptive, cautious, etc., which are various among

the experts.

51

Although the automated generation of both FS rules and membership functions

is possible, the search space would be enormous. Furthermore, it is not easy to

control the number of FS rules or input variables in the automated rule generation

[28]. In addition, automatically reproducing a specific behavior is also complicated.

Having both expert-generated FS rules and EC-optimized FS membership functions

is a more practical and manageable procedure for our proposed framework.

3.6 Learning Player Model by Gradually Increas-
ing Game Difficulty Levels

Once a player model is strong enough, equipped with a variety of gaming skills,

our framework is ready to perform the mutual evolution between the player model

and the video game environment. To be precise, we are interested in the balances

between gaming skills of the player model and game difficulty of the video game

environment, i.e. the player model parameters and the video game parameters.

We propose a technique called gradual incremental learning to manually adjust

game parameters for a mutual evolution process. We have an assumption that, to

train a player model for a specific game difficulty, it should be more efficient to

start training at the lower difficulty level. Once the model evolves and gets more

skilled in these easier games, we then advance the game difficulty. We keep adjusting

game parameters gradually and continue training the model continually toward the

specific level. We believe that this approach can improve the model better than

training the model at the target level only. This idea is similar to the incremental

learning concept in machine learning, where a learning model adapts to new data

without forgetting the existing knowledge.

Our experiments in Chapter 6 show how the player model successfully adapts to

the gradually increasing game difficulty. Its performance at the target level of game

difficulty has obviously improved. This is considered a half-way success toward the

mutual improvements with a CEA technique. That means our idea for automatic

game parameter tuning with CEA techniques is promising. We discuss more details

on the gradually incremental learning of game difficulty along with the experimental

results in Chapter 6.

52

3.7 Coevolving Game Parameters with Player Model

Unlike any other EC methods, CEA requires no fitness evaluation on its population.

Instead, we have to provide the controlling policies for the algorithm. Basically,

the policies focus more on the interaction among groups of population. It depends

largely on the feedback from one group to another group. With these policies, we

can roughly guide the direction of mutual evolution to meet our requirements.

There are two policies of major concern in CEA approaches:

• The relative fitness evaluating policy: This policy specifies how we eval-

uate the overall game-playing results. In our case, we require two complemen-

tary policies: one policy for the player model when playing various-difficulty

games and another policy for the game when being played by multi-skilled

player models.

The design of the policy depends largely on the objectives of the tuning pur-

pose. For example, a game for training purpose may require a higher level of

difficulty than a casual game. In this case, we may add some biases toward

winning more games in the policy.

• The sampling policy: This policy specifies how we sample some individuals

from a pool of population to interact with individuals from another pool.

We control the diversity of the game player’s abilities with this policy. For

example, we can put biases toward lower-skilled player model when tuning

children games.

3.8 Chapter Summary

We propose a framework for automatic game parameter tuning using a game player

model. Our framework focuses on tuning a turn-based strategy game for players

with diverse skills. We create a game player model as a simulated game player to

play a TBS game. The core of the player model is the FS rule-based decision system,

where a game developer or a skilled game player incorporates his or her expertise. In

addition to an expert’s knowledge, we use an EC algorithm to optimize the player

model for a better performance. When the EC-optimized player model is strong

enough, we let the model coevolve with the game mutually using a CEA algorithm.

This is an iterative interaction process where a feedback from the game helps improve

53

the model, and vice versa. When CEA reaches its balance where there is no more

mutual improvement, the player models with wide ranges of game ability can play

some games equally well. It is the key parameters of these games that produce the

game difficulty which is suitable for human players with various gaming skills.

54

Chapter 4

Game Player Model

4.1 Introduction

In this chapter, we thoroughly discuss our player model in terms of concepts and

implementation. To be more specific, we focus on how our player model represents

a player in a turn-based strategy (TBS) game.

The role of player models, fundamentally, is to manipulate a game or keep the

game designers informed about a game player’s experiences or behaviors [29]. How-

ever, modeling a game player to assist video game designers, also known as modeling

designer, is still in its early stage [63]. This type of player models can be viewed

as a second-order player model [29]. That means a player’s behaviors, simulated by

the player model, are evaluated in order to aid the game designers.

Game player model is an umbrella term to represent specific information obtained

when a game player interacts with a video game. There are many kinds of player

models with different purposes, scopes of application, sources of derivation, and

domains of finding [51]. Our model can be described as an individual analytic

action generator following the terminology of Smith et al. [51]. This is a model that

generates game inputs for an individual player, using an automated method that

examines the mechanisms of a game. In our case, a fuzzy logic system (FS) is used

as the analytical tool to generate the player’s actions.

After this introductory section, we first examine interactions between a video

game environment and a human player in section 4.2. After that, we use what we

learn to model a simulated game player. We detail our idea on a game player model

in section 4.3. In section 4.4, we suggest several methods to improve the player

model’s performance to best catch up with the levels of game difficulty. With such

improvement, we can also generate player models with different skills needed when

playing a game. To make a concrete example, we show our implementation of how

55

a player model play a spaceship fighting TBS game called Star Trek in section 4.5.

Lastly, we finish the chapter with the summary in section 4.6.

4.2 Interaction with Video Game Environment

In this section, we consider, in abstraction, the interactions between a video game

environment and a game player in subsection 4.2.1. We conceptually examine how

a player makes decisions in games and how game responses in subsection 4.2.2 and

subsection 4.2.3, respectively. The relationship between the decisions and responses

establishes a foundation of our player model framework.

4.2.1 Game States and Interaction Flows

We design our player model based on the interaction model between a video game

player and a video game environment. We consider the video game environment as

a set of game states being processed interactively by a three-action loop. The three

fundamental actions in the loop are:

1. Input: A video game receives commands from a game player to manipulate

game states via game inputs. A game input consists of a command and optional

command arguments. The command argument identifies how to perform or

the degree to operate the given command.

2. Update: The video game then updates its states according to either the

external inputs from the player or its internal mechanisms from the game

rules. The modification of a game state can be done through a decision-

making system in the game, or a pseudo-random number generator, or the

mixture of both.

We use a pseudo-random number generator to construct a set of random

numbers that is controllable to a certain degree via a random seed. These

pseudo-random numbers retain the indeterministic behaviors when replaying

the games.

Making decisions in games is a large subject of both conventional practices and

on-going researches. Besides the random decisions generated from pseudo-

random numbers, an overview of other decision-making techniques in video

games are briefly presented in subsection 2.2.1.

56

3. Output: A video game responds to its game player with updated game states

through game outputs. For a typical video game, the term display can be used

interchangeably due to the visual nature of the media.

As for the game player’s side, the same procedures are followed in the interactive

manner. That means the player receives responses through game outputs, makes

or updates a decision, converts the decision into game command(s), then send the

command(s) back as game input.

Player model

Decision

Making

System

interface

game
parser

command
generator

Video game environment

Update
game states

Output
updated
states

Input
new states

commands

game data

Figure 4.1: A model of interactions between a game environment and a game player.

The entire loop of the interactions between a video game player and a video

game environment is presented in Fig. 4.1. This loop also represents the flow of

game states that connects the two sides of decision makings. The loop iteratively

and interactively continues until the game ends.

4.2.2 Hierarchy of Game Decisions

In a video game playing, we model a player’s decisions in a top-down approach, from

a conceptual idea down to concrete game commands. This hierarchy of the player’s

decisions consists of:

1. Decision: According to current game states, a target decision is initiated

from a strategic plan to achieve the game objectives.

2. Action Plan: A series of actions to accomplish the target decision is then

developed. For other games, besides turn-based games, the plan also includes

a timing to execute each action sequentially.

57

3. Game Commands and Arguments: Game commands, along with their

corresponding command arguments, are constructed to control the game states

according to each action plan.

Once game commands are realized, a player inputs them to the game environment

at a particular time. (This is also where the challenges of action games reside.) This

triggers a new loop of interaction flows as described in previous subsection.

4.2.3 Levels of Game Information

After updating game states according to the player’s inputs and the game mechanics,

a video game sends out game data that can be classified into game states and game

information. Game information is the direct response from the game sent to its

player, in correspondence to the player’s decision hierarchy described in the previous

subsection.

We classified game information with a bottom-up approach, from command feed-

back up to decision calls. The levels of game information, therefore, consist of:

1. Command Feedback is a quick validation made to game command inputs

or their arguments. It includes, but not limited to, a notice informing a newly

given command is invalid, a hint showing additional arguments are required,

or a signal warning the time is almost over for the next command. It is a

low-level, command-related game information.

2. Action Result is when the game states are updated in response to an issued

action command. This indicates a progress towards or a recess away from a

player’s target decision. It is a middle-level, action-related game information.

The player should assess the action result and determine the next command to

issue appropriately. Depending on this information, the subsequent commands

are either a follow-up in the action plan or a new action due to unexpected

changes of game states.

3. Decision Call is a request for a new game decision which can be either

a direct or an indirect call. It is a top-level, decision-oriented information.

One example of an indirect call is a critical warning [59]. This call requires

an immediate resolution from the player. Without a suitable reaction, the

player’s game states may become worse, and the player may even lose the

58

game. The critical warning indirectly forces the player to re-evaluate his/her

current action and decision.

Game
Decision

Action
Planning

Commands & Arguments

Decision Making

Command Feedback

Action
Result

Decision
Call

Game Information

Figure 4.2: Association between hierarchy of game decision and levels of game in-
formation.

We illustrate the relationship between the hierarchical levels of game decisions

and their corresponding levels of game information in Fig. 4.2. We use this relation-

ship as the underlying mechanism for our game player model, which is explained in

the following section.

4.3 Structure of Game Player Model

We use a game player model to simulate a human game player. Each component of

the model imitates the way a human player perceives and reacts, both consciously

and subconsciously, to the game environment. The main components and subcom-

ponents of our player model consist of:

1. The Game Interface: Our player model communicates with a game environ-

ment through the game interface, as previously shown in Fig. 4.1 (b). For the

input interface, it has game data parser to manage game input before making

game decisions. For the output interface, it also has Game Command Genera-

tor to handle the game output before releasing to the game environment. For

further explanation, we describe data parser and command generator modules

in subsection 4.3.1 and subsection 4.3.3, respectively.

59

game data parser

command generator

commands decisioncallbackactionplanningcommandfeedbacks actionresults game statesdecision callqueriescommandsgame data memory Decision
Making
System

In
pu

t
O

ut
pu

t

Figure 4.3: Game interface consists of data parser and command generator modules.

Even though both modules communicate with different parts of the game

environment, they work closely with each other to, as efficiently as possible,

handle the responses sent back to the game. This also helps avoid unnecessary

calls for the computation of decision making. Fig. 4.3 shows the internal

elements of each module and the relationship between them.

2. The Decision-Making System: The significant factor to determine the ef-

ficiency of our player model, especially the one for TBS games, lies in the

design of decision-making module. The system makes a game decision ac-

cording to game states given by the data parser then outputs the decision via

the command generator. We explain the detailed mechanisms of the game

decision-making module in subsection 4.3.2.

As illustrated in Fig. 4.3, the data flow in our player model starts with the input

data from a game environment. Analyzed by the data parser, the game state data

is supplied to the decision-making module for a game decision. Being a response

from our model, the decision data is given to the command generator then converted

into the game command. Finally, the command data is produced then forwarded

back to the game environment. We discuss three modules of a player model in the

following subsections, following the order of operation flow from inputting game

data to outputting game commands.

4.3.1 Game Data Parser

Initially, when a video game delivers its game output, we need a way to extract

necessary game states and information from the output into a new form that is

60

suitable for our game player model. We obtain a game output then turn it to be an

input for our player model. The terms game output and player model input are used

interchangeably in this dissertation.

An output format of a video game varies in many forms. Due to the limited

technology in the early stage of video game development, most of the games are

text-based format, either in a printed document or on a cathode ray tube (CRT)

monitor. The visual video game outputs became more popular when the display

device technology advanced in the later era of video game development. The gaming

displays improve from low-resolution screens in the 1980s to high-resolution LCD

monitors in the mid 2000s and virtual reality (VR) headsets in the mid 2010s. Along

with the better display devices, also came the better audio systems. The game sound

is simply no more an auxiliary part of the game graphics. A lot of crucial video

game information is conveyed in the auditory form. Another type of practicable

game outputs is haptic communication. Haptic game devices recreate the sense of

touch by applying force, vibration, or motion to a player. There are many opening

opportunities for new game outputs with the advent of new technologies.

Because each video game environment uses various output formats, the ways

of information extraction vary accordingly. Hence, the name of this module also

differs due to the techniques used in the extraction method. As we aim to create a

player model for text-based strategy (TBS) games, we use a parsing programming

function to isolate between words looking for the expected information. We call

our information extraction system a parser. Therefore, we use the term game data

parser to refer to the text-based extraction method for our player model.

We wish to make an accurate player model in which its performance depends

solely on its ability to analyze an actual data and reason the proper game decisions,

without any support or bias from the game environment. Our data extraction

works on the identical data given to a human player. This ensures that all decisions

are made on the same raw data. Using different data sets is unfair and must be

prohibited.

In the case of TBS games, our game data parser first separates the game states

and information from incoming texts. After that, we assess the results of the pre-

viously issued game commands from the parsing information. When the latest

commands succeed and a new decision is required, we supply the game states to the

decision-making module for the next decision.

61

To assess the past commands from the game information, we examine the parsing

information in order from the low-level command feedbacks up to the request of a

new decision, as described earlier in subsection 4.2.3. The main purpose of the

assessment is to quickly response to a bad decision as soon as it is noticed at the

right place and the precise circumstances.

When a failure occurs at the command level, we may issue a wrong command or

wrong command arguments. We can examine the command feedback information to

change the command or to recalculate the command arguments, without modifying

the existing action plan and the target decision. Similarly, when a failure occurs

at the action level, we can examine the action result to abort unnecessary actions

or rearrange the order of the action plan, without modifying the existing target

decision.

The data parser module separates the main logic behind a decision making from

the game output format. When the game updates its output format, which is very

likely for a game in development, minimal changes can be applied to reuse the

existing player model. Likewise, the improvement of a decision-making module has

no effects upon the data parser module. This is the benefit of a modular design in

our system.

4.3.2 Game Decision Making

The brain of our player model is the decision-making module. For a strategy game,

it analyzes the current situation in the game (possibly with the help of memory to

recall the pass events), synthesizes all feasible efforts, and build the best strategy to

win the game.

There are various techniques in decision making. The techniques in game decision

vary from simple methods, e.g. a decision tree or state machine, to complicated

ones, e.g. Markov system or rule-based system [35]. They are applicable to both

intra-character and inter-character decisions.

For a player model, it is typical to choose a decision-making method of which

its complexity matches the complication of the game characters’ behaviors. A state

machine suits a game character with few strict behaviors. The rule-based system,

on the other hand, matches a larger number of flexible behaviors.

As for our framework, we select a fuzzy logic rule-based system as our decision

making. The fuzzy logic rule-based system for decision (FS decision making) uses

62

fuzzy logic in describing the controlling rules to make decisions.

In this approach, an expert player creates an FS decision-making system by

expressing their decision-making knowledge linguistically with fuzzy logic rules (FS

rules). The technique requires less effort for a non-technical professional to present

his/her expertise in the domain. It fits our main objective to use the insights of the

game developer to create the player model. In addition, thanks to its human-like

terms used to describe the logic of the rules, FS rules are easy to create, understand,

and maintain. This characteristic is appealingly used in a production period under

a team development, where changes from team members are common.

A player model with FS decision-making system may not establish the strongest

player model for TBS games, when compared with other sophisticated algorithms,

e.g. neural networks or Monte Carlo search tree. Our goal to create a player model

is to produce a simulated game player which is suitable for game parameter tuning.

The model is not, however, expected to be too powerful to outdo human players’ per-

formance. To meet this purpose, the FS decision-making system is efficient enough

to produce just fine decisions for TBS games. With an optimization process intro-

duced in Chapter 5, we can make the stronger player model that is capable to play

the games more proficiently. In addition, due to its high level of interpretability, FS

rules could provide the game developers opportunities to discover new findings from

the optimized player model as extra advantages.

Based on the organization of a fuzzy rule-based system in Fig. 2.2 from subsec-

tion 2.1.2.5, our FS decision-making system consists of three major components as

illustrated in Fig. 4.4:

FS

reasoning

engine

FS
rules

membership

functions
decisiongame states

Figure 4.4: The decision-making module in our player model.

4.3.2.1 Fuzzy Logic System Rule (FS Rule)

FS rules specify relationship between game states, in the form of FS input variables

and Boolean input variables, as well as their consequent game decision(s). A game

63

developer or an expert game player creates FS rules from his or her expertise in game

playing. The rules are their logical knowledge for the playing character’s decisions.

It is easy to view the rules in a form of a table. We combine several rules sharing

the same objective into a table, called an FS table, of which the size exponentially

grows according to the increment of additional input variables. Appendix B and C

show FS tables used in our player model for Star Trek game. Notice the relationship

between the input variables and the size of the table in those sections.

4.3.2.2 Fuzzy Logic System’s Membership Function (FS Membership
Function)

FS membership function is an interpretation of an FS input variable used in an FS

rule. The interpretation is dictated by the shape of the function which we control

with function parameters. By altering the interpretation of FS inputs via these

parameters, the output decisions change accordingly.

In a conventional practice, a game developer or an expert game player manually

adjusts membership function parameters to tweak the given FS rules for the required

outputs.

Alternatively, this FS membership function parameter is the subject of an EC

optimization process to automatically improve the FS decision-making system. We

present the technique in Chapter 5 along with the experiments to confirm the state-

ment.

4.3.2.3 Fuzzy Logic System’s Reasoning Engine (FS Reasoning Engine)

FS reasoning engine examines current values of game states according to the given

FS rules and membership functions, then calculates the player’s decisions accord-

ingly. The reasoning engine performs the fuzzification, inference, and defuzzification

processes of the fuzzy rule-based system to obtain the output decisions.

The game data parser module supplies the parsed game states to FS reasoning

engine. With the given game states, the engine interprets the corresponding FS input

variables into a degree of membership (DOM), following the matching membership

function. According to the operators working on these input variables, a weight for

each rule is calculated and assigned to its output. Then each output accumulates

its weight from the rule to which it belongs to in the table. Eventually, the decision

with the maximum weight is the output decision for the table. This decision is sent

to the next module, the game command generator.

64

4.3.3 Game Command Generator

The main task of the game command generator is creating the output interface to

the game environment. The game environment obtains the output from our player

model as its input. Therefore, the terms player model output and game input are

interchangeable.

Similar to the game data parser module, the modular design of the game com-

mand generator allows the separation of the command output from the main logic in

the decision-making module. When the output formats are revised during the game

production stage, we simply update the output interface in the command generator

module appropriately, without touching the logics in decision making.

The game input format and its interface vary from one game to another. There

are more varieties of game input devices than output devices. Notable forms of game

input include a punch card of a mainframe computer in the 1970s as the primitive

game input, a keyboard as a universal gaming device that allows many operations

from a single press to a text typing, a mouse for point and click actions, a gamepad

or a joystick for precise control and ergonomic handling, a touchscreen for convenient

usage, as well as special-purpose devices for a specific game genre, e.g. a steering

wheel and a pedal for racing games, a light gun for first-person shooting games, a

guitar and drums for rhythm games, a foot pad for dancing game, etc.

As for TBS games, a game player inputs a text command to the game via stan-

dard input (stdin) with a keyboard. However, the communication between our player

model and the game environment uses a text buffer that is directly connected. To

send a command to the game environment, our player model directly prints a text

command to the text buffer of the game.

Based on the hierarchy of game decision explained in subsection 4.2.2, the game

command generator successively creates two keys hierarchical components: an action

plan and game commands and arguments. With the resulting decision from the

decision-making module, the command generator analyzes the given decisions and

creates a series of actions, or an action plan, to achieve the target decision. The

generator then maps each action in the action plan to the available game commands

and calculates the command arguments accordingly.

We implement the game command generator, including the sequence of action

planning and command mapping, as a decision callback function. Each output

decision from FS decision tables is a reference to its matching callback function.

65

The callback function creates a list of actions for a specific goal. The function then

maps each action into a game command available in the game environment. It also

calculates a command argument when necessary. The callback function returns an

array of game commands along with the objectives. We later use these objectives

to verify its success with the command feedback and action result in the game data

parser module.

In general, there are two types of game commands:

• An action command that modifies a game state.

• A query command that retrieves a current game state.

To make a good game decision, we must gather necessary game states thoroughly

and accurately. We collect the required game states either by querying directly from

the game environment or deducing them implicitly from other game states.

We also provide a memory to keep track of queried game states. With this track-

ing memory, our model can access a history of game information for better decision

analysis and command argument calculation. We store essential information, in-

cluding game states as well as the issued commands and their corresponding game

responses for each move, to a memory internal to the player model. Accessing to

the past information from this memory is an advantage for a player model over a

human player’s restricted memory.

One of the challenging tasks in a decision callback function is to provide a value

for a command argument. There are many ways to create the command argument,

e.g. allocating to a constant, assigning to a random value, searching with an opti-

mization method, computing from fuzzy logic system, calculating from current and

past game states, etc.

In a TBS game, when a game environment asks for a player’s turn, the game

command generator sends out the generated commands in its array sequentially. In

other kinds of strategy games, the generated action plan must include a scheduler

to issue the right command at the right moment.

4.4 Improvements to Game Player Model

Even though a game player model is easy to create in a paper, designing a working

model for TBS games, especially for the complex ones, is quite a demanding effort

66

for a novice. It is also a delicate work for an expert to create an optimal one without

any helping tools. Therefore, we can assist the model creation with some tools.

The main target to facilitate the design and improve the performance of a player

model for TBS games is bettering its decision-making module, where all game de-

cisions and game commands are generated. With our use of FS decision making

system, we introduce additional features to enhance the design of FS rules in the

following subsections.

4.4.1 Modular FS Tables

One of the well-known drawbacks of an FS rule-based system is the exponential

growth of its table size. The size of an FS table equals to the multiplication between

a number of degree of membership (DOM) states from each input variables. For

example, an FS table with three inputs contains eight rules at a minimum, with two

DOM states in each input variable (i.e. LOW & HIGH). However, with five DOM

states in each input (i.e. VERY LOW, LOW, MEDIUM, HIGH & VERY HIGH),

the table size rises up to 125 rules (= 5× 5× 5) rapidly.

To determine a fine decision for a strategy game, we need to consider a substantial

number of input conditions, each with numerous DOM states. The size explosion

problem is unavoidable when constructing such an FS decision-making system. One

gigantic FS table is not easy to create and quite tricky to maintain.

To solve the problem, we iteratively split the game decisions into several smaller

missions. Each mission concentrates on a single job and retains its own FS table,

which we call an FS modular table. The output of the table is either a game decision

or a pointer to another table. The whole connected tables, from one to others,

establish a hierarchical structure of modular tables. A series of fuzzy reasoning

must be computed before reaching the final decision.

The modular FS table drastically reduces the table size by dividing a huge FS

table into small connected modular tables. A lot of FS tables, each with a few inputs,

are easier to create and maintain than an extremely large one with considerable

inputs. We can modify an FS modular table of a single task with a minimum effect

to the others. Similarly, the extension of the existing modular table is convenient.

The modular design also makes the underlying logics behind the overall decisions

more understandable.

Figure 4.5 shows an example of our implementation of FS modular tables in

67

1
S
H
IE
L
D

S
H
IE
L
D

E
N
E
R
G
Y

K
L
IN
G
O
N

E
X
IS
T
S

S
H
IE
L
D

A
V
A
IL
A
B
L
E

S
T
A
R
B
A
S
E

R
E
P
A
IR
A
B
L
E

D
E
C
IS
IO
N

L
O
W

Y
E
S

N
O

Y
E
S

T
O
_
S
T
A
R
B
A
S
E

L
O
W

Y
E
S

N
O

N
O

A
T
T
A
C
K

L
O
W

Y
E
S

Y
E
S

Y
E
S

se
t_
sh
ie
ld
_
e
n
e
rg
y
()

L
O
W

Y
E
S

Y
E
S

N
O

se
t_
sh
ie
ld
_
e
n
e
rg
y
()

L
O
W

N
O

N
O

Y
E
S

T
O
_
S
T
A
R
B
A
S
E

L
O
W

N
O

N
O

N
O

N
A
V
IG
A
T
E

L
O
W

N
O

Y
E
S

Y
E
S

T
O
_
S
T
A
R
B
A
S
E

L
O
W

N
O

Y
E
S

N
O

N
A
V
IG
A
T
E

H
IG
H

Y
E
S

N
O

Y
E
S

T
O
_
S
T
A
R
B
A
S
E

H
IG
H

Y
E
S

N
O

N
O

A
T
T
A
C
K

H
IG
H

Y
E
S

Y
E
S

Y
E
S

A
T
T
A
C
K

H
IG
H

Y
E
S

Y
E
S

N
O

A
T
T
A
C
K

H
IG
H

N
O

N
O

Y
E
S

T
O
_
S
T
A
R
B
A
S
E

H
IG
H

N
O

N
O

N
O

N
A
V
IG
A
T
E

H
IG
H

N
O

Y
E
S

Y
E
S

T
O
_
S
T
A
R
B
A
S
E

H
IG
H

N
O

Y
E
S

N
O

N
A
V
IG
A
T
E

N
A
V
IG
A
T
E

W
E
A
P
O
N

A
V
A
ILA

B
LE

E
N
E
R
G
Y

LE
F
T

T
IM

E

LE
F
T

D
E
C
IS
IO
N

Y
E
S

H
IG
H

H
IG
H

T
O
_
K
LIN

G
O
N

Y
E
S

H
IG
H

LO
W

T
O
_
K
LIN

G
O
N

Y
E
S

LO
W

H
IG
H

T
O
_
S
TA
R
B
A
S
E

Y
E
S

LO
W

LO
W

T
O
_
K
LIN

G
O
N

N
O

H
IG
H

H
IG
H

T
O
_
S
TA
R
B
A
S
E

N
O

H
IG
H

LO
W

T
O
_
S
TA
R
B
A
S
E

N
O

LO
W

H
IG
H

T
O
_
S
TA
R
B
A
S
E

N
O

LO
W

LO
W

T
O
_
S
TA
R
B
A
S
E

#1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

A
T
TA
C
K

K
LIN

G
O
N
S

H
ID
D
E
N
_
A
LL

T
O
R
P
E
D
O

A
V
A
ILA

B
LE

P
H
A
S
E
R

A
V
A
ILA

B
LE

D
E
C
IS
IO
N

Y
E
S

Y
E
S

Y
E
S

to
rp
e
d
o
_
to
_
klin

g
o
n
()

&
p
h
a
se
r_
to
_
klin

g
o
n
()

Y
E
S

Y
E
S

N
O

re
ve
a
l_
klin

g
o
n
()

Y
E
S

N
O

Y
E
S

p
h
a
se
r_
to
_
klin

g
o
n
()

Y
E
S

N
O

N
O

T
O
_
S
TA
R
B
A
S
E

N
O

Y
E
S

Y
E
S

to
rp
e
d
o
_
to
_
klin

g
o
n
()

&
p
h
a
se
r_
to
_
klin

g
o
n
()

N
O

Y
E
S

N
O

to
rp
e
d
o
_
to
_
klin

g
o
n
()

N
O

N
O

Y
E
S

p
h
a
se
r_
to
_
klin

g
o
n
()

N
O

N
O

N
O

T
O
_
S
TA
R
B
A
S
E

2#123456783#12345678

F
igu

re
4.5:

T
h
ree

ou
t

of
fi
ve

m
o
d
u
lar

F
S

tab
les

u
sed

in
S
tar

T
rek

gam
e.

T
w

o
F

S
ru

les
in

th
e

A
T

T
A

C
K

tab
le

(top
righ

t)
u
se

th
e

m
u
lti-ou

tp
u
t

d
ecision

featu
re.

T
h
ey

are
in

d
icated

b
y

th
e

“&
”

sy
m

b
ol

in
th

e
d
ecision

colu
m

n
.

68

the decision making of Star Trek game. The output from one table may lead to

an evaluation of another table. Each table represents a module that is responsible

for one game action. In the figure, the decision in SHIELD table can lead to an

ATTACK or a NAVIGATE when the SHIELD is already set.

4.4.2 FS Table Reevaluation

Occasionally, when playing a video game, it is possible for a game environment to

make mistakes and give us wrong information. The FS decision-making system may

compute a faulty decision due to an incorrectly inferred game state. In a worst-case

scenario, when our player model keeps holding the same faulty decision, the game

environment may stall due to no game progress.

To advance the game from the halt, we have to discard this faulty decision and

re-evaluate the table without poor output decisions. The FS table re-evaluation

activates automatically when a decision generates an invalid command feedback due

to unexpected game events or wrong command arguments. In this case, the FS will

be re-evaluated with the faulty decision disabled. This ensures us a new decision

from the calculation.

To handle the repetitive case when the new decision is still faulty, we repeatedly

disable it and re-evaluate the table until a good decision comes out. If all decisions

in the table are faulty, we navigate up in the table hierarchy to disable the faulty

output table then recalculate for the next working decision.

ATTACK
KLINGONS

HIDDEN_ALL

TORPEDO

AVAILABLE

PHASER

AVAILABLE DECISION

YES YES YES
torpedo_to_klingon()& phaser_to_klingon()

YES YES NO reveal_klingon()

YES NO YES phaser_to_klingon()

YES NO NO TO_STARBASE

NO YES YES
torpedo_to_klingon()& phaser_to_klingon()

NO YES NO torpedo_to_klingon()
NO NO YES phaser_to_klingon()

NO NO NO TO_STARBASE

1

#

2

3

4

5

6

7

8

Figure 4.6: When a previous decision failed, FS re-evaluation is activated while the
previous decision is disabled.

69

4.4.3 Multi-output decision

When designing FS rules for the FS decision-making system, it might be possible

for a couple of decision outputs to be all suitable for a rule. Each of these options

usually indicates different action behaviors. In this situation, a rule designer may

face a difficult time to select, from these outputs, only one correct decision for the

rule.

To assist a rule designer, we allow several output decisions to be expressed in an

FS rule. We use an optimization process via evolutionary computation algorithm to,

automatically, find out the appropriate option for the rule. Additional information

on optimization of multi-output decision is explained in subsection 5.2.4.2.

4.5 Example Implementation of Game Player Model
in Star Trek Game

4.5.1 The Star Trek Game Environment

We use a text-based TBS game to demonstrate our purposed methodology for au-

tomatic game parameter tuning. The benefit of using a text-based game is that its

game output is done in a text format. This makes it quick and easy to parse text

data and search for useful game states and information. It is, generally, challenging

when playing a game with various strategies to work out.

Among a huge number of text-based TBS games worldwide, Star Trek is a sim-

ple well-designed one with merely eight game commands to use, as presented in

Table A.1. Having been created since 1970s, the original text-based Star Trek game

is still popular among the series supporters. The rules and mechanics of the game

are well-accepted, and Star Trek has become an inspiration for many contemporary

video games in the market. Considering these reasons including the availability of its

source codes from the Internet [41], we select Star Trek game as our simulation test

bed, representing a typical game in the turn-based strategy game genre. We present

a brief introduction, detailed explanation of the gameplay, input commands, output

displays, game maps, and some screenshots of Star Trek game in Appendix A.

When working with Star Trek game, we obtained its source code in C pro-

gramming language. Therefore, we used C/C++ programming language in Visual

Studio 2015 for 64-bit Windows 10 Education to develop a player model for the

game. Though we kept the source code of Star Trek game intact for most parts, we

replaced the pseudo-random number generator from C standard library, i.e. rand()

70

and srand(), with a more controllable pseudo-random number generator C++ class.

We used the random number function originally proposed by Park and Miller [39]

as the core algorithm. The code of this function is distributed with “Numerical

Recipes in C” [43].

Pseudo-random number generator plays a major role to provide random objects

or events in most of the computer software, especially in video games and EC algo-

rithms. In Star Trek game, we use random numbers to position every game object

in the galaxy, assign attacking energy for Klingon spaceships, determine a Klingon’s

move during a battle, specify damage values for the Enterprise’s devices, etc. In

a DE optimization algorithm, we use random numbers to initialize DE population,

generate mutation vectors and trial vectors, facilitate crossover operation, etc.

To provide a fair simulation setup in which the games always do the same behav-

iors every time the same input is given within the same environment, we require exact

controls over the random number generator. With random functions from standard

C library, it is difficult to control the generated random numbers when simultane-

ously used with two applications: a DE algorithm and a video game. In addition,

the random functions from standard C library lack the ability to pause, save, and re-

sume the applications while maintaining the expected randomness. Hence, we have

to replace the random functions with the ones that is more flexible for our use to

save and resume the simulations. With the new random function, we implemented

two ID numbers for a game and an DE optimization. The ID number acts like a

random seed to make sure that we can recreate or rerun the same DE simulation

setups on video games using the given ID numbers.

We also modified the source code in Star Trek to extend its input and output

interface. We then created a connection between the interface of our player model

and the one of the game. After that, we implemented C++ classes for each element

of our player model structure, e.g. game data parser, decision-making module, game

command generator, etc. as described in section 4.3.

4.5.2 The Interface Module for Star Trek Game

Our implementation of a player model for Star Trek game starts with the interface

module which communicates with the game as the model input (game data output)

and model output (game command input). We also need to provide our system an

ability to read simulation data from input files as well as write simulation results

71

and statistics to output files accordingly. Notable implementations for the interface

module are:

• Input text buffer & redirections: We store game text data in the text

buffer of the player model. Consequently, we are able to redirect the buffer

to several input channels. The primary channels are (1) the standard display

(stdout) to maintain the original output channel of game output, (2) the input

to our game data parser (see subsection 4.3.1), and (3) the logfile system to

record game data for human decision logs (see section 7.2) including game

results and statistics.

• Output text buffer & redirection: Similar to the input buffer, we create

an output text buffer to store the game commands of the player model as

well as input characters of a human player. The primary output redirection

channels are (1) the standard display (stdout) to maintain the original output

channel of game input, (2) the output from our game command generator (see

subsection 4.3.3), and (3) the logfile system to record game commands for

human decision logs.

Figure 4.7 shows an example of a screenshot of Star Trek game. The left-hand

side of the figure displays the game information produced by the game data parser.

On the right-hand side, it displays the game commands and arguments supplied

by the game command generator. At the same time, we can view this figure as

interactions between the game environment on the left and the player model on the

right, in terms of the game states.

Here is an interface scenario for the first command interactions in Fig. 4.7. Our

game data parser searches for input texts with specific keywords to extract game

information then classifies the information into three levels, as described in sub-

section 4.2.3. The “Command?” keyword specifies a call for a new decision. Our

decision-making module then makes a decision to navigate. The game command gen-

erator creates an action plan and issues “nav” command back to the game. Next,

Star Trek game sends out the command feedback asking for a command argument

with specified range value. The command generator issues the command arguments

according to the plan. The game then sends out the action results and a critical

warning that the Enterprise now encounters the Klingons in a new quadrant. The

data parser updates the new game states, retrieves the success result, and acquires a

72

critical warning. This activates the decision-making module to make a new decision

in response to a combat situation. navigation commandaction result:(succeeded)feedbacks:(range limits)feedbacks:(value limit)action result:(succeeded) navigation argumentsshield commandshield argumenttorpedo commandtorpedo argumentaction result:(succeeded)feedbacks:(range limit)decision call:(command request)decision call:(critical warning)
Figure 4.7: Screenshot of Star Trek game showing (left arrows) game information
and (right arrows) game commands & arguments.

4.5.3 FS Rules for Decisions in Star Trek Game

FS rules for game decision are the most crucial part of the decision-making module.

The authors created FS rules for Star Trek game after playing the game several

times and working on different game parameter settings. We applied the modular

FS table technique to create several small hierarchical FS tables. We then came up

with two sets of FS rules as follows:

4.5.3.1 Simple FS Rules

In the simple rules, we have five modular tables made of five binary FS inputs (LOW

or HIGH) and nine Boolean inputs. Appendix B shows all five binary inputs and

five FS tables in section B.1 and B.2, respectively.

73

Those five FS tables in the simple rules are:

1. SHIELD table: SHIELD table, presented in Table B.2 in Appendix B, serves

as the root of the modular tables. The first priority of this table is to control

and balance the shield energy of the Starship Enterprise. Without a proper

shield setting, it is most likely that the Enterprise will be defeated by the Klin-

gons and, instantly, we lose the game. The shield setting is an output decision

which points to the decision callback function named set shield energy(). This

C function is prompted to calculate a proper amount of shield energy, suitable

for the current game states.

Besides setting the shield energy, this table may point to one of three other

FS tables under the hierarchy of the root. When there is a Klingon spaceship

within the same quadrant, ATTACK table is next activated. When there is

a Starbase within the same quadrant and we need to repair our starship, we

move to TO STARBASE table to further find a way to the Starbase. If there

are both Klingon and Starbase, we can choose to set shield energy() higher,

make an ATTACK, or move TO STARBASE, depending on some other factors

specified in the table. Otherwise, when there is nothing else to do in the current

quadrant, we follow to NAVIGATE table then find out a new quadrant to move

on.

2. ATTACK table: The ATTACK table, presented in Table B.3, is responsi-

ble for selecting appropriate weapons to attack the Klingons. The callback

function fire phaser() calculates the energy to discharge the phaser, while

fire torpedo() computes the direction to launch the torpedo.

If a torpedo is the right weapon but there exists a star, blocking the target

Klingon, we may decide to reveal klingon() first to make a clear path before

firing a torpedo in the following turn. Otherwise, when all weapons are un-

able to fire, we escape TO STARBASE to repair the damage or recharge the

weapons.

3. NAVIGATE table: The NAVIGATE table, presented in Table B.4, guides

the navigating decision toward TO STARBASE or TO KLINGON table. The

weapon availability as well as the remaining energy and time are three factors

that dictate the decision.

74

4. TO STARBASE table: This table, presented in Table B.5, determines if

we should directly navigate to the known Starbase or try to survey the undis-

covered quadrants in search of the unknown Starbase. Our experience would

advise us to navigate to starbase() when it is near. Otherwise, we should nav-

igate to survey() to find out more in the galaxy.

5. TO KLINGON table: Table B.6, the TO KLINGON table, is a simple

table with a yes/no condition. We decide to navigate to klingon() when we

know its location. Otherwise, we have to navigate to survey() to search for

it in the galaxy. The callback function navigate to klingon() determines the

nearest quadrant where the Klingons exists. Whereas the navigate to survey()

callback directs us to the quadrant where we have as much opportunity as

possible to discover the unknown galaxy.

4.5.3.2 Extended FS Rules

We create an extended version of the simple FS rules by adding more rule details

and introducing FS value tables. In addition to the modular FS tables for decision

making, we implement an FS value table to calculate a command argument based

on the relationship among FS input variables. Appendix C shows all 14 FS input

variables and 8 FS tables for the extended FS rules. Among 14 FS variables, 10 of

them belong to 6 modular tables for decision making, while 4 variables belong to

2 value tables for command argument calculation. In addition, there are six extra

output variables shown in the bottom half of Table. C.1. These variables represent

the outputs in the value tables, VALUE SHIELD and VALUE PHASER for shield

and phaser command’s arguments, respectively.

In the extended rules, we also employ two separate branches of modular tables.

Starting with MAIN DECISION table, the first branch is the main part similar to

the one in the simple FS tables. The second branch is a critical decision that activates

only when the Enterprise enter a new quadrant with existing Klingons. The critical

decision for the extended rules contains only one table that is the RED ALERT

table shown in Table C.2.

All six FS tables for decision making in the extended rules are:

1. RED ALERT table: This table is similar to SHIELD table in the simple FS

rules in terms of the priority target: setting shield energy properly. However,

we set it as a critical decision in a way that it can interrupt the regular decision

75

when a critical event occurs. Another point of differences is the number of

DOM states in SHIELD ENERGY input. With higher number of DOM states,

we can adjust the output decision to match the input circumstances more

precisely.

2. MAIN DECISION table: This table splits major game events into four

cases, all with Boolean condition. All table outputs point straightforwardly to

one of the other three tables in the hierarchy.

3. ATTACK table: We add one more FS input variable in the simple rules’

ATTACK table. The new input, N KLINGONS IN QUADRANT, represents

the number of Klingons in the quadrant: either LOW or HIGH. With HIGH

number of Klingons, it is more effective to fire phaser() to destroy all of them

at once.

However, we must use fire phaser() sparingly to reserve the valuable energy.

Thus, it is economical to fire torpedo() when the number of Klingons are LOW.

4. NAVIGATE table: We add a new factor DISTANCE TO STARBASE to

consider the TO STARBASE decision for an energy recharge when a Starbase

is near. This often prevents the Enterprise from running out of energy.

We also replace the input variable WEAPON AVAILABLE with DAMAGING

DEVICES to emphasize the need to repair the damage with TO STARBASE

decision.

5. TO STARBASE table: The TO STARBASE table in the extended rules is

the same as the one in the simple rules.

6. TO KLINGON table: We add time factor as TIME LEFT input variable

to give more weight on the galaxy survey when we have more time to do so.

When the time is running out, we shift the weight to navigate to klingon() to

win the game.

The other two tables in the extended rules are FS value tables. The FS value

table calculates an output value based on the relationship between FS inputs and

the constant consequence values.

When we use the simple FS rules with the optimization process in Chapter 5,

we assign some optimized parameters to command arguments directly. However,

76

these acquired values are fixed for the entire simulation. Besides, they have no

association with the current game states in the interactive environment. This direct

use of optimized parameters is inflexible when compared to a new use of optimized

parameters in an FS value table.

In an FS value table, we assign the optimized parameters to the consequences of

the table. The consequences specify different amount of output values for differing

input conditions. We then use FS reasoning to interpolate these table consequences

in association with the current game states. That means, when the current game

states are given as table inputs, we calculate the membership values for each input

and compute the weight for each rule according to the relationship of the inputs. We

then multiply this rule weight to the consequence values, resulting to the weighted

consequence. The accumulation of all weighted consequences specifies the output

values of the FS value table. This provides a more flexible way to use the optimized

parameters in the varying environment.

When a callback function determines an argument value for its command, the

function may activate the FS value table to calculate an output value as the required

command argument.

Both FS value tables in the extended FS rules are (with continue numbering):

1. VALUE SHIELD table: The callback function set shield energy() activates

VALUE SHIELD table to calculate the proper shield energy for “she” com-

mand. The command sets shield energy of the Enterprise to protect this

starship from the Klingons attack.

We set shield energy in proportion to the strength of Klingons attack, which

depends on the number of Klingons in the quadrant and the distance from

each Klingon to the Enterprise. The more the number of Klingons is, the

more shield energy is required to defend the starship. Meanwhile, the closer

the Klingon locates near the starship, the more powerful the attack becomes.

For both cases, we need more shield energy to protect the Enterprise.

2. VALUE PHASER table: The callback function fire phaser() activates

VALUE PHASER table to calculate the required phaser energy for “pha”

command. The command fires the phaser energy to attack the Klingons.

Firing the phaser weapon to destroy faraway Klingons needs more phaser en-

ergy than to defeat the ones nearby. When the number of Klingons increases,

77

we also need more phaser energy to eliminate all Klingons in one blaze. There-

fore, the effective amount of phaser energy depends on the number and the

distance of Klingons in the quadrant.

4.5.4 FS Membership Functions

For FS membership function, we implement a triangular-shaped membership func-

tion for its quick computation and the minimum number of function parameters.

We use a series of triangular functions, enclosed with a boundary function at

both ends, to represent membership functions of an FS variable. The number of

functions equal to the number of DOM states. The shoulder function defines the

boundary in which all other triangular functions reside.

The main characteristics of a membership function in our implementation are the

unit height and the unit summation. That is the height of a triangular membership

function equals to one. At any position along the x-axis, the summation of the

overlapped membership functions always equals to one.

0

1
Low High

min maxx0 x0+x1

x1

(a)

Low

0

1
HighMedium

min maxx0+x1x0 x0+x1+x2

x1 x2

(b)

Figure 4.8: Membership functions of an FS variable with (a) two degrees of mem-
bership (Low & High) and (b) three degrees of membership (Low, Medium & High).

Figure 4.8 shows our implementation of triangular membership functions used in

a player model for Star Trek game. Initially, we indicate a minimum and maximum

values of each FS variable. Both values specify the boundary of the game state

which an FS variable denotes to. All valid membership functions reside within this

boundary range. Any input value outside this range is not a member of the FS

variable. Its membership value is always zero.

In addition to a boundary range, an FS variable with n DOM states requires n

real values to create its membership functions. Fig. 4.8 (b) demonstrates that we

need three real numbers to represent membership functions with three DOM states:

Low, Medium and High. The lower number establishes the left shoulder function

78

that maintains unit height from the minimum boundary to its position then linearly

decreases the height from its position down to zero height at the position of the

higher number. Similarly, in the opposite way, the higher number establishes the

right shoulder function that the height linearly increases from zero at the position of

the lower number to one at its position then maintain the unit height until the max-

imum boundary. We insert additional triangular functions between both shoulder

functions until the total number of functions equals to the number of DOM states.

4.5.5 Game Decision Callbacks

In our implementation, the decision output from FS tables determines the game

decision for a player model. This decision gives the generic direction for the game

response, without action details. For each FS decision outputs, we implement a

decision callback function to serve as an action planner and a command generator.

The player model activates the callback function that corresponds to the given game

decision.

In Star Trek game, we design seven callback functions according to all main

decisions in the game. According to the given FS tables in Appendix B.2 and C.2,

the name of the callback functions appears in the DECISIONS column as lower-case

letters with a parenthesis ending. Table 4.1 lists all callback functions along with

their matching game command and arguments.

Table 4.1: Star Trek game’s callback functions to generate the corresponding game
command with its arguments.

name command argument#1 argument#2

set shield energy() “she” energy -
fire phaser() “pha” energy -
fire torpedo() “tor” Course (direction) -

reveal klingon() “nav” Course (direction) Warp Factor (distance)
navigate to survey() “nav” Course (direction) Warp Factor (distance)

navigate to starbase() “nav” Course (direction) Warp Factor (distance)
navigate to klingons() “nav” Course (direction) Warp Factor (distance)

All seven callback functions and their detailed operations are:

1. set shield energy(): The main task of this callback function is to issue the

“she” command with an appropriate amount of shield energy.

The importance of shield energy is to protect the Enterprise from being de-

stroyed. If the shield energy is too low, we may lose the game due to a more

79

powerful Klingons attack.

In the optimized player model proposed in Chapter 5, we let the optimization

process search for the proper shield energy. For the simple FS rules, we assign

the optimized parameter to the shield value directly. However, for the extended

FS rules, we activate the VALUE SHIELD table to compute this value every

time we issue the “she” command. The VALUE SHIELD table is shown in

Table C.8 of Appendix C.

2. fire phaser(): The main task for this callback function is to issue the “pha”

command with a proper amount of phaser energy.

The balance of energy usage is the key to specify the right energy value. When

firing a phaser weapon, we aim to destroy all Klingons in one shot, if possible.

Otherwise, the surviving Klingons will fight back. We also need to avoid firing

more phaser energy than necessary. It wastes our precious energy, then we

undoubtedly lose the game once the energy is used up.

Similar to the shield energy, the callback assigns the optimized parameter

to the phaser energy in the simple FS rules. For the extended FS rules, it

activates the VALUE PHASER table to calculate the suitable phaser energy.

Table C.9 of Appendix C shows the relationship between related game states

and the proper amount of phaser energy.

3. fire torpedo(): The main task for this callback function is to issue the “tor”

command. The function has to determine the torpedo direction to suit the

required command argument.

We calculate the torpedo direction algorithmically from the quadrant map.

The query command “srs” shows the map of all 8 × 8 sectors in the current

quadrant.

A star object in the quadrant can block the path of our torpedo direction.

In such case, we can move the Enterprise to make a clear path toward our

launching target.

4. reveal klingon(): The main task of this callback function is to issue “nav”

command(s) to relocate the Enterprise for a clear path toward the Klingons.

This command focuses on a short move within the same quadrant.

80

We usually issue this command in a preparation for a torpedo launch. After

this move, it is the Klingons’ turn and they can attack the Enterprise before we

launch a torpedo. This is the drawback of reveal klingon() decision. Therefore,

we make this decision only when there are no better choices.

The relocation for a clear path requires small-step navigations or a series of

them. It depends on the distribution of the objects in the quadrant: stars, the

Klingons, and the Enterprise. In addition, the Klingons relocate occasionally.

Hence, a poor relocation that cannot clear the path in one move is dangerous.

In reveal klingon() function, we use the brute-force method to search for the

new locations with a clear path to the Klingons. With the small number of 64

sectors in a quadrant, the brute-force method works gracefully.

In the implementation, we initially find all vacant locations that the Enterprise

can move to, positively, from the current position, without any obstructions.

We rate them in terms of accessibility and clarity of the travelling path from

the Enterprise’s position. We then rate these locations again for the clarity of

torpedo path to the target object. The best rated location is our candidate

for the “nav” command.

We implement Bresenham’s line algorithm [2] to trace a straight line between

two sectors in a quadrant. We use this algorithm to check whether there are

no objects along the line to ensure the clarity of a travelling path.

5. navigate to starbase(): The main task of this callback function is to issue

“nav” command(s) to dock the Enterprise into the Starbase. The docking

positions are any eight sectors immediately surrounding the Starbase. This

command handles both a long move between quadrants as well as a short

move within a quadrant.

For a long move between quadrants, this function creates a series of “nav”

commands starting from the current position to the target quadrant. The

query command “com 0” displays the galaxy map, as illustrated in Fig. A.2 in

Appendix A. We use this galaxy map to plan the moving actions. We also need

to be concerned about the obstruction of star objects in the current quadrant

when planning the moves.

For a short move inside a quadrant, we also use the brute-force method to

81

search for the candidate travelling paths to the neighboring locations of the

Starbase.

6. navigate to survey(): The main task of this callback function is to issue

“nav” command(s) to move the Enterprise when surveying the galaxy. This

command focuses on a long move between quadrants.

The crucial objective of galaxy survey is to search for all Klingons in the

galaxy. The query command “lrs” reveals the numbers of each object residing

in the current quadrant and its immediate surroundings. From point to point,

we use “lrs” and “nav” command to gradually survey the galaxy.

With the brute-force method, we search for the quadrants that contain a good

balance of our survey measures. Currently, we use two measures in the ranking:

(1) the travelling distance from the Enterprise to the target quadrant to be

surveyed, (2) the number of newly discovered quadrants we can scan from the

target quadrant. We also apply the weight system to adjust the importance of

each measure. The quadrant with top-ranking weighted measure is our survey

target for the navigation.

7. navigate to klingons(): The main task of this callback function is to issue

“nav” command(s) to move the Enterprise to the quadrant where the Klingons

are located. This command focuses on a long move between quadrants.

We select the target quadrant to fight the Klingons in the similar way that

we measure the survey ranking. From the galaxy map, we apply two weighted

measures, i.e. the travelling distance and the number of new discoveries, to the

quadrants where the Klingons reside. The top-rank quadrant is the destination

quadrant of the navigation.

4.6 Chapter Summary

Our game player model is created after the model of how a game player interacts

with a game environment. For a strategy game, it is the decision-making process

that dominates the interaction.

In this work, the player model consists of three major modules: (1) the game

parser module as an input interface, (2) the decision-making module, and (3) the

82

command generator module as an output interface. We use Star Trek game to

demonstrate the approach in an actual game environment.

The capability of a player model for strategy games lies in the competency of the

underlying decision-making techniques. Selecting the suitable decision-making algo-

rithms depends on the complexity of strategy decisions in the game. For TBS games,

we apply the FS rule-based system to make the game decisions. With the expres-

sive power of FS rule-based system, an expert player can linguistically communicate

their knowledge in game playing into IF-THEN rules. This helps the non-technical

professionals design their game decisions in human terms. In addition, the FS rule-

based system is easy to understand and maintain by others not originally creating

the system.

The following chapters exhibit various aspects of our implementation of the

player model for TBS games. That includes several improvements of the model

to make it stronger as well as some discussions on the evaluation and other enhance-

ments.

83

Chapter 5

Evolving Fuzzy Logic Rule-based
Player Model

5.1 Introduction

After an expert creates a player model representing a game player as described in

Chapter 4, the first step toward automatic game parameter tuning is to optimize

the player model to become a stronger automatic game player. This reduces the

workload of a game designer in fine-tuning the player model for the optimal per-

formance. With fuzzy logic (FS) decision system in our player model, we can use

an evolutionary algorithm (EA) to optimize the FS decisions for more robust model

instances. This technique is called genetic fuzzy system (GFS) [55].

Genetic Fuzzy Systems, basically, apply evolutionary algorithms (EAs) to solve

optimization problems and search problems related to FS, especially fuzzy rule-based

system (FRBS). For a FRBS, we analyze its fuzzy knowledge base (KB) component

as an optimization problem and use an EA as a learning tool in the design of KB

component. Examples of GFS techniques include genetic rule learning, genetic rule

selection, genetic tuning of membership function parameters, etc. [20].

It is worth to mention that GFSs are different from fuzzy evolutionary algorithms

(fuzzy EAs), the other method in the hybridization between FS and EAs [20]. In

fuzzy EAs, we improve EA performance by using FS to control or model EA elements

adaptively.

The main objective of this chapter is to confirm that we can use a GFS technique

to improve the performance of our player model for turn-based strategy games at

different levels of game difficulty.

Following this section, the remaining three main sections discuss the player model

optimization with Differential Evolution (DE) algorithm and its implementation, the

simulation experiments with its results, and the chapter summary in section 5.2, 5.3

85

and 5.4, respectively.

5.2 Player Model Optimization with Evolution-
ary Computation

The main element of our player model is an FS decision system, which is responsible

for decision makings in the game. This decision system is the major target for player

model optimization with GFS technique. Although we use DE in our experiments,

we are still able to use any EC algorithm for the optimization without significant

differences [13].

In Fig. 5.1, we show a traditional practice of an FS system design. In this

practice, an expert uses his/her skills in the domain to create FS rules. The FS

membership function parameters are also tuned by the domain expert him/herself.

FS decision system

expert

player

FS
reasoning

engine

FS
rules

membership
functions

Figure 5.1: An expert player provides both FS rules and membership function pa-
rameters for the game decision.

To help automate the tuning process of FS membership function parameters, our

framework uses an EC algorithm to search for the optimal values of the membership

function parameters. as illustrated in Fig. 5.2.

FS
reasoning

engine

FS
rules

membership
functions

expert

player

EC

optimization

FS decision system

Figure 5.2: An expert player provides FS rules, while DE optimizes membership
functions for the optimal function parameters.

Although both FS rules and membership function parameters can be a subject

86

of optimization or automation, we prefer to leave the creation of FS rules in the

hands of experts. We believe that FS rules are well analyzed and synthesized from

their skills and experiences. The rules created by experts, generally, contain many

insights and intuitions, which are difficult to obtain from the algorithms, or may

take a long time to search for from the vast search space.

Once FS rules have been created, finding the optimal values of membership

function parameters seems to be more reasonable for a search algorithm due to the

smaller search space and less complicated tasks. In addition, the optimization of

membership function parameters requires precise and extremely detailed tweakings,

which are better handled by an optimization algorithm.

EC optimization applies a population-based EC algorithm to search for the op-

timal fitness values over the search space. The search space for solutions to the

problems is in a form of encoding representation. The encoding maps the problems

into the parameter space in which we search for the answers. Applying fitness eval-

uation over the search space constitutes the fitness landscape of the problems. In

addition to an efficient EC searching algorithm, a well-represented encoding and a

faithful fitness evaluation facilitates the searching/optimization process.

There are many factors concerning the optimization of EC algorithms. The

three most important ones are (1) the algorithm used, (2) the fitness evaluation,

and (3) the encoding representation. We will discuss these three issues in details

in subsections 5.2.1, 5.2.2, and 5.2.3, respectively. In subsection 5.2.4, we explain

how to evolve our player model to find a stronger one with EC optimization. We

complete the section with an implementation example of player model optimization

for Star Trek game in subsection 5.2.5.

5.2.1 Differential Evolution Algorithm

Generally, we can use any population-based EC algorithms for the optimization

process. In this case, we select a DE algorithm, described in subsection 2.1.4, as

our optimization tool. The main advantages of DE are its simplicity and usability.

Moreover, DE is efficient for optimizing real-valued, multi-modal problems. It yields

good convergence properties and performs well at avoiding local optima.

Similar to other EC algorithms, DE searches for the optimal solution in the fitness

landscape, represented by encoding representation and fitness evaluation through

three evolution processes: mutation, crossover, and selection. We control the mu-

87

tation process with the selected DE notation (see Table 2.1) and the scaling factor

F , as shown in Eq.(2.3). A large value of F indicates a wide-area searching (ex-

ploration), while a small value indicates a local-area searching (exploitation). We

manipulate the crossover process with the crossover rate CR, as specified in Eq.(2.4).

A large value of CR indicates a high crossover rate, implying distant searches far

away from its parent (exploration), while a small value suggests nearby searches

(exploitation).

5.2.2 Fitness Evaluation

Fitness evaluation is one of the most important issues in the design of an EC algo-

rithm for a specific application. Each application requires different fitness evalua-

tions depending on the objectives of the EC optimization. In our optimization, the

main objective is to make the FS decision system in our player model as strong as

the human game player.

Hence, we design our fitness evaluation toward winning the games. That is to

win as many games as possible or, if unavoidable, to lose as few games as possible.

To evaluate a player model, we arrange the model to play the game many times

with, for each time, distinctive game characteristics, i.e. different game maps, differ-

ent seed values of pseudo-random number generator. This is to, statistically, make

a fair measure on the performance of the player model.

Sfitness(g,m,N) =

∑N
id=1 Sgame(g,m, id)

N
+Rwin(g,m,N) (5.1)

Where:
g: is a set of game parameters,
m: is a set of player model parameters,
N : is the number of played games,

Sfitness: is a fitness score,
Sgame: is a game score according to Eq. 5.2,
Rwin: is a win ratio according to Eq. 5.3.

We express our fitness evaluation in Eq.(5.1). A stronger player model has given

a higher numerical value than a weaker model has. The equation consists of two

terms:

1. An average of game scores: This value is an arithmetic mean of game

scores. Generally, game scores represent how well we perform in a single

game. A basic form of possible game scores is a weighted sum of significant

88

game statistics. To make it comparable, we normalize the game statistics as

well as the overall game scores. Eq.(5.2) shows the mathematical equation of

this conceptual score.

Sgame(g,m, id) =

∑M
i=1wi × SNorm

i∑M
i=1wi

(5.2)

Where:
g: is a set of game parameters,
m: is a set of player model parameters,
id: is a game ID number,
M : is the number of game statistics of optimization importance.

SNorm
i : is the ith normalized game statistics.
wi: is the ith weight of corresponding game statistics.

2. A winning ratio: This value represents the overall performance of the player

model. The winning ratio, expressed in Eq.(5.3), is a motivation toward win-

ning more games.

Rwin(g,m,N) =

∑N
id=1W (g,m, id)

N
(5.3)

Where:
g: is a set of game parameters,
m: is a set of player model parameters,
N : is the number of played games,

W (g,m, i): = 1 when win the game of ID:i
: = 0 otherwise.

Each term is normalized to the value between zero and one. Thus, the comparison

between two player models with different numbers of games played is reasonable.

We show our implementation example of fitness evaluation function in Star Trek

game in subsection 5.2.5.

5.2.3 Encoding Representation

To improve our player model with EC optimization, the video game serves as a

problem that we are trying to solve with the suitable player models. The behaviors

of the player models are defined by player model parameters, which are the encoding

representation of the solutions to the problem. A good design of player model

parameters also supports the optimization process.

The total number of parameter size is important. The size of player model param-

eters should be large enough to finely represent the problems. Too few parameters

to capture the characteristics of the problem may lead to impractical results. Too

89

many parameters, however, take too much time to optimize or, in a worst-case sce-

nario, make it impossible to find any optimal solutions. We must balance the size of

player model parameters to closely represent the problems as well as to search for

the solutions within a preferable time frame.

Figure 5.3: player model parameters.

For our proposed methodology, we select three key parameters from our player

model. These key player model parameters are illustrated in Fig. 5.3 as (a) the mem-

bership function parameters, (b) multi-output decisions , and (c) arguments of game

commands. Two parameters belong to the KB component in the decision-making

module. The membership function parameters are from FS membership functions,

and multi-output decisions are from FS rules. The other parameter belongs to the

game command generator module. They are the target of our DE optimization.

In the next subsection, we will discuss the optimization of each parameter in more

details.

We show our implementation example of encoding representation in Star Trek

game in subsection 5.2.5.

5.2.4 Optimization of Player Model Parameters

The optimization process produces sets of player model parameters from DE algo-

rithms. One set of player model parameters specifies one player model. The player

90

model makes decisions in games according to its parameters. It generates all game

commands and creates game actions. When these actions interact with the video

game environment, a variety of game states emerge. At the end of the game, we

select some game statistics and evaluate the fitness scores for the given set of player

model parameters. DE algorithm uses sets of parameters with high fitness scores to

reproduce new sets of parameters. We repeat the selection and reproduction pro-

cedures until the set of optimal player model parameters, denoting the best game

player, is found.

5.2.4.1 Optimization of FS Membership Function Parameters

During the inference process in FS decision making, an FS membership function

maps an FS input variable and its corresponding DOM to a numerical value. The

shape of a membership function and its DOM computation are controlled by the

membership function parameters. With different sets of membership function pa-

rameters, various numerical interpretations of the FS input can be achieved, result-

ing to a variety of game decisions.

A large number of player model parameters belong to FS membership function

parameters. The size of membership function parameters is proportional to the

number of DOM states in an FS variable that the function represents. In addition,

its size also depends on the shape of the membership function. Different types of

function shapes require different numbers of the function parameters. For example,

the parameter size of a simple triangular-shaped function is smaller than the size of

a trapezoid-shaped.

5.2.4.2 Optimization of FS Multi-output Decision

To implement the multi-output optimization, DE algorithm assigns a weight for

each multi-output decision. When calculating the weight of a rule with multiple

outputs, we proportionally share the calculated rule weight according to the weight

of each decision. We then accumulate the shared weights into the output weight

of the corresponding decision. Finally, the output with the maximum accumulated

weight is selected as the final decision. With our implementation of modular FS

table feature, this final decision may point to another FS table for further reasoning

computations or to a decision callback for action planning and game command

generation.

91

The number of gene elements, required for multi-output optimization, is pro-

portional to the number of FS rules, containing multiple outputs, and the number

of output choices, provided in such rules. The number of encoding representations

for multi-output optimization tends to be small when compared to the one of other

types of representation. This is because only a few rules require this supplementary

feature even though it is very handy in necessary cases.

In a representation of a gene element, we encode the multi-output decision with

the focus on maintaining the unity weight distribution among multiple outputs. The

number of gene elements we required is one degree of freedom less than the number of

output choices in the rule. Assuming a rule with three possible decisions, we require

two gene elements to encode their weights. The last weight is calculated from the

first two values to satisfy the unity of their total weights. In the same example of

the three optional decisions, suppose we have two encoding elements of 0.4 and 0.5,

respectively. The weight of the first decision is straightly 0.4. The weight of the

second decision is 0.5 of the rest, i.e. 0.5×(1.0−0.4), that equals to 0.3. To maintain

the unity of total weights, the remaining weight, i.e. 1.0− (0.4 + 0.3) = 0.3, belongs

to the last decision. Hence, the two encoding values of (0.4, 0.5) are equivalent to

(0.4, 0.3, 0.3) of three-output weights. The summation of the three weights is one,

which conserves the unity weight distribution we focus on.

5.2.4.3 Optimization of Game Command Arguments

A command argument(s) is required in some game commands as supplementary

data to enhance the functionality of the commanding action. An argument of a

game command is normally in a numerical form, but some other forms, e.g. a

character or a symbol, are also possible. There are times when it is difficult to

indicate the command argument only with FS rules. In this case, we have to supply

the command argument with some other methods such as a constant value, a random

value, a computed value, or an optimized value.

In command argument optimization, we assign a value of a specific gene element

for a specific command throughout the game. The optimized command argument

is used in either one of the following ways.

• Preset command argument: We use the optimized value directly as a command

argument. This is usually for a simple game command.

• Callback function argument: We use the optimized value as a function param-

92

eter of a decision callback. The callback function calculates an actual value

for the command argument. This is an indirect use of the optimized value,

usually for a more complex game command.

An example of our implementation in command argument optimization for Star

Trek game is presented in subsection 5.2.5.

The number of gene elements, required for game command arguments, depends

largely on the input commands to the game environment, as well as the design of the

KB component in our player model. The game command generator module acquires

prospect command arguments, then generates the actual game commands according

to the given decision. The prospect command arguments come from several methods,

depending on our KB design for each specific game. The possible methods are static

values from the predefined constants or random number generator, adaptive values

from decision callbacks or optimized gene elements, or the mixture of both. Hence,

the gene number varies drastically among game commands and game developers.

5.2.5 Example Implementation of Player Model Optimiza-
tion in Star Trek Game

In the experiment for this chapter, we use simple FS rules (see section B) in the KB

component of the player model. From all three kinds of key parameters, the simple

FS rules contain 21 player model parameters in total. This is illustrated in Fig. 5.4

(a)-(c).

low high

0

1

g 0 g 1 g 2 … g 12 g 13 g 14 g 15 g 19 g 20

a ack ENERGYshield
ENERGY

NAVIGATIONS

distance
penalty

discovery
reward

g 10g 3

ATTACK
DECISION& torpedo_to_klingon()

phaser_to_klingon()

low high

0

1
low highlow high

…g 11

(a) (b) (c)

Figure 5.4: DE optimization for player model.

5.2.5.1 Parameter Encoding for DE Optimization

Table 5.1 shows our encoding representation of all 21 player model parameters. They

consist of ten FS membership function parameters (gene g0− g9), two multi-output

decision parameters (gene g10 − g11), and nine game command arguments (gene

g12− g20).

93

Table 5.1: DE encoding representation for simple FS rules in Star Trek game. Three
types of our player model parameters in type column consists of FS membership
function parameters (MFn), multi-output decision (Outs), and game command ar-
guments (Cmd), where Cmd1 denotes a preset command argument and Cmd2 de-
notes a callback function argument.

gene min max type representation

g0 0.0 3000.0 MFn LOW membership of SHIELD ENERGY
g1 0.0 3000.0 MFn HIGH membership of SHIELD ENERGY
g2 0.0 3000.0 MFn LOW membership of ENERGY LEFT
g3 0.0 3000.0 MFn HIGH membership of ENERGY LEFT
g4 0.0 100.0 MFn LOW membership of TIME LEFT
g5 0.0 100.0 MFn HIGH membership of TIME LEFT
g6 0.0 5.0 MFn LOW membership of UNKNOWN STARBASE
g7 0.0 5.0 MFn HIGH membership of UNKNOWN STARBASE
g8 0.0 8.0 MFn LOW membership of DISTANCE TO STARBASE
g9 0.0 8.0 MFn HIGH membership of DISTANCE TO STARBASE

g10 0.0 1.0 Outs Output move to show klingon()
from rule no.1 ATTACK table (see section B.3)

g11 0.0 1.0 Outs Output fire torpedo()
from rule no.5 ATTACK table (see section B.3)

g12 0.0 3000.0 Cmd1 argument of SHE command
g13 10.0 1000.0 Cmd1 argument of PHA command when fighting 1 Klingons
g14 10.0 1000.0 Cmd1 argument of PHA command when fighting 2 Klingons
g15 10.0 1000.0 Cmd1 argument of PHA command when fighting 3 Klingons

g16 1.0 8.0 Cmd2 radius factor to calculate arguments of NAV command
when exploring the galaxy

g17 -1.0 1.0 Cmd2 distance weight to calculate arguments of NAV com-
mand when exploring the galaxy

g18 -1.0 1.0 Cmd2 new exploration weight to calculate arguments of NAV
command when exploring the galaxy

g19 -1.0 1.0 Cmd2 distance weight to calculate arguments of NAV com-
mand when travel to fight the Klingon

g20 -1.0 1.0 Cmd2 new exploration weight to calculate arguments of NAV
command when travel to fight the Klingon

94

We implement FS membership function with a triangular function as illustrated

in Fig. 5.4 (a). Thus, each DOM state requires only one function parameter. Ac-

cording to the simple FS rules in section B.1, all five FS input variables are two-state

DOM: LOW and HIGH. Hence, we use ten gene elements in this part, i.e. two gene

elements for each FS input variable.

Our encoding contains two gene elements for multi-output decision, the least

number of gene elements among all three types of key parameters. This is because,

out of 42 rules in 5 tables, only two rules in the ATTACK table implement this

feature, both with two-output decision. As we need one degree of freedom less than

the number of output options for the encoding of the feature, one gene element is

used for each two-output rule. Hence, we use two gene elements in this part.

For game command arguments, there is no exact formula to compute the number

of gene elements. It varies greatly due to our design of game command generator

module. In our simple player model parameters, we use preset command arguments

for SHE and PHA commands, and callback function arguments for NAV command.

For SHE command, the value of g12 is issued as an expected shield energy. For PHA

command, where the efficiency of the phaser attack depends mainly on the number

of Klingons in the quadrant, we assign three gene elements for different numbers of

Klingons. For example, when there are two Klingons in the quadrant, the player

model will fire the phaser with an energy of g14. For NAV command, we categorize

the navigating actions into two groups: NAV to explore the galaxy when we don’t

know where the Klingons are and NAV to reach the Klingons when we know its

location. To explore the galaxy, we calculate the best quadrant to travel to by three

factors. Each factor is represented by each gene element. All three factors are: the

radius of how far we would like to move (g16), the preference to explore the galaxy

nearby or far away (g17, and how many unknown quadrants can be uncovered with

the move (g18). Once we know the location(s) of the Klingon(s), we examine all

their discovered locations. To find the best location to travel to, the last two factors

also apply to the NAV command, except for the radius factor. Both factors are

represented by g19 and g20.

5.2.5.2 Game Score Evaluation

Previously, we suggest a general guideline to design the game scores with Eq.(5.2)

in section 5.2.2. Here, we show our implementation of the game scores for Star Trek

95

in Eq.(5.4).

game score = 0.60 ∗#destroyed enemies

+0.30 ∗#found enemies

+0.10 ∗ (win game ? remaining time : 0.0)

(5.4)

When the game is over, the game scores for fitness evaluation are calculated as

the weighted sum of three normalized game statistics. We clarify all three statistics

terms denoting to the game scores as below:

1. The number of destroyed Klingons is selected to motivate destroying more

Klingons, which eventually leads to winning a game. Due to its highest im-

portance, we assign the largest weight to this term.

2. The number of Klingons discovered in the galaxy is chosen to encourage better

exploration. We cannot win a game unless we find all Klingons. This is the

second most important factor to win the game.

3. The remaining time after we destroy all Klingons is also a helpful measure. It

is to distinguish the best winner from average winners. If two player models

win the same game, we prefer the one spending less time. When a game

become more difficult with more Klingons, the extra remaining time could

be used to search for and destroy the added Klingons. This measure is less

significant than the above two because it is not directly related to winning the

game. Therefore, we assign the smallest weight to this term. Unlike the above

two terms where there are no conditional statements, we apply this term only

when the model wins the game. This bonus point is also an incentive to win

the game.

All three statistical terms above must be normalized first before applying game

score equation. This is to assure that the game scores are rational over varying game

parameters.

5.3 Experiments on Evolving Player Model

We setup this experiment to verify that we can evolve our player model parameters

with an EC optimization process to improve the performance of the player model

automatically. We also compare the improvement made by the EC optimization

with the one made by an expert’s tuning, in the same player model parameters.

96

According to the Star Trek gameplay described in section A.2, we select two

game parameters to control game difficulty in our experiments.

1. The game time limit (for destroying all Klingons). The game time limit

has a strong impact on the game difficulty. Giving more game time to a

player means the game becomes easier to win, and vice versa, regardless of

how the game map is initialized. The relationship between game time and

game difficulty is likely to be in a reversely linear proportion.

2. The number of Klingons. The game difficulty also depends on the number

of Klingons and their distribution throughout the galaxy. In general, giving

more Klingon spaceships means the game becomes harder to win, and vice

versa. However, the relationship between the number of Klingons and game

difficulty is not in a linear fashion. This is due to a fixed size of the galaxy

space. A fewer number of Klingons may make the game harder in surveying

the galaxy to discover all Klingons. This is because the ratio of the occupied

quadrants is very low. A large number of Klingons, however, may make the

game harder in destroying all of them. In fact, the distribution of game ob-

jects in a galaxy map play an important role in game difficulty. To create a

game map, the game environment places all game objects, comprising Starship

Enterprise, Klingons, Starbases and Stars, randomly. We control the seed of

pseudo-random number generator with the unique game ID to make sure that

each game contains a unique galaxy map. Given the same game ID, we design

the map initialization in a way that the previously existing game objects are

placed at the same random locations, while the recently added game objects

are placed at arbitrary new locations. Therefore, the relationship between

the number of Klingons and game difficulty is quite in proportion within the

game with the same ID. The relationship does not apply across the games with

different ID, however.

Please note that, in this experiment, the number of Starbases has minimal effect on

the game difficulty because it is not directly related to the game objective, i.e. de-

stroying all opponents within a limited time. Hence, we fix the number of Starbases

at three units similar to the default value in the original Star Trek game then adjust

only game time and the number of Klingons in our experiments.

97

5.3.1 Experimental Setups

In our experiments, player model parameters are both automatically optimized by

EC optimization and manually adjusted by a skilled game player. We then compare

the fitness values from both methods to see if the EC optimization yields a better

model performance than the manual tuning.

5.3.1.1 Game Difficulty Levels

We simulated our player model at various levels of game difficulty. Each game

difficulty is obtained by altering two game parameters: the game time and the

number of Klingons. Decreasing the game time or increasing the number of Klingons

result to more difficult games. The number of Starbases was fixed at three due to

its minimal impact on game difficulty.

We characterize game difficulty into three levels: easy, normal, and hard. For

each game parameter, we choose the three values at an equal interval that is large

enough to distinguish the three levels of game difficulty.

A unit of game time in Star Trek game is called Stardate. One Stardate is

approximately equal to a travel across one quadrant. Because the Starship Enter-

prise can scan the current and its surrounding eight quadrants to see the number

of game objects located inside, it takes at least 20 Stardates to survey the entire

galaxy when the Starship Enterprise is in a perfect condition, i.e. with no damaged

devices. Thus, we assume that 40 Stardates is a moderate time to complete the

game mission, so the settings of 30, 40 and 50 are used for hard, normal, and easy

level, respectively.

We look at the suitable number of Klingon spaceships in terms of its distribution

within an 8×8 galaxy space. The Klingons are distributed throughout 64 quadrants

randomly with a maximum of three in one quadrant. To give a suitable occupation

rate, we use settings of 10, 15, and 20 Klingon spaceships for easy, normal, and hard

level, respectively.

The combination of game parameters settings establishes the total nine pairs of

game parameters at several levels across the whole range of game difficulty. All pairs

of game parameter settings are presented in Table 5.2.

98

Table 5.2: Nine pairs of game parameter settings at various game difficulty to eval-
uate a player model. Two game parameters are controlled to create different game
difficulty levels: the game time (t) and the number of Klingons (k). We assign three
difficulty levels to each value of game parameters: easy, normal (norm), and hard
level.

game parameters t = 30 Stardates t = 40 Stardates t = 50 Stardates

k = 10 Klingons k=easy, t=hard k=easy, t=norm k=easy, t=easy
k = 15 Klingons k=norm, t=hard k=norm, t=norm k=norm, t=easy
k = 20 Klingons k=hard, t=hard k=hard, t=norm k=hard, t=easy

5.3.1.2 Optimization Settings

For a DE optimization algorithm, we set the scale factor and crossover rate to

0.9 and 0.8, respectively. Our DE employs the DE/best/1 mutation scheme and

uses a binomial crossover operator. We provide 40 DE populations to optimize

21 player model parameters. The population size is approximately twice the size of

optimized parameters, which is normally recommended as the conventional practice.

Each individual in the population is represented by an array of 21 real numbers, as

illustrated in Fig. 5.4.

Table 5.3: Key experiment setups.

player model
parameter size

population size DE settings DE runs

21 40 DE/best/1,
binomial crossover,

F=0.9, CR=0.8

50

For a given number of Klingons, we initialized ten galaxy maps with different

Klingons’ distributions. The map distribution is incremental, i.e. a new Klingon

is placed in a random location while the existing Klingons’ locations remain un-

changed. With each setting of the game parameters (i.e., game time and the number

of Klingons), each individual of the population plays the same set of ten Star Trek

games with unique initial galaxy maps. At the end of each game, the game scores

are computed. At the end of all ten games, all game scores are averaged and the

winning ratio among the ten games is calculated. We use the summation of both

terms as a fitness evaluation for each DE individual.

99

5.3.1.3 Simulation Setups

We conducted 18 sets of simulations to evaluate the tuning capabilities of our player

model: nine for DE-optimized tunings and the other nine, from the same game

parameter settings, for manual tunings.

• For DE-optimized tunings, we ran the DE simulation 50 times with different

initial populations. Each individual population plays ten Star Trek games with

unique galaxy maps.

• For manual tunings, we created three sets of player model parameters to play

against 10, 15 and 20 Klingons. We run each set three times for a specific

number of Klingons with 30, 40, and 50 Stardates. All simulations play the

same set of ten unique galaxy maps, then compared the results with the cor-

responding DE-optimized tunings.

5.3.2 Experimental Results

In this subsection, we show the performance comparison between the manual tunings

and DE-optimized tunings. We made the nine comparisons showing in Table 5.2.

As the EC algorithm usually outperforms a human’s performance after its evolving

population reach the stable state, we examine both initial evaluation and stable-state

evaluation of DE-optimized player models.

The 3-way comparison among manual tunings, initial-state, and stable-state of

DE-optimized tunings is best examined in a table form, presented in Table 5.4

and 5.5, showing the results in symbols and numerical values. Each row shows

the comparison for each difficulty level. As our data do not form in a normal

distribution, we applied the Friedman test and the Holm’s multiple comparison test

over the 50-runs data to validate the consistency of the results.

The evolution of DE-optimized tunings from the initial state to the stable state,

at the 200th, is best observed visually as a fitness curve. In all resulting graphs,

we plotted nine fitness curves from DE-optimized tunings on the right-hand side of

the graph; one for each difficulty levels. For side-by-side visual comparison, we also

plotted nine fitness points from manual tunings on the left-hand side.

We compared the performance of both tunings using (1) the best fitness scores

and (2) the maximum numbers of winning games evaluated from the tuning models.

The results from our experiments are as follow.

100

5.3.2.1 Best Fitness Score

The best fitness scores of manual tuning represents the fitness value evaluated from

the player model tuned by the authors. For a single run of DE optimization, the best

fitness scores represent the highest value of fitness evaluation among all individuals

in DE population. With 50 DE runs in our experiments, we use the average value

of the best scores in each run.

Table 5.4: Results from the Friedman test and the Holm’s multiple comparison
test. The symbols of �, < and ≈ mean that there is a significant difference with
significant level of 1%, 5%, and no significance, respectively. The subscripts of man,

1st, and 200th refer to the fitness values obtained by manual tunings, DE-optimized
tunings at the 1st generation and at the 200th generation, respectively. Fitness values
of DE-optimized tunings are the average of the best fitness scores from 50 trial runs.

game
parameters

Best fitness score

k=10, t=50 1.53381st � 1.6741man � 1.9343200th

k=10, t=40 1.23561st � 1.4446man � 1.9108200th

k=15, t=50 1.17591st � 1.6276man � 1.7724200th

k=20, t=50 0.7987man ≈ 0.81731st � 1.3838200th

k=15, t=40 0.80701st � 1.0430man � 1.2195200th

k=10, t=30 0.84731st ≈ 0.8511man � 1.1640200th

k=20, t=40 0.59501st < 0.6000man � 0.7960200th

k=15, t=30 0.55601st < 0.5660man � 0.6931200th

k=20, t=30 0.4740man � 0.49331st � 0.5808200th

According to our simulations at nine levels of various game difficulty, Fig. 5.5

shows the best fitness scores for both manual tunings (left points) and DE-optimized

tunings (right curves). Table 5.4 displays 3-way statistical comparison among man-

ual tunings, DE-optimized tunings at the 1st and 200th generations.

5.3.2.2 The Maximum Number of Wins

The main goal for player model optimization is to increase more wins for our model.

However, we cannot simply use the number of wins directly for a fitness evaluation

because its discrete value lacks the finely guiding control toward the main goal.

Therefore, the continuous fitness evaluation in Eq.(5.1) is suggested. Even though

the best fitness scores seem to represent the best player model nicely, there are

times when the value misinforms us about the number of wins. According to the

game score calculation in Eq.(5.4), a frequent of close defeats may overtake a tiny

101

k=10, t=50
k=10, t=40

k=10, t=30

k=15, t=50

k=15, t=40

k=15, t=30
k=20, t=30

k=20, t=50

k=20, t=40

manual
tunings

DE-optimized
tunings

generations

be
st

 f
itn

es
s

Figure 5.5: Experiment results of best fitness score from evolving player model.

close win. Hence, a maximum number of wins is another measure for player model

performance. Furthermore, the fitness scores should be coherent with the number

of wins to exhibit its optimization efficiency.

Similar to the computation of the best fitness scores, the maximum number of

wins for DE optimization is the average from 50 DE runs.

According to our simulations at nine levels of various game difficulty, Fig. 5.6

shows the maximum number of the games won, for both manual tunings (left points)

and DE-optimized tunings (right curves). Table 5.5 displays 3-way statistical com-

parison among manual tunings, DE-optimized tunings at the 1st and 200th genera-

tions.

5.3.3 Discussions

In terms of both fitness scores and a number of wins, all 50 runs of DE-optimized

player model performed better than the manual tunings in almost all difficulty levels.

The only exception is in the most difficult game level, with the maximum number

of Klingons (20) and the minimum game time (30 Stardates); here the best fitness

improves very little and cannot win any single game.

Table 5.4 and Table 5.5 compares the simulation results among the three groups

of parameter tunings: manual tunings, initial generation, and stable generation of

DE-optimized tunings. In the beginning, the manual tuning made by an expert

102

Table 5.5: Results from the Friedman test and the Holm’s multiple comparison
test. The symbols of �, < and ≈ mean that there is a significant difference with
significant level of 1%, 5%, and no significance, respectively. The subscripts of man,

1st, and 200th refer to the fitness values obtained by manual tunings, DE-optimized
tunings at the 1st generation and at the 200th generation, respectively.

game
parameters

Number of won games (out of 10)

k=10, t=50 7.121st � 8man � 10.00200th

k=10, t=40 4.661st � 6man � 9.94200th

k=15, t=50 4.421st � 8man � 9.08200th

k=20, t=50 1man � 1.581st � 5.88200th

k=15, t=40 1.621st � 3man � 4.62200th

k=10, t=30 1man � 1.561st � 3.84200th

k=20, t=40 0man ≈ 0.041st � 0.9200th

k=15, t=30 0man ≈ 01st � 0.1200th

k=20, t=30 0man N/A 01st N/A 0200th

player performed significantly better than the 1st generation of DE optimization in

six out of nine setups, especially in a group of easy games. However, within a few

generations, the results from the DE optimization outperformed the manual tunings

in all cases. This demonstrates that manual tunings by a skilled player played the

game well in a certain degree.

It is common for a population-based optimization to perform better than a hu-

man due to the size of its searching population. The optimization method also pro-

vides solution parameters with a higher degree of precision than the ones achieved

via human adjustment. Even though human experts not only play the game excel-

lently but also design the FS rules reasonably well, the interpretation of FS inputs

with membership functions may not be an easy task.

From Table 5.4 and Table 5.5, we can clearly classify these nine game parameter

setups into three difficulty levels. The first three rows are the easy-level games

with an almost 100% winning rate, having the most optimization improvement.

The last three rows are hard games with a less than 10% winning rate, showing no

improvement at all. This is, most likely, because the hard games have such a low

winning rate at the beginning, resulting to a weak selection pressure to search for

better solutions. On the contrary, the easy games have higher initial winning rates,

so they generate a stronger selection pressure to search for optimal solutions.

103

k=10, t=50
k=10, t=40

k=10, t=30

k=15, t=50

k=15, t=40

k=15, t=30
k=20, t=30

k=20, t=50

k=20, t=40

manual
tunings

DE-optimized
tunings

generations

w
in

 g
am

es

Figure 5.6: Experiment results of win games from evolving player model.

5.4 Chapter Summary

The experiments demonstrated that our game player model was practical for compe-

tition in a turn-based strategy game with both manual and DE-optimized tunings.

Thanks to DE optimization, our player model evolved reasonably well. The opti-

mized player model generated better fitness scores than conventional tunings by an

expert, in all game difficulty levels. The design of rule-based reasoning for deci-

sion making still requires the knowledge of a domain expert. The combination of

an FS decision-making system and an EC-based approach to parameter optimiza-

tion, which is not just limited to the DE technique, is a feasible framework with

semi-automatic collaborations toward the automatic game parameter tuning.

The concepts and experiments explained in this chapter were presented at the

12th International Conference on Innovative Computing, Information and Control

on August 29, 2017. The article of the same content was published in International

Journal of Innovative Computing, Information and Control in December 2017 [60].

104

Chapter 6

Learning Player Model by
Gradually Increasing Game
Difficulty Levels

6.1 Introduction

The previous chapter explains how our DE-optimized player model evolves over

various settings of game parameters. At the stable state of DE optimization, all

evolving player models improve over their initial performance in every static setting

of game parameters. In this chapter, we examine the results of DE-evolving player

model on dynamic game parameter settings.

With manual game parameter adjustment, we can freely control game difficulty.

When altering game difficulty systematically, we investigate performance responses

of the game player model while it evolves. The positive responses with controllable

game difficulty are a valuable step toward automatic game parameter tuning.

The main objective of this chapter is to study the relationship between manual

game parameter adjustment and evolution of the game player model. We also explore

the essential factors for the success of human-guided game parameter adjustment.

This will give us a better understanding about the mutual evolution process (see

Fig. 3.2), which is the foundation of the automatic game parameter tuning in our

framework.

Following this section, we discuss the idea behind the manual game parameter

adjustment in section 6.2. This section also includes some issues on the adjustment

methods. In section 6.3, we conduct experiments to show several aspects of evolving

player model with game difficulty increment. We summarize our findings on manual

game parameter adjustment in section 6.4.

105

6.2 Incremental Learnings of Game Difficulty

6.2.1 Scale-space Filtering

The DE optimization process searches for the optimal values of player model param-

eters that represent the best player in a particular game. When the optimization

evolves the player model for that game, it searches for the parameter landscape that

belongs to the game. The process hunts for the optimal evaluation point in the

landscape given by the fitness evaluation function. When the game changes, the

parameter landscape changes accordingly.

Our assumption for the changing landscape is that when the game slightly

changes, its landscape will, just a little, change correspondingly. Fortunately, we

can control the game difficulty with its game parameters. That means, for a specific

game difficulty, once the optimization process finds the optimal parameter solu-

tion, it should take less effort for the process to find a new optimal solution at the

slightly-changed game difficulty.

This assumption is inspired by the canonical work of the late Andrew Witkin

in 1983, named scale-space filtering [62]. As the first step of his proposed signal-

processing technique, Witkin applied Gaussian smoothing repetitively with increas-

ing σ parameters over the same waveform. Fig. 6.2 shows the result of this sequential

Gaussian smoothing. Each row represents a signal. The original signal locates at

the bottom of the figure. The upper signals are Gaussian-smoothed version of the

lower ones. The top row is the smoothest signal. It contains the largest Gaussian

convolution (σ value) in the figure.

We can view this figure and the smoothing filter in the different way from top

to bottom. Assume that the waveform in this figure is a parameter landscape. A

smoother waveform at the upper row represents a parameter landscape for an easier

game. In such landscape, it is quick and simple to locate the optimal position.

Later, in the lower row, the parameter landscape becomes more complicated in a

harder game. We can start exploring the complicated landscape from this formerly

optimal position. It will be quicker and simpler to find out the new optimal position

than to start the landscape exploration from random points.

Using this analogy for our problem, it is simpler to start optimizing the player

model in an easy-level game. We then continue optimizing the model with gradually-

increasing game difficulty. This approach should take less optimization time or gain

106

more performance improvement at the target difficulty level, when compared to

working straight on a hard-level game.

Figure 6.1: Sequential Gaussian smoothing of a waveform. The original waveform
is on the bottom row. The upper waveforms are smoother than the lower ones, due
to increasing σ values in Gaussian convolution.

Figure 6.2: Waveform as a searching parameter landscape. It is easier to find an
optimal solution in a smoother searching landscape (upper waveforms). Searching
around this optimal position may help to find a new optimal solution easier and
faster in a more complex landscape (lower waveforms).

We call this approach a gradual incremental learning. It comes from an incremen-

tal learning approach in machine learning (ML). The goal of incremental learning

ML is to train the learning model to adapt to new data while still remember all its

existing knowledge. This is to avoid retraining the model. It is also similar to our

gradual incremental learning approach. The exception lies in the condition that we

require a small number of differences in each searching landscape.

107

6.2.2 Issues in Gradual Incremental Learning

Basically, there are two major concerns when applying gradual incremental learning

in parameter optimization. Both issues may result to differences in performance

improvement on the optimization or the overall time required to optimize the system.

These two major concerns are:

• Sizing Policy: The sizing policy is related to the gradual requirement in the

name of the approach. It is about the sizes of incremental changes that are

suitable for the learning.

The suitable sizes in gradual incremental learning vary, in general, depending

on the optimizing parameters. On the one hand, the size should be small

enough to generate smooth transition in the searching landscape. This helps

the optimization process to locate new optimal position easily. On the other

hand, the size should be large enough to allow significant changes in the fitness

evaluation.

• Timing Policy: The timing policy is how we determine the right time to

apply the incremental changes. On the one hand, if we apply the changes too

soon, the system may not be fully evolved. This may result to poor overall

performance at the end of the optimization process. On the other hand, if we

apply the changes too late, the system becomes less efficient due to a waste of

time.

The simplest timing policy is a fixed-interval policy. We supply the incremental

changes in a specific time period. The rule of thumb is that this time period

should provide a balance between a proper system evolution and an efficient

amount of time. Another approach for the timing policy is to use some other

measures to manage the changing interval. Normally, the fitness evaluation

in the optimization process helps to decide the appropriate time to change.

There are many implementations in the approach, e.g. making a change when

the n-best fitness scores are stable for a specific time period, etc.

In this chapter, we set up experiments to explore the gradual incremental learning

with a focus on timing policy. Due to a limited range in Star Trek game parameters,

it is not suitable to use the game for the study of sizing policy. Although the

system improvement is a main advantage of incremental learning ML, we do not

108

concentrate on the most improved standpoint. Rather, we are interested in a stable

improvement, even at the minimum degree, that provides valuable feedbacks for

the benefit of mutual evolution process. This is our key mechanism for automatic

parameter tuning framework.

6.3 Experiments on Incremental Learnings of Game
Difficulty

Our experiments show performance responses of the player model when game dif-

ficulty is gradually increased. We adjust the game parameters to control the game

difficulty from easier levels to harder ones while a DE optimization evolves the player

model. We conduct two related experiments in this chapter examining the timing

policy for gradual incremental learning.

For the experiments, we first try to explore the fixed-interval timing policy to

adjust the game difficulty in subsection 6.3.2. We then experiment on an adaptive-

interval timing policy in subsection 6.3.3. Both policies are compared and discussed

at the end of the section.

6.3.1 Difficulty Levels and Star Trek Game Parameters

In this chapter, we still use Star Trek game, described in Appendix A, as a test bed in

the experiments. We alter the game time to create levels of game difficulty. Because

a player must destroy all Klingons within a given game time, it is easier to win Star

Trek game when longer game time is provided, and vice versa. Therefore, the game

time establishes a direct relationship to the game difficulty. Steadily decreasing Star

Trek game time is proportional to gradually increasing game difficulty.

Unlike the game time in Star Trek, the number of Klingons has a non-linear

relationship with the game difficulty. It is both the number of Klingons and the

distribution pattern of this number in the galaxy that jointly manipulate the game

difficulty. Thus, we set the number of Klingon spaceships to 15 and the number of

Starbases to 3, constantly. These values are a regular setting in normal-level games,

according to the previous experiments in section 5.3.

Table 6.1: Classification of three-levels game difficulty.

game difficulty players’ winning percentage

easy level more than 75%
normal level 25% - 75%
hard level less than 25%

109

Generally, we define the game difficulty level from the game players’ winning

percentage, a percentage of games a player has won. For simplicity, we classify Star

Trek into three levels of difficulty: easy-level, normal-level, and hard-level games.

An easy-level game is the game that more than 75 percent of the players can win.

A hard-level game is the game that less than 25 percent of players can win. A

normal-level game is the game that most of the averaged players, i.e. between 25 to

75 percent, can win. Table 6.1 shows the classification of three-level game difficulty.

Table 6.2: Three levels of game difficulty increment.

game difficulty target game parameters initial decay manually
increment Klingons Starbase game time time rate adjusted time

toward easy level 15 (static) 3 (static) 50 60 -2 60,58,56,54,52,50
toward normal level 15 (static) 3 (static) 40 50 -2 50,48,46,44,42,40
toward hard level 15 (static) 3 (static) 30 40 -2 40,38,36,34,32,30

For our incremental learning, we alter the game time parameter toward a target

level of game difficulty. All three target levels in the experiment is shown in Table 6.2.

For each difficulty level, we start playing a game at one level easier than the target

level. We then increase the game difficulty by decreasing game time manually for the

evolving player model. Because the game time is a discrete unit, we decrease it at a

constant decay rate. That also results to the uniform increment of game difficulty.

We select the decay rate at two Stardates, a game time unit in Star Trek game, for

each game time reduction. Two Stardates are roughly equal to two playing turns.

This amount is short enough for a gradual increment. It is also not too short to

make no differences in the final outcome of the game. Table 6.2 summaries game

parameter adjustment in our experiments.

For all experiments in this chapter, we follow this game parameter adjustment

scheme as a gradual increment of game difficulty. However, when to alter the game

parameters depends on the timing policy. The following experiments in subsec-

tion 6.3.2 and 6.3.3 investigate a fixed-interval timing policy and an adaptive-interval

timing policy, respectively.

6.3.2 Fixed-interval Incremental Learning of Game Diffi-
culty

We explore the timing policy for our incremental learning in this experiment. We

evolve the game player models while increasing the game difficulty gradually, at a

fixed interval of DE generation. We conduct the experiments for three different game

110

difficulty levels, i.e. easy-level, normal-level, and hard-level games. We investigate

the influence of game difficulty levels upon the performance of the player models.

6.3.2.1 Experimental Setups

For gradual incremental learning, we adjust game parameters according to Table. 6.2

every 100 DE generations. According to Fig. 5.5, at the 100th DE generations, the

evolving player model already reaches their stable state in all three game times with

15 Klingons. Therefore, the adjusting time at every 100 generations is long enough

to evolve the model.

Table 6.3: Key experiment setups.

player model
parameter size

population size DE settings DE runs

21 40 DE/best/1,
binomial crossover,

F=0.9, CR=0.8

30

We used the same game player model and its setups from the previous chapter

(see subsection 5.3.1). Table 6.3 shows the key parameters for the setups. We applied

the gradual incremental learning explained earlier at every 100 DE generations. We

conducted 30 DE runs in the experiments for reliable statistical measures.

6.3.2.2 Experimental Results

Figure 6.3 illustrates the evolution of 30-run averaged best fitness scores from six

game player models. Three player models with gradual incremental learning (dashed

lines) produce a saw-toothed shape with five value-drops in every 100 DE genera-

tions. This corresponds to five incremental changes in our experimental setup: a

reduction of two Stardates from a range of ten Stardates at a fixed interval.

Table 6.4 shows the best fitness scores at the 700th DE generation, which is a

stable state in all experiments. The player model with gradual incremental learning

works poorly with the hard-level games. Its best fitness scores are lower than the

standard player model at 5% significant difference. For easy-level and normal-level

games, although the gradual incremental learning shows higher best fitness scores,

its p-value shows no significant difference. Therefore, we cannot conclude the benefit

on gradual incremental learning at the fixed interval of 100 DE generations.

111

generationsbest fitness score k=15, t=50k=15, t=60/58/56/54/52/50adjust every 100 generations
Normal games

Easy games

Hard games

(a)(b)(c) k=15, t=40k=15, t=50/48/46/44/42/40adjust every 100 generationsk=15, t=30k=15, t=40/38/36/34/32/30adjust every 100 generations
Figure 6.3: Three comparisons between a standard DE-optimized player model (solid
line) and a DE-optimized player model with gradual incremental learning of game
difficulty (dashed line), at (a) easy, (b) normal, and (c) hard level of game diffi-
culty, respectively. With fixed-interval timing policy, the game difficulty increases
by reducing two Stardates every 100 DE generations.

Table 6.4: Best fitness scores between a standard DE-optimized player model and
a DE-optimized player model with gradual incremental learning from three levels
of game difficulty, at the 700th DE generation. The p-value in the last column is
calculated from Wilcoxon signed rank test.

30-runs averaged best fitness score
game difficulty level standard gradual incremental learning p-value

easy-level games 1.806 1.827 0.092
normal-level games 1.265 1.306 0.129
hard-level games 0.706 0.685 0.043

6.3.2.3 Discussion

The experimental results show the significant drawbacks of gradual incremental

learning approach in the hard-level games, as shown in the bottom of Fig. 6.3. This

is probably due to its very low winning percentage which creates a weak selection

pressure to improve the model. The games are so hard that the player model can

hardly win. This results to the lack of guiding direction toward the optimal location

in the search space. Starting this hard-level gradual learning from the normal-level

games does not help improve the winning percentage. Instead, for our assumption,

the learning may gather DE individuals to a wrong area of solutions, which are

practical for evolving at normal level yet impractical for learning toward the hard

112

level. Without gradual incremental learning, the individuals are initially distributed

randomly throughout the solution space. This may have a higher chance to find a

solution for hard-level games rather than having individuals gather around a specific

area.

Looking at the results in terms of time consuming, it is noticeable that a fixed

interval of 100 DE generations takes much longer time to reach its stable state, when

compared to a standard player model. We need to examine a different approach for

timing policy that saves more time. We try an adaptive-interval timing policy in

the following experiment.

6.3.3 Adaptive-interval Incremental Learning of Game Dif-
ficulty

We continue exploring a new timing policy for gradual incremental learning in this

experiment. The inflexibility in fixed-interval timing policy, i.e. the trial-and-error

effort to set the practical interval value, makes the approach ineffective due to an

excessive waste of time. Instead, we apply adaptive-interval timing policy that helps

to save more time.

One good practice in timing policy is to adjust the system when it reaches a

stable state. There are many indicators to keep us informed about this. A simple

way is to use the fitness evaluation scores. When the fitness scores are unchanged

for a period of time, we may assume that the system is somewhat in its stable state.

There are two major elements to control this stable-fitness timing policy. One is

the specific time period, in DE generation, when the fitness scores keep constant.

The other element is the type of fitness scores used in the measure of a stable state,

e.g. only the best fitness scores or the average of the best n scores in the population.

In this experiment, we concentrate on the control of stable time only. We make a

change when the best fitness scores are stable for g DE generations.

6.3.3.1 Experimental Setups

The experimental setups for adaptive-interval timing policy are similar to the pre-

vious experiments in fixed-interval (see subsection 6.3.2.1). However, we add a time

period control to check whether the player model is now stable and ready for the

changes. In the experiments, we observe the best fitness scores to be constant for 5,

10, and 25 consecutive DE generations before increasing the game difficulty.

At the moment, we focus our experiments on incremental learning toward the

113

normal-level game difficulty. This is because a wider range of game players enjoy

the normal-level settings than the other settings. Therefore, in this experiment, our

target game parameter setting is the Star Trek game with 15 Klingon spaceships, 3

Starbases and 40 Stardates game time.

6.3.3.2 Experimental Results

Figure 6.4 illustrates the evolution of the best fitness scores in three DE-optimized

player models with adaptive-interval incremental learning. We apply the stable-

fitness timing policy to all three player models. Three stable intervals of 5, 10,

and 25 DE generations are shown via a dotted line, a thin line, and a dashed line,

respectively.

The value of best fitness scores in the figure is an average of best individuals in 30

DE runs. In each run, the game difficulty changes at different time. Furthermore, in

each time, the performance first drops sharply at the changing point then gradually

gains its value back to a certain strength, as the system adapts to the harder games.

An individual DE run with adaptive-interval policy has its evolution path in a saw-

toothed shape, similar to the model with fixed-interval policy (see Fig. 6.3), except

that the saw-tooth interval is unevenly distributed.

The accumulated graph of all 30 runs, which is similar to their average, is il-

lustrated in Fig. 6.4. The shape of each set of accumulated fitness scores all look

alike. We can divide this shape into three major stages: a steep rise, a decline, and

a recovery. In the first stage, the fitness scores increase rapidly due to the easier

level of game difficulty. All 30 runs are in this early stage at the same time. Hence,

we notice a very steep graph in all three player models. At the peak of this stage,

some DE runs reach their first stable state and their fitness scores drop due to game

difficulty increment. It is where the uneven saw tooth in the individual run begins

to take effect. In this second stage, the graph falls at different rate because each

DE run encounters harder games at different time. A short interval of a stable state

(stable=5) creates a sharp fall while a long interval (stable=25) produces a steady

decline. At the bottom of this stage, all DE runs reach the target game difficulty.

From this point onward, the graph shows the recovery of the accumulated fitness

scores. The speed of recovery highly depends on the stable interval as well. A short

fall in the second stage creates a large recovery in the third stage because all DE

runs fall nearly at the same time. Thus, they will recover at the same time as well.

114

On the contrary, a steady decline in the second stage creates a slow recovery because

all runs gradually recover over a longer period of time. All three player models share

a similar shape of the best fitness graph. However, the shape has different rates of

decline and recovery periods. It is in the recovery stage that the system shows its

performance improvement. generationsbest fitness score Normal
game difficultyk=15, t=40 (standard)k=15, t=50/48/46/44/42/40 stable=5 generationk=15, t=50/48/46/44/42/40 stable=10 generationk=15, t=50/48/46/44/42/40 stable=25 generationk=15, t=50/48/46/44/42/40 fix=100 generation

Figure 6.4: Best fitness score comparison between a simple DE-optimized player
model and three DE-optimized player models with adaptive gradual incremental
learning of game difficulty. The game difficulty increases by reducing two Stardate
adaptively when the best fitness scores are stable continuously for 5 (dotted line),
10 (thin line), and 25 (dashed line) DE generations. The game time reduces from
50 Stardates in easy-level games down to 40 Stardates in normal-level games.

6.3.3.3 Discussion

With the stable interval of 5 DE generations, the incremental changes occur very

quickly. It creates small and narrow overshoot. It looks like the system is not

fully optimized yet. On a contrary, when compared to the stable interval of 25

DE generations, the changes occur in a longer time period. Its overshoot is larger

in both height and width. However, it reaches the recovery stage very late. It is

ineffective in terms of time consumption. The suitable interval, among these three

115

cases, is the stable interval of 10 DE generations. It shows a good shape compared

to the other two intervals. Its shape also matches with the base shape of the player

model without incremental learning. Its decline stage ends nearly at the beginning

of steady state of the standard player model. It has a nice recovery time period that

improves its performance over the standard model.

Figure 6.5 and Table. 6.5 show a comparison between player models with fixed-

interval and adaptive-interval timing policy for normal-level game difficulty. All

player models with adaptive-interval policy show higher best fitness scores than the

standard player model with significant difference at 1% level.

generations

be
st

 f
itn

es
s

sc
or

e

Normal
game difficulty

k=15, t=40 (BASE)

k=15, t=50/48/46/44/42/40 stable=10 generation
k=15, t=50/48/46/44/42/40 fix=100 generation

k=15, t=40 (standard)

k=15, t=50/48/46/44/42/40 stable=5 generation
k=15, t=50/48/46/44/42/40 stable=10 generation
k=15, t=50/48/46/44/42/40 stable=25 generation

k=15, t=50/48/46/44/42/40 fix=100 generation

Figure 6.5: Comparison between a fixed-interval (dotted line) and an adaptive-
interval (solid thin line) timing policy for gradual incremental learning.

Table 6.5: Best fitness scores from fixed-interval and adaptive-interval timing policies
in normal level of game difficulty, at the 700th DE generation. The p-value in the
last column is calculated from Wilcoxon signed rank test.

timing policy best fitness score p-value

- (standard) 1.265
change every 100 generations (fixed) 1.306 0.129
change when 5 generations are stable (adaptive) 1.335 0.001
change when 10 generations are stable (adaptive) 1.351 0.000
change when 25 generations are stable (adaptive) 1.330 0.002

116

It is quite obvious that the adaptive-interval incremental learning can improve

the performance of a DE-optimized player model. The improvement is robust. It

is a positive indication for a mutual evolution process in our automatic parameter

tuning framework.

6.4 Chapter Summary

The manual adjustment on key game parameters allows us to control game diffi-

culty deliberately. With a concept of gradual incremental learning, we can improve

the performance of evolving player model by gradually increasing game difficulty.

With gradual incremental learning, the player model adapts the knowledge learnt

from playing with easier games to play with the harder ones. Using the mentioned

knowledge, the model should play harder games more efficiently than a standard

player model would. Although gradual incremental learning takes time, selecting a

suitable timing policy is the key to its success.

117

Chapter 7

Discussions

In this section, we discuss some findings along the way on the experiments. Some

topics may be add-ons to the main theme, while some are on-going experiments.

7.1 Toward the Generalization of Automatic Game
Parameter Tuning

As Star Trek game is used as our experiment test bed, most of the implementations

for our methodology focus mainly on the Star Trek game. Considering the game-

specific purpose of the methodology, this is not unusual in the game parameter

tuning process. However, extending our methodology to cover most of video games

in the TBS game genre rather than Star Trek game is not complicated.

Star Trek game represents a typical TBS game which shares the same game

design elements discussed in section 3.2.3. The design of Star Trek game covers

all four elements of TBS game design. Table 3.1 shows the list of Star Trek game

parameters in relation to each design elements for TBS games. In terms of the game

and game parameters, adapting our approach used with Star Trek game to other

TBS games is quite straightforward with the knowledge of both Star Trek game and

another TBS game in target.

For the input interface of a player model, the technique to retrieve game informa-

tion from the game output varies. Star Trek game is a text-based game and parsing

text data to retrieve game information is a reasonable method. With other kinds

of game output, e.g. graphic-based, audio-based, haptic-based, etc., an appropriate

technique is needed.

Similarly, for the output interface of a player model, the technique to send out

game commands also varies depending on the game input. An appropriate output

method must be used to match different kinds of game input, e.g. text commands,

simulated keypresses, audio outputs, simulated physical movements, etc.

119

Table 7.1: Summary of our methodology for automatic game tuning (4) compared to three other related researches (1-3) discussed in section 2.2.5.

Game Title &
(Game Genre)

Gameplay &
Game Input

Optimized
Game Parameters

Main Research
Objectives

Player Model’s
Simulated Control

Key Algorithms

1 Flappy Bird
[23]

(single-player, mini-
mal action game)

gameplay: Control the bird to
navigate through a series of pipes,
as far as possible.

input: one-button key press

12 parameters:
pipe separation, pipe gap, pipe
width, pipe gap location range,
gravitational constant, jump
velocity, bird speed, world
height, bird width and height,
change in pipe gap, change in
bird speed.

Exploring Game Space
and Analysis of Game
Difficulty

Randomized simulation of human
motor skills on key pressing

Generate game space by survival analy-
sis of score histogram.

With the game space, search for a
target game difficulty using DE, search
for the unique games using GA, etc.

game measure:
distance scores

2 Spacewar
(a simple clone)
[31]

(two-player, space-battle
action game)

gameplay: Control the spaceship
and fire a missile to destroy the
opponent.

input: 4 action inputs: Rotate-
Clockwise, RotateAnticlockwise,
Thrust, Shoot

5 parameters:
Maximal ship speed, Thrust
speed, Maximal missile speed,
Cooldown time, Missile cost,
Ship radius

Automatic Playtesting Monte Carlo tree search (MCTS)
based, autonomous game agents
from GVG-AI competitions.

(same as 3)

Random Mutation Hill-Climber &
Multi-Armed Bandit Random Mutation
Hill-Climber

game measure:
destroyed opponents & launched missile

3 Legend of Zelda
(a simple clone)
[19]

(single-player, action-
adventure game)

gameplay: Navigate from start-
ing point to the stair while
collecting coins & pickaxes and
avoiding the attack from 4 tanks.

input: 4 arrow keys to move,
a space bar to throw pickaxes.

8 parameters:
Tank Speed, Score Pickaxe,
Score Wall Kill, Pickaxe
Value, Time Bonus, Score
Gold, Pickax Limit, Pickax
Cooldown

Strategic Diversity Monte Carlo tree search (MCTS)
based, autonomous game agents
from GVG-AI competitions.

(same as 2)

Random Mutation Hill-Climber

game measure:
optimized game score (collected coins &
Pickaxe, destroyed tank).
(see Optimized Game Parameters
column)

4 Star Trek
[60]

(human-vs-computer,
turn-based, strategy
game)

gameplay: Destory all opponent
spaceships within a given mission
time.

input: text commands & com-
mand arguments

2 parameters:
number of opponents, mission
time.

Game Paramter Tun-
ing

FS rule-based decision system DE to optimize a player model
and (CEA to coevolve between
the multi-skilled player model and
game)∗in−progress.

game measure:
destroyed opponents, found opponents,
and remaining win time & winning ratio

However, the EC optimization process is the greatest concern for the general-

ization of our approach. The success of EC-optimized game player model highly

depends on the design of the fitness evaluation and encoding gene for the EC al-

gorithm. These issues are game-specific and its success varies on the game itself

as well as the experiences of game developers in the design of FS rules and the

implementation of supplementary decision callback functions.

We suggest several techniques to enhance the design of FS rules for a player

model in section 4.4, i.e. modular FS tables, FS table re-evaluation, and multi-

output FS decision. We also present different ways to use gene elements in the DE

optimization process, as illustrated in Fig.5.4.

In addition to generalize our methodology to other video games, we should,

as well, apply our methodology to other tasks in game development besides game

parameter tuning process. Table 7.1 summarizes our methodology along with other

methodologies discussed earlier in subsections 2.2.5.2-2.2.5.4. In (1) Flappy Bird

research [23], Isaksen first constructs game space using a survival analysis from the

histogram of distance scores obtained from over 106 million simulated game plays.

He then analyzes and searches game space for several other applications, e.g. tuning

game balance, finding unique yet playable game variants, searching for specific game

difficulty, etc. In (3) Legend of Zelda research [19], Gaina tweaks game parameters

to search for the diversity of game strategies created by player models.

Looking at the optimized game parameters in (3), in addition to game parameters

controlling the game difficulty, Gaina also optimizes some values used to calculate

the game scores, i.e. Score Pickaxe, Score Wall Kill, Time Bonus, Score Gold. This

idea pushes the scope of game balancing to further beyond the control of game

difficulty. Although game scores are not directly related to game difficulty, they

provide a reward system to help entertain game players. In modern video games,

these kind of reward systems are the key to engage the players. This is the reason

why they must be considered as a target of our automatic game parameter tuning

as well.

7.2 Human Decision Logs for Game Testing

In our framework, we use the FS rule-based player model to simulate a human game

player for automatic playtesting. We may extend this concept into a hybrid system

that combines both game player models and human game players for some other

121

usages.

We can classify the hybrid systems into two categories:

• An online hybrid system: The online hybrid system allows a game human

player and a player model to be active at the same time. Both sides may

observe or communicate with each other. An example for an online hybrid

system is the player assisting system where a player model helps a human

player make decisions for the following turns.

• An offline hybrid system: The offline hybrid system records command logs

for each game decision then uses them for an analysis or evaluation later. An

example for an offline evaluation is presented here.

We use the human player’s command logs to evaluate performance of a player

model. For each game decision in command logs, we insert a player model

into the same playing environment and let the player model plays the game

from then on. We document playing results of the player model in each human

player’s turn. At the end of that game, we have a list of win-loss records of

the situation when we replace the human player with the player model.

Figure 7.1: Sample of human player’s command logs while playing a Star Trek game.
Each row shows one game command along with the key output response from the
game environment.

Figure 7.1 shows the command logs of a human player. For each line of the

logs, we put a player model to play the game in place of the human player. At

the end of the game, we have an evaluation document like Fig. 7.2 where each

character notation represents the win (‘W’) or loss (‘d’, ‘e’, ‘t’) for each turn.

122

Figure 7.2: Sample of a player model evaluation from a human player’s command
logs. Each row shows an evaluation of each turn in a game with the following
character notations: d = defeat, e = energy run out, t = time out, W = win. Each
small letter notation, except ‘W’, refers to a lost game.

7.3 Influence of FS Rule Complexity on the In-
cremental Learning

This small experiment is a spin-off from Chapter 6 for gradual incremental learning.

The objective is to observe the effect of the FS rule complexity with different numbers

of optimized parameters. We have an assumption that more complicated rules help

a player model perform better than simple rules.

For all experiments in our research, in both Chapter 5 and 6, we use simple

FS rules as shown in Appendix B. The rules contain nine Boolean and five FS

input variables from five modular tables. All FS inputs are binary FS variables,

consisting of LOW or HIGH membership levels. Therefore, we have a total of ten

FS membership function parameters.

Based on the simple rules, we create the extended FS rules (see Appendix C) with

the following modifications, while still maintaining all modular table relationship:

• Adding one extra table for handling the critical event: This is shown

in Table. C.2. The table handles a critical event when the Enterprise enters

the quadrant where the Klingon spaceship exists.

• Adding two value tables to determine energy usage: This is an imple-

mentation of FS rules to compute a command argument.

123

• Adding more FS input variables to the existing tables: We add more

input conditions to the table to tune up the decision details.

• Expand FS membership level in some input variables: This is also an

FS table tuned-up for additional decision details.

As a result, we now have 8 Boolean and 14 FS input variables in 6 FS modular ta-

bles and 2 FS value tables. Among 14 FS variables, 12 are binary (LOW/HIGH) FS

inputs and the other 2 are tertiary (LOW/MEDIUM/HIGH) FS inputs. Therefore,

the number of FS membership function parameters are extended to 30 parameters.

Additional information on extended rules can be found in subsection 4.5.3.2.

7.3.1 Experimental Setups

The setups are the same as the experiment done on adaptive-interval incremental

learning in subsection 6.3.3. The only difference is we use the extended FS rules in

place of the simple ones. We run three experiments for a standard DE-optimized

player model (without incremental learning) as well as an incremental learning DE-

optimized player model with stable-fitness interval at 5 and 10 DE generations.

7.3.2 Experimental Results

Figure 7.3 illustrates the improvement result of the player model with the extended

FS rules from this experiment, along with the performance of the player model with

the simple rules from subsection 6.3.3.2. The results show that there is almost no

improvement in the player model with the extended FS rules in adaptive-interval

incremental learning.

7.3.3 Discussion

The incremental learning player models show no sign of improvement when using

the extended FS rules, compared to the ones with the simple rules. However, all

models with extended rules, even the standard one without incremental learning,

outperform all models with the simple rules. This may indicate that the extended

rules with more optimized parameters do improve the performance of a player model.

Nevertheless, additional experiment data are required to confirm this assumption.

As extended rules are originally based on the simple rules, they share some common

characteristics. Both FS rules may probably have similar parameter landscapes

with only some difference in the boundary details. In that case, we may need to

124

generationsbest fitness score k=15, t=40k=15, t=45/44/43/42/41/40 stable=5k=15, t=45/44/43/42/41/40 stable=10Extended Fuzzy Rules:k=15, t=40k=15, t=45/44/43/42/41/40 stable=5k=15, t=45/44/43/42/41/40 stable=10Simple Fuzzy Rules:

Normal
game difficulty

Figure 7.3: Best fitness score comparison between a group of player models opti-
mized by simple fuzzy rules and by extended fuzzy rules. Each group of player
models consists of a simple DE-optimized player model and three DE-optimized
player models with gradually adaptive incremental learning of game difficulty. The
game difficulty increases by adaptively reducing one Stardate when the best fitness
scores are continuously stable for 5, 10, and 25 DE generations. The game time
reduces from 45 Stardates in easy games to 40 Stardates in normal games.

specifically investigate each rule to see how many times it is called for the game

decisions. A comparison analysis of the activated rules between both sets may then

give us further ideas.

7.4 Chapter Summary

In our game tuning framework, the conceptual idea toward automatic tuning for a

wider range of game players is the coevolution between the game and the multi-

skilled player model. The evaluation of a player model takes on an important role in

classifying gaming skills of a player model as precisely as possible. There are many

approaches in the player model evaluation. While the player model evaluation using

DE fitness functions is an evaluation from a game developer’s point of view, the

player model evaluation using a human player’s command logs is an evaluation via

125

the player’s actual game decisions. Evaluating the player model accurately is another

key success factor of automatic game tuning.

Another important issue in the coevolution process is that it works efficiently

when the abilities of both sides are not far apart. If one side is much stronger

than the other side, the coevolution is not likely to take place between them. This is

because the much stronger party will always win, giving the weaker one no chances to

fight back. In such a case, the coevolution process cannot be successful. Therefore,

improving the performance of the player model to be competitive with the game is

another point of concern.

126

Chapter 8

Conclusion and Future Works

In this research, we propose a framework for automatic game parameter tuning to

search for game parameters that are suitable for a broader range of game players.

The framework consists of an FS rule-based, EC-optimized game player model along

with a coevolutionary algorithm (CEA). The main idea is to create simulated game

players with various gaming skills from the player model and use them to fine-tune

game parameters that match the diversity of game-playing abilities. We implement

the framework with a turn-based strategy (TBS) game called Star Trek.

Our first experiments in the research show that the player model is able to

compete very well with the game in many levels of game difficulty, thanks to the

DE optimization process. In addition to improving the model performance, DE

optimization also helps to ease the burden of specifying the FS membership function

parameters. We still require game developers to integrate their expertise in the

game to create decision rules for an FS rule-based system. Their involvement helps

to guide game decisions to the direction required.

With the gradual incremental learning in the second experiment, our DE-optimized

player model exhibits some improvement. However, the small yet robust improve-

ment from the manual game parameter adjustment signifies the potential power

of mutual evolution process between Star Trek game and the DE-optimized player

model.

Nevertheless, the automatic game parameter tuning using CEA approach, which

is the final step to complete our framework, is still waiting for our investigation as

a work in progress.

127

8.1 Future Works

The high-priority work is to verify whether CEA approach is able to coevolve game

parameters with multi-skilled player models and, if so, how well the approach per-

forms. In addition, there are a number of other related ideas worth exploring, which

we found during our path toward the goal of automatic game tuning research. Some

of them are:

• The extension of the FS rule-based player model to other video

games: We use an FS rule-based decision-making system, guided by game

developers’ expertise, to make decisions in a player model for TBS games.

Focusing on logical decision makings, the nature of strategy games commonly

matches the characteristics of the FS rule-based system. With new FS rules

specifically created for the game, we believe that we can extend our approach

to other TSB games smoothly. However, the solid proof to show that our

methodology is truly valid for TBS games in general, besides Star Trek game

in our simulation test bed, is another major work requiring a more thorough

investigation.

For general strategy games, including real-time strategy (RTS) games, the

issues of game complexity and computation time are considered major concerns

that require further study. However, an FS rule-based decision-making system

may not be an efficient controller for a player model in non-strategy games,

e.g. action games, puzzle games, role-playing games, etc.

• The in-depth study on the FS rules for game decisions: Our system

requires a skilled player to provide his or her video game expertise in the

form of FS rules. Different sets of rules from many players should provide the

player model a variety of game-playing abilities. We use a set of simple FS

rules for most of our experiments. One exception is the pilot experiment on

the influence of FS rule complexity in section 7.3. We believe that the more

complex the rules are, the better the player model’s performance becomes.

The detailed study in this topic may have a strong effect on an EC approach

used in our framework.

• The practical use of controlling policies in CEA: The controlling policies

in CEA represent a flexible tool for the game developers to bias the coevolution

128

toward any required target. However, the policy is simply a guideline for the

desired mutual evolution. The idea of CEA is based on the concept of dynamic

interaction. Therefore, the outcome of the policy may not be the same as

expected in such a dynamic environment. We expect additional investigations

on the implementation of the CEA policies that can achieve the practical

coevolution results.

8.2 Limitations

Despite our fine experimental results, there are a few restrictions and drawbacks in

the approach of our framework. The major limitations are:

• The limitation of FS rule-based decision-making system: Our player

model plays a TBS game by issuing valid game commands that correspond to

game actions decided by the model. However, a game command consists of

an action command and command arguments, which specify how to perform

the action. While FS rules are suitable for determining game actions, they

may not be capable of computing some command arguments. In many cases,

a direct mathematical computation of numerical arguments provides an eas-

ier implementation and more accurate results than a rule-based system does.

For example, the Star Trek game requires a torpedo direction as a command

argument when firing a torpedo. In this case, the geometric calculation of the

direction between the Enterprise and the Klingon spaceship ensures a success

of the attack. It is not straightforward to use a rule-based system in such a

case. Therefore, FS rule-based decision-making system has some restrictions

as a controller in a player model.

• The limitation of EC algorithms: An EC algorithm is a population-based

algorithm. The parameter search is done by an individual population, and the

search results improve over the generations of searches One of the problems

with the approach, especially when playing a game with no time limit or with

open endings, is its computation time spent in the search. An EC approach

may not be efficient when playing real-time games, where a speed of actions

is the decisive factor.

• The difficulty to create an efficient player model: The goal of this

research is to reduce the developing time in a video game production by au-

129

tomating the game tuning process. Our approach, as well as other approaches

discussed earlier in related research, uses a player model as simulated game

players in a playtesting process. However, it is not easy to create a player

model that is efficient enough for an automated playtesting. It may end up

spending more time on creating an efficient player model than tuning the game

parameters manually.

This drawback relies heavily on the fact that a player model is highly game-

specific. However, as suggested by many papers [31] [19] [26], we can employ

ready-made player models provided by GVG-AI, an autonomous game agent

competition. These models are a general-purposed agent that learns to play

unforeseen video games in the competition. This will hugely reduce the time

to create a player model for certain games in which the autonomous game

agent excels with.

• The difficulty to apply an academic research to practical uses: The

most important issue in automatic game tuning is to apply the proposed

methodology in a real practice. There is quite a big obstacle to put knowledge

gained from the academic game research into practice for the game industry

[64]. With a tight developing schedule and competitive market, it is difficult

for the industry to adopt a new approach that affects their development work-

flow. A new methodology from an academic research may not be suitable for

the game industry, without extensive proofs of practical successes.

8.3 Conclusion

Automatic game parameter tuning is a research area in video games that comprises

many overlapping research fields. One is the area of automation in video games

that includes an automatic creation of game rules and contents, an automatic game

playing, etc. This research area is the most popular one in video game researches.

Another associated area is the AI-assisted game design which develops supporting

tools for game designers or game developers. This area requires a high level of

control from the game developers to guide the development process toward their

design plan.

However, automatic game parameter tuning is still a new research area in the

field of Computational Intelligence in Games. Unlike other game researches which

130

emphasize on the game creation or game playing, research in game tuning involves

a comprehensive exploration of game parameter space in an existing video game. It

had been an unexplored research field until the past few years when a number of

game researchers started to get interested in this area.

To the best of our knowledge, the proposed methodology is the first attempt in

automatic parameter tuning for a turn-based strategy video game. In the framework,

we apply a fuzzy rule-based player model with evolutionary computation techniques

for a game tuning process. Although the valid results are still unclear due to the

lack of supports in a coevolutionary algorithm, the framework has a high potential

to serve its purpose well. With plenty of aspects waiting to be explored in this

area, we hope that our work may be useful for researchers in the area of video game

tuning, which is still at the beginning of its progress.

131

Bibliography

[1] G. Andrade, G. Ramalho, H. Santana, and V. Corruble. Automatic Computer Game Bal-
ancing: A Reinforcement Learning Approach. In Proceedings of the 4th International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 1111–1112, Utrecht, Nether-
lands, 2005.

[2] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal,
4(1):25–30, 1965.

[3] C. Browne. Evolutionary Game Design. Springer, 2011.

[4] A. B. Cardona, J. Togelius, and M. J. Nelson. Competitive coevolution in Ms. Pac-Man. In
IEEE Congress on Evolutionary Computation (CEC 2013), pp. 1403–1410, 2013.

[5] N. Casas. A review of landmark articles in the field of co-evolutionary computing. 2015.
arXiv:1506.05082 [cs.NE].

[6] J. Chen. Flow in Games (and everything else). Communications of the ACM, 50(4):31–34,
2007.

[7] W. E. Combs. The Combs method for rapid inference. In E. Cox and M. O’Hagan, editors,
The Fuzzy Systems Handbook, Second Edition: A Practitioner’s Guide to Building, Using,
and Maintaining Fuzzy Systems, pp. 659–680. AP Professional, 1998.

[8] M. Črepinšek, S.-H. Liu, and M. Mernik. Exploration and exploitation in evolutionary algo-
rithms. ACM Computing Surveys, 45(3):1–33, 2013.

[9] S. Das, S. S. Mullick, and P. N. Suganthan. Recent advances in differential evolution - An
updated survey. Swarm and Evolutionary Computation, 27:1–30, 2016.

[10] S. Das and P. N. Suganthan. Differential evolution: A survey of the state-of-the-art. IEEE
Transactions on Evolutionary Computation, 15(1):4–31, 2011.

[11] A. DaSilva. 2016 Top Markets Report Media and Entertainment. Technical report, Interna-
tional Trade Administration, U.S. Department of Commerce, 2016.

[12] P. David. Flights of Fancy with the Enterprise. Byte Magazine, 2(3):106–113, 1977.

[13] S. A. Dias, S. Alves, and D. Yuka. Star Trek ゲームプレーヤ意思決定モデルの進化 : Evolv-
ing a Human Player Model for the Star Trek Game. In Joint meeting of 2nd Evolutionary
Computation Meeting and 6th Evolutionary Computation Frontier Meeting, pp. 112–117, Toy-
onaka, Japan, 2012. (in Japanese).

[14] S. Egenfeldt-Nielsen, J. H. Smith, and S. P. Tosca. Understanding video games: The essential
introduction. Routledge, New York, USA, 2010.

[15] A. P. Engelbrecht. Computational intelligence: An introduction. Wiley, 2nd edition, 2007.

[16] N. Ensmenger. Is chess the drosophila of artificial intelligence? a social history of an algorithm.
Social Studies of Science, 42(1):5–30, 2012.

[17] G. S. Etchebehere, P. Mackenzie, and F. D. Computac. L-Systems and Procedural Generation
of Virtual Game Maze Sceneries. In Proceedings of SBGames 2017, pp. 602–605, Curitiba,
Brazil, 2017.

[18] M. Fukuda. Bit Generation 2000: TV Game Exhibition. Contemporary Art Gallery of Art
Tower Mito and Kobe Fashion Museum, Mito, Japan, 2000. (in Japanese/English).

[19] R. Gaina, R. Volkovas, C. González Dı́az, and R. Davidson. Automatic Game Tuning for
Strategic Diversity. In Computer Science and Electronic Engineering Conference (CEEC
2017), pp. 195–200, Colchester, UK, 2017.

133

[20] F. Herrera and M. Lozano. Fuzzy Evolutionary Algorithms and Genetic Fuzzy Systems: A
Positive Collaboration between Evolutionary Algorithms and Fuzzy Systems Computational
Intelligence. Springer, 2009.

[21] W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization procedure.
Physica D: Nonlinear Phenomena, 42(1-3):228–234, 1990.

[22] A. Isaksen, D. Gopstein, J. Togelius, and A. Nealen. Discovering Unique Game Variants.
In Computational Creativity and Games Workshop at The 6th International Conference on
Computational Creativity (ICCC 2015), Park City, Utah, USA, 2015.

[23] A. Isaksen, D. Gopstein, J. Togelius, and A. Nealen. Exploring Game Space of Minimal Action
Games via Parameter Tuning and Survival Analysis. IEEE Transactions on Computational
Intelligence and AI in Games, pp. 1–13, 2017. (in print).

[24] L. Johnson, G. N. Yannakakis, and J. Togelius. Cellular automata for real-time generation of
infinite cave levels. In Proceedings of the 2010 Workshop on Procedural Content Generation
in Games, pp. 1–4, Monterey, CA, USA, 2010.

[25] G. Kasparov. The Chess Master and the Computer. The New York Review of Books. 57(2),
February 11, 2010.

[26] K. Kunanusont, R. D. Gaina, J. Liu, D. Perez-Liebana, and S. M. Lucas. The N-Tuple bandit
evolutionary algorithm for automatic game improvement. In IEEE Congress on Evolutionary
Computation (CEC 2017), pp. 2201–2208, San Sebastián, Spain, 2017.

[27] F. Lantz, A. Isaksen, A. Jaffe, A. Nealen, and J. Togelius. Depth in Strategic Games. In What’s
Next in AI in Games Workshop in The 31st AAAI Conference on Artificial Intelligence, San
Francisco, USA, 2017.

[28] M. A. Lee and H. Takagi. A Framework for Studying the Effects of Dynamic Crossover,
Mutation, and Population Sizing in Genetic Algorithms. In T. Furuhashi, editor, Advances
in Fuzzy Logic, Neural Networks and Genetic Algorithms, chapter 8, pp. 111–126. Springer-
Verlag, 1995.

[29] A. Liapis, G. Yannakakis, and J. Togelius. Designer Modeling for Personalized Game Content
Creation Tools. In The 9th AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, pp. 11–16, Boston, USA, 2013.

[30] A. Liapis, G. N. Yannakakis, and J. Togelius. Computational Game Creativity. In Proceed-
ings of the 5th International Conference on Computational Creativity, pp. 46–53, Ljubljana,
Slovenia, 2014.

[31] J. Liu, J. Togelius, D. Perez-Liebana, and S. M. Lucas. Evolving Game Skill-Depth using
General Video Game AI agents. In IEEE Congress on Evolutionary Computation (CEC
2017), pp. 2299–2307, San Sebastián, Spain, 2017.

[32] S. M. Lucas. Computational intelligence and AI in games: A New IEEE transactions. IEEE
Transactions on Computational Intelligence and AI in Games, 1(1):1–3, 2009.

[33] S. M. Lucas and G. Kendall. Evolutionary computation and games. IEEE Computational
Intelligence Magazine, 1(1):10–18, 2006.

[34] E. Mamdani. Application of fuzzy algorithms for control of simple dynamic plant. Proceedings
of the Institution of Electrical Engineers, 121(12):1585, 1974.

[35] I. Millington and J. D. Funge. Artificial Intelligence for Games. CRC Press, 2009.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Playing Atari with Deep Reinforcement Learning.
In Deep Learning Workshop at Neural Information Processing Systems (NIPS 2013), pp. 1–9,
Lake Tahoe, USA, 2013.

[37] M. J. Nelson and M. Mateas. Towards Automated Game Design. In Proceedings of the 10th
Congress of the Italian Association for Artificial Intelligence, pp. 626–637, Rome, Italy, 2007.

[38] Nielsen Games. Games 360 U.S. Report 2017. Technical report, The Nielsen Company, 2017.

[39] S. K. Park and K. W. Miller. Random Number Generators: good ones are hard to find.
Communications of the ACM, 31(10):1192–1201, 1988.

[40] C. A. Peña-Reyes. Coevolutionary Fuzzy Modeling. Springer, 2004.

[41] Piroyan. Star Trek 宇宙大作戦, 2007. http://lablog.piroyan.com/?e=41, Last accessed on
2018-06-06. (in Japanese).

134

[42] M. Potter and K. D. Jong. A Cooperative Coevolutionary Approach to Function Optimization.
In International Conference on Evolutionary Computation. The Third Conference on Parallel
Problem Solving from Nature, pp. 249 – 257, Jerusalem, Israel, 1994.

[43] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University Press, 2nd edition, 1992.

[44] K. V. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution - A Practical Approach
to Global Optimization. Springer-Verlag, 2005.

[45] M. O. Riedl and A. Zook. AI for Game Production. In IEEE Conference on Computatonal
Intelligence and Games, pp. 1–8, Niagara Falls, Canada, 2013.

[46] J. Schaeffer, N. Burch, Y. Björnsson, et al. Checkers is solved. Science, 317(5844):1518–1522,
2007.

[47] J. Schell. The Art of Game Design. CRC Press, Boca Raton, FL, 2nd edition, 2014.

[48] C. P. Schultz, R. Bryant, and T. Langdell. Game Testing All in One. Thomson Course
Technology PTR, Boston, MA, 2005.

[49] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content Generation in Games. Springer,
2016.

[50] D. Silver, A. Huang, C. J. Maddison, et al. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

[51] A. M. Smith, C. Lewis, K. Hullett, G. Smith, and A. Sullivan. An Inclusive View of Player
Modeling. In Proceedings of the 6th International Conference on Foundations of Digital
Games, pp. 301–303, Bordeaux, France, 2011.

[52] R. Storn and K. Price. Differential Evolution - A Simple and Efficient Heuristic for global
Optimization over Continuous Spaces. Journal of Global Optimization, 11(4):341–359, 1997.

[53] M. Sugeno and G. T. Kang. Structure identification of fuzzy model. Fuzzy Sets and Systems,
28(1):15–33, 1988.

[54] A. Summerville, S. Snodgrass, M. Guzdial, et al. Procedural Content Generation via Machine
Learning (PCGML). IEEE Transactions on Games, pp. 1–15, 2018. (in print).

[55] H. Takagi. Introduction to Fuzzy Systems , Neural Networks , and Genetic Algorithms.
In D. Ruan, editor, Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic
Algorithms, chapter 1, pp. 3–33. Springer, Boston, MA, 1997.

[56] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modeling and
control. IEEE Transactions on Systems, Man and Cybernetics, SMC-15(1):116–132, 1985.

[57] J. Togelius and J. Schmidhuber. An experiment in automatic game design. In Proceedings
of the IEEE Symposium on Computational Intelligence and Games (CIG 2008), pp. 111–118,
Perth, WA, Australia, 2008.

[58] A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460, 1950.

[59] B. Vallade, A. David, and T. Nakashima. Three layers framework concept for adjustable artifi-
cial intelligence. Journal of Advanced Computational Intelligence and Intelligent Informatics,
19(6):867–879, 2015.

[60] V. Vorachart and H. Takagi. Evolving Fuzzy Logic Rule-Based Game Player Model for Game
Development. International Journal of Innovative Computing, 13(6):1941–1951, 2017.

[61] R. P. Wiegand, W. C. Liles, and K. A. De Jong. An Empirical Analysis of Collaboration
Methods in Cooperative Coevolutionary Algorithms. In Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2001), pp. 1235–1242, San Francisco, USA, 2001.

[62] A. P. Witkin. Scale-space filtering. In International Joint Conference on Artificial Intelligence,
vol. 2, pp. 1019–1022, Karlsruhe, Germany, 1983.

[63] G. N. Yannakakis and J. Togelius. A Panorama of Artificial and Computational Intelligence
in Games. IEEE Transactions on Computational Intelligence and AI in Games, 7(4):317–335,
2015.

[64] G. N. Yannakakis and J. Togelius. Artificial Intelligence and Games. Springer, 2018.

[65] L. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965.

135

Acknowledgements

I would like to express my very great appreciation to Professor Hideyuki Takagi, my
advisor, for his valuable teachings, patient guidance, and demonstrating in all kinds
of ideas and actions, both academically and socially. As a fine researcher and an
excellent educator, he has been and will always be a role model in my academic life
and teaching career.

I would also like to thank my three referees: Professors Hideyuki Takagi, Mario
Köppen, and Osamu Maruyama for their precious time and constructive comments
on this dissertation.

My special thanks are extended to all my laboratory colleagues from Octo-
ber 2014 to September 2018: Hayakawa Masahiro, Li Tian, Xie XiangYu, Odd
Rune LYKKEBØ, Ikeda Keisuke, Horie Takahiro, Matsukuma Takafumi, Motomura
Shun’nosuke, Tanaka Chikahiko, Lai WeiQiang, Li YuHao, Ooishi Wataru, Moribe
Honoka, Xiong YanRan, especially to Yu Jun and Takuma-kun. タクマさん、「学
芸は長し、生涯は短し」。

My life in Japan would be more difficult without the help from all staff in Sup-
port Center for international students, starting from my first contact to Kyushu
University until my very last day in Ohashi. In addition, I really appreciate the
assistance of Ms.Sakiko Tanaka of Academic Affairs for helping me fill out all the
paper works in Japanese.

Funding and support provided during my doctoral study in Kyushu University by
the Royal Thai Government Scholarship and Walailak University are always greatly
appreciated. I am particularly grateful for the assistance and facilities given by the
Office of Education Affairs in Royal Thai Embassy in Tokyo.

Finally, I wish to thank all relatives in Warrachart, Petchmunee, and Preecha-
wong families for all forms of support and supplies, here, there, and everywhere.
Special thanks should be given to my elder brothers and their family members: P’A
& P’Tle and P’Boy for always having faith in me; my cousin: P’Nid for her helpful
proofreading; Hong Sopida & Beckham - the beloved ones - for her caretaking, home
cooking, and sweet smiling in Shiobaru; and, last but not least, my Pa and Mama
for their deep and sincere love in me.

Varunyu Vorachart
Shiobaru, Fukuoka
August 21, 2018

137

Publication

This is a journal publication during my doctoral research.

Chapter 5: Evolving Fuzzy Logic Rule-based Player Model

1. V. Vorachart and H. Takagi. ”Evolving Fuzzy Logic Rule-Based Game Player

Model for Game Development”. International Journal of Innovative Comput-

ing, 13(6):1941-1951, 2017.

139

Appendix A

Star Trek Game

A.1 Overview

Star Trek game is a turn-based strategy game originating from a classic American

television series, Star Trek. Debuted in 1966, the Star Trek TV series has become

popular since then. The series continued its showings for a long time until now with

many remakes and reruns. The original series portrayed the adventures of Cap-

tain James T. Kirk and his crew on the Starship USS Enterprise. They travel to

accomplish special missions throughout the galaxy. During 1960s, the series charac-

terized an alien humanoid species, called the Klingons, as a recurring antagonist for

a mankind. However, the Klingons became a close ally in the later series, on and

off.

This science fiction TV series has been an addict worldwide due to its hopeful

tales of the future that involve space adventures and team friendships in the USS

Enterprise. A large number of media franchises and merchandises have been released,

including motion pictures, books, comics, magazines, card games, board games,

video games, as well as virtual reality games.

The Star Trek game used in our experiment originates from Mike Mayfield’s

Trek computer game. Trek was written in BASIC programming language in 1971.

It is a text-based computer game that personates a player as a captain of the USS

Enterprise on a mission to search and destroy all invading Klingon spaceships. Our

source code is a free software port of Super Star Trek [12], the most popular version

of 1971 Trek game. The code is written in C by Piroyan for MSX-DOS operating

system in 2007 [41]. For simplicity, we refer to our simulated game in this dissertation

as Star Trek game.

141

A.2 Gameplay

A player controls the Starship Enterprise to survey the 8 × 8 quadrants in a galaxy.

The objective is to destroy all Klingon spaceships within a given game time. Two

kinds of weapons can be used for an attack: photon torpedo and phaser. The player

has to manage the energy for navigating, offensive, and defensive strategies. The

energy can be recharged at one of the Starbases, which are located throughout the

galaxy.

A.2.1 Winning and Losing Conditions

The unit of game time in Star Trek game is called Stardate. One Stardate is close

to a period of time required in travelling across one quadrant. Stardate advances

after a player’s turn.

The player wins the game when all Klingon spaceships are destroyed within the

given game time. Otherwise, the player loses the game under three circumstances:

being defeated, running out of time, running out of energy.

A.2.2 Energy Management

Initially, the Starship Enterprise contains 3,000 units of energy and 10 photon tor-

pedoes. All operating devices of the Enterprise are in good conditions.

The USS Enterprise uses its energy for three activities: navigation, phaser at-

tack, and defensive shield. The inter-quadrant navigation at a high warping speed

consumes more energy than at a low speed. The Enterprise can attack the Klingons

with the phaser energy. This weapon provides the most powerful yet energy-intensive

attack. The defensive shield is the shared energy that must be set explicitly to pro-

tect the Enterprise. The shield energy decreases under the Klingon’s attack. The

game is over when the shield energy is below zero. However, the Enterprise can

recharge its energy at the Starbases.

The docking operation between the Enterprise and the Starbase takes place when

the Enterprise moves into a Starbase’s vicinity. The Starbase recharges the Enter-

prise’s energy automatically to its maximum capacity of 3,000 units. Additionally,

the Starbase also refills the torpedoes instantly back to its initial amount of 10 units.

Nevertheless, it can repair the Enterprise’s damaged devices only at the explicit re-

quest.

142

sector mapnavigation

command

torpedo

command

shield

command

Figure A.1: A screen capture of Star Trek game showing a player destroying a
Klingon spaceship with a photon torpedo.

A.2.3 Game Objects and Sector Map

The Enterprise navigates among the quadrants to search for Klingon spaceships.

A quadrant is a space of 8 × 8 sectors. Each sector is either empty or occupied

by a game object. A sector map, as shown in the middle of Fig.A.1, displays all

game objects located in the current quadrant. Four types of game objects and their

detailed descriptions are listed below.

• Star: The symbol ∗ in a sector map represents a star. A star is stationary

inside a quadrant. It acts as an obstruction for the Enterprise’s navigator. It

also blocks the Enterprise’s photon torpedo when its position is located on the

torpedo path. A quadrant must contain at least one star at the minimum.

• Starbase: The symbol <!> in a sector map represents a Starbase. In a galaxy,

143

the number of Starbases is very limited. Its location is unknown originally.

Only one Starbase can reside in a quadrant. It stays still in the quadrant.

Nevertheless, both Starbases and Klingon spaceships may reside in the same

quadrant.

• Klingon spaceship: The symbol +K+ in a sector map represents a Klingon

spaceship. A maximum of three Klingon spaceships can reside in the same

quadrant. The energy of each spaceship is different and unknown to a player.

The Klingons can only move inside its quadrant. Unlike the Enterprise, how-

ever, it can move and fire a weapon in the same turn.

• Starship Enterprise: The symbol <$> in a sector map represents the Star-

ship Enterprise. There is only one Starship Enterprise in the game. Its initial

position is randomly located.

At the beginning of the game, the Enterprise contains 3,000 units of energy

and 10 photon torpedoes, with all devices in good conditions. The information

in the Library-Computer device is blank, including the galaxy map.

A.2.4 Galaxy Map

When a game starts, all game objects are distributed randomly throughout the

galaxy. The number of each game object is determined according to the level of

game difficulty and the game ID. Their locations are then assigned to each quad-

rant. Unlike the Enterprise, which can move freely among the quadrants, all other

objects cannot move out of a quadrant. However, when the Enterprise enters a new

quadrant, game objects in that quadrant rearrange their locations anew. Inside a

quadrant, all stars and Starbase cannot move while Klingon spaceships can move

occasionally only in their turn.

The galaxy map, as shown in the bottom of Fig. A.2, displays the record of

a long-range sensor (LRS) device. The LRS device shows nine numerical values

representing the number of the game objects in the current quadrant and eight

immediate surroundings. Each number has three digits. Each digit denotes to the

number of Klingon spaceships, Starbase, and star objects in a quadrant, respectively.

For example, the number of 015 represents no Klingons, one Starbase, and five stars,

correspondingly. The number changes when the Klingon spaceship (or the Starbase!)

is destroyed.

144

command
menu

galaxy
map

query

command

Figure A.2: A screen capture of Star Trek game showing the command menu and
the entire galaxy map.

A.2.5 The Battle with The Klingons

When the Enterprise enters a Klingon-occupied quadrant, the game shows a warning

of combat area with ∗RED∗ condition. The top of Fig. A.1 displays this warning

as a result of the navigation command. The battle starts with the Enterprise’s turn

then followed by the Klingons’ turn alternately. Escaping the combat area in the

middle of the fight results to a follow-up attack from the remaining Klingons.

• Offensive Strategy: There are two kinds of weapons to attack the Klingons.

– Phaser Energy: This weapon is omni-directional. It can, therefore, de-

stroy many Klingon spaceships in one blaze. Firing the phaser consumes

the Enterprise’s energy. A player must specify the amount of energy

145

needed to fire the phaser. The amount of energy required to destroy a

Klingon is proportional to the number of Klingons in the quadrant and

the distance of the Klingon away from the Enterprise. If the firing energy

is low, the attack will only damage the Klingon and lessen its energy.

This reduces its strength to fight back.

– Photon Torpedo: This is a uni-directional weapon that launches straightly

in a specified direction. Hence, it can destroy only one Klingon spaceship

at a time. The Enterprise contains 10 torpedoes, initially, so the number

of torpedo attacks is limited. Unlike the phaser energy, which nothing can

hamper, the torpedo attack becomes ineffective when its launched path

is blocked by a star. The Enterprise refills its torpedoes automatically at

the Starbases.

• Defensive Strategy: The Enterprise has to set its shield energy to prevent

a defeat. In the battlefield, this shield energy counteracts with the Klingons’

attack energy to protect the Enterprise. When the shield energy goes below

zero, the Klingons win the battle and the player loses the game.

Shield energy is a part of the Enterprise’s energy. The Enterprise has to

lower its shield energy when the energy is not enough for other activities, i.e.

navigation or phaser attack. Nevertheless, the shield energy cannot be altered

when the shield device is damaged.

In case that the attack fails, the game output will provide enough information

to help the player examine the errors. For example, the torpedo track, shown in

the bottom of Fig. A.2, displays the torpedo path sector by sector. The player then

realizes how far the torpedo misses the target according to this information.

Furthermore, the game output displays the attack information from the Klingons,

e.g. the amount of remaining energy and the position of the attacking spaceship.

The player may use this information to figure out the plausible sector map, rather

than fighting blindly when the SRS device is inoperative.

A.2.6 Damaging Devices

Once in a while, in a battle or a navigation, some of the Enterprise’s devices may

become damaged. The damaged device is inoperative and needs a repair. With a

regular repair process, when the game time passes, the device becomes operative

146

again automatically. The severity of the damage dictates the time period required

for the repair process. Alternatively, a Starbase also provides a rapid repair service.

It instantly repairs all damaged devices at the expense of some Stardates.

A.3 Game Commands

The command inputs in Star Trek game are simple. A player enters a command

name which consists of three characters. Each command has different numbers of

its required arguments, from zero up to two arguments. All command arguments in

Star Trek game are numerical values, either a real number or an integer number.

There are two major types of game commands in Star Trek game: action com-

mands and query commands. While the action commands control various activities

of the Starship Enterprise, the query commands inquire the Enterprise’s status as

well as the Library-Computer device’s report. Certain commands can perform dou-

ble tasks as an action and a query for different situations.

Star Trek game requests a new command with the Command? keyword, as

illustrated in the top part of Fig. A.2. In addition, the game displays a command

menu listing all nine commands with brief descriptions. Table A.1 lists all commands

in Star Trek game along with the required arguments. The following subsections

explain each command in more details.

A.3.1 Action Commands

To control the Starship Enterprise, a player issues one of the following five action

commands:

1. nav command sets a direction and a distance of a navigation. Star Trek game

usually uses the term course for a direction. The course value is a real number

ranging between 1 and 9, i.e. [1.0, 9.0] mathematically. Starting from 1.0

which denotes the east direction, the course value increases in anti-clockwise

direction. Advancing toward 9.0. which also denotes the east direction, the

course value circles around 360 degrees approaching back to the starting point.

This course diagram is illustrated in Fig. A.3.

The navigation distance is also specified in a real number. Star Trek game uses

the term Warp Factor to represent the travelling distance. For a short-distant

travelling, it takes 0.1 warp factor to travel from a sector to the next one.

147

Table A.1: Star Trek game’s commands and arguments.

command argument#1 argument#2 action query

nav direction
[1.0 - 9.0]

distance
(0.0 - 8.0]

navigate -

srs - - - sector map &
Enterprise report

lrs - - - neighboring
galaxy map

pha attack energy
(0 - 3000]

- phaser attack -

tor direction
[1.0 - 9.0]

- torpedo attack -

she shield energy
[0 - 3000]

- set shield query current
shield energy

dam - - request for
rapid repair

device damages

com 0 - - full galaxy map

1 - - mission report

2 - - Klingons report

3 - - Starbase report

4 initial & final
coordinates

- direction
& distance

xxx - - resign -

Likewise, it takes 1.0 warp factor to travel from a quadrant to the adjacent

quadrant. Navigation operates at the expense of a small amount of energy.

Star Trek game blocks any attempt to travel beyond the galaxy limit. It shuts

down the Enterprise at the edge sector of the galaxy. The Enterprise’s warp

engine can be damaged occasionally. Damage of the warp engine limits the

travelling distance to 0.2 warp factor in a player’s turn.

2. pha command fires a phaser attack with a specific energy. The Enterprise

uses its energy to make a phaser attack. Therefore, the argument value of

15

2

6

3

7

4

8

Figure A.3: Representation of course value in Star Trek game

148

pha command cannot exceed the Enterprise’s remaining energy. Sometimes, a

player lowers the Enterprise’s shield to increase the phaser energy for a more

powerful attack. Damage of the phaser control prevents the Enterprise from

firing the phaser.

3. tor command launches a photon torpedo in a specific direction. A player spec-

ifies the torpedo direction, using the course value as demonstrated in Fig. A.3,

to destroy a specific Klingon spaceship. A star along the torpedo path blocks

the torpedo attack and makes the attack fail. Damage of the photon tube

disables the torpedo launch. There are initially 10 torpedoes when the game

starts, and the refill can always be done at a Starbase. The Enterprise cannot

launch the attack when it runs out of torpedo weapons.

4. she command sets shield energy to a specific value. The Enterprise shares its

energy with a defensive shield. The she command argument cannot exceed the

remaining energy. Damage of the shield control prevents the Enterprise from

adjusting the current shield energy. This adds more restrictions to the energy

management.

5. xxx command quits the game in the middle of playing. A player uses this

command to resign from the current game and restart a new game.

A.3.2 Query Commands

To control the Starship Enterprise, a player issues one of the following four query

commands:

1. srs command shows the sector map and important status of the Enterprise.

The Enterprise uses its short-range sensor (SRS) to scan all sectors within

the current quadrant. This results to a sector map, as shown in the middle of

Fig. A.1. The map helps a player to avoid colliding with a star in a navigation.

It also helps the player to specify the effective firing direction, right toward the

Klingon spaceship any without blocking stars, in a torpedo attack. When SRS

is damaged, the sector map is unavailable. This greatly diminishes success of

a torpedo attack due to the unknown launching direction.

In addition to the sector map, this command also displays various important

information of the Enterprise, e.g. its position in the galaxy, the current Star-

149

date, the quadrant, the number of Klingon spaceships, shield energy, remaining

energy, remaining torpedoes, etc.

2. lrs command reveals a portion of the galaxy map. The Enterprise uses its

long-range sensor (LRS) to search for the number of game objects in the sur-

rounding 3× 3 quadrants centering on the Enterprise’s position. The Library-

Computer device records this map portion in its galaxy map storage, which

is retrievable via com command. Damage of the LRS inhibits a quick survey

over the neighboring quadrants. This requires more game time to survey the

entire galaxy.

3. dam command displays the state of repair for all devices. The state of repair

shows the negative value when a device is damaged. More negative value

requires more time to repair, under a regular repair process. The damage

control itself can also be damaged. This makes a player unable to check the

repair status. Another function of dam command is to request for the rapid

repair service when docking at the Starbase.

4. com command shows game reports and performs a support function. There

are totally six options offered by the Library-Computer device of the Enter-

prise. Below is the list of all services.

(a) Cumulative Galactic Record: shows an entire galaxy map, recorded from

the LRS device.

(b) Status Report: presents three major information of the game mission:

the number of remaining Klingon spaceships, Stardates, and available

Starbases in the mission.

(c) Photon Torpedo Data: displays the direction and distance information

from the Enterprise to each Klingon in the quadrant. This provides an

alternative way to get the Klingon’s direction for a torpedo attack.

(d) Starbase Nav Data: displays the direction and distance information from

the Enterprise to the Starbase in the quadrant. This provides an alter-

native way to navigate to the Starbase in the quadrant.

(e) Direction/Distance Calculator: calculates the direction and distance be-

tween two coordinates.

150

(f) Galaxy ’Region Name’ Map: presents the names of each quadrant in the

galaxy.

Damage of the Library-Computer device disables all services above. In ad-

dition, it may interfere other operations of the Enterprise; for example, the

torpedo path may be altered from the specified direction.

151

Appendix B

Simple FS Rules for Star Trek

B.1 FS Input Variables

Table B.1: A list of all FS input variables used in the simple FS rules. The table
shows variable name, table name where the variable belongs to, minimum value,
and maximum value of each FS variable.

Variable Name Table Name Min Value Max Value

1 SHIELD ENERGY SHIELD 0.0 3000.0
2 ENERGY LEFT NAVIGATE 0.0 3000.0
3 TIME LEFT NAVIGATE 0.0 100.0
4 UNFOUND STARBASE TO STARBASE 0.0 5.0
5 DISTANCE TO STARBASE TO STARBASE 0.0 8.0

B.2 FS Modular Tables

Table B.2: SHIELD table as the root of modular tables.

SHIELD

ENERGY

(2 degree)

KLINGON

EXISTS

(boolean)

SHIELD

AVAILABLE

(boolean)

STARBASE

REPAIRABLE

(boolean)
DECISIONS

1 LOW YES YES YES set shield energy()
2 LOW YES YES NO set shield energy()
3 LOW YES NO YES TO STARBASE
4 LOW YES NO NO ATTACK
5 LOW NO YES YES TO STARBASE
6 LOW NO YES NO NAVIGATE
7 LOW NO NO YES TO STARBASE
8 LOW NO NO NO NAVIGATE
9 HIGH YES YES YES ATTACK
10 HIGH YES YES NO ATTACK
11 HIGH YES NO YES TO STARBASE
12 HIGH YES O NO ATTACK
13 HIGH NO YES YES TO STARBASE
14 HIGH NO YES NO NAVIGATE
15 HIGH NO NO YES TO STARBASE
16 HIGH NO NO NO NAVIGATE

153

Table B.3: ATTACK table.

KLINGONS

HIDDEN ALL

(boolean)

TORPEDO

AVAILABLE

(boolean)

PHASER

AVAILABLE

(boolean)
DECISIONS

1 YES YES YES fire torpedo() & fire phaser()
2 YES YES NO reveal klingon()
3 YES NO YES fire phaser()
4 YES NO NO TO STARBASE

5 NO YES YES fire torpedo() & fire phaser()
6 NO YES NO fire torpedo()
7 NO NO YES fire phaser()
8 NO NO NO TO STARBASE

Table B.4: NAVIGATE table.

WEAPON AVAILABLE

(boolean)
ENERGY LEFT

(2 degree)
TIME LEFT

(2 degree)
DECISIONS

1 YES HIGH HIGH TO KLINGON
2 YES HIGH LOW TO KLINGON
3 YES LOW HIGH TO STARBASE
4 YES LOW LOW TO KLINGON
5 NO HIGH HIGH TO STARBASE
6 NO HIGH LOW TO STARBASE
7 NO LOW HIGH TO STARBASE
8 NO LOW LOW TO STARBASE

Table B.5: TO STARBASE table.

STARBASE

ON MAP

(boolean)

UNFOUND

STARBASE

(2 degree)

DISTANCE

TO STARBASE

(2 degree)
DECISIONS

1 YES HIGH HIGH navigate to survey()
2 YES HIGH LOW navigate to starbase()
3 YES LOW HIGH navigate to starbase()
4 YES LOW LOW navigate to starbase()
5 NO HIGH HIGH navigate to survey()
6 NO HIGH LOW navigate to survey()
7 NO LOW HIGH navigate to survey()
8 NO LOW LOW navigate to survey()

Table B.6: TO KLINGON table.

KLINGON ON MAP (boolean) DECISIONS

1 YES navigate to klingons()
2 NO navigate to survey()

154

Appendix C

Extended FS Rules for Star Trek

C.1 FS Input Variables

Table C.1: A list of all FS variables used in the extended FS rules. The table
shows variable name, table name where the variable belongs to, minimum value,
and maximum value of each FS variable. The extended rules consist of 14 FS input
variables in the first half and 6 FS output variables in the last half of the table.

Variable Name Table Name Min Value Max Value

1 DISTANCE TO STARBASE NAVIGATE 0.0 8.0
2 DAMAGING DEVICES NAVIGATE 0.0 10.0
3 ENERGY LEFT NAVIGATE 0.0 3000.0
4 TIME LEFT NAVIGATE 0.0 60.0
5 N KLINGONS IN QUADRANT ATTACK 0.0 3.0
6 DISTANCE TO KLINGON TO KLINGON 0.0 8.0
7 TIME LEFT TO KLINGON 0.0 60.0
8 UNFOUND STARBASE TO STARBASE 0.0 5.0
9 DISTANCE TO STARBASE TO STARBASE 0.0 8.0
10 SHIELD ENERGY RED ALERT 0.0 3000.0
11 N KLINGONS IN QUADRANT $SHIELD 0.0 3.0
12 DISTANCE TO KLINGON $SHIELD 0.0 8.0
13 N KLINGONS IN QUADRANT $PHASER 0.0 3.0
14 DISTANCE TO KLINGON $PHASER 0.0 8.0

15 $SHIELD LOW $SHIELD 0.0 3000.0
16 $SHIELD MEDIUM $SHIELD 0.0 3000.0
17 $SHIELD HIGH $SHIELD 0.0 3000.0
18 $PHASER LOW $PHASER 0.0 3000.0
19 $PHASER MEDIUM $PHASER 0.0 3000.0
20 $PHASER HIGH $PHASER 0.0 3000.0

C.2 FS Decision Tables

155

Table C.2: RED ALERT table as a root of the critical warning.

SHIELD

AVAILABLE

(boolean)

STARBASE

REPAIRABLE

(boolean)

SHIELD

ENERGY

(3 degree)
DECISIONS

1 NO NO LOW ATTACK
2 NO NO MEDIUM ATTACK
3 NO NO HIGH ATTACK
4 NO YES LOW ATTACK

5 NO YES MEDIUM ATTACK & TO STARBASE

6 NO YES HIGH ATTACK & TO STARBASE
7 YES NO LOW set shield energy()

8 YES NO MEDIUM set shield energy() & ATTACK
9 YES NO HIGH ATTACK
10 YES YES LOW set shield energy()

11 YES YES MEDIUM set shield energy() & ATTACK
12 YES YES HIGH ATTACK

Table C.3: MAIN DECISION table as a root of modular tables.

KLINGON IN

QUADRANT

(boolean)

STARBASE

REPAIRABLE

(boolean)
DECISIONS

1 NO NO NAVIGATE
2 NO YES TO STARBASE
3 YES NO ATTACK
4 YES YES ATTACK

Table C.4: ATTACK table.

N KLINGONS

IN QUADRANT

(2 degree)

KLINGONS

HIDDEN ALL

(boolean)

TORPEDO

AVAILABLE

(boolean)

PHASER

AVAILABLE

(boolean)
DECISIONS

1 LOW NO NO NO TO STARBASE
2 LOW NO NO YES fire phaser()
3 LOW NO YES NO fire torpedo()
4 LOW NO YES YES fire torpedo()

& fire phaser()
5 LOW YES NO NO TO STARBASE
6 LOW YES NO YES fire phaser()
7 LOW YES YES NO reveal klingon()
8 LOW YES YES YES reveal klingon()

& fire phaser()
9 HIGH NO NO NO TO STARBASE
10 HIGH NO NO YES fire phaser()
11 HIGH NO YES NO fire torpedo()
12 HIGH NO YES YES fire phaser()
13 HIGH YES NO NO TO STARBASE
14 HIGH YES NO YES fire phaser()
15 HIGH YES YES NO reveal klingon()
16 HIGH YES YES YES fire phaser()

156

Table C.5: NAVIGATE table.

DISTANCE TO

STARBASE

(2 degree)

DAMAGING

DEVICES

(2 degree)

ENERGY

LEFT

(2 degree)

TIME

LEFT

(2 degree)
DECISIONS

1 LOW LOW LOW LOW TO KLINGON
2 LOW LOW LOW HIGH TO STARBASE
3 LOW LOW HIGH LOW TO KLINGON
4 LOW LOW HIGH HIGH TO STARBASE
5 LOW HIGH LOW LOW TO STARBASE
6 LOW HIGH LOW HIGH TO STARBASE
7 LOW HIGH HIGH LOW TO KLINGON
8 LOW HIGH HIGH HIGH TO STARBASE
9 HIGH LOW LOW LOW TO KLINGON
10 HIGH LOW LOW HIGH TO KLINGON
11 HIGH LOW HIGH LOW TO KLINGON
12 HIGH LOW HIGH HIGH TO KLINGON
13 HIGH HIGH LOW LOW TO KLINGON
14 HIGH HIGH LOW HIGH TO STARBASE
15 HIGH HIGH HIGH LOW TO KLINGON
16 HIGH HIGH HIGH HIGH TO STARBASE

Table C.6: TO STARBASE table.

STARBASE

ON MAP

(boolean)

UNFOUND

STARBASE

(2 degree)

DISTANCE TO

STARBASE

(2 degree)
DECISIONS

1 NO LOW LOW navigate to survey()
2 NO LOW HIGH navigate to survey()
3 NO HIGH LOW navigate to survey()
4 NO HIGH HIGH navigate to survey()
5 YES LOW LOW navigate to starbase()
6 YES LOW HIGH navigate to starbase()
7 YES HIGH LOW navigate to starbase()
8 YES HIGH HIGH navigate to survey()

Table C.7: TO KLINGON table.

DISTANCE TO KLINGON

(3 degree)
TIME LEFT

(2 degree)
DECISIONS

1 LOW LOW navigate to klingons()
2 LOW HIGH navigate to klingons()
3 MEDIUM LOW navigate to klingons()
4 MEDIUM HIGH navigate to survey()
5 HIGH LOW navigate to klingons()
6 HIGH HIGH navigate to survey()

157

Table C.8: VALUE SHIELD table for command argument.

N KLINGONS

IN QUADRANT

(2 degree)

DISTANCE

TO KLINGON

(2 degree)
VALUES

1 LOW LOW $SHIELD MEDIUM
2 LOW HIGH $SHIELD LOW
3 HIGH LOW $SHIELD HIGH
4 HIGH HIGH $SHIELD MEDIUM

Table C.9: VALUE PHASER table for command argument.

N KLINGONS

IN QUADRANT

(2 degree)

DISTANCE

TO KLINGON

(2 degree)
VALUES

1 LOW LOW $PHASER LOW
2 LOW HIGH $PHASER MEDIUM
3 HIGH LOW $PHASER MEDIUM
4 HIGH HIGH $PHASER HIGH

158

	VV2018.pdf
	Introduction
	Background and Remaining Problems
	Objectives and Approaches
	Chapter Structure

	Related Techniques and Research
	Related Techniques
	Computational Intelligence
	Fuzzy Logic System
	Fuzzy Sets
	Fuzzy Logic
	Linguistic Values and Linguistic Variables
	Fuzzy IF-THEN rules (Conditional fuzzy rules)
	Fuzzy rule-based system
	FS Implementation Concerns

	Evolutionary Computation
	Biological Evolution & EC Algorithms
	EC Implementation Concerns

	Differential Evolution
	Overview of DE Algorithm
	Generic DE Algorithm
	DE Mutation Process
	DE Crossover Process
	DE Selection Process
	Variations of DE Algorithm
	Control Parameters in DE Algorithm

	Coevolutionary Algorithm
	General CEA Algorithm
	Competitive Coevolution
	Cooperative Coevolution
	CEA Implementation Concerns

	Related Research
	Artificial Intelligence and Computational Intelligence in Games
	Traditional Board Games and Machine Intelligence
	Minimax Algorithm
	Machine Learning Algorithms
	Video Games and Machine Intelligence

	Overview of Automatic Video Game Generation
	Automatic Generation of Game Rules & Mechanics
	Automatic Generation of Game Contents
	Procedural Content Generation (PCG)
	PCG with Search-based Algorithms
	PCG with Machine Learning Algorithms

	Automatic Game Parameter Tuning
	Traditional Game Tuning with Human Playtesting
	Automatic Game Tuning in Minimal Action Games
	Automatic Game Tuning in Two-player Action Games
	Automatic Game Tuning in Action-Adventure Games

	Chapter Summary

	Framework for Automatic Game Parameter Tuning
	Introduction
	Game Parameter Tuning
	Game Difficulty
	Video Game Parameters
	Game Parameters in Turn-based Strategy Games
	Conventional Game Parameter Tuning Process

	Framework for Automatic Game Parameter Tuning
	The Framework Components
	The Framework Structure
	Comparison between the proposed Framework and Conventional Practice

	Player Model for Turn-based Strategy Games
	Evolving Fuzzy Logic Rule-based Player Model
	Learning Player Model by Gradually Increasing Game Difficulty Levels
	Coevolving Game Parameters with Player Model
	Chapter Summary

	Game Player Model
	Introduction
	Interaction with Video Game Environment
	Game States and Interaction Flows
	Hierarchy of Game Decisions
	Levels of Game Information

	Structure of Game Player Model
	Game Data Parser
	Game Decision Making
	Fuzzy Logic System Rule (FS Rule)
	Fuzzy Logic System's Membership Function (FS Membership Function)
	Fuzzy Logic System's Reasoning Engine (FS Reasoning Engine)

	Game Command Generator

	Improvements to Game Player Model
	Modular FS Tables
	FS Table Reevaluation
	Multi-output decision

	Example Implementation of Game Player Model in Star Trek Game
	The Star Trek Game Environment
	The Interface Module for Star Trek Game
	FS Rules for Decisions in Star Trek Game
	Simple FS Rules
	Extended FS Rules

	FS Membership Functions
	Game Decision Callbacks

	Chapter Summary

	Evolving Fuzzy Logic Rule-based Player Model
	Introduction
	Player Model Optimization with Evolutionary Computation
	Differential Evolution Algorithm
	Fitness Evaluation
	Encoding Representation
	Optimization of Player Model Parameters
	Optimization of FS Membership Function Parameters
	Optimization of FS Multi-output Decision
	Optimization of Game Command Arguments

	Example Implementation of Player Model Optimization in Star Trek Game
	Parameter Encoding for DE Optimization
	Game Score Evaluation

	Experiments on Evolving Player Model
	Experimental Setups
	Game Difficulty Levels
	Optimization Settings
	Simulation Setups

	Experimental Results
	Best Fitness Score
	The Maximum Number of Wins

	Discussions

	Chapter Summary

	Learning Player Model by Gradually Increasing Game Difficulty Levels
	Introduction
	Incremental Learnings of Game Difficulty
	Scale-space Filtering
	Issues in Gradual Incremental Learning

	Experiments on Incremental Learnings of Game Difficulty
	Difficulty Levels and Star Trek Game Parameters
	Fixed-interval Incremental Learning of Game Difficulty
	Experimental Setups
	Experimental Results
	Discussion

	Adaptive-interval Incremental Learning of Game Difficulty
	Experimental Setups
	Experimental Results
	Discussion

	Chapter Summary

	Discussions
	Toward the Generalization of Automatic Game Parameter Tuning
	Human Decision Logs for Game Testing
	Influence of FS Rule Complexity on the Incremental Learning
	Experimental Setups
	Experimental Results
	Discussion

	Chapter Summary

	Conclusion and Future Works
	Future Works
	Limitations
	Conclusion

	Bibliography
	Acknowledgements
	Publication
	Star Trek Game
	Overview
	Gameplay
	Winning and Losing Conditions
	Energy Management
	Game Objects and Sector Map
	Galaxy Map
	The Battle with The Klingons
	Damaging Devices

	Game Commands
	Action Commands
	Query Commands

	Simple FS Rules for Star Trek
	FS Input Variables
	FS Modular Tables

	Extended FS Rules for Star Trek
	FS Input Variables
	FS Decision Tables

