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Abstract

The development and sustainability of the urban areas or cities play important roles in

the socio-economic development, but are also subject to various environmental issues. In

order to achieve sustainable development, the urban environmental issues have received

great attentions from both urban planners and policy-makers; the priority issue vary with

the economy levels of different areas. Japan is classified as a highly developed country,

and Japan cities prioritize the achievement of sustainable and stable land use changes

(LUC) according to the voluntary national review 2017 reported by United Nations. On

the other hand, the cities in the fast developing country, such as Chinese cities tend to

prioritize the mitigation of air pollution problem, which is mainly caused by the intensive

economy development.

This study aims to provide supportive technique and evidence that would assist the

promotion of the sustainable development of urban area in Japan and China. LUC process

in a highly developed urban area is more sophisticated than that in fast developing

area in terms of the complexity of spatio-temporal change pattern of land use (LU).

Hence, to support urban land use planning, more advanced LUC modeling techniques

are needed to capture the LUC pattern and to forecast the future urban LU. On the

other hand, Chinese government has invested heavily to abate the air pollution problems

but without the satisfactory outcomes. Estimating residents’ monetary valuation of air

pollution could help to improve the effectiveness of air pollution control policy making

by allowing for cost-benefit analyses. Given the abovementioned context, this study

explores the enhancement of LUC modeling in the Greater Tokyo Area by incorporating

advanced machine learning (ML) and deep learning (DL) techniques to existing modeling

approach; this study also assesses the impact of air pollution on Chinese people’ well-

being and estimates the monetary value of air pollution by using subjective well-being

(SWB) approach.

As for the LUC modeling in the Greater Tokyo Area, this study explores the en-
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hancement method from three perspectives: 1) enhances the stochastic modeling with

tree-based ensemble algorithms, including bagged decision tree (bagged DT), bagged gra-

dient boosting decision tree (bagged GBDT), random forests (RF) and extremely ran-

domized trees (ERT); 2) enhances the spatial modeling with convolutional-based deep

learning methods, including convolutional neural networks (CNN) and convolutional de-

noising autoencoders (CDAE); 3) enhances the temporal modeling with recurrent neural

networks (RNN), including simple RNN and three RNN variants with gated architecture.

The results show that the LUC modeling in Greater Tokyo Area benefits from incor-

porating certain degree of randomness given that the ERT model, which has the highest

degree of randomness among the four tree-based models, significantly outperforms the

other models by 5%∼30%. The results also provide the evidence of convolutional-based

models’ ability to enhance the conventional LUC models by extracting and supplying use-

ful spatial features from the satellite images, given that both convolutional-based models

outperform a multi-layer perceptron (MLP) model which uses only conventional geo-

graphical features by 15%∼30%. Moreover, usage of RNN to model the spatio-temporal

dynamics of LUC process yields reliable LU forecasts; the higher performance of RNN

variants with gated architecture also indicates that modeling long-term temporal depen-

dency of LUC process can further improve the modeling performance.

In the examination of the impact of air pollution on the residents and the analysis

uses the combined data of 1) SWB data and the other individual characteristics from an

original Internet survey conducted in China during January and February in 2016, and 2)

air pollution data collected from official statistical yearbook or measurement of monitoring

sites. This study uses regression analyses to determine the relationships between SWB

and the air pollution variables; the estimated coefficients from the regression analyses are

then used to estimate the monetary value of air pollution for Chinese residents living in

Northeastern region which is a declining heavy industrial area, as well as Beijing city and

Shanghai city which are the largest and yet growing cities in China.
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The results of regression analyses show the statistically significant negative effect of

air pollution on Chinese people’s subjective well-being. Nevertheless, the magnitude of

impact of air pollution and the estimated monetary values of air pollution varies with

regions and across the cities. Northeastern Chinese residents place nearly two times

higher monetary value on air pollution compare to the Beijing and Shanghai residents.

Furthermore, the estimated monetary values also vary with the time-specification of air

pollution variables, air pollutants, and also with respect to subjective health evaluation

and household characteristics such as household income, subjective health condition, etc.

This study contributes to both the research of LUC modeling and air pollution as-

sessment. In the filed of LUC modeling, this study reveals the positive effect of stochastic

mechanism in tree-based algorithms for modeling the LUC process in highly-developed

metropolitan area; moreover, it is the first time to introduce and to identify the great

potentials of DL techniques for LUC modeling. By using these approaches, more reli-

able LU prediction could be generated and used to better support the decision-making

of strategic urban planning in Greater Tokyo Area. On the other hand, in the filed of air

pollution assessment, this study provides the up-to-date assessment results of the direct

and interacted effect of air pollution on Chinese people’s well-being with taking temporal,

spatial and personal factors into account, which allows for specific suggestions to Chinese

policy-makers.

This study presents useful findings for two important and highly prioritized urban

environmental issues by examining the Japan and China areas. Nonetheless, the future

work should consider the connection between the two environmental issues, land use

change and air pollution, by combining the findings of this study to build a modeling and

assessment framework.
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Introduction

Urban areas changes and grows with the social transformation process, continuously shap-

ing the earth surface. According to the UN report, 50 percent of the world’s population

was living in urban area in 2014, and 66 percent of the world’s population is projected to

live in urban area by 2050. The development and sustainability of the cities or urban area

play important role in socio-economic development at the era of globalization (Keivani,

2010). It serves as centers for finance and producer services, and provide the essential

elements of residents’ well-being and cultural development. Cities are also serve as the

centers of political power and administration. The policy and developmental agendas of

cities have profound influences on the policy making of the surrounding regions, and the

entire nation.

However, the concentration of population, power and resources exposes the cities

to various economic-environmental issues, such as urban sprawl, urban vegetation, air

pollution, greenhouse gas emission, etc. The interactions of these environmental issues

complicate the analyses of the impacts and the consideration of resolutions. For example,

urban sprawl can lead to loss of urban vegetation, and loss of urban vegetation can further

cause deterioration of air quality and loss of ecosystem diversity; urban sprawl also can

influence a transportation pattern, and an ill-planned transportation pattern can increase

the usage of private vehicle and the occurrence of traffic congestion, which lead to the

increase of air pollutants emission.
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Since the report from the UN World Commission on Environment and Development

(the Brundtland Commission) was published in 1987, the concept of sustainable devel-

opment has been widely adopted by the administrators and planners as the principle to

deal with aforementioned urban problems (Hassan and Lee, 2015). The prioritized sus-

tainable development goals of countries and cities vary with varying economy conditions.

Consequently, the focuses of environmental analyses in different countries also vary sig-

nificantly. Japan, one of the most developed country, has already effectively controlled

various pollution problems, and has turned its focus toward the sustainable development

goals such as sustainable and resilient land use according to the voluntary national re-

view 2017 reported by UN 1. In particular, the Greater Tokyo Area in Japan, which is

the world’s largest metropolitan area with approximately 37 million citizens, has a spe-

cial responsibility to provide a leadership and provide the success case of the sustainable

urban development.

The Greater Tokyo Area faces major challenge; the area already has high population

density but the population is still growing. Such situation may lead to the spontaneous

expansion of urban area, loss of urban vegetation and biodiversity, etc. Strategic urban

planning could help to ensure the sustainable development of the Greater Tokyo Area.

However, the urban planning for the mega metropolitan area is extremely complicated

and challenging. Land use change (LUC) modeling is an effective approach to understand

the complex urban system and to model the LUC process. It provides essential LU

forecast for predicting the possible environmental outcomes caused by the current urban

development plan, and by doing so could help to support the decision-making of urban

planning.

On the other hand, in the developing economy, China is well-known for suffering from

severe air pollution problem mainly caused by the intensive economy development. Air

pollution problem has attracted broad attentions from Chinese government and pub-

1Refer to https://sustainabledevelopment.un.org/memberstates/japan for the whole list of the prior-
itized sustainable development goals of Japan
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lic, and has been regarded as one of the top-concerned environmental issues in China.

Chinese government has published several temporary air pollution control policies and

invested numerous money and efforts to mitigate air pollution in the past several years.

Nonetheless, the reduction target has not been met; for instance, despite the air pollution

mitigation effort, the city of Being have not reached the official 5-years target. Improving

the applicability and cost-efficiency of air pollution control policy need the impact evalu-

ation of air pollution. In particular, monetary valuation of air pollution can provide the

bases for the effective cost-benefit analyses.

In the field of environmental studies, many studies have conducted methodological or

application research of LUC modeling and monetary valuation of public goods. However,

the existing literature has limitations. In terms of LUC modeling, previous studies mainly

focus on the LUC modeling in fast-developing regions where are mainly located in the

developing world, and rarely consider the LUC modeling in highly-developed area. In the

developed areas, the frequency of LUC is relatively mild but the LUC process is more

complicated. In contrast with fast-developing urban areas where are dominated by urban

expansion, most developed mega cities are simultaneously experiencing urban expansion,

urban decay and urban renewal. These processes are usually regional-specific and are

driven by various socio-economic forces. For example, the urban expansion usually occurs

at suburbs where the housing price is relatively cheap, while urban decay and urban

renewal usually occur at downtown where is declining because of either the transfer

of urban center or the deterioration of living/commercial environment. These distinct

characteristics of LUC process in developed urban area may decrease the applicability

of LUC models developed for developing urban areas. Therefore, in order to assist the

urban planning in developed urban areas by LUC modeling, the existing LUC models

need to be further enhanced and extended.

In terms of the assessment of air pollution, subjective well-being (SWB) approach is

an emerging approach to evaluate the impact of air pollution and estimate the monetary

value of air pollution. Due to its effectiveness, it has been widely adopted by researchers.
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However, previous SWB studies mainly focuses on developed areas mainly due to the data

availability, which is contrary to the LUC modeling studies. The data availability in China

is even worse, because of the various limitations of collecting individual data through

survey in China. Furthermore, the survey data used in previous studies that focus on

China are relatively out-of-dated; the latest Chinese survey data used in existing literature

were collected in 2014 (Xu and Li, 2016). Given the rapid changing atmospheric and

policy environment, a SWB study with using more up-to-dated survey data is necessary

for providing effective suggestions for policy-makers.

In order to provide supportive technique and evidence to promote the sustainable

development of urban area in Japan and China, this study aims to enhance the LUC

modeling in Greater Tokyo Area. As a highly developed metropolitan area, Greater

Tokyo Area has several distinct characteristics compared with fast-developing urban area,

including 1) complicated LUC pattern, i.e., urban expansion, urban decay and urban

renewal could occur at the same time; 2) driven by spontaneous behavior rather than

explicit urban development plan; 3) slow development and low LUC frequency. These

distinct characteristics pose technical challenges for the LUC modeling in Greater Tokyo

Area, such as the complex LU transition rules and data imbalance problem. Existing LUC

models are mainly developed for fast-developing urban area, such as Tehran (Tayyebi

et al., 2011) and Guangzhou (Li et al., 2015a), and may not be able to effective tackle

the technical challenges of LUC modeling in Greater Tokyo Area.

Cellular automata (CA) is the most prevalent modeling approach in contemporary

studies. It is a simulation method defining and stacking a series of if-then transition rules

to model the LUC process. CA is commonly transformed into more sophisticated vari-

ants or combined with other approaches to provide reliable simulation for complex LUC

modeling tasks. One popular approach is the integration of machine learning (ML) meth-

ods and CA. ML, or statistical learning, is a field of statistics and computer science that

gives computer systems the ability to ”learn” (i.e. progressively improve performance

on a specific task) with data, without being explicitly programmed (Samuel, 1959). In
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the integrated model, ML is used to predict the LU transition probability by assimilat-

ing spatio-temporal data, and CA is used to simulate the LU pattern by defining and

improving the LU transition rules through trail-and-error tests. Although a variety of

ML techniques have been applied in LUC modeling, modern ML techniques, particular

ensemble models and deep learning (DL) techniques, are rarely used in existing literature.

This study extends the existing LUC modeling framework by incorporating tree-based

algorithms and deep learning techniques. In particular, tree-based algorithms are used to

enhance the stochastic modeling of LUC process; convolutional neural networks (CNN) is

used to extract hidden spatial features from satellite images to capture the neighborhood

characteristics; recurrent neural networks (RNN) is used to enhance the modeling of

spatio-temporal dynamics of LUC process. Table 1 summarizes the ML/DL and CA

methods used in this study.

Although the study focuses on the LUC modeling of Greater Tokyo Area, the spe-

cific study area varies among different sub-studies due to the different incentives and the

limitations of data availability and computational power. The study areas are the whole

Greater Tokyo Area, Saitama prefecture and Tsukuba city for the three sub-studies that

focus on tree-based algorithms, CNN and RNN, respectively. With respect to the incen-

tive, the whole Greater Tokyo Area intrinsically has complicated LU transition rules due

to the massive and complex urban system, which is suitable for examining the capability

of tree ensemble methods to tackle complex LUC modeling tasks; Saitama prefecture has

complicated LU pattern with intensive interspersion of built-up, agriculture and forest,

which is suitable for examining the benefits of incorporating spatial features extracted by

CNN; Tsukuba city undertakes slow, continuous and stable expansion in the last decades,

which is suitable for examining the benefit of capturing temporal dependency by RNN.

With respect to the limitation, the LU data for sub-study of tree-based algorithms

were obtained from Ministry of Land, Infrastructure, Transport and Tourism of Japan,

while the LU data for the other two sub-studies were classified from satellite images.
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Table 1: Brief summary of methods used in LUC modeling in this study

Tree-based
algorithms

Decision tree Basis of tree ensemble methods

Gradient boosting decision
tree

Tree ensemble methods with using boosting; used
for reducing the error of bias

Bagged trees Tree ensemble methods with using bagging; used
for reducing the error of variance; three methods
differ in the varying degree of stochastic
mechanism

Random forest
Extremely randomized
trees

Neural
networks

Multi-layer perceptron
Fully connected feed-forward neural network with
multiple hidden layers

Convolutional neural net-
work

Feed-forward neural network that uses convolution
at least for one layer; specifically designed for hi-
erarchical feature extraction from data that have
grid-like topology (e.g. images)

Convolutional denoising
autoencoders

Feed-forward neural network in an unsupervised
learning approach; used for learning hidden rep-
resentations from input data

Simple recurrent neural
network

Basic form of recurrent neural networks, which is
used for processing sequential data (e.g. time-series
data)

Long short-term memory Variants of recurrent neural networks that
introduces advanced gated architecture, granting
stronger capability of modeling long-term
temporal dependency in sequential data

Long short-term memory
with peephole connection
Gated recurrent unit

Cellular au-
tomata

DINAMICA-variant
DINAMICA is a popular patch-based cellular au-
tomata framework; it is specifically modified for
adapting to the modeling framework in this study

Given the relatively low accuracy of LU classification from satellite images for large area,

the study areas of the two sub-studies, which focus on deep learning techniques, cannot

cover the whole Greater Tokyo Area. On the other hand, deep learning methods requires

massive computational power. For instance, CNN models have millions of parameters;

RNN models have complex derivative computation which requires large memory. More-

over, the whole spatio-temporal datasets usually have sizes of 5 ∼ 15 GB, which further

increase the computational power requirement. This study uses GPU computational ac-

celerating technique for deep learning methods with using a NVIDIA GTX 1080 card

with 8 GB memory, however, the computational power is still restricted.

In the line of LUC modeling studies, it is the first time to address the benefit of
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stochastic mechanism for improving the accuracy of LU transition probability prediction;

it is also the first time to introduce DL into LUC modeling. This study contributes the

LUC modeling studies by identifying the performance improvement from incorporating

tree ensemble methods and deep learning techniques and by providing effective modeling

approaches for highly developed urban area through the case of Greater Tokyo Area.

In order to support the policy-making of air pollution control measures in China,

this study also assesses the impact of air pollution by estimating the monetary value

of air pollution in urban area of China by using subjective well-being (SWB) data and

individual characteristics data from an Internet survey during January and February 2016.

Survey data is combined with objective air pollution data, and the regression analysis is

employed to evaluate the impact of air pollution on people’s well-being and to estimate

the monetary values of air pollution for Chinese people. This study focuses on northeast

region, Beijing and Shanghai, because these regions are relatively suffering more from air

pollution due to the geographical location and/or intensive economic activities. Northeast

region represents a heavy industrial area where is under declining economy, while Beijing

and Shanghai are the two largest cities where are still undergoing fast-development in

China.

In previous studies, in addition to stated-preference and revealed-preference approaches,

the subjective well-being (SWB) approach is gaining popularity in the field of environ-

mental economics, which emphasizes the environmental impact on people?s subjective

evaluation of their own well-being. Self-reported well-being is regarded as a robust em-

pirical approximation of overall utility. Along with determinants such as income and

other demographic factors, the impacts of various dimensions of environmental quality

have been investigated by examining the relationship between environmental quality and

self-reported well-being.

The SWB analyses in this study use the latest survey data collected in the beginning

of 2016, allowing for the up-to-date policy implication for air pollution control in China.
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Compared with previous studies, this study not only analyzes the impact of air pollution

on people?s well-being, but also analyzes the interacted effects of air pollution and other

individual characteristics. Moreover, this study also uses geographical information sys-

tem (GIS) tools to disaggregate the air pollution data into individual level and provide

enhanced monetary valuation of air pollution for Beijing and Shanghai residents. Table

2 summarizes the methods used in SWB analyses.

Table 2: Brief summary of methods used in SWB analyses in this study

Categories Description

Regression
analyses

Ordinary least square re-
gression

A common method for estimating unknown param-
eters in a linear model

Ordered probit
A specific method for estimating unknown param-
eter in a linear model with ordinal dependent vari-
able that has more than two outcomes

Spatial in-
terpolation

Ordinary Kriging interpo-
lation

A popular geostatistical interpolation method, con-
sidering both the spatial distance and spatial auto-
correlation

The thesis is organized as follows. This thesis has two parts: LUC modeling in Greater

Tokyo Area and monetary valuation of air pollution. In Part 1, Chapter 1 introduces

the background and existing literature regarding the LUC modeling studies; Chapter 2

presents the study of incorporating tree-based algorithms; Chapter 3 presents the study

of incorporating CNN; Chapter 4 presents the study of using RNN. In Part 2, Chapter

5 introduces the background and existing literature regarding the SWN studies focusing

on air pollution; Chapter 6 presents the study conducted in northeast part of China;

Chapter 7 presents the study conducted in Beijing and Shanghai. Finally, Chapter 8

concludes.
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Part I

Land use change modeling in

Greater Tokyo Area
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Chapter 1

Background

Throughout the history of civilization, human beings have continuously shaped the natu-

ral environment to satisfy the demand of human society development by turning wildness

into lands with explicit socio-economic functions (e.g., lands used for residential, farm-

ing, forestry or industrial purposes). The changes of earth observations are described

as the land use and land cover (LULC) change process. Land cover (LC) describes the

overlays or current covers of the ground, such as the vegetation, bare sold, hard surface,

etc (Di Gregorio and Jansen, 1997), and land use (LU) describes the ways that human

beings make use of and manage the land and its resources. In comparison, LC is easily

observable and directly describes the earth observation, while LU is difficult to observe

and to represent the function of land in terms of the human living. Given the intrinsic

connection between LU and human activities, the analyses of LU and land use change

(LUC) are more frequently adopted to study the relationship between human society and

the natural environment.

LUC process has profound impacts on the economic development and social process.

The land use is one of the three major factors of production in classic economics along

with labor and capital; land use is the backbone of agricultural economies and offers
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both benefits and challenges for the economic development and social progress (Wu et al.,

2008). For example, the LUC from forest to agriculture guarantees the food supply for

the growing population, but it may also lead to ecosystem degradation (Lubowski et al.,

2006); the LUC from agriculture to built-up promotes urbanization, but it may affect the

living of rural people, particularly those living at the urban fringe (Lisansky, 1986).

LUC is also generally considered to be the single most important factor that affects

the ecosystem health (Hunsaker and Levine, 1995). LUC alters the fluxes of mass and

energy in the ecosystem, which has consequences for ecological structure, functioning and

the flow of ecological goods and services (Bockstael et al., 2000). Out of the various pos-

sible consequences, pollution and climate change are the two most noteworthy problems.

LUC from natural lands to agriculture or built-up usually increases the discharges of nu-

trients, toxics, or the other chemical substances generated by the irrigation or industrial

production into water bodies, and also increases the emission of air pollutants generated

by the household, transportation or industrial production. Moreover, LUC affects the

climate change in various ways: deforestation (Le Quéré et al., 2009), the changes of

atmospheric conditions (Pielke et al., 1998), burning of fossil fuels. Previous researches

shows that cities, which bear the most intensive human activities account for about 80%

of the world’s carbon emissions (Wu, 2008).

Given the great influence of LU on human society and ecosystem, the management of

LU has attracted broad attention from the governments and organizations. The United

Nations reported that the management of LU is critical to achieve the 2030 agenda of

sustainable development in the 2017 report 1. In particular, the report emphasizes the

importance of LU management to achieve the Goal 11 (sustainable cities and commu-

nities) and the Goal 15 (life on land), which focus on the urbanization and sustainable

usage of natural resources, respectively.

1http://www.undp.org/content/undp/en/home/presscenter/pressreleases/2017/09/11/better-land-
use-and-management-critical-for-achieving-agenda-2030-says-a-new-report.html
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LU planning is an essential tool for managing the land use. It refers to the decision-

making process in which a society decides where socio-economic activities, such as com-

merce, agriculture and housing should take place. By prioritizing and restricting the

existence of certain LU for specific area, and also controlling the driving forces of certain

LU types, LU planning grants to the possibility to actively control the intensity, loca-

tion and timing of LUC to some extent; it allows to search the optimal LUC scenario to

maximize the benefits and to minimize the negative impacts of LUC. LU planning has

been used as the managing tool by the national and local governments. The purpose

and focus of LU planning have evolved from the sole management and control strategy

of urbanization to a combination of strategic and environmental planning that consider

human, animal and vegetation life (Walters, 2007).

Although LU planning is primarily an economics and management problem, due to

the complexity of urban LUC process, the LU planning needs insight from geographical

and environmental studies to produce reliable and appropriate planning scenario, and

LUC modeling provides an effective tool. LUC modeling uses mathematical methods

to simulate and/or forecast the LU pattern by assimilating various driving factors of

LUC process. LUC modeling is mainly used to provide the quantitative evidence for

LU planning by either forecasting the expected LU pattern given the historical trend, or

to examine the possible LU pattern under different development scenarios by combined

with scenario-based approach. The development of urban LUC modeling actually has a

longer history than LU planning. The primitive urban LUC modeling problem had been

proposed and studied by von Thunen’s classical model of agricultural location in 1826.

In the past two centuries, various modeling theory and techniques have been developed

and continuously upgraded. The contemporary urban LUC modeling theory, which has

been proposed and quickly adopted by the researchers since 1980s, views cities as self-

organizing systems that exists in a constant exchange of goods and energy within its

territory.

Of the various models that are developed based on the self-organizing system theory,
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cellular automata (CA) is the simplest but most popular model. CA is a special type

of automata that are arranged in regularly tessellated space (usually in 2D grid). Each

cell in the tessellated space holds a state and interacts with its neighboring cells. The

information flow between cells are controlled by neighborhood rules, i.e., the state of a

certain cell would change if the characteristics of the neighborhood meet certain condi-

tions. Although the mechanism is simple, CA is demonstrated to be able to simulate

complex system by stacking a series of transition rules. Moreover, CA is naturally com-

patible with the geographical information system (GIS) dataset and techniques, which is

rapidly developing since 1990s because of the tessellated space design. The integration

of CA and GIS has greatly enhanced the strength of CA to describing the LUC process.

However, when dealing with relatively complex urban system, CA can hardly capture

all the driving factors as neighborhood rules and cannot efficiently handle the geospatial

data. Hence, various variants of CA are developed to overcome this limitation. Transition

rules (neighborhood rules) are the core component of a CA model, which represent the

logic of the LUC process and hence determine the spatial dynamics of the system (White

and Engelen, 2000). The variants of CA mainly enhance the certain aspects of CA

by modifying, transforming or extending the mechanism of constructing neighborhood

rules. Some classic variants includes 1) constrained CA, which took into account the

constraints of the qualities of the lands, the effects of neighboring LU activities, and

the aggregate level of demand for each LU by integrating a macro-scale socio-economic

constraint model; 2) the SLEUTH model, which incorporates six driving factors (slope,

land cover, exclusion, urbanization, urbanization and hill shade) and define four types of

urban growth (diffusion, breed, spread, road gravity and slope); 3) integrated statistical

and CA model, which uses statistical learning model to predict the transition probability,

and then uses CA model to simulate the LU pattern based on the transition probability

map. In terms of their designs, the SLEUTH model builds a modeling system based on

the urban development theory, and then feed empirical data into the modeling system

for calibration; both constraint CA and integrated statistical and CA model incorporate
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technique used in the other fields to enhance the CA, but the difference is that constraint

CA adopts a hierarchical structure while integrated statistical and CA model resembles

a loosely connected pipeline.

Statistical learning, or machine learning, is a field of statistics and computer science

that gives computer systems the ability to ”learn” (i.e. progressively improve performance

on a specific task) with data, without being explicitly programmed (Samuel, 1959). In

terms pf data analytics, machine learning is used to devise complex models and algorithms

that lend themselves to prediction; this usage of machine learning is also known as pre-

dictive analytics. Some classic algorithms includes decision tree (DT), logistic regression

(LR), support vector machine (SVM), neural networks (NN), naive Bayes, Bayesian net-

works, etc. Over the last few decades, most of these algorithms have been applied in

LUC modeling as the form of either standalone application or integrated model with CA

and/or other mathematical models. In previous studies, the models have been applied in

various cities and regions such as São Paulo (Almeida et al., 2008), Missouri State (Liu

and Seto, 2008), the Beijing-Tianjin-Tangshan Metropolitan Area (Kuang, 2011), and

Athens (Grekousis et al., 2013).

Out of the three classic variants, integrated statistical and CA approach may have

the highest flexibility and the highest potential of further improvement. The variety

and scalability of statistical learning methods allow for flexible model integration to

accommodate the varying incentives and focuses of different LUC modeling tasks. For

example, the integrated model of CA and LR or DT can provide both reliable LU pattern

prediction and interpretation on the effects of different driving factors. On the other hand,

LR and DT can be replaced by SVM or NN when the predictive power of LUC model is

considered as an important determinant of the model selection for certain LUC modeling

tasks.

Moreover, statistical learning is rapidly developing in recent years, particularly in

terms of the development and spreading of ensemble models, and also the deep neural
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networks. These methods have been applied in other fields that have close relationship

with LUC modeling such as remote sensing, and are demonstrated to be able to yield

better performance than the classic statistical learning methods. Therefore, these more

advanced methods may further enhance the existing modeling techniques.

Compared with most of other LUC approaches, the integrated statistical and CA

approach is mainly data-driven and has relatively less solid theoretical foundation with

respective to the LUC and urban development theory. In recent years, the spatial data

with good quality is growing and becoming easier to access (e.g. Landsat imagery, Open-

StreetMap); the power of statistical approaches would be further amplified if the rich

spatial data can be appropriately utilized. Furthermore, by assimilating spatial data

that captures driving factors of LUC process including accessibility, neighborhood char-

acteristics, elevation, slope, etc. The statistical learning models actually can be viewed as

a approximation to the LUC models that are based on classic urban development theory

such as SLEUTH with using empirical approach.

Although the LUC modeling is gaining popularity in various fields (e.g., geosciences,

urban planning, ecological modeling, etc.) and the number of publications is continuously

increasing in the recent years, there are several limitations. In terms of the incentive of

LUC modeling studies, the methodological studies of LUC modeling generally receive less

attention than the application studies. The existing LUC models are proven to be able to

provide reliable support for some application cases, such as the urban expansion modeling

at fast-developing area or the scenario-based LUC modeling. However, these applications

either have relatively simple transition rules to be modeled or have fewer requirements for

the predictive accuracy. In order to deal with LUC modeling in a more complex system

such as the highly-developed urban areas, methodological research on developing LUC

models with higher predictive power is necessary. The existing studies focusing on the

integrated statistical approach mainly improve the predictive performance of LUC models

by combining or modifying classic statistical learning methods such as LR, rather than

incorporating more advanced statistical learning methods such as ensemble models and
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deep learning. In addition, most methodological studies mainly focus on the suitability

and predictive performance of the developed LUC model and lack an analytic description

on the characteristics of certain LUC modeling problems.

In order to address the aforementioned limitations, this study conducts a method-

ological research on the LUC modeling with using advanced statistical learning methods

and CA in a highly developed metropolitan area – the Greater Tokyo Area. Rather than

to solely examine the suitability of specific statistical learning methods, this study aims

to utilize these statistical learning methods to provide an insight into the characteristics

of LUC modeling In particular, this study explores the effect of stochastic modeling and

the enhancements on temporal and spatial modeling.

To explore the effect of stochastic modeling, this study develops four tree-based mod-

els with the mutual basic design but varying degree of randomness, namely bagging trees

(BT), bagged gradient boosting decision tree (bagged GBDT), random forests (RF) and

extremely randomized trees (ERT), to simulate the multiple LUC process in the Greater

Tokyo Area with considering a total of 18 LU transition types. By examining and com-

paring their predictive performances of the four tree-based models, this study discusses

the benefit of stochastic mechanism of learning algorithm for improving the predictive

performance of LUC models. In addition, the explanatory abilities of different driving

factor categories for the complicated multiple LUC processes are demonstrated using the

results generated from tree-based models.

In order to enhance the spatial and temporal modeling of LUC process, this study

develops the convolution neural networks (CNN) based LUC models and recurrent neu-

ral networks (RNN) based LUC models, respectively. Both models incorporate advanced

deep learning methods into LUC modeling, but the mechanisms of incorporation are dis-

tinctively different; the CNN based models extract spatial information directly from the

satellite images to improve the performance of transition probability estimation, and then

determine the transition rules by combining with CA. On the other hand, the RNN based
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models are standalone models, which are capable of capturing the long-term temporal

variation from a time series LU data covering a time span of 17 years from 2000 to 2016.

The convolutional-based models are developed for modeling the LU transition between

agriculture, forest and built-up in Saitama prefecture; and the RNN models are developed

for modeling the LU transition from non-built-up to built-up in Tsukuba city. This study

also adopts the comparative approaches to show the improvement from using the deep

learning techniques and to provide insights on how the deep NN improves the transition

rules determination. In terms of the CNN based approach, this study developed a hybrid

CNN model and a convolutional denoising autoencoder (CDAE) model to show the dif-

ferent spatial feature extraction processes. Also, in terms of the RNN based approach,

this study developed four RNN models that belong to two categories of RNN variants:

1) simple RNN model, which is the basic variant of RNN, 2) RNN variants with gated

architecture: long short-term memory (LSTM) model, long short-term memory (LSTM)

with peephole model, and gated recurrent unit (GRU) model. These models are used to

demonstrate the importance of being able to learning long-term temporal dependency for

LUC modeling.
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Chapter 2

Modeling with tree-based algorithms

in Greater Tokyo Area

2.1 Motivation

Although a wide variety of land use change (LUC) models were developed and utilized in

previous studies, the majority of these studies only focused on the modeling of urbaniza-

tion / urban expansion / urban growth / urban sprawl (e.g. Wang and Mountrakis, 2011;

Al-sharif and Pradhan, 2015; Berberoğlu et al., 2016). The previous studies simplified

the urban dynamics into a plain binary transition process from non-built-up to built-up

lands. The modeling of binary transitions is insufficient to reflect real-world LUC pro-

cesses, and it cannot support the analyzes of urban phenomena such as urban renewal

and urban decay. To address these issues, multiple LUC modeling, which enables the

consideration of the transitions between various natural and built-up lands, is required.

Certain studies used multiple LUC modeling in urban areas. Most previous studies

have focused on transitions from natural land use types to built-up types (e.g. Li and

Yeh, 2002; Camacho Olmedo et al., 2013). However, there is a growing number of studies
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that model the transitions among built-up types to expand the coverage of transition

types (Almeida et al., 2003, 2008; Zheng et al., 2015). In addition, previous studies

mainly focused on fast developing urban areas such as Adana in Turkey (Berberoğlu

et al., 2016), Guangzhou (Chen et al., 2014) and Shenzhen (Chen et al., 2016) in China.

Thus, limited work is available for highly developed areas with characteristics significantly

different from those of fast developing areas (e.g. vast built-up areas, slow urban growth,

land shortage problems and intensive redevelopment activities). These characteristics

could lead to a distinct LUC process, but there is little evidence of LUC work focused on

developed cities in the literature.

The lack of multiple LUC modeling in a highly developed urban system may be

largely due to the following difficulties: 1) Compared with a fast-developing urban system,

a highly developed urban system has no dominating driving forces, such as demands

imposed by rapid economic growth or urban expansion plans, that can largely explain

the LUC process. Instead, both driving forces and spatial patterns are relatively more

diverse, which could impose a great challenge in the analysis of the relationship between

driving factors and LUC (Irwin and Geoghegan, 2001). 2) The complex transition rule sets

require larger and sophisticated spatial variable sets and an effective modeling framework

that can handle high-dimensional datasets (Li and Yeh, 2002). 3) Finally, there is a lack

of previous knowledge on the explanatory power of spatial variables for different land use

transitions.

A variety of statistical learning methods, including logistic regression (LR) (Munshi

et al., 2014), neural networks (NN) (Li and Yeh, 2001), support vector machine (SVM)

(Yang et al., 2008), decision tree (DT) (Li and Gar-On Yeh, 2004), and multi-criteria

evaluation (MCE) (Camacho Olmedo et al., 2013), have been integrated with cellular au-

tomata (CA) to analyze LUC in the literature. The predictive ability and interpretability

are two major model selection criteria; however, in practice, it is rare for a method to

perform well under both criteria. LR and NN are the two most prevalent methods; LR

yields easily interpretable results but is not capable of handling complex or large-scale
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problems because of the linear design (Li and Yeh, 2002), whereas NN has a strong pre-

dictive ability and non-linear design but is barely interpretable (Pijanowski et al., 2002;

Guan et al., 2005). DT is also a non-linear model similar to NN but does not possess

as remarkable a predictive ability as NN, and its interpretation is not as straightforward

as LR, which may explain the relatively small number of applications in LUC modeling

(e.g. Li and Gar-On Yeh, 2004; Al-sharif and Pradhan, 2015).

According to statistical studies, the predictive performance of DT can be improved

by incorporating ensemble methods, such as bagging and boosting, thereby yielding a

variety of tree-based ensemble algorithms that have been proven to be competitive with

NN. These tree-based ensemble methods may be a solution to the dilemma concerning

predictive ability and interpretability. This possibility can be identified by answering two

questions: 1) Do tree-based methods perform better than strong predictors, such as NN?

2) Among the various tree-based methods, with their respective distinct designs, which

method is the most suitable for LUC modeling and why?. Although a few studies used

tree-based methods and reported satisfactory predictive performances (Li et al., 2014,

2015a; Kamusoko and Gamba, 2015), the two questions remain unanswered because of

the selective application and a lack of a systematic evaluation in these studies.

To fully explore the potential of tree-based methods, this study combines a CA model

and 4 tree-based models (bagged trees (BT), random forest (RF), extremely randomized

trees (ERT) and bagged gradient boosting decision trees (bagged GBDT)) to simulate the

LUC in the Greater Tokyo Area from 2009 to 2014. This study compares the predictive

performances of the tree-based models between themselves and with the results obtained

under the NN method by using both the area under the receiver operating characteristics

(AUC-ROC) curve and the area under the precision-recall (AUC-PR) curve. In addition,

with the variable importance evaluation embedded in tree-based algorithms, this study

provides an interpretation of the effects of different driving factors. The findings of

this study provide insights and evidence regarding model selection and LUC in a highly

developed urban system.
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2.2 Methodology

2.2.1 Transition probability modeling

2.2.1.1 Tree-based algorithms

DT (decision tree) is an inductive classification method in the form of an inverted tree

structure. This method recursively partitions the learning data using a set of ”if-then”

rules and seeks to obtain the ”best” split at each step. DT contains internal nodes

that would be further split and leaf nodes that would not, therein connecting them with

branches, which represent conjunctions of variables. The recursion is completed once the

subset at a node has the same class label or when some pre-set stopping rules are met.

This study uses the CART (classification and regression tree) algorithm (Breiman

et al., 1984) to construct the DT models. CART uses the Gini impurity as the metric to

measure the quality of a split, which is defined as:

IG(t) =
c∑

i=1

p(i|t)(1− p(i|t)) = 1−
c∑

i=1

p(i|t)2 (2.1)

where IG denotes the Gini impurity at a particular node t, p(i|t) is the proportion of the

observations that belong to class i for node t, and c is the number of classes for node t.

Intuitively, the Gini impurity can be understood as a criterion to minimize the probability

of misclassification. CART selects the split rule that maximizes the Gini impurity at the

child node of t as the best split rule.

Due to its classification criteria, DT is intrinsically sensitive to the input data struc-

ture; hence, the results obtained using DT are unstable and prone to over-fitting (Caruana

and Niculescu-Mizil, 2006). On the other hand, practical algorithms are based on heuris-

tic algorithms, such as greedy algorithms, where locally optimal decisions are made at

each node, and cannot guarantee that globally optimal decisions will be returned (Ben-
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Gal et al., 2014). These two issues represent variance (the error from the sensitivity to

changes in a dataset) and bias (the error from incorrect model hypothesis) problems and

are usually addressed using boosting or bagging.

The boosted tree method was developed to achieve bias reductions by incrementally

building an ensemble by learning each new instance to emphasize the training instances

previously mis-classified (Quinlan et al., 1996). This study uses a typical algorithm,

GBDT (gradient boosting decision trees), which constructs additive regression models by

sequentially fitting single DT models to minimize the current pseudo-residuals by least

squares at each iteration (Friedman, 2002). GBDT is well recognised for its outstanding

predictive power, but is so vulnerable to noise that its predictions are sometimes not even

competitive to single DT when the noise is high (Opitz and Maclin, 1999). On the other

hand, bagging aims to improve the accuracy through variance reduction (Breiman, 1996).

BT (bagged trees) forms multiple versions of DT models by repetitively fitting them to

subsample sets drawn from bootstrap sampling (random sampling with replacement),

and then, it aggregates their predictions by averaging.

RF (random forests) (Breiman, 2001) is a widely applied learning algorithm in various

fields. This method is an enhanced version of the standard bagged trees method, with

additional randomness imposed at the split selection step. It also trains multiple CART

models from bootstrap replicas of the samples, but it derives the optimal split by searching

a random subset of candidate variables at each node. RF generally outperforms the

standard bagged trees method and is more robust than boosting trees with respect to

noise (Caruana and Niculescu-Mizil, 2006).

In ERT (extremely randomized trees) or ET (extra-trees) (Geurts et al., 2006), the

randomization is extended compared with RF in that both the variable and the cut point

are selected at random when splitting a node. This method is based on the rationale that

the extreme randomization of the cut point and variable combined with ensemble schemes

should be able to further reduce the model’s dependence on the data structure and hence
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improve the model’s generalization performance. The standard ERT algorithm published

by Geurts et al. (2006) uses the whole learning sample rather than a bootstrap replica

to grow trees to compensate for the accuracy loss caused by randomness. However, this

study discards this change to further increase the randomness of the algorithm to provide

a matched comparison with the results obtained using BT and RF.

To mitigate the impact of noise produced by the irrelevant variables, this study per-

formed variable selection using the variable importance evaluation embedded in those

tree-based learning algorithms. The evaluation is based on the idea that the relative

rank (i.e., depth) of a variable used as an internal node explains the relative importance

of the variable. The importance score of a variable is defined as the normalized total

reduction of the Gini impurity produced by that particular variable. This study sorted

the obtained variable importance in descending order, calculated the accumulation, and

selected the variables within 95% of the total accumulation.

This study also performed hyperparameters optimization using a grid search method

to avoid over-fitting and improve the model’s performance. The hyperparameters of DT

include the tree depth, minimum samples in a leaf node, minimum samples for a split

and minimum impurity for a split. In addition to these basic hyperparameters, this study

further tuned the tree numbers and bootstrap sampling ratio for RF and ERT and the

tree numbers and learning rate for GBDT.

2.2.1.2 Multi-layer perceptron

MLP (multi-layer perceptron) is a basic feed-forward neural network and consists of one

input layer, one or more hidden layers and one output layer. These layers are fully

connected by a set of weights, which are learned and updated by the back-propagation

algorithm. MLP’s ability to learn and generalize depends on its architecture (number of

hidden layers and nodes) and on the hyperparameters (learning rate, etc.).
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In this study, this study uses cross-entropy as the loss function, ReLU (rectified linear

unit) as the activation function and the mini-batch gradient descent algorithm as the

optimizer to train the model. A set of hyperparameters were tuned in the training

process to achieve the optimal generalization performance, including the number of hidden

layers, learning rate, training epoch, mini-batch size, momentum, learning rate decay, L2

regularization and dropout ratio. In addition, each mini-batch was specifically designed

to have the same ratio between samples with changed or unchanged state of land use over

time as the original dataset, while training.

2.2.1.3 Bootstrap sampling and aggregating

The dilemmas of spatial autocorrelation and sample representativeness are tricky issues

in spatial modeling (Hirzel and Guisan, 2002; Munroe et al., 2004). Previous studies

usually adopted either random sampling which can well represent the population (Xie

et al., 2005; Huang et al., 2009; Chen et al., 2014), or stratified random sampling which

seeks to achieve a balance between spatial autocorrelation and sample representativeness

(Arsanjani et al., 2012; Mozumder et al., 2016). However, these methods may still lead

to a poor representative sample when applied to the multiple LUC problem, in which the

spatial heterogeneity tends to be much higher than in typical cases of binary LUC.

This study uses an approach based on the idea of bagging, which seeks to reduce the

sampling error by incorporating the whole spatial dataset into the model training in an

ensemble approach. The procedure is as follows: 1) use bootstrap sampling to repetitively

split the whole sample set into a training set and a holdout set at a ratio of 0.35:0.65,

2) learn a basic predictor on the training set and subsequently obtain the prediction of

the holdout set at each iteration, and 3) aggregate the predictions of the holdout set by

performing averaging when the iteration is finished. The standard bagging method is used

to address the disadvantages of DT algorithms. This approach has a similar procedure

as the bagging method but possesses the advantages of being able to reduce the possible
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sampling error using bootstrap sampling and aggregating.

In practice, this study uses DT, GBDT and MLP as the basic predictors and obtain

bagged DT, bagged GBDT and bagged MLP models. Since RF and ERT are already

bagging ensembles of DT, this study directly uses them to implement the bootstrap sam-

pling and aggregating approach rather than wrapping them into other bagging schemes.

Finally, five models (DT, RF, ERT, bagged GBDT and bagged MLP) were developed for

the transition probability prediction.

2.2.2 CA model

The CA model used in this study is based on the well-developed CA model DINAMICA

(Soares-Filho et al., 2002), which has been widely applied in ecological and urban LUC

modeling (e.g. Almeida et al., 2003; Pérez-Vega et al., 2012; Rossetti et al., 2013). DI-

NAMICA defines two main vicinity-based transitional functions, expander and patcher,

to simulate the land use patch dynamics in a stochastic multi-step approach. The ex-

pander function is dedicated to the expansion or contraction of the previous patches of

a certain land use class, and the patcher function is designed to generate new patches.

The two processes are merged using the following calculation:

Qij = r × expander + s× patcher (2.2)

where Qij is the total number of transitions from land use class i to j; r and s are the

percentages performed by the expander and patcher functions, respectively; and r + s

= 1. The patch size is drawn from a log-normal distribution, and the patch shape or

compactness is determined by a parameter named isometry.

In this study, the simulation was iterated over the modeling period on a yearly basis.

The total number of transitions is determined by a simple operation of cross-tabulation

based on initial and final land use maps and is then assigned to each iteration in an
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average-based manner. The simulated map is updated by each iteration according to the

results obtained by the expander and patcher functions. Both functions use a stochastic

selection mechanism to select seeds (the centre cell of a transition patch), which prioritize

high transition probabilities over low transition probabilities with a certain degree of

randomness, where the randomness strength can be adjusted.

This study performed some modifications to the expander function to adapt it to the

LUC problem of this study. The modified expander function is defined as:

if nj > 3 or P (ij)(xy) > t then P ′(ij)(xy) = P (ij)(xy)

else P ′(ij)(xy) = p(ij)(xy)×
√
nj

4

(2.3)

where P (ij)(xy) denotes the transition probability from land use class i to j, t denotes

a preset threshold, and nj denotes the number of cells of land use class j occurring in a

3×3 window.

The expander function can be regarded as a penalty mechanism on cells that have

relatively few neighbors of land use j. The penalty here is specifically designed to be

lighter than that in the original expander function by taking the square of the original

coefficient nj/4 and establishing a safe zone based on a preset threshold. The rationale

behind this penalty abatement is that 1) the impact of neighboring land use has already

been controlled in the transition probability prediction by employing land use enrichment

factors, and 2) misclassification mainly occurs at cells with low certainty (low transition

probability) rather than cells with high certainty (high transition probability) according

to previous studies (Gong et al., 2015; Li et al., 2015a).
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2.2.3 Validation

2.2.3.1 Validation of statistical learning models

This study uses the receiver operating characteristics (ROC) curve and the precision-

recall (PR) curve, specifically the corresponding areas under the curves (AUC-ROC and

AUC-PR), to evaluate the predictive performances of the tree-based learning methods.

Both metrics are calculated based on confusion matrix.

ROC is a well-documented model assessment tool. It depicts the trade-off between the

false-positive rate (FPR) and the true-positive rate (TPR) with varying thresholds, and

the AUC-ROC is used as a quantitative measure for assessing the classification perfor-

mance. Specifically, an AUC-ROC value of 0.5 is the random baseline, and values below

0.5 indicate a systematically incorrect model (Jansen and Veldkamp, 2012). ROC is fre-

quently used to evaluate the quality of the transition probability (Pontius and Schneider,

2001). However, while ROC describes the performance of both negative and positive

classes, which correspond to unchanged and changed areas in the context of LUC model-

ing, the main interest is usually the simulation performance of changed areas (Pérez-Vega

et al., 2012; Gong et al., 2015). Moreover, AUC-ROC can present an overly optimistic

view of an algorithm’s performance if the data are highly imbalanced (Davis and Goad-

rich, 2006).

Hence, this study uses AUC-PR to address the above-mentioned problems. AUC-PR

is a sequence of precision and recall values with varying thresholds. It provides a more

specific assessment of a model’s ability to predict changed areas and exclude the influence

of data imbalance. It should be noted that although AUC-ROC and AUC-PR are closely

related, the algorithms that optimize AUC-ROC are not guaranteed to optimize AUC-PR

(Davis and Goadrich, 2006).
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2.2.3.2 Validation of CA simulation

This study performs both cell-to-cell and vicinity-based assessments to evaluate the sim-

ulation quality using the overall accuracy and Cohen’s Kappa statistics for the cell-to-cell

assessment and fuzzy Kappa statistics for the vicinity-based assessment. This study uses

the fuzzy Kappa over other metrics (e.g. the multi-resolution fitting procedure (Costanza,

1989) and the fuzzy similarity Hagen (2003)) because of its intrinsic connection to clas-

sic Kappa, which enables comparison between the cell-to-cell and vicinity-based perfor-

mances.

The classic Kappa statistics describe the agreement between two observation cate-

gories by excluding the agreement due to chance (Bennett et al., 2013) and is defined

as:

K =
p0 − pe
1− pe

(2.4)

where p0 is the relative observed agreement and pe is the hypothetical probability of

chance agreement. In this binary case

p0 =
TP + TN

TP + TN + FP + FN
(2.5)

pe =
TP + FP

TP + TN + FP + FN
× TP + FN

TP + TN + FP + FN
+ (2.6)

TN + FP

TP + TN + FP + FN
× TN + FN

TP + TN + FP + FN
(2.7)

where TP denotes true positive, FP denotes false positive, TN denotes true negative,

FN denotes false negative. In terms of the implication of the magnitude of the Kappa

coefficient, a value above 0.8 represents a strong agreement between two maps, a value

between 0.6 and 0.8 represents a somewhat strong agreement, a value between 0.4 and

0.6 represents a moderate agreement, and a value below 0.4 represents a weak agreement

(Landis and Koch, 1977).

Fuzzy Kappa has the same rationale as classic Kappa, but it introduces fuzzy set
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theory to account for the category similarity and neighborhood similarity by attributing

some degree of agreement to similar land use categories (e.g. low-density and high-

density low-rise buildings) at corresponding locations or in a neighborhood. This study

only considers the neighborhood similarity in this study because the category similarity

may exaggerate the performance of a simulation. A Gaussian distance decay function is

used to specify the agreement level with respect to distance within a neighborhood. In

addition, This study uses a two-way similarity approach recommended by Hagen (2003)

to avoid over-estimation caused by the overpowering influence of the similarity between

neighborhoods. This approach would significantly reduce the degree of agreement if

the centre cells of two maps do not belong to the same category. For a more detailed

demonstration and mathematical description of fuzzy Kappa and the two-way similarity,

refer to Hagen (2003).

2.2.4 Model framework

Figure 2.1 shows the model framework. The multiple LUC modeling is disaggregated

by the initial land use classes and then divided into several sub-tasks with an identical

land use class within each sub-task. These sub-tasks are separately performed with the

integrated model. The outputs are aggregated to produce the final land use map at the

end of the process.
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Figure 2.1: Modeling framework

Cells with a certain land use class could undergo different transitions, leading to a

multi-classification problem in statistical learning. The One-versus-Rest (OvR) approach,

which trains a single predictor per class, with the samples of that class as positive samples

and all other samples as negative samples, is used to address this issue. However, the

OvR approach has a shortcoming in that it may aggravate the data imbalance problem

(i.e., observations of some classes are significantly fewer in number than those of other

classes). To avoid this problem, this study uses a class weight adjustment, which assigns

higher weights to minority classes according to their proportions and hence ensures that

minority classes obtain greater focus by the predictor.

Four tree-based learning methods are used to achieve the transition probability pre-

diction, but only the method with the highest predictive performance would be used to

produce the transition probability maps for further simulation.

Given that the CA model can only simulate one transition at a time, the already
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disaggregated multiple LUC processes are further divided into binary transitions. The

binary transitions are separately simulated by the CA model, and then, the simulation

results are aggregated. To resolve conflicting locations that may be identified during the

aggregation process, this study 1) removes the contenders that are not selected as seeds

in the corresponding expander or patcher simulating process and 2) selects the survivor

with the highest transition probability.

2.3 Implementation

2.3.1 Study area and land use data

The study area is the Greater Tokyo Area in Japan, which is a highly developed metropoli-

tan area. This area consists of Tokyo city and its three surrounding prefectures; the area

is approximately 18,500 km2 and contains a population of approximately 38 million. This

area is the second largest single metropolitan area in the world in terms of built-up or ur-

ban function landmass, approximately 8,500 km2. The Greater Tokyo Area experienced

rapid LUC until the 1980s; subsequently, the change rate decreased dramatically after

the asset bubble burst. The LUC rate has remained low since then.

32



Figure 2.2: Land use map of Greater Tokyo Area in 2009
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Table 2.1: Land use summaries of 2009 and 2014

2009 2014

Agri. 362,134 (19.64%) 345,382 (18.73%)

Forest 287,771 (15.61%) 284,075 (15.41%)

Vacant 47,489 (2.57%) 43,705 (2.37%)

High-rise bldgs. 32,316 (1.75%) 47,985 (2.60%)

Industrial 30,987 (1.68%) 29,175 (1.58%)

Low-density and low-rise bldgs. 443,373 (24.04%) 447,311 (24.25%)

High-density and low-rise bldgs. 52,284 (2.83%) 52,577 (2.85%)

IRL 66,225 (3.59%) 66,941 (3.63%)

Water body 45,952 (2.49%) 52,330 (2.83%)

Restricted area 475,403 (25.78%) 474,453 (25.73%)

This study uses finely classified land use maps of 2009 and 2014 from a geographical

project of the Ministry of Land, Infrastructure and Transportation of Japan 1. The land

use maps have a resolution of 100×100 m, which is acceptable for a large-scale study.

This study aggregated the 17 land use classes in the original land use maps into 10

classes by merging similar categories. The 10 land use classes are agriculture, forest,

vacant land, institutional/recreational/leisure (IRL) lands, industrial area, low-density

low-rise buildings, high-density low-rise buildings, high-rise buildings, water body and

restricted area (see Figure 2.2 for the spatial distribution of LU categories and Table 2.2

for the definition of LU categories). This study excludes restrict area and water body

from consideration, and are left with 8 land use classes for analysis. In the Greater Tokyo

Area, high-rise building areas are mainly located in the central area. Low-density and

low-rise building areas, agriculture and forest are scattered across the non-central area.

1Online access: http://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-u.html

34



Table 2.2: Definition of land use categories in Greater Tokyo Area for 2009 and 2014

LU category Description

Agriculture

Lands used for growing crops including wet paddy filed,
dry paddy field, swamp paddy field, fields used for growing
wheat, upland rice, vegetables, fruits, tea, wax tree, paper
mulberry, hemp palm, etc., as well as grassland and lawn

Forest Lands where perennial plants are densely distributed

Vacant land
Areas including vacating man-made open space, wasteland,
cliff, wetland, rocky land, mining land, etc.

High-rise and high-density
buildings

Residential, commercial and other areas where mansions
with four stories and above are densely distributed

Low-rise and high-density
buildings

Residential areas where residential buildings with three sto-
ries and lower are densely distributed

Low-rise and low-density
buildings

Residential areas where residential buildings with three sto-
ries and lower are loosely distributed

Industrial area
Lands where buildings used for manufacturing production
are distributed

Institutional / recreational /
leisure lands

Areas including playground, air port, racecourse, baseball
ground, schools, well-maintained park and green area (water
body excluded), golf course, etc.

Water body
Areas including river and river bed, artificial lake, natural
lake, pond, fish farm, etc. where are filled with water for
most of the time

Restricted area Areas where LU information is not available

Notes:
The definitions of LU categories are based on the information provided by National Land Information
Division, National and Regional Policy Bureau of Japan
(http://nlftp.mlit.go.jp/ksj/gml/codelist/LandUseCd-09-u.html)
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Of the various possible land use transitions that could occur from the 8 land use types,

this study excluded transition categories with a frequency of less than 1% of the total

number of transitions. The remaining 18 transitions are summarized in Tables 2.1 and

2.3. LU transitions seem to be rare events, as most transition frequencies do not exceed

5%, yielding a highly imbalanced dataset (i.e., the unchanged land use class has far more

observations than the changed land use class). Typical urban phenomena are reflected in

the land use transitions. For instance, transitions from agriculture/forests to low-density

and low-rise buildings reflect urban expansion, transition from low-rise buildings to high-

rise buildings reflects urban renewal, and transition from IRL to forests reflects urban

decay.

2.3.2 Driving factors of LUC

This study constructed a variable set with approximately 100 dimensions. The variables

can be categorized into neighborhood land use enrichment, accessibility, physical factors,

and socio-economic and policy factors (see Table 2.4). The spatial data were collected

from the Ministry of Land, Infrastructure and Transportation of Japan, OpenStreetMap

and the SRTM3 (Shuttle Radar Topography Mission 3) database.

The land use enrichment factor is a measure developed by Verburg et al. (2004) and

extended by (Liao et al., 2016) to characterize the over- or under-representation of land

use types in a neighborhood. This measure is defined as:

Fl,d,i =
nl,d,i/nd,i

Nl/N
(2.8)

where Fl,d,i is the enrichment of neighborhood d of location i with land use type l, nl,d,i

is the number of cells of land use type l in the neighborhood d of the centre cell i, nd,i is

the total number of cells in neighborhood d, Nl is the number of cells with land use type

l, and N is the total number of cells in the map. This study calculated the enrichment
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factors in Moore neighborhoods of varying sizes with radii of 1, 3, 7, 20, and 55 cells to

capture the characteristics of both small and large neighborhoods.

This study also considered a variety of socio-economic and policy factors which have

been demonstrated to play important roles in LUC modeling (Guan et al., 2005; Puertas

et al., 2014; Xu et al., 2016). The socio-economic factors include population density, land

prices, GDP, floor area ratio (FAR) and administrative district dummies, and the policy

factors include development planning and LU zoning. Land prices were interpolated from

a vector map with a sequence of survey locations and land price data using the ordinary

Kriging method. FAR represents the free population capacity characterizing a building

in an area and is calculated as the difference between the permitted maximum FAR and

the current FAR.

The Greater Tokyo Area is composed of various areas, from central capital area to

more remote suburbs that vary greatly in city orientation, development level, and demo-

graphic characteristics. This study uses the variation in socio-economical factors to cap-

ture the spatial variation within the Greater Tokyo Area; administrative district dummy

and development planning are used to control for the difference in city orientation, GDP

and land price reflect the variation in development level, and population density helps to

control varying demographic characteristics.

2.3.3 Programming environment

The whole modeling process was implemented in Python. In addition to the basic sci-

entific computation libraries of Numpy, Pandas and Scipy, Arcpy (ESRI Inc.), Pykrige

(Murphy, 2014) and Pysal (Rey and Anselin, 2010) were used for the geographical data

processing and spatial analysis, Scikit-learn (Pedregosa et al., 2011) was used to develop

the tree-based models, and Tensorflow (Abadi et al., 2016) was used to develop the MLP

models. The full implementation in Python yields an efficient workflow and allows for
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great flexibility in making modifications to the methods developed in previous studies for

adapting to specific LUC modeling problems.

2.4 Results

2.4.1 Assessment of transition probability prediction models

The application and examination of various statistical methods are the main focus of this

study. This study provides 1) a comparison of different statistical learning algorithms as

basic predictors of the transition probability and 2) the combination of these algorithms

with the bootstrap sampling and aggregating approach. In the calibration stage, the

dataset is split into a training set and a test set at a ratio of 0.8:0.2. All models were

built upon the training set and evaluated on the test set. The training and test sets

retain the same ratio of samples, with unchanged or changed states of land use over time,

as the raw dataset. This avoids an over-estimated model performance due to the data

imbalance. DT, GBDT and MLP were used as basic predictors and were trained on the

same sub-sample, at a proportion of 35%. The outputs were binarized to calculate the

AUC-PR and AUC-ROC curves. Table 2.5 summarizes the results.

Overall, the AUC-ROC curves of all the models are above 0.5, confirming the validity

of these models. DT has substantially lower AUC-ROC curves than MLP but exhibits a

better performance than MLP with respect to AUC-PR. Given that the PR curve and

ROC curve share a mutual index of TPR (recall) and differ in the use of precision and

FPR, the possible reasons for this result are that DT tends to sacrifice overall accuracy

to achieve high precision, whereas MLP better focuses on overall accuracy, and / or

that DT is more effective in resolving the data imbalance problem. These tendencies

should be associated with the different objective functions and optimization strategies;

however, an explicit mathematical explanation is beyond the scope of this study. The
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predictive performance of DT is greatly improved when using boosting, especially in terms

of AUC-ROC. GBDT outperforms MLP on both metrics, but its performance seems to be

problem specific, i.e., in a few cases, such as transitions beginning from IRL, the AUC-PR

of GBDT is lower than those of DT. The possible large amount of noise in these problems

may be responsible for this phenomenon.

Next, this study combined the basic predictors with bagging-based ensemble methods.

Table 2.6 shows substantial improvements in the prediction metrics for the basic predic-

tors when integrated with bagging-based methods. From DT to BT, the average and

standard deviation of AUC-ROC over various transition problems improved from 0.64 ±

0.07 to 0.91 ± 0.06, and those of AUC-PR changed from 0.32 ± 0.15 to 0.57 ± 0.18. Inte-

grating GBDT with a bagging algorithm does not induce as significant of improvements

as does integrating DT with a bagging algorithm; the bagged GBDT achieves AUC-ROC

of 0.92 ± 0.06 and AUC-PR of 0.58 ± 0.24, which are similar to those obtained under

BT. This result demonstrates that the advantage of GBDT over DT could be canceled

out when being incorporated into a bagging scheme.
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Table 2.4: Spatial variables

Categories Factors

neighborhood characteristics neighborhood enrichment of forest
( with varying neighborhood neighborhood enrichment of agriculture
sizes) neighborhood enrichment of vacant land

neighborhood enrichment of institutional land
neighborhood enrichment of recreational/leisure land
neighborhood enrichment of low-density and low-rise buildings
neighborhood enrichment of high-density and low-rise buildings
neighborhood enrichment of high-rise buildings
neighborhood enrichment of water body
neighborhood enrichment of restrict area

Accessibility Proximity to roads and railways
Distance to motorway
Distance to highway
Distance to primary road
Distance to secondary road
Distance to tertiary road
Distance to railway
Distance to subway

Proximity to regional centres
Distance to metropolitan area centre
Distance to city centre
Distance to district centre
Distance to town centre

Proximity to other geographical features
Distance to river
Distance to coast line
Distance to airport
Distance to university
Distance to hospital

Physical factors Coordinates
Elevation
Slope
Hill shade
Soil type

Socio-economical factors Population density
Land prices
GDP
Floor area ratio
Administrative district dummies (categorical, 4 categories)

Policy factors Urban development plan (categorical, 6 categories)
Land use zoning (categorical, 13 categories)
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Table 2.5: Single predictor comparison

DT GBDT MLP

AUC-
ROC

AUC-
PR

AUC-
ROC

AUC-
PR

AUC-
ROC

AUC-
PR

Forest to agri. 0.559 0.142 0.81 0.166 0.719 0.116
Forest to low-density and low-rise bldgs. 0.574 0.172 0.876 0.173 0.822 0.167
Agri. to forest 0.566 0.130 0.868 0.093 0.734 0.086
Agri. to low-density and low-rise bldgs. 0.588 0.196 0.783 0.171 0.752 0.162
Vacant to IRL 0.721 0.483 0.878 0.560 0.857 0.479
Vacant to forest 0.659 0.361 0.867 0.384 0.807 0.312
Vacant to low-density and low-rise bldgs. 0.604 0.223 0.855 0.295 0.823 0.213
Vacant to industrial 0.661 0.411 0.849 0.440 0.782 0.377
Vacant to high-rise bldgs. 0.666 0.332 0.951 0.349 0.938 0.275
IRL to forest 0.582 0.241 0.927 0.221 0.858 0.243
IRL to high-rise bldgs. 0.609 0.231 0.915 0.156 0.932 0.13
Industrial to Low-density and low-rise bldgs. 0.614 0.269 0.863 0.310 0.770 0.200
Industrial to vacant 0.645 0.322 0.803 0.292 0.807 0.268
Industrial to IRL 0.848 0.720 0.964 0.838 0.885 0.784
Low-density and low-rise bldgs. to high-rise
bldgs.

0.668 0.361 0.825 0.230 0.807 0.321

High-density and low-rise bldgs. to high-rise
bldgs.

0.701 0.424 0.881 0.408 0.817 0.466

High-rise bldgs. to low-density and low-rise
bldgs.

0.631 0.323 0.821 0.311 0.792 0.215

High-rise bldgs. to high-density and low-rise
bldgs.

0.713 0.460 0.939 0.451 0.865 0.419
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Among the three bagging ensemble models of DT, BT and RF achieve similar perfor-

mances, whereas ERT significantly outperforms them, with AUC-ROC of 0.95 (± 0.04)

and AUC-PR of 0.63 (± 0.22). This result indicates that the randomization mechanism

of the bagging-based algorithm may affect the performance of the transition probability

prediction, but the impact depends on the specifics of the randomization type. Compared

with BT, which does not incorporate any randomization in the modeling process, RF in-

troduces a certain degree of randomization by randomly selecting variables for splits to

reduce the model’s reliance on a specific explanatory variable set; however, this random-

ization method does not seem to have a significant effect on improving the predictive

performance. On the other hand, ERT further incorporates randomization in the cut-

point selection, which is approximately equivalent to the random determination of the

transition rules for each basic predictor. This particular randomization method helps

ERT to achieve the highest predictive performance, which highlights the effectiveness of

the random determination of transition rules for representing the stochastic process of

LUC.

2.4.2 Assessment of CA simulation

The land use simulation by the expander and patcher functions is a stochastic process,

which implies different outputs for each simulation. This study ran the simulation with

the same configuration 10 times and obtained the final results by plurality voting. Table

2.7 presents the assessments of the simulation results.

Overall, the Kappa coefficients ranged from 0.41-0.92, which indicates a large varia-

tion among the transition types. According to the implication of the magnitude of the

Kappa coefficient (Landis and Koch, 1977), the modeling of transitions between forest,

agriculture and low-density and low-rise buildings and of transitions from industrial to

vacant land and IRL only achieves moderate agreement; the modeling of transitions be-

ginning from vacant land, transitions from IRL to high-rise buildings and transitions from
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Table 2.7: Assessment of simulated results

Overall
accuracy

Kappa
Fuzzy Kappa

3×3 5×5 7×7 11×11

Forest to agri. 0.958 0.41 0.532 0.575 0.61 0.612
Forest to low-density and low-rise bldgs. 0.971 0.421 0.532 0.581 0.612 0.648
Agri. to forest 0.975 0.409 0.454 0.497 0.523 0.56
Agri. to low-density and low-rise bldgs. 0.959 0.613 0.607 0.621 0.635 0.655
Vacant to IRL 0.997 0.927 0.959 0.97 0.975 0.98
Vacant to forest 0.997 0.898 0.937 0.95 0.955 0.961
Vacant to low-density and low-rise bldgs. 0.977 0.852 0.883 0.9 0.909 0.922
Vacant to industrial 0.98 0.784 0.894 0.932 0.947 0.961
Vacant to high-rise bldgs. 0.993 0.922 0.961 0.974 0.98 0.986
IRL to forest 0.976 0.797 0.803 0.841 0.857 0.88
IRL to high-rise bldgs. 0.996 0.916 0.949 0.962 0.965 0.968
Industrial to Low-density and low-rise
bldgs.

0.987 0.843 0.857 0.873 0.884 0.9

Industrial to vacant 0.964 0.554 0.574 0.59 0.62 0.664
Industrial to IRL 0.974 0.53 0.55 0.578 0.598 0.629
Low-density and low-rise bldgs. to high-
rise bldgs.

0.988 0.782 0.8 0.844 0.871 0.905

High-density and low-rise bldgs. to high-
rise bldgs.

0.972 0.642 0.665 0.684 0.694 0.71

High-rise bldgs. to low-density and low-
rise bldgs.

0.962 0.615 0.66 0.687 0.703 0.727

High-rise bldgs. to high-density and low-
rise bldgs.

0.976 0.632 0.647 0.659 0.665 0.675
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industrial to low-density and low-rise buildings achieves strong agreement.

Fuzzy Kappa explores the possibility that the land use simulation may successfully

locate an approximate position of LUC but fail to predict the state of the exact cell.

The coefficients increase by 0.01-0.12 from Kappa to fuzzy Kappa with a neighborhood

size of 3×3 for land use transitions. In particular, transitions beginning from forest and

transitions from vacant land to industrial areas show the largest increase, approximately

0.1. Although the misclassification of exact cells is common when using the expander and

patcher functions, these differences are sometimes large enough to imply the incapability

of transition probability models to distinguish the sophisticated variations characterizing

these particular transitions.

Figure 2.3 shows a comparison of the simulated and actual maps as well as an enlarged

map of the central urban area. Figure 2.4 presents the visualization of simulation errors.

According to Figure 2.4, incorrectly estimated cells are mainly distributed in the central

and northwest parts of Greater Tokyo Area and have very sparse spatial distributions.

Error type 2 is the case in which the model fails to predict the future change in land use

types, and this error occurs in approximately 2/3 of all cells with any error. Error type

3 is the case in which the model successfully predicts the future change in land use but

fails to predict the correct destination, and this error occurs in approximately 3% of all

cells with any error. The large difference in the number of cells with error type 2 and

error type 3 indicates that predicting the occurrence of land use change is more difficult

than predicting the type of transition.
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Figure 2.3: Visualization of actual map and simulated map in 2014

2.5 Discussion

2.5.1 Decomposition of ERT model

Our results indicate that using the ERT algorithm to enhance DT and address the spatial

sampling problem has proven to be an effective approach; however, the rationale for what

observed as the results needs further interpretation. ERT and other bagging ensemble

models would reduce two sources of variance: the variance inherent to the DT algorithm

and the variance arising from the sampling. For simplicity, the former is denoted as DT

enhancement, and the latter is denoted as sampling correction.

To decompose the variance reduction process, this study used the ERT models as

basic predictors and trained the bagged ERT models using the bootstrap sampling and

aggregating approach. These bagged ERT models were compared with single DT and sin-

gle ERT models, which were trained on a sub-sample to calculate the variance reductions.

It is presumed that the variance reductions from the single DT to single ERT models are

accounted for by DT enhancement, and the variance reductions from the single ERT to

bagged ERT models are accounted for by sampling correction.
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In Table 2.8, the first step (from single DT to single ERT) and the second step (from

single ERT to bagged ERT) present different trends with respect to the three metrics. The

first step significantly reduces the total error; the second step also reduces the total error

but much less. The total error decrease is supposed to equal the reduction in the variance,

as theoretically bagging algorithms only address error variance. Therefore, the results

indicate that both DT enhancement and sampling correction have reduced the variance

of the transition probability prediction. Overall, the contribution of the DT algorithm

enhancement is much higher. Combining the results of AUC-ROC and AUC-PR, it can be

seen that both metrics significantly increase through two steps; the proportional increase

extents of both metrics by DT enhancement are similar, whereas with respect to sampling

correction, the proportional increase extent of AUC-PR is larger than that of AUC-ROC.

This result may imply different effects of DT enhancement and sampling correction in

the variance reduction based on the different characteristics of the ROC and PR curves.

DT enhancement improves the performance of both positive (changed cells) and negative

classes (unchanged cells) with no preference, whereas sampling correction mainly focuses

on improving the positive class (changed cells).
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Notes:
Error type 1: land use does not actually change but changes in the results of simulation
Error type 2: land use actually changes but does not change in the results of simulation
Error type 3: land use actually changes and also changes in the results simulation, but the predicted
change is inaccurate

Figure 2.4: Visualization of correction and error
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2.5.2 Driving factors of LUC

Tree-based learning algorithms provide not only high-quality transition probability pre-

diction but also insights into the complex urban dynamics. Using the variable importance

evaluation, this study examines the explanatory powers of various driving factors. This

study considers five driving factor categories: neighborhood effect, accessibility, physical

factors, socio-economic factors and policy. To address the different influences of the end

land use of a specific transition and other land use types, this study further divides the

neighborhood effect into main and auxiliary neighborhood effects, which account for the

neighborhood enrichment of end land use type and other land use types, respectively.

The average importance score of variables that belong to the same category of driving

factor is calculated to represent the average importance of the driving factor. Figure 2.5

presents the results.

The main neighborhood effect is the strongest explanatory factor, but its explanatory

factor varies significantly with transition type. In contrast, the impacts of the auxil-

iary neighborhood characteristics are relatively small but consistent over transition type.

Accessibility and physical factors, which are commonly used in LUC modeling studies,

have modest explanatory powers. Socio-economic and policy factors are relatively less

important but may play critical roles in certain land use transition processes such as land

use transitions from certain sources to high-rise buildings (see T7, T11, T15 and T16 in

Figure 2.5). This finding is plausible given that high-rise buildings are mainly high-grade

residential or commercial buildings, and LUC occurs when the new land use type is able

to provide greater value, especially economic value in a free market (Zheng et al., 2015).

On the other hand, transitions related to industrial areas are heavily constrained by pol-

icy factors, particularly the land use zoning policy (see T8 and T12 in Figure 2.5). This

result may be because industrial areas are subject to relatively strict government regu-

lations due to their environmental impact and social concerns. In contrast, transitions

between forests, agriculture and low-density and low-rise buildings are not explained by
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Figure 2.5: Importance evaluation of driving factors
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policy factors, except for the transition from forest to low-density and low-rise buildings;

this indicates relatively soft regulations of these behaviors.

This study further explores the main and auxiliary neighborhood effects by examining

the importance scores of land use enrichment variables with varying neighborhood size

(see Figure 2.6). In general, the importance scores of the main neighborhood effect

decrease with the neighborhood size, whereas the importance scores of the auxiliary

neighborhood effect increase with the neighborhood size. This result may reflect the

distinct rationale behind the main and auxiliary neighborhood effects; the former follows

the expanding rule whereby a nearby neighborhood has a greater impact, whereas the

latter represents the influence of more general characteristics of the local area.

Figure 2.6: Importance of main and auxiliary neighborhood effects with varying neigh-
borhood sizes
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2.5.3 Varying modeling performances

Table 2.7 and 2.8 show a significant modeling performance variation among different

types of land use transition. Such variation may result from variations in the degree of

spatial autocorrelation and/or variations in the land use transition characteristics. For

instance, in our results, the transition to IRL mainly occurs around the harbor. Hence this

transition has the highest spatial autocorrelation compared to the other two transitions

beginning from industrial areas that occur in more dispersed areas, and this transition

exhibits a higher modeling performance.

This study provides two examples in which specific characteristics of a transition lead

to significantly high or low performances. Usually, LUC modeling should consider the

two processes: discarding the functionality of the current land use and accepting the

functionality of a new usage. However, transitions from vacant land to other land uses

only consider the latter process, because although vacant land has certain economical

value depending on factors such as location and ownership, it has almost no industrial or

ecological contribution.

This particular characteristic may lead to a relatively simple and straightforward

transition rule that can be more easily addressed by statistical models and produce the

exceptionally high modeling performances. On the contrary, the modeling of transitions

between forest, agriculture and low-density and low-rise buildings achieves relatively poor

performances compared to the other transitions because these land use types are mainly

privately owned; low-density and low-rise buildings mainly consist of residential buildings,

and more than half of the forest areas in Japan are privately owned. Therefore, individual

decision making seems to play an important role in determining the transition rules

between the three land use types, and its absence in the LUC modeling could undermine

the predictive performances.
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2.6 Summary

This study used an integrated approach based on a tree-based model and a CA model to

simulate multiple LUC processes in the Greater Tokyo Area, focusing on the application

of tree-based methods and the interpretation of the urban dynamics. This study used 4

tree-based models (BT, RF, ERT and bagged GBDT) to predict the transition probability

of LUC processes and compared the predictive performances of these methods with MLP

and among themselves. All the tree-based models outperformed NN, and among them,

ERT showed the best predictive performance in this multiple LUC modeling task. The

results indicate that bagging provides a greater performance improvement for DT than

boosting, and the introduction of randomization into the bagging algorithm improves

the predictive performance. The results of this study indicate that the integration of

tree-based methods and CA is an effective approach for multiple LUC modeling.

In addition to the outstanding predictive ability, tree-based models also provide in-

sights into the driving factors of LUC processes and help us to understand the complex

urban dynamics. In terms of this study, the land use neighborhood characteristics have

the strongest impact on LUC in the target area, but their explanatory powers in various

LUC processes vary. Moreover, the impact depends on the neighborhood land use type

and the neighborhood size; the neighborhood effect of end land use generally decreases

with the neighborhood size, whereas the neighborhood effects of other land uses generally

increase with the neighborhood size. The significant influence of a large neighborhood

was reported in previous studies (Hagoort et al., 2008; van Vliet et al., 2013b), and the

findings of this study further elucidated the additional details of the relationship between

the strength of the neighborhood effect, the neighborhood size and the land use type.

This study also found that socio-economic factors, particularly land prices, have a strong

influence on the transitions from various land use types to high-rise buildings, indicat-

ing their important roles in urban redevelopment. Furthermore, land use zoning policies

act as strong constraints on the LUCs associated with industrial areas but have little

55



influence on the changes between forests, agricultural lands and low-density and low-rise

buildings.

The approach developed in this study, which combined the predicted transition prob-

ability and driving factor analysis, can provide comprehensive evidence for generating

detailed and effective zoning legislation for various urban land use types in metropolitan.

In addition, the approach can be used to generate the multiple land use maps, which are

useful inputs for various environmental modeling tasks, such as air pollution modeling

and carbon footprint analysis, where the differentiation of natural land use and various

built-up types is essential.
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Chapter 3

Modeling with convolutional neural

networks in Saitama prefecture

3.1 Motivation

Cellular automata (CA) simulates the complex transitional rules by stacking simple neigh-

borhood rules (White and Engelen, 1993). Given its simple but effective mechanism, CA

has become the most prevalent approach in LUC modeling over the last decade (Aburas

et al., 2016). CA’s effectiveness also indicates the important role of neighborhood rules

in LUC modeling; CA variants can enhance CA’s performance by modifying, transform-

ing or extending the mechanisms of neighborhood rule construction (Santé et al., 2010;

Chaudhuri and Clarke, 2013).

Patch-based CA adopts a patch-based simulation strategy rather than a cell-based

strategy (Li et al., 2013; Chen et al., 2014, 2016; Li et al., 2017). It simulates the behavior

of LU patches (i.e., homogeneous cells that are spatially connected) to generate overall

LU patterns, and this simulation process can be referred to as a mechanism that binds

and regularizes the transitional rules of cells that are located in the same neighborhood.
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Other CA variants combine the CA with statistical learning methods, in which neigh-

borhood characteristics are usually incorporated to estimate the LU transition probability

(e.g. Li and Yeh, 2002; Yang et al., 2008; Al-sharif and Pradhan, 2015; Du et al., 2018).

In the integrated modeling system, previous studies show that the accuracy of the in-

termediate transition probability map greatly influences the final simulated performance

(Camacho Olmedo et al., 2013). To capture precise neighborhood characteristics, Ver-

burg et al. (2004) designed LU enrichment metrics to measure the relative abundance of

LU categories in the neighborhood. Liao et al. (2016) extended the LU enrichment by as-

signing various distance-based influence weights. Other studies apply landscape metrics,

which were originally used to analyze ecological issues, to the LUC modeling. Several

typical categories of landscape metrics are used in LUC modeling studies: area metrics

(e.g., largest patch index (Herold et al., 2003)), shape metrics (e.g., perimeter-area ratio

(Chen et al., 2016)), aggregation metrics (e.g., landscape shape index (Verstegen et al.,

2014), contagion (Herold et al., 2003), percentage of like adjacencies (Roy Chowdhury

and Maithani, 2014)), and isolation metrics (e.g., landscape similarity index (Li et al.,

2015a), Euclidean nearest neighbor distance (Chen et al., 2016)). However, these ap-

proaches have two major limitations. First, they are limited in terms of their ability to

capture complex spatial features (e.g., spatial pattern). Most metrics are designed to

capture simple features such as quantity, ratio, area or edge. Moreover, the composite

metrics are mainly designed to capture specific aspects of neighborhood characteristics.

For instance, contagion specifically represents the aggregation/interspersion degree of

neighborhood patches. Finally, these approaches derive spatial features from classified

LU maps, which are relatively more homogeneous and have less spatial variance compared

with the original satellite images.

Convolutional neural networks (CNN), a classic deep-learning method, may be the

solution for overcoming the abovementioned limitations. CNN is well-known for its ability

to process image data and extract hierarchical features (LeCun et al., 2015). It learns

low-level spatial structures (e.g., edges) from its first convolutional layer and gradually
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stacks and extracts complex hierarchical spatial features as ’the model goes deeper’. CNN

is used to solve various image processing tasks, including image classification, object

detection/tracking, semantic segmentation, etc., and has been applied in various fields,

including computer vision (e.g. Krizhevsky et al., 2012; Cox and Dean, 2014), remote

sensing (e.g. Maggiori et al., 2016; Wang et al., 2016; Long et al., 2017), medical image

analysis (e.g. Li et al., 2014; Qayyum et al., 2017), etc. In particular, CNN has recently

gained popularity in remote-sensing studies Nogueira et al. (2017), which is closely related

to LUC modeling studies. Makantasis et al. (2015) classified hyperspectral images using

a CNN with only two layers and achieved state-of-the-art performance.

Moreover, deep learning essentially refers to multi-layered interconnected neural net-

works; its basic form has been used in LUC modeling since the early 2000s (Li and Yeh,

2001, 2002). Previous researchers have applied neural networks in various ways: stan-

dalone application (e.g. Liu and Seto, 2008; Wang and Mountrakis, 2011), integration

with CA and/or other statistical methods (e.g. Guan et al., 2005; Grekousis et al., 2013;

Li et al., 2015a), etc. These studies found that neural networks can result in reliable LU

predictions. Nevertheless, other than the multi-layer perceptron (MLP), powerful neural

network variants with advanced architectures are rarely used in LUC modeling studies.

This study develops an integrated modeling framework that consists of a hybrid CNN

model and a DINAMICA-based CA model to simulate the LUC process of the Saitama

prefecture, which is located at the western side of Japan’s Greater Tokyo Area. The

hybrid CNN model estimates the LU transition probability based both on spatial fea-

tures learned from satellite images and on manually designed geographical features. The

DINAMICA-based CA model simulates the LU pattern by referring to the generated

transition probability map. This study identifies the improvement in predictive perfor-

mance from incorporating CNN by comparing the accuracies of the transition probability

maps, which are estimated using the hybrid CNN model and an MLP model that ac-

cepts only geographical features. The area under receiver operating characteristic curve

(AUC-ROC) and the area under precision-recall curve (AUC-PR) are employed to eval-
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uate the estimation accuracy. In addition, this study develops a convolutional denoising

autoencoder (CDAE) model, which learns latent spatial features from satellite images in

an unsupervised approach, as an alternative to the supervised CNN model. This study

contributes to the existing literature by 1) identifying the benefit of utilizing satellite im-

ages data through convolutional-based deep learning techniques for LUC modeling and

2) elucidating the strengths of the supervised and unsupervised approaches.

3.2 Methodology

3.2.1 Neural network models

3.2.1.1 Geo-net

As the reference model, this study develops a neural network model, which includes a set

of conventional geographical feature and excludes features linked to satellite images. This

model is compared with the hybrid CNN model, which includes both geographical features

and features linked to satellite images. Specifically, the reference model is an MLP with

ReLU as the non-linear activation function and Sigmoid as the classifier. This study

constructs and uses the commonly adopted geographical features, which are land-use

enrichment (Verburg et al., 2004), proximity factors, land price, population density and

physical factors, covering the neighborhood characteristics, accessibility, socio-economical

and physical factors for the cell of interest. Table 3.1 describes the geographical features.

3.2.1.2 Conv-net

CNN is a special class of neural networks that uses convolutional operations in place of

matrix multiplication in the hidden layers. A typical hidden CNN layer consist of three

parts: 1) a convolutional layer that performs several parallel convolutions, 2) non-linear
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Table 3.1: Geographical features used in LUC models

Category Description

LU enrichment The relative abundance of certain LU category in the neighborhood

calculated by Enrichmenti,k,d =
nk,d,i/nd,i
Nk/N

, where Enrichmenti,k,d is the

enrichment of neighborhood d of location i with land use type k, n
denotes the number of cells in the neighborhood, and N denotes the
number of cells in the whole map

LU enrichment of forest
LU enrichment of agri.
LU enrichment of built-up
LU enrichment of water

body
Accessibility

Distance to major roads
The nearest Euclidean distance from the given cell to certain geographical
objects

Distance to railway sta-
tions

Distance to urban center
Socio-economical factors

Land price The estimated land price of given cell; the raw data is provided by the
Ministry of Infrastructure, Land and Tourism of Japan

Population density The population density of given cell, provided by the Ministry of Infras-
tructure, Land and Tourism of Japan

Physical factors
Elevation The elevation of given cell, provided by SRTM (Shuttle Radar Topographic

Mission) database
Coordinates The coordinates of given cell

Notes:
The land price map is interpolated from a polypoint land price map, in which each record is collected
by field survey, by using ordinary Kriging interpolation method.

activation layer, 3) pooling layer that replaces the output of the net at a certain location

with a summary statistical of the nearby outputs. Compared with the conventional fully

connected networks, CNN can be regarded as a locally connected network, which allows

each hidden unit to connect to a small subset of the input units. Specifically, when

processing images, each hidden unit will connect only to a small contiguous region of

pixels in the input. This architecture grants CNN higher computational efficiency and

the ability to capture the local pattern. The pooling operation further grants CNN an

invariance in small local translation, which is a particularly useful property for tasks when

identifying whether the existence of some features is more important than their location

(e.g., object detection).
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Various meta-architectures of CNN have been developed in these years. Although their

performances have been evaluated using ImageNet classification or similar classification

tasks, their suitabilities to the LUC modeling problem still require examination, due to

LUC modeling’s distinct characteristics. Specifically, 1) ordinary satellite images, such

as Landsat images, have relatively low resolution, vague edges and barely distinguishable

objects; 2) local satellite image patches may contain redundant information because of

the high spatial autocorrelation; and 3) the LUC modeling’s desired features may differ.

This study builds the CNN architecture using as reference the designs of three classic

meta-architectures: Alex-net (Krizhevsky et al., 2012), which has a relatively large con-

volutional filter size; VGG (Simonyan and Zisserman, 2014), which has a small kernel size

but a deep architecture; and ResNet (He et al., 2016), which constructs residual blocks

to facilitate a better gradient flow. The architectures are finally determined according to

the results of trial-and-error experiments. Table 3.2 presents the model architectures for

modeling three LU transitions. These architectures include several noteworthy aspects:

1) this study uses a stride of 3 rather than 2 while downsampling, given the input satel-

lite image that represents the neighborhood usually has an odd-numbered size number

to guarantee that the cell of interest is centrally located; 2) although the three models’

architectures are determined independently, their convolutional architectures turn out to

be identical, which may indicate that CNN serves the same function even when the target

transitional rules are different; 3) the pooling layers are used only next to the first two

convolutional layers because the posing information, such as the direction to the center,

may become important at a higher hierarchical level; and 4) the number of filters in our

study is large for a binary classification task, possibly because of the high variance of

spatial patterns.

According to the neighborhood effect, the influence of a neighboring cell decreases

with its distance to the central cell. To introduce this mechanism into conv-net, this

study specifically designs a regularization layer named the spatial-weight layer. It is
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Table 3.2: Architectures of the conv-nets

Forest to agri. Agri. to forest Agri. to built-up

conv-128 conv-128 conv-256

spatial weight

max pooling

conv-256 conv-256 conv-512

spatial weight

max pooling

conv-512 conv-512 conv-1024

spatial weight

conv-1024 conv-1024 conv-2048

spatial weight

global average pooling

dense-1036 dense-1036 dense-2048
dense-400 dense-400 dense-800
dense-80 dense-80 dense-300
dense-7 dense-7 dense-120

dense-60

Sigmoid

Notes:
1. Conv-N denotes a convolutional block composing of a convolutional layer with 3× 3 filter size and N
of filters, a Batchnorm layer and a ReLU layer.
2. Max pooling layer has a kernel size of 3× 3 and a stride of 3.
3. Dense-N denotes fully connected (dense) layer with N of hidden units.
4. Input image tensor has the shape of (7× 26× 26).

described as

y = x ∗ SW (3.1)

SWi,j,d = eaddisti,j + bd (3.2)

y and x are the output and input, respectively. SW is the spatial weight. i, j, d denote

the location in an image tensor, disti,j is the Euclidean distance from location(i, j) to the

center, ad and bd are the trainable parameters. This spatial weight layer can be regarded as

imposing a distance-based prior on the spatial feature map, which exponentially reduces

the influence of spatial features that are far from the center.

The CNN model is placed parallel to an MLP model that accepts the geographical
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features as input. Both networks are then connected to an MLP classifier composed of

several fully connected hidden layers (see Figure 3.1). This hybrid CNN model is trained

as a whole.

Figure 3.1: Structure of conv-net

3.2.1.3 CDAE-net

An autoencoder (AE) is an unsupervised learning algorithm that copies the input to the

output. It is essentially a neural network; thus, it can be trained by backpropagation.

An AE consists of two parts: the encoder and the decoder. The encoder maps the input

into hidden representations, and the decoder reconstructs the input from the hidden

representations. The general form of an AE is

h = s(Wx+ b) (3.3)

y = s(W ′h+ b′) (3.4)
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x is the input; h is the latent representation; y is the output; s is non-linear activation

function such as Sigmoid; W and W ′ are the encoder and decoder weights, respectively;

and b and b′ are the encoder and decoder biases, respectively. AE usually has an under-

complete architecture, in which the dimension of h is smaller than x, to extract useful

features from input rather than just learn an identity function.

A denoising autoencoder (DAE) (Vincent et al., 2008) is a variant of AE that is

designed to capture more robust features by reconstructing the input from a corrupted

version of it. The general form of a DAE is

h = s(Wx̃+ b) (3.5)

y = s(W ′h+ b′) (3.6)

x̃ is a copy of x that has been corrupted by some form of noise. The noise injection forces

the DAE to capture the statistical dependencies between the inputs by causing the DAE

to undo the effect of the corruption process.

In this study, this study incorporates the convolutional operation into a DAE and

develop a convolutional denoising autoencoder (CDAE) model to tackle the possible data

problems that cannot be effectively addressed by CNN, namely, the redundant spatial

information and the satellite image noise. The CDAE model is loosely combined with

an MLP classifier to estimate the transition probability. Specifically, original input from

satellite images is fed into the CDAE model to produce the latent representation, and

the latent representation is then fed into an MLP classifier together with geographical

features.

Figure 3.2 illustrates the architecture of this CDAE-net, and Table 3.3 presents the

architectures of its encoder and classifier. For each convolutional or pooling layer in the

encoder, the decoder has a deconvolutional layer (transposed convolutional layer) or an

unpooling layer with the same configuration at the corresponding location, and the en-
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coder and decoder weights are untied. Although DAE does not need to be undercomplete,

this study uses a ’bottleneck’ hidden layer with 567 hidden units, to extract the most

salient features.

Figure 3.2: Structure of cdae-net

CDAE-net and conv-net differ in two major ways in terms of the architecture: 1)

CDAE-net and classifier are separately trained independently; 2) CDAE-net have no

global pooling layer at the end of its architecture, and its output 3D tensor is raveled and

directly fed into the fully connected classifier.

3.2.1.4 Model training

As the main regularization method, this study adds Gaussian noise to the gradient (Nee-

lakantan et al., 2015a), which is demonstrated effective for training deep networks, and

discard dropout because our experiments show that Batchnorm eliminates its need. This

study uses the image jitter method proposed by Krizhevsky et al. (2012) to produce train-
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Table 3.3: Architectures of the CDAE-nets

Forest to agri. Agri. to forest Agri. to built-up

conv-64

max pooling

conv-128

max pooling

dense-579 dense-579 dense-579
dense-579 dense-579 dense-579
dense-579 dense-579 dense-579

dense-100

Sigmoid

Notes:
1. Conv-N denotes a convolutional block composing of a convolutional layer with 3× 3 filter size and N
of filters, a Batchnorm layer and a ReLU layer.
2. Max pooling layer has a kernel size of 3× 3 and a stride of 3.
3. Dense-N denotes fully connected (dense) layer with N of hidden units.
4. Input image tensor has the shape of (7× 81× 81).
5. For each convolutional layer in the encoder, there is a corresponding deconvolutional layer in the
decoder; for each each max pooling layer, there is a corresponding unpooling layer in the decoder.

ing samples with varying degrees of illumination to improve the model’s generalization

performance; however, this study does not use image flip to preserve the pose infor-

mation. This study uses binary cross-entropy as the loss function for training classifier

and mean square error as the loss function for training CDAE. This study uses stochas-

tic gradient descend as the optimization method, and use the parameter initialization

method suggested by Glorot and Bengio (2010), which shortens the convergence time by

approximately 0.8 compared with the initialization method based on random sampling

from Gaussian distribution. For each neural network model, this study performs fine-

tuning on a set of hyperparameters, including the learning rate, the learning rate decay

frequency, momentum, and the Gaussian noise coefficient.
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3.2.2 Cellular automata

The CA model is a variant of DINAMICA, which is the same with the CA model used

in section 2.2.2. The two processes are merged using the following calculation:

Qij = r × expander + s× patcher (3.7)

where Qij is the total number of transitions from land-use class i to j; r and s are the

percentages performed by the expander and patcher functions, respectively; and r + s =

1.

The expander function is defined as follows:

if nj > 3 or P (ij)(xy) > t then P ′(ij)(xy) = P (ij)(xy) (3.8)

else P ′(ij)(xy) = p(ij)(xy)×
√
nj

4
(3.9)

P (ij)(xy) denotes the transition probability from land-use class i to j, t denotes a preset

threshold, and nj denotes the number of cells of land-use class j occurring in a 3×3

window. Both processes use a stochastic selection mechanism to select seeds (the center

cell in a transition patch). This mechanism selects the seeds while prioritizing high over

low transition probabilities with a certain degree of randomness. The patch size is drawn

from a lognormal distribution, and the patch shape or compactness is determined by a

parameter called isometry.

The transition quantity is determined based on transition probability maps. Specifi-

cally, this tudy manually sets a threshold for transition probability, and the quantity of

cells that have transition probability above the threshold is used as the total quantity for

CA simulation.
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3.2.3 Evaluation metrics

This study uses AUC-ROC and AUC-PR to assess the predictive performances of the

neural network models. Their advantages and differences are demonstrated in section

2.2.3.2.

This study uses overall accuracy, quantity/allocation disagreement, Cohen’s Kappa

statistic, Kappa simulation and fuzzy Kappa simulation to evaluate the agreement be-

tween a simulated LU map and an actual LU map. Quantity/allocation disagreement

and Kappa statistic are commonly used cell-to-cell evaluation metrics. Quantity disagree-

ment is defined as the difference between two maps in terms of the quantity of land-use

category mismatch. Allocation disagreement is the difference between two maps in terms

of the mismatch of each land-use category’s spatial allocation. Kappa statistic is a classic

map comparison method, which excludes the proportion of agreement by chance (refer to

section 2.2.3.2 for details). Nevertheless, the two metrics cannot eliminate the influence

of LU persistence, which may lead to over-estimation of the predictive performance of

LUC model. In order to deal with this limitation, this study employs Kappa simulation

and fuzzy Kappa simulation. Both metrics exclude the influence of LU persistence by

incorporating the initial land use map, but Kappa simulation is a cell-to-cell metrics,

while fuzzy Kappa simulation is a vicinity-based metrics, which introduces fuzzy set the-

ory to account for the LU category similarity and neighborhood similarity. This study

only considers the neighborhood similarity in this study given the limited number of LU

categories, and use a Gaussian distance decay function to specify the agreement level

with respect to distance within a neighborhood. Taylor and Hagen (2003) and van Vliet

et al. (2013a) provides demonstrations and technical details of fuzzy Kappa and fuzzy

Kappa simulation, respectively.
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3.3 Implementation

Our study area is the Saitama prefecture of Japan, which is located at the western side

of the Greater Tokyo area. It covers an area of 3,798 km2 and has a population size of

7,237 thousand. Most parts of Saitama can be regarded as Tokyo suburbs, and Saitama’s

urban area is constantly expanding due to immigration to the Greater Tokyo Area.

This study collects Global Land Survey (GLS) satellite image datasets for 2000, 2005

and 2010. GLS datasets have eight bands, within which band 8 (Panchromatic) has a

resolution of 15 meters, and the other seven bands have resolutions of 30 meters each. All

bands except band 8 are resampled into 15 meters and combined for LU classification.

This study classifies four LU categories (water, agriculture, forest and built-up) using

the supervised classification algorithm provided in ERDAS IMAGINE V2016 (Hexgon

Geospatial, U.S.).

Supervised LU classification algorithm needs a prior knowledge of the LU distribution

in the study area. More specifically, a set of pixels in a specific area is selected as training

samples and defined with LU categories manually. Then, the algorithm is trained and

used to recognize the LU categories for pixels in other parts of the satellite image based

on this manually defined samples.

In this study, the criteria for selecting the sub-areas, which is used for providing prior

knowledge, is: 1) sub-area should cover all four target LU categories (forest, agriculture

land, residential land and water, see Table 3.5 for the definition of four LU categories); 2)

given agriculture lands includes many different kinds of crops, which usually show colors

with subtle differences on the satellite images, sub-area should have various agriculture

lands with considerable variation of colors. Based on this criteria, the selection was

conducted by visually interpreting the Landsat satellite images and the corresponding

Google Earth historical satellite images.

Within the selected sub-areas, a set of pixels with varying colors is chosen as training
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samples. The set of pixels covers most of colors with subtle difference and accounts

for approximately 1/30 of all the pixels in these areas. The reference LU categories of

the training samples are defined by visual interpretation, i.e., by comparing the Landsat

satellite images with Google Earth historical satellite images that have finer resolution

with approximately 5 meter, and visually determine the LU categories based on the

geographical object shown on Google Earth historical satellite images. In the training

process, the computer system continuously makes comparison between a seed pixel in the

training samples and the contiguous pixels based on the similarity of spectral information

of each pixel. Once the LU category of a contiguous pixel is accepted, the contiguous pixel

is included as a training sample. Then the computer system will move on to recognize the

neighboring pixels of the newly accepted pixel until every pixel in the area is recognized.

This study uses Mahalanobis distance method as supervised decision rule for the clas-

sification. It is one of the most popular method used for processing remote sensing data.

Mahalanobis distance method calculates the spectral distance between the measurement

vector (contains the measures of each spectral band) for the contiguous pixel and the

mean vector for each training samples. The equation for the Mahalanobis distance for a

target contiguous pixel, which needs to be classified, is

D = (X −Mc)
TCov−1c (X −Mc) (3.10)

where D denotes Mahalanobis distance, c is a particular class (LU category), X is the

measurement vector of target pixel, Mc is the mean vector of the training sample of class

(LU category) c, Cov denotes the covariance matrix of the pixel in the training samples

with class (LU category) of c. The target pixel is assigned to the LU category with the

lowest D.

Table 3.4 presents the confusion matrices of LUC, and Figure 3.3 shows LU maps of

the three years. This study excludes the LU transitions that have transition rates below

1% and are left with transition from forest to agriculture, transition from agriculture to
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forest, and transition from agriculture to built-up as the modeling objects.

Figure 3.3: Actual LU maps in Saitama prefecture of Greater Tokyo Area for 2000, 2005
and 2010

Given the possibility of varying transitional rules being present among the three LU

transition types, This study separately develops transition probability estimation models

and CA models for each of them. Geographic features are derived based on spatial data

collected from the Ministry of Infrastructure, Land and Tourism of Japan, except for

LU enrichment, which is directly calculated from LU maps. Satellite image patches of

a certain size are cropped from the satellite images and used as input for the conv-net

or CDAE model. The input image size is determined based on previous evidence on

the effect of neighborhood size and trial-and-error experiments. The image input size is

27 × 27 for conv-net and 81 × 81 for CDAE-net. In addition, the satellite input image
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Table 3.4: Confusion matrices from 2000 to 2005 and from 2005 to 2010

2005
Built-up Forest Agri. Water body

2000

Built-up 4090795 (98.99%) 13672 (0.33%) 20508 (0.50%) 7522 (0.18%)
Forest 22787 (0.72%) 2693884 (85.10%) 435253 (13.75%) 13672 (0.43%)
Agri. 419344 (7.48%) 575959 (10.27%) 4601687 (82.06%) 10937 (0.20%)
Water body 478 (0.39%) 888 (0.72%) 683 (0.55%) 121397 (98.34%)

2010
Built-up Forest Agri. Water body

2005

Built-up 4601286 (98.30%) 33151 (0.71%) 37887 (0.81%) 8530 (0.18%)
Forest 20894 (0.66%) 2564788 (80.75%) 565762 (17.81%) 24863 (0.78%)
Agri. 605314 (11.99%) 345704 (6.85%) 4085922 (80.93%) 11839 (0.23%)
Water body 947 (0.77%) 591 (0.48%) 591 (0.48%) 121397 (98.28%)

Notes:
1. The confusion matrix is presented as num of cells (the percentage).
2. The percentage is calculated by (numt − numt−1)/numt−1 where num denotes the number of cells
and t denotes the time.

Table 3.5: Definition of land use categories in Saitama prefecture for 2000, 2005 and 2010

LU category Description

Agriculture

Lands used for growing crops including wet paddy filed, dry paddy field,
swamp paddy field, fields used for growing wheat, upland rice, veget-
ables, fruits, tea, wax tree, paper mulberry, hemp palm, etc., as
well as grassland and lawn

Forest Lands where perennial plants are densely distributed

Built-up
Lands where residential buildings, commercial buildings, etc. are densely
distributed

Water body
Areas including river and river bed, artificial lake, natural lake, pond,
fish farm, etc. where are filled with water for most of the time

Notes:
The definitions of LU categories are based on the information provided by National Land Information
Division, National and Regional Policy Bureau of Japan
(http://nlftp.mlit.go.jp/ksj/gml/codelist/LandUseCd-09.html)

has seven bands, excluding band 6 (thermal) due to its low spatial variation.

The LUC models are trained on the 2000 and 2005 datasets, validated on a subset of

data for 2005 and 2010, and tested on the whole dataset for 2005 and 2010. To minimize

the spatial autocorrelation between the validation set and the test set to facilitate an

73



unbiased model evaluation, the validation set is extracted from a sub-region of Saitama

covering approximately 15% of the total area. In terms of sampling, previous studies

have normally used random or stratified sampling to avoid the influence of spatial au-

tocorrelation. However, the mini-batch learning criterion of a neural network naturally

mitigates the influence of spatial autocorrelation to some extent. This study uses a boot-

strap over-sampling strategy in this study. Specifically, a mini-batch of data is randomly

sampled from the dataset with replacement, and samples belonging to negative and posi-

tive labels have the same proportion within a mini-batch. Over-sampling could make the

model prone to over-fitting. To address this issue, this study considers the fine-tuning

of the Gaussian noise coefficient. More discussion on the over-sampling is provided by

Batista et al. (2004).

3.4 Results

3.4.1 Evaluation on the modeling performances

Table 3.6 summarizes the evaluation results for geo-net, conv-net, CDAE-net. AUC-

ROC and AUC-PR are calculated based on the transition probability estimated by the

three models. For modeling all three LU transitions, conv-net and CDAE-net consis-

tently outperform the geo-nets for all the evaluation metrics. Particularly, conv-net and

CDAE-net outperform the geo-nets by approximately 0.02∼0.10 in terms of AUC and

approximately 0.053∼0.15 in terms of the Kappa statistic. These results confirm that

the use of convolutional-based neural networks to extract spatial features from satellite

images improves LUC modeling performance.

The results indicate the validity of all the three models to learn pattern from the spa-

tial data and to determine the transition rules, given that the AUC-ROCs of the three

models are much larger than 0.7. However, the results exhibit substantially different pre-
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Table 3.6: Performance evaluation of the estimated transition probabilities

LU transition Model AUC-ROC AUC-PR

Forest to agri.
Geo-net 0.886 0.595
Conv-net 0.944 0.714
CDAE-net 0.912 0.675

Agri. to forest
Geo-net 0.863 0.397
Conv-net 0.905 0.493
CDAE-net 0.880 0.415

Agri. to built-up
Geo-net 0.659 0.215
Conv-net 0.694 0.239
CDAE-net 0.714 0.268

dictive performances for the three LU transitions. The AUC-PR obtained from the LUC

models for transitions from forest to agriculture, agriculture to forest, and agriculture

to built-up are 0.69, 0.42 and 0.26, respectively; the highest AUC-ROC for the three

transitions are 0.92, 0.89, 0.72, respectively. According to these results, the modeling

performance for the transition from agriculture to built-up is significantly worse than the

other two transitions.

Two possible reasons explain the lower performance of agriculture to built-up. First,

in the LU classification, agriculture and built-up are relatively difficult to differentiate

because they usually have interspersing spatial distributions, particularly in the suburbs

and frequently appear as similar colors on the satellite images. According to the results

of the LU classification assessment provided by the supervised classification algorithm,

the classification accuracies of agriculture and built-up (three-years average of 85 % and

83%, respectively) are significantly lower than forest (three-years average of 89%). There-

fore, the LUC modeling of the transition from agriculture to built-up may suffer more

from the data noise problem than the other two transitions, which then leads to the

relatively poor performance. Second, the lower transition performance may be driven

by the lack of information regarding individual decision-making regarding the transitions

from agriculture to built-up in study area. Given that the Saitama area has no inten-

sive urban development plan built-up and agriculture are commonly privately owned, the
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individual decision-making factor would act as an important determinant of the LUC

process of agriculture to built-up. However, individual decision-making cannot be cap-

tured through spatial features, including satellite images; this information needs to be

collected separately (Du et al., 2018).

The results indicate that, due to the capability of data denoising, CDAE-net out-

performs conv-net when the image data is noisy. For the transition from agriculture

to built-up, CDAE-net outperforms conv-net by approximately 0.03 in terms of AUC-

PR. However, conv-net outperforms CDAE-net when data quality is better. For transi-

tions between agriculture and forest, conv-net outperforms CDAE-net by approximately

0.01∼0.02 in terms of AUC-PR; this result may be induced by CDAE-net’s data compres-

sion process, which inevitably discards some useful spatial information. This compression

process would be preferred when data are noisy but it may lower the performance other-

wise.

3.4.2 Land-use simulations

This study simulates the LU maps for 2010 by using the DINAMICA-based CA based

on the transition probability maps produced by the geo-net, conv-net and CDAE-net,

respectively. In addition, this study simulates LU map based on the transition prob-

ability of agriculture to forest and forest to agriculture predicted by the conv-net and

the transition probability of agriculture to built-up predicted by the CDAE-net. Fig-

ure 3.4 shows the comparison between simulated and actual LU maps for 2010, and

Table 3.7 presents the evaluation metrics of the simulated maps, including accuracy,

quantity/allocation disagreement, Kappa statistic, Kappa simulation and fuzzy Kappa

simulation with neighborhood sizes of 3× 3, 7× 7 and 11× 11.
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Figure 3.4: Actual and simulated LU maps for 2010

Notes:

1. Land use maps of A, B and C are simulated by using CA based on the transition probability predicted

by the geo-net, conv-net and CDAE-net, respectively.

2. Land use map of D are simulated based on the transition probability of agriculture to forest and

forest to agriculture predicted by the conv-net and the transition probability of agriculture to built-up

predicted by the CDAE-net.
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The order of the performances of the three LUC models is conv-net + CA > CDAE-

net + CA > geo-net + CA; this result is consistent with the difference of transition

probability prediction performances. The LU map D in Table 3.7 combines the transi-

tion probability predictions with the highest accuracy, which also exhibits the highest

simulation performance. The values of Kappa simulation and fuzzy Kappa simulation

are significantly lower than the values of Kappa statistic; this result is plausible given the

exclusion of the influence of LU persistence. The significant difference between the values

of Kappa statistic and Kappa simulation indicates that the Kappa simulation is stricter

metrics than the Kappa statistic. In terms of the fuzzy Kappa simulation, the value of

fuzzy Kappa simulation obtained from the geo-net + CA increases much less with the

increase of neighborhood size when compared with the increase of values obtained from

the conv-net + CA or the CDAE-net + CA. Compared with Kappa simulation, fuzzy

Kappa simulation provides additional evaluation aspect of LUC model’s capability to

yield the ’near hits’ (i.e. the LUC model does not precisely allocate the LU transition

to the target cell but allocates the LU transition to the cells within the neighborhood

of the target cell). This result indicates the advantage of convolutional-based models

over conventional LUC models, which use only geographical features, when modeling the

spatial pattern of LUC process.

Table 3.7: Performance evaluation of the simulated LU maps

LU mapAccuracy
Disagreement Kappa

statistic
Kappa
simulation

Fuzzy Kappa simulation

Quantity Allocation 3× 3 7× 7 11× 11

A 0.897 0.016 0.086 0.812 0.337 0.338 0.340 0.345
B 0.908 0.011 0.081 0.830 0.391 0.414 0.455 0.484
C 0.901 0.013 0.078 0.822 0.376 0.399 0.437 0.455
D 0.914 0.005 0.080 0.842 0.412 0.435 0.474 0.501

Notes:
1. Land use maps of A, B and C are simulated by using CA based on the transition probability
predicted by the geo-net, conv-net and CDAE-net, respectively.
2. Land use map of D are simulated based on the transition probability of agriculture to forest and
forest to agriculture predicted by the conv-net and the transition probability of agriculture to built-up
predicted by the CDAE-net.
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3.5 Discussion

3.5.1 Model visualization

Although the explicit mechanism inside deep neural networks cannot be elucidated, some

visualization techniques shed light on how conv-net and CDAE-net process the satellite

images. Figure 3.5 visualizes the activation maps from the first convolutional layers of

conv-net and CDAE-net. The activation maps from conv-net and CDAE-net exhibit

substantially different spatial patterns. This difference may be explained by the different

purposes that the two models serve: conv-net seeks to capture the pattern that helps

to explain the objective function, while CDAE-net seeks to capture the latent spatial

features that help to explain the spatial variations in input images. Therefore, in conv-

net, patterns with high activation values exhibit irregular shapes, but in CDAE-net,

patterns with high activation values resemble the skeleton of geographical objects.

This study uses t-distributed stochastic neighbor embedding (t-SNE) (Maaten and

Hinton, 2008) to visualize the distribution of spatial features extracted by the convolu-

tional models. This study randomly selects a total of 2000 samples from the test set

and feed them into conv-net and CDAE-net to obtain spatial features from the final

convolutional layers. The spatial features are then embedded into 2D vectors by t-SNE.

Figure 3.6 shows the results of t-SNE. Theoretically, the distribution of spatial images in

a 2D space may reflect the CNN effect, given that CNN would gradually transform the

satellite image into linearly separable representations. As shown in Figure 3.6, the degree

of sample aggregation with the same label is consistent with the accuracy of transition

probability estimation; more samples with the same label aggregate together denote a

higher predictive performance of the corresponding transition. For example, the tran-

sition from forest to agriculture has the highest predictive performance and the most

visually separate spatial feature distribution. On the other hand, the transition from

agriculture to built-up has the lowest predictive performance and barely separate spatial
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Figure 3.5: Visualization of outputs from the first convolutional layers of the conv-nets
and the CDAE-nets
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feature distribution. Given that CDAE-net uses an unsupervised learning method, their

embedded feature distributions are obviously different from those of conv-net. In terms

of the transition from forest to agriculture, although the samples cluster into groups in

both distributions, the clusters from CDAE-net appear to be more scattered than those

from conv-net. To process the spatial features generated from the CDAE-net model,

the classifier may require a higher level of non-linearity, which may partially explain the

phenomenon in which the CDAE-net classifier generally has more hidden layers than

conv-net’s.

3.5.2 Model architecture

This study analyzes the convolutional filter, the spatial weight layer and pooling within

conv-net’s architecture to examine its effect on the predictive performance of transi-

tion probability. Table 3.8 presents the architectures of the baseline models for three

transitions and their variants. For simplicity, given that the baseline models for three

transitions have similar architectures as shown in Table 3.8, this study uses the same

architecture for the three transitions in the analyses. This study also omits the classifier

architectures, which are the same as those in Table 3.2. All the models are independently

developed and trained to facilitate an unbiased comparison. This study finds that the

model’s performance is sensitive to the weight and bias initialization; this trait causes

some differences in the evaluation results compared with the evaluation results shown in

Table 3.6. Table 3.9 presents the corresponding results of analyses of varying filter size,

spatial weight layer and pooling.

The results comparison on the varying filter sizes show that the predictive perfor-

mances decrease significantly as the filter size increases. In terms of the transition from

forest to agriculture, the AUC-PR decreases by approximately 11% from 0.69 to 0.61,

indicating that conv-net’s predictive performance is sensitive to the filter size. Further-

more, the improved performance gained by the smaller filter size implies that the large
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Figure 3.6: Results of t-SNE for the spatial features that are extracted from satellite
images by the conv-nets and CDAE-nets

filter size is not necessary to address the redundancy of spatial information in the satellite

images.

The spatial weight layer analysis is designed to identify the benefit of incorporating

the specific regularization on the spatial features. The results show that AUC-ROC and
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Table 3.8: The architectures of baseline models and their variants used for sensitivity
analyses

Baseline models
Variants: varying filter size Variant: no

spatial weight
layer

Variant: using
average pooling5× 5 7× 7

conv-128 conv-128 conv-128 conv-128 conv-128
spatial weight spatial weight spatial weight max pooling spatial weight
max pooling max pooling max pooling average pooling

conv-256 conv-256 conv-256 conv-256 conv-256
spatial weight spatial weight spatial weight max pooling spatial weight
max pooling max pooling max pooling average pooling

conv-512 conv-512 conv-512 conv-512 conv-512
spatial weight spatial weight spatial weight spatial weight

conv-1024 conv-1024 conv-1024 conv-1024 conv-1024
spatial weight spatial weight spatial weight spatial weight

global average pooling

Notes:
1. The same convolutional architecture is used for the LUC models of all three transitions.
2. The architectures of classifiers are the same as those in Table 3.2 and thus are omitted.
3. Conv-N denotes a convolutional block composing of a convolutional layer with 3× 3 filter size and N
of filters, a Batchnorm layer and a ReLU layer.
4. Pooling layer has a kernel size of 3× 3 and a stride of 3.

AUC-PR gradually increase by approximately 0.3 from the variant model without the

spatial weight layer on the baseline models; this result indicates the effectiveness of the

spatial weight layer in improving the predictive performance. However, the spatial weight

layer is specifically designed as a regularization method for spatial features extracted from

the satellite images, and its effect depends on the representative degree of the spatial

features; for example, the performance improvement for the transition from agriculture

to built-up is much smaller than forest to agriculture.

To examine the pooling effect, this study presents the binary cross-entropy losses of the

training and test sets instead of the AUC to reflect the model capacity and generalization

performances. The results show that the models using max pooling exhibit higher training

and lower test losses than the models using average pooling; models using max pooling

have smaller capacity but better generalization ability, while models using average pooling
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Table 3.9: Results of the sensitivity analyses with respect to filter size, spatial weight layer
and pooling

(a) Varying filter size

Forest to agri. Agri. to forest Agri. to built-up

Baseline (3× 3)
AUC-ROC 0.941 0.904 0.694
AUC-PR 0.711 0.478 0.238

Variant (5× 5)
AUC-ROC 0.923 0.897 0.671
AUC-PR 0.698 0.447 0.223

Variant (7× 7)
AUC-ROC 0.901 0.860 0.648
AUC-PR 0.625 0.419 0.209

(b) Spatial weight layer

Forest to agri. Agri. to forest Agri. to built-up

Baseline (with spatial weight)
AUC-ROC 0.939 0.906 0.693
AUC-PR 0.712 0.470 0.239

Variant (no spatial weight)
AUC-ROC 0.924 0.906 0.684
AUC-PR 0.688 0.447 0.232

( c ) Max v.s. average pooling

Forest to agri. Agri. to forest Agri. to built-up

Baseline (max pooling)
Training loss 0.317 0.522 0.423
Test loss 0.388 0.603 0.512

Variant (average pooling)
Training loss 0.295 0.508 0.412
Test loss 0.410 0.624 0.527

Notes:
Training loss and test loss are the binary cross entropy losses of training set and test set, respectively.

have larger capacity but limited generalization ability. If pooling is considered as a prior

on the spatial features, max pooling imposes a stronger prior than average pooling. This

result is because max pooling replaces the values within a kernel with their maximum

value rather than with the average. Hence, a stronger prior may be more beneficial for

filtering out the useful features from the satellite images.
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3.6 Summary

This study applies CNN to enhance the performance of LUC modeling. This study devel-

oped two convolutional-based models, conv-net and CDAE-net, to estimate three types of

LU transition probabilities: forest to agriculture, agriculture to built-up and agriculture

to forest. The results show that both conv-net and CDAE-net improve the accuracy of

transition probability estimation compared with the MLP estimator, which has conven-

tional geographical features as its sole input. Moreover, conv-net and CDAE-net achieve

similar predictive performances of the estimation transition probabilities between forest

and agriculture. On the other hand, CDAE-net significantly outperforms conv-net when

estimating transition probability from agriculture to built-up. This result may be ex-

plained by CDAE-net’s relatively more effective task handling performance for relatively

complicated transitional rules and/or data with higher noise because it can learn latent

representations and the denoising design.

This study’s results provide several useful findings on convolutional-based model ar-

chitecture. 1) Shallow architecture is sufficient for the LUC modeling task in this study.

Conv-net and CDAE-net have only four and two convolutional layers, respectively; the

layers are rather shallow compared with commonly used layers in computer vision stud-

ies. 2) The LUC models learn different transitional rules per the LUC process, and

the model architectures could vary. Although the classifier architectures are different,

their convolutional architectures are very similar for the transitions considered in this

analysis. This observation indicates that the spatial features are extracted using similar

learning processes. Hence, the extracted spatial features from the satellite images have

similar degrees of complexity. 3) The spatial weight layer, which is specifically designed

to apply distance-decay regularization on spatial features, effectively improves conv-net’s

predictive performance.
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Chapter 4

Modeling with recurrent neural

works in Tsukuba city

4.1 Motivation

Most of these variants of CA intrinsically treat the LUC process as a Markov process,

meaning that the land use of the next time step only depends on the status of prior

time step, although there are a few exceptions, such as SLEUTH (Clarke and Gaydos,

1998), LEI-CA (Liu et al., 2014), and survival analysis (SA)-patch-CA (Chen et al.,

2016). One typical variant is the MC-CA model, in which the MC model is used to

estimate the temporal variation of the LUC process to predict the future LUC demand

and CA is used to predict or simulate the spatial pattern. The MC-CA model has

been reported to yield accurate land use predictions in various LUC modeling tasks,

particularly when statistical learning methods, such as logistic regression and neural

networks, are incorporated (Arsanjani et al., 2012; Razavi, 2014).

However, using the Markov-based approach presents a major concern because the

land use status of an area may depend on the historical characteristics of the area and
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its neighboring areas. Hence, whether the LUC process is a Markov process is debatable.

For example, 1) an area would retain its land use type for years after a change because of

the persistence characteristics of land use, and 2) a non-built-up area located in a region

that has been undergoing active development for a long time is more likely to change to

a built-up area. Based on these two situations, the inability of Markov-based models to

incorporate historical information would likely lead to inaccurate estimations. Neverthe-

less, the long temporal dependency issue of LUC modeling has been rarely addressed in

previous studies.

Recurrent neural networks (RNNs) are state-of-the-art neural network models that

are naturally suited to modeling time series data and other sequential data (Lipton et al.,

2015). The fundamental principle underlying RNNs is to utilize sequential information

for future predictions. With the recent development of computational schemes and deep

network training techniques, RNNs have been gaining attention in various fields of en-

vironmental study (e.g. land cover detection (Lyu et al., 2016), air quality modeling

(Biancofiore et al., 2015), and meteorological modeling (Le et al., 2017)). Nonetheless,

RNNs have not been applied for LUC modeling.

This study examines the potential use of RNNs for modeling the spatio-temporal

variation of LUC process. This study explores the benefit of modeling long-term depen-

dency of LUC process by examining the predictive performances of two RNNs categories,

simple RNN and RNN with gated architecture (long short-term memory (LSTM), LSTM-

peephole and gated recurrent units (GRU)), which vary in their ability of modeling tem-

poral dependency. The RNN models are developed by using 17 years of spatio-temporal

data with high temporal resolution, and use the constructed RNN models to forecast a

continuous LUC process.
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4.2 Methodology and data

4.2.1 RNN models

4.2.1.1 RNN family

RNNs are essentially feed-forward neural networks with connections that span adjacent

time steps, thereby introducing a notion of time to the model (Lipton et al., 2015). At

time t, nodes with recurrent connections receive inputs from the current time step xt and

the hidden state ht−1 in the network’s previous state. RNNs take the following general

form:

ht = f(ht−1, xt, θ) (4.1)

where f is an activation function and θ is a parameter that is usually shared over time.

ht−1 contains and accumulates information through previous time steps.

The simple RNN is a variant that was developed early and is described using the

following equation:

ht = tanh(Wtht−1 +Wxxt + b) (4.2)

where tanh is the non-linear activation function, Wt and Wx are weights and b is bias, and

these parameters are learnable during model training. The basic structure of the simple

RNN is illustrated in Figure 4.1a. The simple RNN is known to suffer from the vanishing

gradient problem, particularly with long sequential tasks (Graves, 2013). Of the several

techniques that have been developed to address the vanishing gradient problem, adding

a gated architecture to recurrent units (e.g. LSTM) is the most prevalent approach.

Gated RNNs adopt a completely different mechanism based on the idea of creating

paths through time with derivatives that neither vanish nor explode. LSTMs implement

this idea by introducing self-loops to recurrent units, which create memory cells with a

core that stores cell states and several gates that control the information flow. LSTMs are
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(a) General structure of RNN

(b) Structure of LSTM block

(c) General structure of deep RNN

Figure 4.1: Illustration of general structure of simple RNN (a), structure of LSTM block
with peephole connection (b) and general structure of deep RNN (c)

successful at modeling long-term dependency and have become the most popular RNN

architecture (Greff et al., 2017). Among the various LSTM variants, this study used a

classical but relatively complex architecture, LSTM with peephole, as the baseline LSTM

model. This variant is described as follows:

zt = tanh(Wzhht−1 +Wzxxt + b) block input (4.3)

it = sigmoid(Witht−1 +Wixxt +Wicct−1 + b) input gate (4.4)

ft = sigmoid(Wftht−1 +Wfxxt +Wfcct−1 + b) forget gate (4.5)

ct = ftht−1 + itzt cell state (4.6)

ot = sigmoid(Wotht−1 +Woxxt +Wocct + b) output gate (4.7)

ht = ottanh(st) block output (4.8)
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Figure 4.1b illustrates an LSTM-peephole block. In addition to the LSTM-peephole

model, this study uses two alternative variants: LSTM and GRU. LSTM is described as

follows:

zt = tanh(Wzhht−1 +Wzxxt + b) block input (4.9)

it = sigmoid(Witht−1 +Wixxt + b) input gate (4.10)

ft = sigmoid(Wftht−1 +Wfxxt + b) forget gate (4.11)

ct = ftht−1 + itzt cell state (4.12)

ot = sigmoid(Wotht−1 +Woxxt + b) output gate (4.13)

ht = ottanh(st) block output (4.14)

GRU is described as follows

zt = tanh(Wutht−1 +Wuxxt + b) update gate (4.15)

rt = tanh(Wrtht−1 +Wrxxt + b) reset gate (4.16)

ht = (1− zt)ht−1 + zttanh(Whxxt +Wht(rtht−1) + b) block output (4.17)

LSTM-peephole and LSTM have almost the same architecture, but LSTM has no

peephole connection. The peephole connection allows access to the raw information

stored as a cell state, thereby guaranteeing the ability of the memory cell to always learn

from the past, even when the output gate is closed. GRU removes the peephole connection

and the output activation function and use only two gates (reset and update) to control

the forget vector and the cell-state update. Although GRU greatly simplifies the LSTM

architecture, they preserve the essential functionality of the original LSTMs. GRU has

been documented to achieve similar performance as LSTMs with less computational cost

(Chung et al., 2014).
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4.2.1.2 Deep RNNs

RNNs are intrinsically deep in the temporal dimension but shallow in the spatial di-

mension. Extending their depth in the spatial dimension may enhance RNNs’ abilities to

transform sequential inputs into high-dimensional representations and also to learn useful

information from the representations (Hefron et al., 2017). Graves et al. (2013) demon-

strated that increasing the depth of RNNs improve the RNNs’ predictive performances

more than adding memory cells. In this study, this study further develops deep simple

RNN, deep LSTM, deep LSTM-peephole and deep GRU models by stacking recurrent

layers in a sequence-to-sequence manner. Figure 4.1c illustrates the basic structures of

deep RNN models. Each recurrent layer is composed of certain number of recurrent cells;

outputs from lower recurrent layers together with the external inputs are used as the

inputs of higher recurrent layers. These deep RNN models are used as supplementary

models to the single-layer RNN models in order to explore the applicability of RNN

models with higher capacity for the LUC modeling task in this study.

4.2.2 Study area, data and spatial features

4.2.2.1 Study area and data

The study area is the city of Tsukuba, which is located in the northern part of the Greater

Tokyo Area in Japan, covers a total area of 283.72 square kilometers, and has an estimated

population of 223 thousands. Tsukuba’s urban area has continuously expanded over the

past two decades; the expansion has been driven by the government development policy

to build the city as a center of research and technological advancement. This study

conducts land use classifications of the city’s Landsat satellite images (Landsat 7 and

8) from 2000 to 2016 using a supervised classification provided by ERDAS IMAGINE

2016 V16.1 (Hexagon Geospatial, U.S.). Section 3.3 provides the description of the basic

theory and general procedure of supervised LU classification. Table 4.1 presents the
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definitions of the LU categories of the LU maps. This study has obtained land use maps

with 30×30m2 resolution with the following area types: non-built-up, built-up and water

body. Figure 4.2 presents the land use maps of year 2001, 2006, 2011 and 2016.

Figure 4.2: Land use maps of the city of Tsukuba for 2001, 2006, 2011 and 2016

4.2.2.2 spatial features

This study constructs a spatial feature set composed of neighborhood characteristics,

geometric properties, proximity factors and physical factors (see Table 4.2). Out of
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Table 4.1: Definition of land use categories in Tsukuba city from 2000 to 2016

LU category Description

Built-up
Lands where residential buildings, commercial buildings, etc. are densely
distributed

Non-built-up
Lands where has no densely distributed residential buildings, commercial
buildings, etc.

Water body
Areas including river and river bed, artificial lake, natural lake, pond,
fish farm, etc. where are filled with water for most of the time

Notes:
The definitions of LU categories are based on the information provided by National Land Information
Division, National and Regional Policy Bureau of Japan
(http://nlftp.mlit.go.jp/ksj/gml/codelist/LandUseCd-09.html)

these four features categories, neighborhood characteristics and geometric properties are

derived directly from the LU maps; in particular, the neighborhood characteristics and

geometric properties for subsequent time step are computed based on the LU map of the

prior time step. The proximity factors and physical factors are derived from collected

spatial data such as road network maps and digital elevation maps.

Although previous studies have developed specific metrics to capture the neighbor-

hood characteristics, this study uses the LU categories in a Moore neighborhood with

a size of 3 × 3 as the input for RNN models (i.e. the LU categories in 3 × 3 neighbor-

hood are raveled into a 1-d vector and are feed into the RNN models) in order to allow

RNN models to access a more detailed neighborhood information. As the spatial feature,

the neighborhood LU categories have intrinsic spatial autocorrelation. Nevertheless, this

issue can be handled by the RNN models because of their non-linear design.

This study uses geometric properties at both the cell and patch level to capture cer-

tain spatial patterns in the neighborhood. Cell-level metrics include distance to patch

centroid, statistics of distance to patch edges and statistics of distance to neighboring

patches, and patch-level metrics include patch area, patch perimeter ; patch equivalent di-

ameter ; patch eccentricity, major axis length. Cell-level metrics serve a similar purpose

as neighborhood characteristics but cell-level metrics focus more extensively on speci-
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Table 4.2: Description of spatial features used for modeling the LUC process

Description

Neighorhood characteristics Land use classes (non built-up, built-up or water body) of
neighboring cells within certain size

geometric properties
Cell-level

Distance to patch centroid Euclidean distance between target cell and the centroid of the
local patch

Statistics of distances to patch
edges

Mean, std. dev., and minimum of the distances between tar-
get cell and the edge of local patch

Statistics of distances to neigh-
boring patches

Mean, std. dev., and minimum of the distances between tar-
get cell and the edge of neighboring patches

Patch-level
Patch area The area of local patch
Patch perimeter The perimeter of local patch
Patch equivalent diameter The diameter of a circle with the same area as the local patch
Patch major axis length The length of the major axis of the ellipse that has the same

normalized second central moments as the local patch
Patch eccentricity Eccentricity of the ellipse that has the same second-moments

as the local patch. The eccentricity is the ratio of the focal
distance (distance between focal points) over the major axis
length

Proximity
Distance to highway The nearest Euclidean distance between target cell and high-

way
Distance to major roads The nearest Euclidean distance between target cell and major

roads
Distance to railway or subway The nearest Euclidean distance between target cell and real-

way or subway
Physical factor

Elevation Elevation of target cell
Coordinates Coordinates of target cell

Notes:
1. Neighborhood characteristics and geometric properties are calculated based on the land use maps.
2. Proximity factors are calculated based on the road and railway networks data, which are collected
from the Ministry of Land, Infrastructure, Transport and Tourism of Japan for 2000 and 2005 and
OpenStreetMap database for 2009 to 2016.
3. Elevation data are collected from SRTM (Shuttle Radar Topographic Mission) database.
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fying the relative location of the patch’s target cell and also the neighboring patches.

Essentially, these geometric properties have similar roles as the landscape metrics used in

previous studies of LUC modeling: both spatial features are used to capture the spatial

patterns in the neighborhood. Moreover, many landscape metrics are calculated based

on geometric properties, such as patch area and perimeter. However, compared with

the landscape metrics, the geometric properties are simpler in terms of computational.

Moreover, geometric properties are mainly designed to describe the geometric location

and shape rather than to reflect certain ecological status. This study uses the geometric

properties instead of the composite landscape metrics mainly because the computation

of geometric properties is relatively more efficient. The neighborhood size used for com-

puting geometric properties is 18×18, which is determined based on trial-and-error tests

to achieve a balance between predictive performance and computational cost.

4.2.3 Implementation

4.2.3.1 Modeling framework

Figure 4.3 presents the modeling framework. The cells that are located in the area of

no built-up area in the initial time (year 2000) are defined as modeling area, and are

used as samples for LUC modeling. The other cells are defined as persistent area. This

study splits the spatio-temporal data into three sets: 1) training set composed of data

from 2000 to 2010, which are used to train RNN models; 2) validation set composed of

data for 2011, which are used to examine the generalization performance of RNN models

while training; 3) test set composed of data from 2012 to 2015, which are used to test

the forecasting performances of RNN models after the model training is completed.

The RNN models estimate the LU categories in a deterministic approach. For each

cell at each time step, the RNN models continuously yield probability-like predictions of

LU categories (non-built-up and built-up), which are produced from a Softmax function
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Figure 4.3: Modeling framework

layer. Then RNN models determine the final predictions of LU categories by selecting

the LU category with higher probability. Based on this process, both the LU transition

quantity and allocation are automatically determined by the RNN models.

The RNNs are deterministic approach which make prediction by assimilating the

information in previous time steps, while CA is essentially a stochastic approach. The

randomness introduced by CA may accumulate over time, hence may undermine the

predictive performance of RNN models; particularly the predictive performance for time

steps at the end of the temporal sequence may be undermined.

This modeling framework is coded and implemented in Python. The RNN models

are developed based on the framework of PyTorch, which is a Python machine learning

library. Proximity factors and physical factors are processed and generated by ArcPy

(ESRI Inc., U.S.); geometric properties are processed and generated based on SciPy.
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4.2.3.2 Model training

In terms of sampling, most previous studies have used random or stratified sampling to

avoid the influence of spatial autocorrelation. However, the mini-batch learning criterion

of a neural network naturally mitigates the influence of spatial autocorrelation to certain

extent. Furthermore, this study uses a bootstrap over-sampling strategy in this study

to manage the data imbalance problem (i.e., the cells with unchanged LU category are

much more than the cells with changed category). In particular, a mini-batch of data

is randomly sampled from the dataset with replacement, and samples that belongs to

negative and positive labels have the proportion of approximately 7:3 within a mini-

batch.

Due to the small study area, the sample size used in this study is limited; this may

induce over-fitting problem of the RNN models. In order to avoid the over-fitting prob-

lem, this study applies various generalization methods. This study uses both dropout

(Zaremba et al., 2014) and adding Gaussian noise to the gradient (Neelakantan et al.,

2015b), which are shown to effectively resolve the issues in previous studies as regu-

larization methods. This study also adopts a strict early stopping scenario to pre-

vent the over-fitting (i.e., the model would automatically stop training if the moving

average validation loss does not decrease by 5% on the basis of the moving average

validation loss of prior step.) In addition, the fine-tuned RNN models turn out to

have low dimensional hidden space; the number of hidden units is ranging between

1× number of features ∼ 5× number of features. In particular, the number of hidden

units decreases with the increase of the RNN model depth.

This study uses Batch Normalization (Ioffe and Szegedy, 2015; Cooijmans et al., 2016),

a technique shown to work well with deep neural networks to improve the performance of

RNN training. This study uses a gradient clip with a threshold of 1 to prevent gradient

exploding. This study uses cross-entropy as the loss function, and stochastic gradient

descent as the optimization algorithm. By using both grid search and random search,
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this study fine-tunes the hyperparameters of RNN models, including number of hidden

units, learning rate, momentum, learning rate decay rate, Gaussian noise coefficient,

dropout rate and over-sampling ratio.

4.2.4 Performance evaluation metrics

Given that the purpose of developing the RNN models is to forecast the LU maps

rather than to estimate the LU transition probability maps, this study does not use

the probability-based evaluation metrics such as receiver operating characteristic curve.

Instead, this study uses classification evaluation metrics (accuracy and F1 score) and

map comparison metrics (Kappa simulation and fuzzy Kappa simulation) to evaluate the

predictive performances of RNN models.

In order to eliminate the influence of LU persistence and avoid the over-estimation

of predictive performances, classification evaluation metrics are calculated based on the

predicted results and actual LU in modeling area instead of the whole study area. Both

accuracy and F1 score are cell-to-cell metrics, and are defined as

Accuracy =
TP + TN

TP + TN + FP + FN
(4.18)

F1 score = 2×
TP

TP+FP
× TP

TP+FN
TP

TP+FP
+ TP

TP+FN

(4.19)

where TP denotes true positive, FP denotes false positive, TN denotes true negative,

FN denotes false negative. Compared with accuracy, F1 score measures the classification

performance of positive label, which enables specific evaluation of the model’s capability

to predict the transitions from non-built-up to built-up land.

Map comparison metrics evaluate the agreement of predicted and actual LU maps.

Kappa simulation and fuzzy Kappa simulation are developed based on Kappa statistic,

which further eliminate the influence of LU persistence. Refer to section 3.2.3 for details.

99



4.3 Results and discussion

4.3.1 The predictive performances of RNN models

4.3.1.1 Analysis of single-layer RNN models with varying architectures

Table 4.3 presents the predictive performance evaluation results of simple RNN, LSTM,

LSTM-peephole and GRU on test data (2012 ∼ 20116). van Vliet et al. (2013a) demon-

strate that a fuzzy Kappa simulation with value higher than 0 indicate that a model

explains LUC better than random guess. Table 4.3 shows that all RNN models achieve

fuzzy Kappa simulations with values higher than 0.45, which indicates the validity of

using RNNs to model the spatio-temporal LUC process. The RNN models with gated

architecture (LSTM, LSTM-peephole and GRU models) greatly outperform the simple

RNN model. Given that RNNs with gated architecture are more capable of capturing

and modeling the long-term temporal dependency in the data compared with simple

RNN, RNN models with greater ability to model temporal dependency can model the

spatio-temporal dynamics of LUC process better.

Among the three RNN models with gated architecture, LSTM and LSTM-peephole

models outperforms GRU model; this result indicates the better performance of LSTM

architecture for this specific LUC modeling task. Moreover, the LSTM and LSTM-

peephole models achieve similar predictive performances in terms of cell-to-cell metrics:

accuracy, F1 score and Kappa simulation. However, the LSTM-peephole model slightly

outperforms the LSTM model in terms of vicinity-based metrics. This result indicates

that LSTM-peephole model yields relatively more ’near-hits’ (i.e. correctly predict the

LU category of neighboring cells rather than the central cell itself). Therefore, LSTM-

peephole model is considered to have the highest predictive performance for this specific

LUC modeling task.

Figure 4.4 presents the comparison of actual and predicted LU maps for 2016, and
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Figure 4.5 presents the spatial distribution maps of prediction errors produced by simple

RNN and LSTM-peephole models. Both simple RNN and LSTM-peephole models over-

estimate the quantity of LU transitions from non-built-up to built-up, given that the

cells with Type I error (false positive) is significantly larger than the cells with Type II

error (false negative). Furthermore, in terms of both simple RNN and LSTM-peephole,

the cells with Type I error are mainly distributed around the already existed built-up

land at the initial modeling time (year of 2000), while the cells with Type II error are

mainly distributed at locations isolated from the already existed built-up land. This

result indicates that the RNN models is capable of predicting the expansion of built-up

land, but is relatively poor at predicting the emergence of new built-up land. In addition,

compared with simple RNN model, LSTM-peephole model yields much less Type I error;

this implies that modeling longer temporal dependency reduces the incorrect rejection of

the hypothesis that LU category does not change, and by doing so improves the predictive

performance for modeling LUC process. Table 4.3 shows that the prediction accuracy

decreases over time for all RNN models. It should be noted that this phenomenon does

not imply a modeling problem caused by over-fitting. Instead, this phenomenon seems

to be observed due to the error propagation over time. According to the mechanism of

RNN models, the prediction of LU for the subsequent time step is based on the hidden

representations in previous time steps and also the neighborhood features and geometric

properties calculated based on the prediction of LU in the prior time step. Hence, the

errors of LU predictions in previous time steps would affect the accuracy of LU prediction

for the subsequent time step, and leads to the observed phenomenon of relatively low

accuracy of subsequent time step compared to that of the prior time step. A simple

example is that a cell that is incorrectly classified into built-up land at the prior time

step would generally retain the misclassified LU category at the subsequent time step;

Figure 4.5 provides the visualization.
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Figure 4.4: Actual and predicted LU maps for 2016
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Table 4.3: Results of evaluation metrics calculated from the prediction results of RNN
models from 2012 to 2016

Accuracy F1 score
Kappa
simulation

Fuzzy Kappa simulation
3×3 5×5 9×9

simple RNN 2012 0.921 0.583 0.507 0.593 0.641 0.711
2013 0.911 0.577 0.497 0.585 0.635 0.706
2014 0.902 0.570 0.485 0.572 0.623 0.695
2015 0.895 0.564 0.485 0.561 0.620 0.689
2016 0.888 0.556 0.476 0.549 0.614 0.686

LSTM 2012 0.961 0.714 0.646 0.692 0.757 0.811
2013 0.949 0.693 0.627 0.671 0.730 0.800
2014 0.940 0.680 0.611 0.653 0.715 0.787
2015 0.933 0.662 0.596 0.638 0.692 0.766
2016 0.923 0.649 0.579 0.617 0.678 0.742

LSTM-peephole 2012 0.954 0.714 0.643 0.697 0.761 0.816
2013 0.944 0.689 0.629 0.683 0.740 0.798
2014 0.937 0.673 0.609 0.664 0.722 0.782
2015 0.931 0.660 0.592 0.647 0.706 0.768
2016 0.924 0.657 0.586 0.637 0.694 0.753

GRU 2012 0.953 0.694 0.604 0.646 0.713 0.778
2013 0.939 0.675 0.596 0.631 0.690 0.759
2014 0.929 0.652 0.576 0.615 0.673 0.747
2015 0.920 0.634 0.565 0.695 0.659 0.723
2016 0.909 0.622 0.547 0.581 0.642 0.709

Notes:
1. All evaluation metrics exclude the influence of LU persistence in different approaches, refer to
section3.4 for details.
2. The calculations of Kappa simulation and fuzzy Kappa simulation uses the land use map of 2000 as
initial map and compares the predicted and actual land use maps. Fuzzy Kappa simulations are
calculated based on three different neighborhood size of neighborhood membership function: 3×3, 5×5,
and 9×9.
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4.3.1.2 Analysis of varying sequential length

In order to further explore the benefit of modeling temporal dependency, this study ex-

amines the predictive performances of LSTM-peephole models with varying sequential

length of training set. The LSTM-peephole models are independently fine-tuned to facil-

itate an unbiased examination. Table 4.4 presents the results. According to the values

of all evaluation metrics, the predictive performances of LSTM-peephole models decrease

with the decrease of sequential length of training set. The decrease of sequential length

leads to the loss of temporal information and temporal relationship that could be learned

and used by the LSTM-peephole model. This result shows the benefit of incorporating

rich temporal information of LU to model the LUC process.

Given that this study is a case study rather than a comparative study, this study does

not develop a LUC model that is trained with data in two time steps to specifically com-

pare with the RNN models. However, the analysis of varying sequential length provides

a special case, which enables a rough comparison to show the predictive performance

improvement by the inclusion of the temporal dependency in modeling of RNN models.

When the sequential length decreases to 2, the LSTM-peephole model is trained using

the data in 2009 and 2010, is validated using the data in 2011, and then is tested using

the data from 2012 to 2016. In this case, the LSTM-peephole model cannot learn any

further useful temporal dependency from the training data given that only the variation

between two time periods are available. Compared with this limited LSTM-peephole

model, the baseline LSTM-peephole model achieves F1 score and Kappa simulation that

are approximately 0.16 and 0.17 higher, respectively.

4.3.1.3 Analysis of deep LSTM-peephole models

According to the results in Table 4.3, single-layer LSTM-peephole model is shown to have

the highest predictive performance. This study further develops deep LSTM-peephole
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Table 4.4: Results of evaluation metrics calculated from the prediction results of LSTM-
peephole model with varying sequential length of training set for 2016

Accuracy F1 score
Kappa
simulation

Fuzzy Kappa simulation
3×3 5×5 9×9

11 (Baseline) 0.924 0.657 0.586 0.637 0.694 0.753
10 0.917 0.642 0.553 0.628 0.688 0.75
9 0.916 0.641 0.55 0.636 0.677 0.745
8 0.889 0.591 0.523 0.577 0.624 0.701
7 0.900 0.608 0.521 0.579 0.62 0.694
6 0.889 0.589 0.494 0.55 0.598 0.673
5 0.870 0.562 0.472 0.516 0.548 0.636
4 0.882 0.576 0.458 0.497 0.545 0.633
3 0.871 0.548 0.431 0.477 0.534 0.614
2 0.866 0.542 0.429 0.473 0.534 0.608

Notes:
1. All evaluation metrics are calculated from the LU prediction for 2016. 2. All evaluation metrics
exclude the influence of LU persistence in different approaches, refer to section3.4 for details.
3. The calculations of Kappa simulation and fuzzy Kappa simulation uses the land use map of 2000 as
initial map and compares the predicted and actual land use maps. Fuzzy Kappa simulations are
calculated based on three different neighborhood size of neighborhood membership function: 3×3, 5×5,
and 9×9.
4. Sequential length represents the time span of annual data in training set. In baseline model, training
set contains data of 11 years from 2000 to 2010.
5. All results are obtained from LSTM-peephole models with independently fine-tuned
hyper-parameters.
6. The model with sequential length of 11 is the baseline model.

models with varying model depth (depths of 1, 3, 5, and 8) to examine the applicability

of RNN models with higher capacity. The deep LSTM-peephole models are independently

fine-tuned; Table 4.5 presents the performance evaluation results. The results show that

the single-layer LSTM-peephole model outperforms the other models with more layers. A

possible explanation is that the deep models are unnecessarily complex for this particular

LUC modeling task. Hence, the models have relatively low generalization performances

even though strict regularization methods are implemented. Another possible explanation

is that deep RNN models are intrinsically difficult to train because of the complex gradient

flow. Consequently, the relatively poor training performances of deeper RNN models lead

to the relatively poor generalization performances. Regardless of the specific reasons,

the result indicates that single-layer LSTM-peephole model is sufficient to resolve this
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particular LUC modeling task.

Table 4.5: Results of evaluation metrics calculated from the prediction results of deep
LSTM-peephole model with varying model depth for 2016

Accuracy F1 score
Kappa
simulation

Fuzzy Kappa simulation
3×3 5×5 9×9

1 (baseline) 0.924 0.657 0.586 0.637 0.694 0.753
3 0.912 0.634 0.554 0.588 0.652 0.697
5 0.910 0.627 0.549 0.582 0.645 0.696
8 0.907 0.606 0.500 0.574 0.618 0.684

Notes:
1. All evaluation metrics are calculated from the LU prediction for 2016. 2. All evaluation metrics
exclude the influence of LU persistence in different approaches, refer to section3.4 for details.
3. The calculations of Kappa simulation and fuzzy Kappa simulation uses the land use map of 2000 as
initial map and compares the predicted and actual land use maps. Fuzzy Kappa simulations are
calculated based on three different neighborhood size of neighborhood membership function: 3×3, 5×5,
and 9×9.
4. All results are obtained from LSTM-peephole models with independently fine-tuned
hyper-parameters.
5. The model with depth of 1 (single layer) is the baseline model.

4.3.2 Predictions

Given that the single-layer LSTM-peephole model achieve the highest predictive perfor-

mance for this specific modeling task, this study uses the single-layer LSTM-peephole

model to forecast the future LU maps of the city of Tsukuba. Figure 4.6 shows the LU

maps from 2012 to 2026. The LU prediction from 2012 to 2017 are also presented in order

to show the continuous LUC process and the variation of LU pattern that are predicted

by the LSTM-peephole model. According to the Figure 4.6, the built-up land in the city

of Tsukuba will continue expanding over the next decade. Figure 4.7 depicts the time

trend of the area of built-up land in previous years and in the future years. Given that

the LSTM-peephole model is trained using the historical data, it can be interpreted that

the forecasted expanding speed of built-up land is similar with the actual speed observed

in previous years.
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However, Figure 4.6 also uncovers a limitation of the LSTM-peephole model. The

built-up lands have expanded significantly in the bottom area of the city ofTsukuba,

which are marked by red circles in the maps. In reality, large-scale land use transitions

usually take a few years to complete and do not occur as a sudden transition within a year

or less. This mismatch indicates the model’s inability to predict the precise timing of the

LUC process. This problem may be partially caused by the direct use of discrete number

changes to represent the LUC process. Given that the inputs do not introduce any explicit

timing indicator into the LSTM-peephole model, the model can only learn an implicit

notation of time from the temporal variation of LU through its internal mechanism, which

is rather insufficient to learn the precise timing of LUC process.
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Figure 4.6: Land use maps in the city of Tsukuba produced by LSTM-peephole model
from 2012 to 2027
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Figure 4.7: Time trend of built-up area in the city of Tsukuba from 2000 to 2027

Notes: Solid line shows the actual built-up areas in the period between 2000 to 2016. Dash line
between 2017 to 2027 indicates the predicted built-up areas forecasted by LSTM-peephole model.

4.4 Summary

This study applied RNNs to model the spatio-temporal dynamics of LUC process in the

city of Tsukuba, Japan. Four RNN models (simple RNN, LSTM, LSTM-peephole and

GRU models) are trained, validated and tested on annual LU and the other spatial data of

the city from 2000 to 2016. The predictive performances of the RNN models are evaluated

using both classification metrics (accuracy and F1 score), and map comparison metrics

(Kappa simulation and fuzzy Kappa simulation); both evaluation metrics free from the

influence of LU persistence on the predictive performance evaluation. According to the

implication of fuzzy Kappa simulation van Vliet et al. (2013a), all the RNN models

perform significantly better than a random model (predict the LUC by random gauss)

given that the fuzzy Kappa simulation values of each model for per test year (2012,

2013, 2014, 2015, 2016) are significantly higher than 0 (the lowest value is approximately

0.48); these values indicate the validity of the approach that uses RNNs to model the
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spatio-temporal dynamics of LUC process. In particular, out of the four models, the

LSTM and LSTM-peephole models significantly outperform the other two models, and

the LSTM-peephole model slightly outperforms the LSTM model.

Our results also indicate that the ability to model the temporal dependency of LUC

process greatly influences the predictive performances of modeling LUC process with

RNN models. LSTM, LSTM-peephole and GRU models, which have advanced gated

architecture compared with simple RNN, significantly outperform the simple RNN model.

This result indicates that the ability of model to further take longer temporal dependency

in to account improves the RNN model’s predictive performance. Moreover, the predictive

performance of LSTM-peephole model gradually decreases with the decrease of temporal

sequential length of training set. Given that the temporal sequential length of training set

represents the richness of learnable temporal relationships in the spatio-temporal data,

this result indicates that the predictive performance of LSTM-peephole model benefits

from modeling longer temporal dependency.
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Part II

Air pollution and subjective

well-being
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Chapter 5

Background

Understanding people’s subjective perception of environmental problems is crucial in

the field of environmental economics and environmental impact assessment. Various

approaches have been used to evaluate the impact of environmental problems. Among

these approaches, a growing amount of literature uses the subjective well-being (SWB)

approach, which emphasizes the environmental impact on people’s subjective evaluation

of their own well-being.

According to previous studies, the SWB approach provides an effective quantitative

evaluation of the environment as public goods and enables us to analyze the effect of

environmental problems on people’s welfare. Subjective evaluation allows us to incor-

porate people’s environmental concerns in addition to the stated-preference (e.g. Wang

and Mullahy, 2006) or revealed-preference approaches (e.g. Kim et al., 2003) that have

traditionally been used by economists to incorporate subjectivity into such evaluations.

Self-reported well-being is regarded as a robust empirical approximation of overall util-

ity; thus, it is meaningful to use subjective well-being (SWB) for a direct evaluation of

environmental quality (e.g. Welsch, 2009).

Previous studies have shown that in addition to income and various personal and
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household characteristics, environmental conditions have a statistically significant impact

on SWB, and the SWB approach provides an effective quantitative evaluation of the

environment, e.g., climate change (e.g. Sekulova and van den Bergh, 2013), airport noise

(e.g. van Praag and Baarsma, 2005), ecosystem diversity airport noise (e.g. Ambrey et al.,

2014), flood disaster (e.g. Van Ootegem and Verhofstadt, 2016) and air pollution (e.g.

Welsch, 2002, 2007; Ferreira et al., 2013; Levinson, 2012).

There is a line of studies that analyze the impact of air pollution on people’s subjective-

welling across the world at different scale. Welsch (2006) analyzed the impacts of a series

of air pollutants including NO2, total suspended particulates (TSP) and Lead (Pb) in 10

European countries and found that NO2 and Pb have a statistically significant negative

effect on the life satisfaction measure. Ferreira et al. (2013) combined the SWB approach

with a Geographic Information System (GIS) technique to assess the impact of the SO2

concentration on life satisfaction with regional level data from 23 European countries.

Levinson (2012) used the level of PM10 as a proxy for air quality and evaluated its impact

on the happiness rating in the U.S. In addition to country-scale analyses, regional or city

level analyses are also available. MacKerron and Mourato (2009) conducted an Internet

survey and collected self-reported life satisfaction (LS) data in London and analyzed the

effect of NO2 on the level of LS. Similarly,Ambrey et al. (2014) used the LS approach to

estimate the cost of air pollution (PM10) in Southeast Queensland in Australia. Moreover,

Cuñado and de Gracia (2013) evaluated the roles of both air pollution (PM10 and NO2)

and climate change to explain the regional differences in life satisfaction among Spanish

regions. Overall, the results of previous studies show that in most cases, air pollution has

a significant negative impact on people’s SWB.

However, previous studies mainly conduct analyses with a particular focus on the

impact of environmental quality are mostly concentrated in developed countries mainly

because of data availability. There is a set of SWB studies for China, but most studies

focus on the impact of individual attributes and social issues (See (Bian et al., 2015) for

overview). Nonetheless, several recent studies have examined the effect of environmental
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quality on Chinese people’s SWB. Smyth et al. (2008, 2011) examined the relationship

between air pollution and SWB mainly in urban areas of China using originally collected

survey data on SWB. Smyth et al. (2008) used a 2003 survey with 8,890 valid responses

from 30 major Chinese cities and found that respondents living in cities with relatively

high SO2 emission levels reported significantly lower SWB. In 2007, Smyth et al. (2011)

conducted a survey with 2,741 participants in six Chinese cities and found that the atmo-

spheric pollution (SO2 and suspended particle concentration) had a significant negative

effect on the originally constructed personal well-being index. Using happiness data col-

lected in 2012, Li et al. (2014) examined the effect of estimated perceived risk from air

pollution on happiness in mining areas of China. Their results showed that air pollution

significantly lowered people’s happiness and suggested that air pollution reduction is an

important policy measure to improve people’s happiness. Xu and Li (2016) also reported

negative effects of air pollution on happiness based on happiness measures from the World

Values Survey 2007 and subjective air pollution perceptions.

In this field of subjective well-being analyses, there is a trend in recent years to dis-

aggregate SWB and air pollution data for allowing a precise assessment for individuals.

Some studies have incorporated advanced techniques such as GIS or atmospheric model-

ing techniques to match individual survey data and location-specific air pollution data.

Ferreira et al. (2013) used a spatial interpolation method (inverse distance weighting) to

generate individual-level SO2 concentrations for respondents in 23 European countries to

analyze the pollutant’s relationship with people’s life satisfaction. Levinson (2012) used a

weighted-distance interpolation method to estimate individual-level PM10 concentration

in the U.S. Orru et al. (2016) also used a Eulerian air quality dispersion model to gener-

ate PM10 data for 30 nations across Europe. Based on air pollution datasets created by

various estimation techniques, these studies found that robust significant negative effects

of air pollution were reported. This study also incorporates GIS techniques to match

location-specific pollution data to individual survey data.

Impact assessment of air pollution in the urban cities are important to assess given
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that more than 80% of people worldwide, who live in urban areas are exposed to air qual-

ity levels that exceed WHO limits. In particular, Chinese urban areas have received much

attention of policy makers and researchers due to alarming pollution level. In 2014, Chi-

nese president Jinping Xi said at an official government press conference, ’air quality has

directly affected Chinese people’s happiness.’ In recent years, Beijing has frequently expe-

rienced heavy haze in the winter (Han et al., 2015; Zhang et al., 2016). In January 2013,

the daily PM2.5 concentration frequently exceeding the recording range of the monitoring

instruments. The government enacted a series of regulations and invested extensively in

air pollution abatement. Similarly, in Shanghai, due to the dramatic increases in energy

consumption and pollutant emissions caused by recent rapid urbanization, air quality and

visibility have been deteriorating, and serious haze episodes have become more numerous

(Gao et al., 2011; Wang et al., 2012). The government has begun to express concern over

the impact of air pollution on residents’ well-being.

This study aims to analyze the impact of air pollution issue on the subjective well-

being of urban residents in China. In particular, this study focuses on the North part of

China, where is suffering from the air pollution issue most. This study has two stages:

firstly, this study conducts analyses in the Northeast China, where is a heavy industrial

area under declining economy; secondly, this study conducts a comparative analyses in

Beijing and Shanghai, which are the largest cities in Northern and Southern China, re-

spectively. Both analyses collect subjective well-being measures from an original Internet

survey that took place during the January and February, 2016. The analyses in North-

east China use aggregated air pollution data because of limitation of data availability

in the area; while the analyses in Beijing and Shanghai use disaggregated air pollution

data, which is produced from Ordinary Kriging interpolation method. The relationship

between air pollution and the subjective well-being is examined by regression analyses.

Furthermore, the monetary value of air pollution is also estimated based on the results

of regression analyses.
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Chapter 6

The impact of air pollution on

subjective well-being in Northeast

region of China

6.1 Motivation

This study builds on the previous empirical analyses on air pollution and SWB by ex-

amining the impact of PM2.5 on life satisfaction using an original survey conducted in

the northeast region of China in January and February 2016. Air pollution has been

and continues to be a serious environmental problem for China, and public attention and

concern has surged exponentially surged in the past few years. One of the main reasons is

worsening air quality. Frequent heavy hazes have been observed, particularly in northern

and eastern China in winter. The recent hazes with high concentrations of PM2.5 are

characterized by experts as ’extremely severe and persistent’ (Huang et al., 2016; Zhang

et al., 2017). In recent years, policy makers have recognized the damages of air pollution

and have taken action to control them. The Chinese State Council issued the Action
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Plan of Air Pollution Prevention and Control in 2013, which urged local governments to

set 5-year pollution reduction targets.

Among air pollutants, PM2.5 has received particular attention from policy makers and

the general population (Zhao et al., 2013; Li et al., 2015a). Since the U.S. embassy in

Beijing began recording and publishing daily PM2.5 levels in 2011, the recording practice

has spread across China, and timely data are made public through Internet websites

and mobile applications. With the public’s access to information, Chinese government

added PM2.5 as major pollutant for regular monitoring in the updated 2012 China’s

Ambient Air Quality Standards. Hence, our survey reflects the recent increase in attention

to PM2.5 and general air pollution in China. In addition to the standard analysis of

pollution’s impact on SWB, this study considers the possibility of varying effects of PM2.5

concentration across different demographic groups by examining the interaction effects

between pollution measures and respondents’ subjective health evaluation, whether they

have young children and their environmental awareness. Furthermore, using the results of

regression analyses, this study calculates the monetary value (MV) or willingness-to-pay

(WTP) or of air pollution for a reduction in the PM2.5 concentration.

6.2 Data and variables

6.2.1 Study area

In this analysis, this study focuses on the northeast region of China, which covers 787

thousand square kilometers (12% of China’s total area) and contains 109 million people

(8% of China’s total population). The region consists of 3 provinces with 35 prefecture-

level cities. Because China is a massive country that contains different cultural entities,

the uniform culture of this given area allows us to analyze a sample of respondents

who share similar definitions of life satisfaction or happiness. This particular region is
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distinctly different from other parts of China in terms of the shared history, culture,

customs and native dialects within the region. The residents of this region are known to

have relatively strong senses of identity based on an attachment to the region, and the

people have often been referred to as ”Northeast men”.

Welsch (2009) argued that the level of happiness was comparable if people shared

a common opinion of what happiness is. Moreover, environmental issues such as air

pollution are localized in a physical, social and cultural context in which the individuals

live, work and interact with one another (Bickerstaff and Walker, 2001). Thus, regional

analysis allows for a more accurate extraction of the impact of a particular determinant

on SWB without the need to control the variations in the sources that must be considered

if this study extends the study area.

6.2.2 Survey

Recent studies on SWB in China have used the Chinese General Social Survey (CGSS) as

common data to study the SWB-related questions posed in these studies (Huang et al.,

2016; Zhao, 2012). In this study, this study uses an original Internet survey administered

in Northeast China in January and February 2016. Compared to previous surveys used

in SWB studies in China, this survey has expanded coverage of questions on people’s

environmental awareness and behavior as well household characteristics that are relevant

to studying the impact of environmental quality on SWB. Web-based surveys have an

advantage in avoiding interviewer bias caused by arbitrary factors (such as the appearance

or gender of interviewers) in responses to sensitive questions, such as household income,

employment status and MV (Welsch, 2009).

Out of 1,208 respondents, this study eliminates those who did not provide an answer

regarding household income; consequently, 1,002 respondents remain for the analysis.

Table 6.1 provides a comparison between the demographic distribution of our sample
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and other available data. First, this study compares the age and gender distributions of

the survey data with official statistics from 2015 Provincial Statistical Yearbooks for the

Northeast region. The age distributions in Table 6.1 indicate that our sample is skewed

toward a younger population. Because this study expects to experience some difficulty

collecting responses from the age group over 60, this study substitutes the insufficient

share of respondents over age 60 with respondents in the age group of 50∼59. Hence,

this study has a higher proportion of respondents in the age group of 36∼60. In terms

of gender, the ratio in our sample is close to the ratio in statistical data.

Table 6.1: Socio-demographic characteristics of respondents

This survey (N=1002) Comparatora

Ageb

20 ∼ 35 32% 28%
36 ∼ 50 33% 52%c

51 ∼ 60 31%
61 ∼ 4% 20%

Gender
Male 53% 51%
Female 47% 49%

Gross household incomed

(CNY)
Mean (Std. Dev.) 108,561 (78,559) 71,970 (71,261)

0 ∼ 10,000 6.5% 3.2%
10,001 ∼ 25,000 4.9% 13.1%
25,001 ∼ 75,000 22.6% 54.4%
75,001 ∼ 150,000 45.4% 24.4%
150,001 ∼ 300,000 19.3% 3.4%
300,000 ∼ 2.5% 11.3%

Notes:
a Age and gender distributions of Northeast China are obtained from the 2015 Statistical Yearbooks of

Heilongjiang, Jilin and Liaoning Provinces. Gross household income distributions are derived from

Chinese General Social Survey (CGSS, 2013). Responses in Northeast area (758 samples) are extracted

from the original CGSS dataset.
b Given that there is almost no respondent under 20 years old in this survey, for presenting a

comparative result, population under 20 years old are excluded from the original statistics dataset.
c 2015 Provincial Statistical Yearbooks only provide the share of population aging between 36 ∼ 60.
d CGSS 2013 only has annual gross household income of 2011, while our survey collects gross household

income of 2015. To deal with this temporal difference, this study collected yearly income increase rates

between 2011 and 2015 from Statistical Yearbooks, and then estimate the household income of 2015 by

applying each year’s income increase rate to income of 2011.
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Since official yearbooks have individual annual disposal income data and this study

collected pre-tax annual household income, this study compares our income distribution

with CGSS data that are used in previous studies. This study extracts the 2011 income

data of our target region and then predict income levels in 2015 by adjusting the increase

in income, calculated from statistical yearbooks. The average annual gross household

income of our respondents is approximately 36,000 CNY (5,500 USD) higher than that

in the CGSS. In both data sets, observations are available in income categories, and the

majority of respondents have a household income level between 25,000 CNY ∼ 150,000

CNY. However, over half of respondents in CGSS have a household income between 25

and 75 thousand CNY, while nearly half of our respondents have an income between

75,000 and 150,000 CNY. The relatively high income may be partially due to insufficient

responses from elders who have retired, as mentioned above, and the comparison implies

that the results of our study place a heavier emphasis on the attitude of the urban

population in the labor force.

6.2.3 Subjective well-being measure

Since SWB-related questions are vulnerable to the context in which they are asked, the

SWB questions were placed at the beginning of our questionnaire. Previous studies have

used both life satisfaction and happiness as a measure of SWB. Although these measures

are sometimes used interchangeably, this study uses life satisfaction (manyi) rather than

happiness (xingfu) in our analysis based on the distinction between the two in the Chinese

language. The Chinese term ”xingfu” is usually used as a translation for happiness, which

is the closest descriptor of an overall evaluation of one’s life, with particular emphasis

on interpersonal relationships and other emotional factors. On the other hand, ”manyi”

emphasizes satisfaction with the relative standard of living or material comforts (Chen

et al., 2015). Because this study primarily focused on the impact of air pollution, it is

more appropriate to use life satisfaction (manyi).
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This study asked, ”Overall, how satisfied are you with your life?” and respondents were

given 5 options on the scale: 1) completely unsatisfied, 2) somewhat unsatisfied, 3) neither

satisfied nor unsatisfied, 4) slightly satisfied, and 5) Completely satisfied. Figure 6.1 shows

the distribution of the life satisfaction rating for the respondents. The average score was

3.85 and the median score was 4. Approximately 54 percent of the respondents chose

”slightly satisfied” (a score of 4), which is consistent with evidence from a psychological

study that Chinese respondents tend to self-report moderate scores in psychometric tests

because modesty is highly valued in the Chinese culture (Lau et al., 2005). Nevertheless,

this study finds variation in reported life satisfaction. The distribution is right-skewed

toward higher satisfaction scores, but within a score of 3 to 5, it is normally distributed.

Figure 6.1: Distribution of Life satisfaction rating (N=1002)

6.2.4 PM2.5 measures

In this study, this study uses hourly PM2.5 data published by China’s National Environ-

mental Monitoring Center for 34 cities in Northeast China from January 2015 to February

2016. Most previous studies that analyze the effect of air pollution on SWB have used the

annual average concentration level of air pollutants as the pollution measure (e.g. MacK-
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erron and Mourato, 2009; Smyth et al., 2011; Levinson, 2012; Ferreira et al., 2013). The

time period selected may be limited by the available data, and previous studies are not

concerned with whether the air pollution effect varies depending on time specification. In

this study, in addition to the commonly used annual average air pollution measures, this

study uses the one-month and three-month averages of PM2.5 concentration. The results

of the pollution measures can be used to check the robustness of pollution effects, and

they show which time specification people would react to most strongly. To best proxy

for the pollution concentration level felt by the respondents, this study calculates the

average measures based on the date on which each respondent responded to the survey.

Given that the survey was conducted over a two-month period, respondents living in the

same city had varying pollution measures depending on when they took the survey.

Figure 6.2 shows the maps of the city-level air pollution data in Northeast China with

different average PM2.5 concentration measures. With all three measures, relatively high

PM2.5 concentrations were recorded in the densely populated central and southern parts

of the region where most of Northeast China’s heavy industrial factories are located. In

contrast, the northern part of the region, with a smaller population and fewer industries,

is less polluted. In extreme cases, the pollution level of PM2.5 is more than 4 times

larger than 35 µg/m3, which is the official standard established by China’s Ministry of

Environmental Protection (China’s Ambient Air Quality, GB3095-2012).

In addition, the severity of the PM2.5 pollution varies with time specifications; the

three-month > one-month > one-year concentration averages with concentration ranges

are 30 µg/m3 ∼ 130 µg/m3, 25 µg/m3 ∼ 80 µg/m3, and 25 µg/m3 ∼ 70 µg/m3, re-

spectively. The order of severity may partly be due to our survey period, which was

during winter, the season with the most serious pollution problem because of fossil fuel

combustion used in heating and because of the stationary meteorological condition (Li

et al., 2015b). The air pollution during winter usually reaches its peak in December and

then begins to decrease in January (Rohde and Muller, 2015).
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6.2.5 other control variable

Table 6.2 summarizes all the variables used in the analyses including all the other control

variables. this study controls the individual and household characteristics that have been

frequently used in previous studies to analyze the determinants of SWB. This study uses

the following individual characteristics as control variables: age, gender, subjective health

condition, education, number of (young) children, marital status, and modes of commut-

ing (Huang et al., 2016; Qian and Qian, 2015). Age and age-squared are both included in

the estimation to test the U-shaped effect of age on SWB that has been previously found

by scholars (Lange, 2010; Rao et al., 2016). To control for the personality of respondents,

this study uses aggregated personality measures calculated using 10 personality-related

questions. Using factor analysis, this study identifies three personality traits: passive,

stable and outgoing. This study uses the predicted values for each trait to control for

variation in personalities among respondents.

Table 6.2: Variable description

Variable Description Mean

(Std.

Dev.)

Subjective well-being

Life satisfaction ”Overall, how satisfied are you with your life?”

(1-5 scale)

3.85

(0.85)

Air pollution

PM2.5-one month average Average PM2.5 concentration in one month prior

to the day when respondent took the Internet

survey

66.36

(16.56)

PM2.5-three months average Average PM2.5 concentration in three months

prior to the day when respondent took the In-

ternet survey

95.81

(21.90)

PM2.5-one year average Average PM2.5 concentration in one year prior

to the day when respondent took the Internet

survey

60.13

(11.69)

Demographic and personal in-

dicators
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Income Respondent’s household gross income, which is

the mid-point of self-reported income range (i.e.

if the respondent selected 108,000-119,999 CNY,

then that would be 114,000 CNY)

108,561

(78,559)

Poor subjective health Dummy: 1 if the respondent chose his/her

health state as ”poor” or ”very poor”, 0 oth-

erwise

0.047

(0.21)

Age The age of respondent 42.17

(12.67)

Age-squared Square of centered age 160.36

(150.74)

Female Dummy: 1 if the respondent is female, 0 other-

wise

0.45

(0.50)

College graduates Dummy: 1 if the respondent has graduated from

university or college, 0 otherwise

0.58

(0.49)

Marital status

Single Dummy: 1 if the respondent has never married,

0 otherwise

0.20

(0.40)

Married (reference) Dummy: 1 if the respondent has been married,

0 otherwise

0.77

(0.42)

Divorced or widowed Dummy: 1 if the respondent has been divorced

or widowed

0.28

(0.17)

Unemployed Dummy: 1 if the respondent has no occupation 0.05

(0.20)

Household with children Dummy: 1 if the respondent has one or more

children, 0 otherwise

0.74

(0.44)

Household with young chil-

dren

Dummy: 1 if the respondent has one or more

children under 6 years old, 0 otherwise

0.19

(0.39)

Commuting

By cars Dummy: 1 if the respondent usually go to work

or school by cars, 0 otherwise

0.39

(0.49)

By public transmit Dummy: 1 if the respondent usually go to work

or school by bus or subway, 0 otherwise

0.44

(0.49)

By motorcycle, bicycleor

walking (reference)

Dummy: 1 if the respondent usually go to work

or school by motorcycle, bicycle or walking, 0

otherwise

0.33

(0.47)

Personality

Passive This study presents ten typical personalities in

the survey and asked respondents to rate the

consistency with their personalities. This study

then aggregates the ten indicators into three fac-

tors via factor analysis.

0(0.78)

127



Stable 0 (0.77)

Outgoing 0 (0.61)

Environmental activities Dummy: 1 if the respondent has experience of

participating in environmental activities in last

year, 0 otherwise

0.94

(0.24)

Spending on environmental

activities

The average share of money spending on envi-

ronmental activities out of monthly household

income, which is the mid-point of reported value

range

6.43

(7.75)

Regional controls

City size

Large (reference) Dummy: population above 700,000 0.53

(0.49)

Medium Dummy: population between 300,000 and

700,000

0.25

(0.43)

Small Dummy: population below 300,000 0.21

(0.40)

Urban green coverage The share of the of various urban public green

lands and suburban scenic areas out of total area

39.73

(6.12)

This study also uses the respondents’ participation in environmental activities and

their spending on environmental activities as a proxy for people’s environmental aware-

ness. Liao et al. (2015) used participation in community environmental protection as a

proxy to analyze the relationship between environmental awareness and SWB. Further-

more, to prevent omitted variable bias, this study controls for two possible geographical

variations that may affect overall life satisfaction. To capture the possible impact of ur-

banization on life satisfaction, this study controls for the city size by classifying cities into

”large”, ”medium” or ”small” based on their population sizes (Jiang et al., 2012). Smyth

et al. (2011) found that parkland areas are positively correlated with personal well-being.

Hence, this study controls for the urban green coverage, which is the share of the various

urban public green land spaces and suburban scenic areas within the total area. Both

measures are obtained from the 2015 Provincial Statistical Yearbook of Northeast China.
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6.3 Methodology

This study uses the following estimation equation to evaluate the impact of PM2.5 con-

centration on the life satisfaction of the respondents.

LSi = β1PM2.5, i + β2log(Income) + β3Zi + β4Ci + ε (6.1)

LS is the self-reported life satisfaction. PM2.5 i is an air pollution measure, and three

time-varying concentration measures are the main explanatory variables in the analysis.

log(Income) is the logarithm of the self-reported household income, and Z is a vector

of the demographic and personal variables that are described in the previous section. C

is a vector of the city-specific indicators including city size and urban green coverage. i

refers to the respondents and is a unit of analysis. β is the regression coefficient of the

variables.

This study further expanded the equation by introducing interaction variables between

the PM2.5 concentration measures and health (poor subjective health, household with

children and household with young children) and environmental awareness (environmental

activities and spending on environmental activities).

LSi = β1PM2.5, i + β2log(Income) + β3Zi + β4Ci + βIIi + ε (6.2)

Ii refers to the interaction variables and βI refers to the regression coefficient of the

interacted variables. The interacted variables are centered to eliminate collinearity. Cor-

related independent variables cause problems in estimating regression coefficients. This

study checks the variable inflation factor (VIF) to determine whether multi-collinearity

will be a problem in the estimation. Additionally, to eliminate the collinearity between

these age and age-squared variables, age is centered and then squared.

In previous studies, ordinary least squares (OLS) and ordered probit models have been
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used as common empirical methods (Ferrer-i Carbonell and Gowdy, 2007; Luechinger,

2009). Although the use of an ordered probit model seems to be more appropriate

because the SWB measures are ordinal, Ferrer-i Carbonell and Frijters (2004) found that

both approaches could provide robust and similar results. This claim is supported by the

results of Van Den Berg and Ferrer-I-Carbonell (2007); MacKerron and Mourato (2009);

Levinson (2012) and others. Therefore, this study uses OLS as the main regression

algorithm for the interpretation.

In addition, this study estimates the implicit MV with estimated coefficients, which

indicates the trade-off between household income and PM2.5 concentrations while holding

people’s life satisfaction constant. First, this study calculates the MV based on Eq. 6.2,

without considering the interaction variables.

MV = −incomei
β1
β2

(6.3)

Then, this study adds each interaction variable to Eq. 6.3 if the estimated regression

coefficient is statistically significant.

MV = −incomei
β1 + βIIi

β2
(6.4)

6.4 Empirical results and discussion

Table 6.3 shows the results of Eq. 6.2, and Table 4 provides the MV that is calculated

based on the estimation results in Table 6.3. Table 6.4 provides the results of the OLS

estimations of the baseline model in Eq. 6.1 and the ordered probit estimation of Eq.

6.2. It also includes the results of the measurement with the 5-point happiness scale to

show the robust effect of PM2.5 concentration levels on subjective well-being.
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6.4.1 The impact of PM2.5 on life satisfaction

As shown in Table 6.3, all three PM2.5 measures have statistically significant negative

impacts on subjective life satisfaction. This finding is consistent with the results of pre-

vious studies that find that air pollution negatively impacts SWB in China (e.g., Smyth

et al., 2008; 2011). Given that the magnitudes of the PM2.5 measures are different, this

study uses the Wald test to determine whether there are statistically significant differ-

ences between the estimated coefficients of the PM2.5 measures. This study finds statis-

tically significant differences between the two measures with shorter time specifications.

Thus, the negative effect of the annual average PM2.5 concentration on life satisfaction is

stronger than the negative effects of the one-month and three-month averages. The order

of the impact does not correspond to the order of actual severity; three-month averages

are significantly higher than one-month or annual averages. Thus, it may be reasonable

to assume that the severity of air pollution does not directly affect people’s recognition of

the impact of air pollution on their everyday life, at least where the level of air pollution

is relatively high year round, such as in Northeast China.
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Figure 6.2: Spatial distribution of PM2.5. average: (a) PM2.5-one-month, (b) PM2.5-
three-months, (c) PM2.5-annual
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The coefficient of each PM2.5 measure indicates the effect of a 1 µg/m3 change in

PM2.5 concentration on life satisfaction. Given that mean annual average concentration

for the respondents at the time of survey was approximately 60 µg/m3, a complete re-

duction to 0 µg/m3 improves LS by 0.45 points when this study uses the coefficient of

annual average (-0.0075). If this study uses the mean value of the three-month average,

96 µg/m3, the complete reduction improves LS by 0.72 points. The upper limit suggested

by official guideline of the World Health Organization (WHO) is 10 µg/m3 for an annual

average PM2.5 concentration. Reducing the current annual averages and average levels

during winter season to 10 µg/m3 would improve LS by 0.38 and 0.64 points, respectively.

Because this study uses a 5-point-scale life satisfaction measure, these numbers suggest

a significant impact. In comparison to other events, the positive effect of finding employ-

ment on LS is approximately 0.38 points; this effect has almost the same magnitude as

the effect on LS of reducing pollution to meet the annual average guidelines of the WHO

(10 µg/m3 for average annual PM2.5 concentration).

Table 6.4 shows the results of alternative specifications and regression methods. Re-

gardless of whether this study uses OLS or ordered probit as the estimation method,

and regardless of whether this study uses life satisfaction or happiness as the dependent

variables, this study finds robust negative impact of PM2.5 on subjective well-being.

6.4.2 The effect of subjective health, children and the interac-

tion effects with PM2.5 measures

According to the results in Table 6.3, the interaction terms of the PM2.5 measures and

poor subjective health are negative. Because PM2.5 concentrations and poor subjective

health have a negative impact on life satisfaction, the negative coefficient of the interaction

variable indicates that poor subjective health evaluation enhances the negative effect of

PM2.5 concentration, and vice versa. This result is different from the results in the U.S.

provided by Levinson (2012), who showed that the effect of air pollution on SWB did not
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vary based on self-reported health conditions. The significant interaction effect between

health evaluation and pollution measures is partially explained by the rising awareness of

the population regarding the health impact of air pollution (Chan et al., 2015). A possible

interpretation of the significant negative interaction effect between pollution levels and

subjective health evaluation is that people who perceive their health condition as poor

are more concerned about further health deterioration due to the potential harm caused

by air pollution than people who perceive a more satisfactory health condition.

In addition, this study finds a statistically significant negative impact on the inter-

action variable between PM2.5 measures and the dummy variable household with young

children. According to an interview conducted by Bickerstaff and Walker (2001) in Birm-

ingham, U.K., people are more sensitive to the negative impact of air pollution on other

people’s health rather than on their own health, particularly the health of their fam-

ily members. Our findings provide empirical evidence to support what Bickerstaff and

Walker (2001) found with the Chinese data. Moreover, parents seem to generally think

that young children are more susceptible than adults to the negative impact of air pollu-

tion. This finding explains why the interaction between PM2.5 and children without an

age restriction does not have a statistically significant negative impact.

In terms of magnitude of these interaction effects, given the current average annual

concentration of 60 µg/m3, the average negative enhancement effect of PM2.5 is -0.7

points for people with young children and -1.1 points for people with poor subjective

health evaluation. The LS of people with a poor subjective health evaluation are on

average -1.1 point lower than those with a good subjective health evaluation, and the

current pollution level doubles the negative impact of health concerns on LS. Since this

study does not find a very robust effect of having young children, the negative effect of

the interaction variable suggests that severe pollution may create an additional burden

for parents.

Table 6.5 shows the results of the MV calculations using Eqs. 6.3 and 6.4. This study
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calculates the average MV for groups with a varying combination of subjective health

evaluation and whether they have young children under the age of 6. The USD/CNY

values in Table 6.5 indicate average payment that respondents in particular groups are

willing to pay for a 1-µg/m3 reduction in the average PM2.5 concentration. Almost

three quarters of respondents fall into category of having reportedly good health and

not having young children in their household; on average, respondents in this category

(baseline group) put approximately 2,300 USD (15,000CNY) for a 1 µg/m3 reduction in

the average annual PM2.5 concentration. People reported their health to be poor and/or

have young children have a higher MV for pollution reduction. The average MV of the

group with poor subjective health is almost 3.5 times higher than the MV of the baseline

group. Similarly, the MV of respondents with young children is more than double the

MV of the baseline group.

Table 6.5: Monetary value (MV) of different groups

Respondents’ characteristics PM2.5-one-
month

PM2.5-three-
months

PM2.5-one-
year

Good health and without young chil-
dren (N=747)

USD 894
(CNY5,813)

USD 1,390
(CNY9,037)

USD 2,319
(CNY15,077)

Poor health and without young chil-
dren (N=43)

USD 5,242
(CNY34,083)

USD 5,021
(CNY32,637)

USD 7,859
(CNY51,089)

Good health and with young chil-
dren (N=188)

USD 2,753
(CNY17,899)

USD 3,676
(CNY23,896)

USD 5,275
(CNY34,293)

Poor health and with young children
(N=5)

USD 7,102
(CNY46,169)

USD 7,307
(CNY47,497)

USD 10,816
(CNY70,304)

Notes:

1. Groups are classified according to the corresponding dummy variables (poor health and household

with young children).

2. MV in CNY is converted into USD using an exchange rate of 6.50.

While the relative difference in MV for pollution reduction is clear across groups, it

is difficult to assess whether the monetary evaluation is particularly high or low given

that the monetary evaluations do not specify the time frames in which payment would be

issued. The average MV values are the absolute monetary value that people are willing to

place for a 1-µg/m3 reduction in average PM2.5 concentration and does not indicate that
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people are willing to pay that amount per year. Nevertheless, the amounts are significant

and reflect people’s concern for the deterioration of air quality. Moreover, the results

indicate that parents of young children or people with ill health are more sensitive to

the change in pollution concentrations and would benefit more from pollution reduction

efforts.

6.4.3 Environmental awareness

Our results show that environmental activities and spending on environmental activities

have a significant positive impact on people’s overall life satisfaction. These results are

consistent with previous findings on environmental awareness (e.g. Ferrer-i-Carbonell and

Gowby, 2007; Sekulova et al., 2013). This study also finds that the interaction variables

between environmental activities and PM2.5 measures are not statistically significant,

whereas the interaction between spending on environmental activities and PM2.5 measures

has a significantly negative impact on overall life satisfaction. This result indicates that

people who spend more on environmental activities are more vulnerable to the negative

impact of air pollution.

This study can interpret the negative interaction impact of environmental activi-

ties and PM2.5 on life satisfaction from the perspective of ”psychological anticipation”.

People’s spending on environmental activities can be considered an investment in their

environment, and people who invest more in a better environment may naturally have a

higher expectation level for an improved environment. Therefore, these people are more

likely to experience a negative sentiment when their living environment does not improve

as expected. This study also denotes that this ”psychological anticipation” may differ

depending on the length of time because this study observes different results that depend

on the PM2.5 measures, which differ during the time period. Column (1) of Table 6.3

shows no significant effect, whereas the coefficients in Columns (2) and (3) have a statis-

tically significant impact, and the estimated coefficients in Column (2) are smaller than
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in Column (3). These results may indicate that people expect their investment to have

a short-term impact, but as time passes, their expectation of a return grows, and they

become increasingly unhappy when the expected return is not received.

Figure 6.3 shows the plot of marginal impact of environmental spending on overall life

satisfaction. Spending on environmental activities has a positive impact when the PM2.5

concentration is relatively low; however, once the level passes the cut-off concentration

level of 21 µg/m3 for the PM2.5 three-month average and 11 µg/m3 for PM2.5 annual

average, additional spending on environmental activities may actually reduce people’s

overall life satisfaction.

Figure 6.3: Marginal life satisfaction contribution of spending on environmental activities

6.4.4 Demographic variables and area characteristics

Most of the demographic variables that this study controls in the estimation model,

including household income, subjective health condition, college graduates and unem-

ployed, have a statistically significant impact. The respondents with a higher income

and higher education are more satisfied with their life, and people in poor health and

people who are unemployed have a lower life satisfaction level. Age and age-squared both
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affect life satisfaction. The positive signs of age-squared indicate a U-shaped effect from

age. Gender impacts life satisfaction in a certain model, but the effect is inconsistent;

therefore, it is difficult to conclude a robust impact. This result only partially supports

previous findings that women tend to have a higher SWB than men (Ferreira et al., 2013;

Wang et al., 2015). Similarly, a previous study emphasized that family has a particular

significance for Chinese society (Zhao, 2012), but this study does not find a consistent

impact of other demographic variables for which previous studies have found a signifi-

cant effect on life satisfaction, namely, marital status and whether the respondents have

children. In contrast, this study found a positive effect for having children below the age

of 6 years. Our results do not suggest that marriage or having children are unimportant

factors for Chinese people in this target region, but it suggests that these variables do

not explain the variation in the life satisfaction among people in the target region.

In addition, our results indicate that using a car as a commuting mode has a statis-

tically significant positive impact on life satisfaction, while using public transportation

for commuting does not have this impact. This finding may be explained by the fact

that Chinese society values cars as a symbol of wealth and social status, particularly

in less developed regions such as our target region in the northeastern provinces where

car ownership is not as common as in richer major cities. Sekulova and van den Bergh

(2013) also found a positive impact of car ownership on people’s life satisfaction in Spain,

possibly due to the relative freedom in mobility that cars can provide. Moreover if roads

and public transportation are both congested, then it seems that people would rather

choose road traffic than the congestion inside of trains and buses.

Finally, regional control variables do not have a statistically significant effect on life

satisfaction as this study expected. This outcome may be explained by the cultural

uniformity and industrial structure of Northeast China, which was previously described.
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6.5 Summary

The issues of environmental degradation and air pollution are pressing concerns in China.

This is particularly true in urban areas that are experiencing the exponential growth of

energy consumption, accompanied by rapid urban expansion and overall economic growth

during the past decade. According to a report from the Asian Development Bank, less

than 1% of 500 Chinese cities meet the air quality guidelines (10 µg/m3 for an average

annual PM2.5 concentration) recommended by the WHO. Along with corruption, income

inequality and unemployment, the environmental problem has become a major cause

of social unrest in China (Zhang, 2007). Exponential increases in the availability of

information about the pollution level and its negative effects on people have raised the

importance of how people feel about pollution’s impact on their everyday life.

This study uses the life satisfaction approach to evaluate the effect of air pollution in

the northeast region of China, which is one of the most severely polluted regions in China.

This study uses self-reported SWB data from an original Internet survey conducted in

2016, which allows us to provide the latest empirical evidence on SWB in China. This

study combines detailed PM2.5 data at the city level and combine it with survey to analyze

the impact of air quality on life satisfaction. Our results are consistent with the evidence

from previous studies that air pollution has a significant negative impact on people’s life

satisfaction. The results also show that the effect of air pollution on subjective well-

being is affected by individual characteristics. In particular, a poor subjective evaluation

of health condition and having young children result in significant increase of participants’

MV for air pollution reduction. The effect of air pollution levels also depends on whether

people spend on environmental activities.

In recent years, the Chinese government has seriously addressed the issue of air pol-

lution by introducing various measures to remedy the situation. Chinese policy makers

have also acknowledged that the way people perceive environmental problems does mat-

ter. In an official government press release in 2014, Chinese president Jinping Xi stated,
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”air quality has directly affected the Chinese people’s happiness.” Although our study is

limited in coverage, there are areas that share similar characteristics with our target re-

gion. In China, there are industrial regions such as those in Middle Yangtze and Sichuan

where mining and heavy manufacturing industries are concentrated. Moreover, outside

of China, industrial regions in developing areas such as the Chota Nagpur Plateaus re-

gion in India, La Plata urban districts in Argentina, and Belo Horizonte in Brazil share

similar industrial characteristics and environmental problems. Thus, the implications of

our empirical results are somewhat indicative of what is happening in these areas.

According to our empirical results, the government may increase the overall welfare

of its people by paying more attention to particular groups that are vulnerable to the

negative effects of air pollution. In particular, for people who have a poor subjective

health evaluation and/or live with young children under 6 years old, government agencies

may take specific measures to relieve people’s anxiety regarding the potential health risk

of air pollution by providing outlets for their concerns and by communicating preventative

measures that people can take to mitigate damages from air pollution.
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Chapter 7

The impact of air pollution on the

subjective well-being in Beijing and

Shanghai

7.1 Motivation

This study evaluates the impact of one of the most prevalent and prioritized environ-

mental problems, air pollution that is responsible for an estimated seven million deaths

annually, or one in eight premature deaths every year. Previous studies have shown ro-

bust negative impact of air pollution on SWB. However, empirical studies that consider

variability in air pollution affect both by pollutants and cities are rather limited. De-

spite the fact that air pollution levels are determined by the concentrations of a complex

mixture of air pollutants, most empirical studies use a specific pollutant as a proxy for

overall air pollution level (e.g. Levinson, 2012; Ferreira et al., 2013). Also, few studies

have performed city-level comparative analyses. Hence, this study provides a case appli-

cation that examine the impacts of four major pollutants on SWB, i.e., the Sulfur Dioxide
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(SO2), Nitrogen Dioxide (NO2), coarse particles with a diameter between 2.5 and 10 µm

(PM10) and fine particles with a diameter of 2.5 µm or less (PM2.5) in two major Chinese

cities: Beijing and Shanghai.

Most related studies use aggregated air pollution datasets at regional or local levels,

which are sufficient for yielding robust results. However, as Brereton et al. (2008) sug-

gested, the explanatory power of the subjective well-being function can be increased if

location-specific factors are taken into account. Moreover, previous studies have noted

that a limited availability of pollution data at the local or regional level restricted their

analyses to either the national level or a particular, localized area where richer data

were available (Rehdanz and Maddison, 2005; Welsch, 2006). These remarks indicate the

importance of local analyses with detailed pollution data.

This study uses the data from an original Internet social survey conducted in 2016 to

analyze the impact of air pollution on the life satisfaction (LS) of Beijing and Shanghai

residents. These data are matched with pollutant estimates for the locations of the

respondents within each city. Given that air pollution is a localized phenomenon and that

air pollution levels have spatial variation, particularly in big cities such as Beijing and

Shanghai, this study uses geographic information system (GIS) interpolation techniques

to estimate residents’ exposure to each pollutant using air pollution data from monitoring

sites in the cities. This study also uses different time specifications in order to further

evaluate the variability in impacts of air pollution across the residents of Beijing and

Shanghai. Pollution exposure on the day of the survey is used as the main indicator, and

the impact of the changes in pollution exposure on the days leading up to the survey

date is used to examine whether resident well-being is sensitive to the pollution level in

the recent past.
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7.2 Data and methods

7.2.1 Subjective well-being survey

7.2.1.1 Survey

In this study, this study uses an original Internet survey conducted during January and

February 2016 in Beijing and Shanghai. The survey questionnaire was designed to col-

lect self-reported overall life satisfaction levels as well as other personal and household

characteristics. This study uses Internet surveys have an advantage in avoiding inter-

viewer bias caused by arbitrary factors, such as the appearance or gender of interviewers,

in responses to sensitive questions such as household income, employment and marriage

status (Welsch, 2009). Nevertheless, denote that Internet surveys may also suffer from a

possible selection bias; people with relatively high life satisfaction could be more willing

to participate in the survey as people with relatively low life satisfaction may feel less

comfortable with answering questions regarding their living condition and SWB. This

study further discusses validity of the collected data by examining the distribution of

dependent variable and the main individual and household characteristics below. Out of

1,022 (Beijing) and 957 (Shanghai) observations with an accurate zip code, which was

necessary to merge the survey data with pollution data, this study excluded 64 and 76

responses that were collected during the Spring Festival holiday in Beijing and Shanghai,

respectively. 958 observations were left for Beijing and 881 observations were left for

Shanghai.
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Figure 7.1: Location of respondents and monitoring stations in Beijing and Shanghai

Beijing and Shanghai cover 16,807 km2 and 6,340 km2 and have 21.7 million and

24.2 million inhabitants, respectively. According to the economical label and urban de-

velopment plans, districts in both cities can be classified into three categories: central

districts, rapidly developing districts and suburbs. Over a half of the inhabitants of both

cities (59% for Beijing and 53% for Shanghai) live in the central and rapidly develop-

ing districts. Figure 7.1 shows the locations of the Beijing and Shanghai respondents,

which are geo-coded with reported residential addresses and zip codes; this figure shows

that 836 of 958 respondents and 743 of 881 respondents reside in the central and rapidly

developing areas in Beijing and Shanghai, respectively. Hence, the results of this study

heavily represent the urban population of Beijing and Shanghai.
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Table 7.1: Characteristics of respondents with comparison

Beijing Shanghai
This survey Comparative

surveya
This survey Comparative

surveya

Ageb

20 ∼ 34 34% 36% 32% 24%
35 ∼ 54 58% 48% 54% 45%
55 ∼ 8% 16% 14% 31%

Gender
Male 53% 51% 49% 49%
Female 47% 49% 51% 51%

Household income (CNY)c

Mean 174,106 142,211 161,501 169,620
0 ∼ 50,000 11% 7% 10% 12%
50,001 ∼ 100,000 10% 22% 9% 29%
100,001 ∼ 150,000 27% 42% 25% 22%
150,001 ∼ 200,000 24% 12% 16% 13%
200,001 ∼ 250,000 15% 10% 22% 5%

Notes:
a Age and gender distributions are obtained from the 2015 Statistical Yearbooks of Beijing and

Shanghai. Gross household income distributions are derived from Chinese General Social Survey

(CGSS, 2013) with a sample size of 560 for Beijing and 531 for Shanghai.
b Given that there is almost no respondent under 20 years old in this survey, for presenting a

comparative result, population under 20 years old are excluded from the original statistics dataset

when calculating the ratio.
c CGSS 2013 only has annual gross household income of 2011, but our survey collects gross household

income of 2015. To deal with this temporal difference, this study collected yearly income increase rates

between 2011 and 2015 from Statistical Yearbooks, and then estimate the household income of 2015 by

applying each year’s income increase rate to income of 2011.

Table 7.1 provides a comparison of basic demographic characteristics between our

sample and the data from statistical yearbooks and the Chinese General Social Survey

(CGSS 2013). This study compares ages and gender distributions with official statistics

from the 2015 Statistical Yearbooks of Beijing and Shanghai. Our sample has relatively

fewer respondents who are older than 55 years of age due to the difficulty of reaching this

age group through an Internet survey.

Given the lack of official statistical data for gross annual household income, this study

compares our income distribution with CGSS data that were used by similar previous
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SWB studies (e.g. Wang et al., 2015; Qian and Qian, 2015). The average annual household

income of respondents in Beijing is approximately 174,000 CNY (26,000 USD), which is

higher than the average income shown in the CGSS in Beijing by approximately 31,000

CNY (5,000 USD). Our data include samples from the lower-income distribution; thus,

the skewness is not extreme. Moreover, the average annual household income in Shanghai

is approximately 161,000 CNY (25,000 USD), which is marginally lower than the average

income in the CGSS.

7.2.1.2 Life satisfaction measures

This study uses an overall LS measure as a dependent variable in the analysis. Given

that subjective well-being-related questions are particularly vulnerable to the context and

timing in which they are asked, they were placed at the beginning of our questionnaire in

order to avoid short-term bias from questions that were asked prior to the SWB-related

questions. This study asked the following question: ”Please imagine a ladder with steps

numbered from 0 to 10 at the top. The top of the ladder represents the best possible

life for you, and the bottom of the ladder represents the worst possible life for you. On

which step of the ladder would you say you personally feel you stand at this time?” The

respondents chose a number from an 11-point scale from 0 (worst possible life) to 10

(best possible life). Figure 7.2 shows the distribution of self-reported LS rating, with a

mean of 6.81 and a median of 7. The ratings are normally distributed and slightly skewed

toward the right. The similar skewness of life satisfaction distribution (toward the right)

has been frequently reported in related previous studies on various countries including

the studies on China (e.g. MacKerron and Mourato, 2009; Gao et al., 2014; Proto and

Rustichini, 2015; Wu and Zhu, 2016). Thus, the skewness toward the right seems to be

the natural characteristics of LS scores rather than the result of selection bias caused by

the collection method.
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Figure 7.2: Distribution of self-reported life satisfaction rating

7.2.1.3 Household and personal characteristics

Using our survey, this study constructed various variables of household and personal

characteristics. This study controls for determinants that have commonly been used in

previous SWB studies: annual household income (household income), age (age and age-

squared), gender (female), education degree (college graduate), marital status (single,

married, divorced or widowed), household members (household with children and house-

hold with young children) and employment status (unemployed). In addition to control-

ling for household income, this study controls for two asset-related factors: car-commuting

and residence type (rented apartment/privately owned apartment/rented single family

house/privately owned single family house). Previous studies have shown that current

mood and context may cause fluctuations in people’s answers to subjective well-being

from day to day. Therefore, this study controls for the self-reported health evaluation

(poor subjective health) and a series of psychological factors, including the importance

of being trusted by others (trust), mood (enjoy and sad) and personality (stable, passive

and outgoing). The three personality indicators are derived from a factor analysis of the

responses to a series of personality questions with three options, i.e., disagree, neither

agree nor disagree, and agree. this study also controls for congestion time and neighbor-

hood safety, both of which have been shown to have impacts on people’s life satisfaction,
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particularly in big cities (Bergstad et al., 2011; Olsson et al., 2013; Sekulova and van den

Bergh, 2013).

7.2.1.4 Control of spatial and temporal variation

This study controls for several spatial and temporal variations in the data that are not

captured by the household and personal variables. For spatial control, this study em-

ploys the distance of the respondent’s home address to the nearest central business district

(CBD) to capture unobserved characteristics that are likely to be associated with fac-

tors such as accessibility and residential size, which might affect overall SWB. Shanghai

officially defines six CBDs, whereas Beijing has one large CBD. Thus, for Beijing, this

study calculates the distance to areas within the city that have roles equivalent to those

of CBDs, including administrative, technology and financial centers, and identify them

as Beijing’s CBDs in this analysis.

Given that our survey was conducted over a 40-day period, potential temporal vari-

ation should be controlled for in the analysis. This study investigated several potential

variables, including date dummies, dummies for the periods pre- and post-spring festival,

dummies for weekday and weekend, as well as weather and temperature. This study

presents here the results of estimation model that include weather and temperature,

which are reported to be important determinants of LS in previous studies (MacKer-

ron and Mourato, 2009; Connolly, 2013); the remaining variables have either very high

variance inflation factor (VIF) values or no statistically significant impact on SWB.
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7.2.2 Air pollution exposure of residents

7.2.2.1 Air pollution data from monitoring sites

In this analysis, this study uses aggregated data of hourly monitored air pollution data

that are collected at thirty-five stations in Beijing and nine stations in Shanghai as well as

four stations in nearby cities (Figure 7.1). At each station, automatic monitoring systems

measure the ambient concentrations of SO2, NO2, CO, O3, PM10 and PM2.5 based on

China’s Environmental Protection Standards (HJ 193-2013 and HJ 655-2013). The real-

time concentration values from monitoring stations are automatically transferred to the

China National Environmental Monitoring Center and then published with validation

from the Technical Guidelines on Environmental Monitoring Quality Management (HJ

630-2011).

7.2.2.2 Spatial interpolation

This study uses the ordinary Kriging (OK) method, a spatial interpolation technique,

which is popularly used in the field of epidemiological and atmospheric studies (e.g.

O’Leary and Lemke, 2014; Arifin et al., 2015), to match air pollution data with geo-

coded survey data at the individual level. The SWB study by (Ferreira et al., 2013)

used inverse distance weighting (IDW) as the interpolation method. IDW is generally

regarded as a deterministic interpolation method, which makes predictions directly based

on the distance to surrounding measured values; while OK method, as well as the other

kriging methods, are regarded as a geostatistical method that further incorporate the

statistical relationship among the measured points (Jerrett et al., 2005). OK method is

more advanced than IDW given that OK method considers both the distance between

a location of interest and the sample locations, and also the distance between sample

locations. In particular, taking the latter distance effectively eliminates the deleterious

effect of clustering in samples on the quality of the interpolated estimates. Li and Heap
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(2011) provides further details regarding comparison of various interpolation methods,

including the OK method and IDW.

The general form of kriging methods can be written as follows:

ẑ(s0) =
n∑

i=1

wiz(si) + ε(s0) (7.1)

Z represents the pollutants. ẑ(s0) is the concentration at unobserved location s0 and

is estimated using a weighted average of known neighborhood samples z(si). wi is the

optimal weight assigned to neighborhood z(si). ε(s0) is a random field with covariogram

function C(h) and variogram (semi-variogram) γ(h). wi should satisfy two objectives

in the geo-statistical formulation: (1) unbiased, which indicates
∑n

i=1wi = 1, and (2)

minimal variance of estimation, which is expressed as V ar(ε(s0) = 0. The weights are

determined by solving this minimization problem using variogram γ(h), which is defined

as

γ(h) =
1

2n

n∑
i=1

{z(si)− z(si + h)} (7.2)

where n is the number of pairs of sample points of observations, and h is the spatial lag

distance.

Out of the various variants of Kriging methods, the OK method is a relatively simple

variant. However, OK method is considered to be suitable for interpolating the air

pollution data of this study. CoKriging is often used to take advantage of the covariance

of two or more regionalized variables. However, in this study, the correlations between

the pollutants are not strong (feature-space correlation coefficients are generally lower

than 0.55) and/or are unstable across time; moreover, the other pollutants that could be

used as co-variables do not have a more dense distribution. Thus, coKriging may not be

able to enhance the predictive performance in the setting of this study.

Simple Kriging (SK) and universal Kriging (UK) are two commonly used variants

other than OK. The three variants differ in their assumptions in terms of the trend
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µ(z) = E[z(s)]: OK assumes µ(z) to be unknown constant that should be estimated; SK

assumes that is known, which can be directly derived from the data; UK assumes that

µ(z) is a linear function of the spatial coordinates. This study uses OK rather than SK or

UK because the assumption of SK seems to be too strict for our datesets, and the results

of trend analyses do not show explicit and/or strong trend in the datasets. Furthermore,

this study also conducted a preliminary examination on the predictive performances of

the three Kriging methods by using 10 randomly chosen data sets of different survey

dates, and found that OK models slightly outperform the other two models in terms of

both accuracy and stability.

For each respondent, this study use the OK method to estimate the average concen-

tration of each pollutant at the given residential address. This technique is implemented

using the Python package (ArcPy) provided by ArcGIS 10.3 (ESRI Inc., U.S.). Note

that while conducting OK interpolation, this study observed substantially high NO2 con-

centrations at mobile monitoring sites compared with concentrations at stationary sites.

This spatial heterogeneity, which is common in urban areas, may lead to an upward

bias in exposure estimation, especially for residences near the mobile sites. Therefore,

this study excludes the 5 mobile monitoring sites for the interpolation process of NO2 in

Beijing.

The published hourly data of four air pollutants (SO2, NO2, PM10 and PM2.5) during

January and February 2016 are aggregated, and the following three steps are used to

generate the air pollution exposure. First, using the hourly monitoring air pollution

data, this study calculates the daily average and moving weekly average concentration

at each monitoring site for each day between Jan. 12 and Feb. 29 except the days of

the spring festival period, providing 48 days for both pollution indicators. Second, this

study applies the OK method to construct spatial distribution maps for each day and to

estimate the air pollutant concentrations at geo-coded respondents’ residential locations.

Lastly, this study matches the estimated pollution and a respondent’s survey data level

using the recorded survey dates. In addition, the air pollution exposures of respondents
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on the day before the survey date is estimated based on the spatial distribution maps

interpolated using the daily pollution measures.

In particular, this study does not use a uniform variogram model for all OK models

given that the spatial relationship between monitoring sites for air pollutants may change

over time with the change of meteorological condition and emission sources. This study

constructs OK models with different variogram models (including linear, Gaussian, expo-

nential and spherical) for each day during survey period. Then this study fits the models

with the monitored air pollution data, and select the model with the lowest RMSE (root

mean square error) calculated from leave-one-out cross-validation. While the optimal OK

models for a date have different variogram models, this study also finds that the selected

OK models in nearby dates tend to be the same variogram model; this suggests the exis-

tence of some time trends. Figure 7.3 ∼ 7.6 present the examples of interpolation maps

of daily and weekly average concentration of the four pollutants in Beijing and Shanghai.

7.2.2.3 Estimated air pollution exposure

Table 7.2 presents the distribution of the estimated air pollution exposure in Beijing and

Shanghai during the analysis period. The average concentrations of SO2, NO2, PM10

and PM2.5 are 24.2 µg/m3, 54.6 µg/m3, 63.6 µg/m3, and 57.3 µg/m3 in Beijing and

27.0 µg/m3, 61.0 µg/m3, 100.2 µg/m3, and 75.8 µg/m3 in Shanghai. Although the

pollution problem in Beijing is more well known, the overall air quality in Shanghai was

significantly worse than that of Beijing during the survey period. The standard deviations

for the studied pollutants are similar in the two cities, although Beijing’s pollution level

range is generally wider.

To analyze the temporal and spatial variations in air pollution level in our sample,

this study calculates the average concentration and standard deviation per day. Fig-

ure reffig, temporal presents the temporal and spatial variations. Spatial variation on a

particular date is represented by the symbol and error bar, which denotes the average
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Table 7.2: Summary statistics of interpolated air pollutants expo-
sures for our survey

Beijing (N: 953) Shanghai (N: 881)
SO2 NO2 PM10 PM2.5 SO2 NO2 PM10 PM2.5

Mean 24.2 54.6 63.6 57.3 27 61 100.2 75.8
Std. Dev. 16.1 27.1 31.7 42.7 11.7 22.6 44.2 45.4
5% 5.6 18.1 24.2 10.2 10.9 23.5 41.2 24
25% 11.3 31.5 41.6 20.4 17.5 42.6 69.9 33.9
50% 19.8 54.6 53.3 38.2 22.3 64 87.5 53.6
75% 36.7 75.7 86.6 90.3 37.7 77.4 125.9 118.8
95% 52.4 96.6 122.8 138.7 47 89.3 184.3 150.7

concentration ±2 standard deviation. Temporal variation is indicated by the time trend

of concentration. There are considerable variations both temporally and spatially in our

data; however, the magnitude of spatial variation across dates of the survey period vary

because the variation on a given date is heavily dependent on the number of observations

collected that day. Compared with Shanghai, Beijing appears to have larger spatial vari-

ations. This trend might be partly due to the greater number of monitoring stations in

Beijing, which allows us to construct a more sophisticated spatial distribution map of air

pollution via spatial interpolation analysis. Another possible explanation for this trend

is that districts and areas within Beijing are defined with more distinct functionalities

compared with the definitions of regions in Shanghai (Gaubatz, 1999). In particular, Bei-

jing has more imbalanced spatial distribution of manufacturing industries, which might

result in area-specific emission sources and pollution distributions.

7.2.3 Empirical model

This study uses OLS as the main regression algorithm for the interpretation. This study

specifies the function of LS as follows:

LS = f{income, environment, personalcharacteristics, areacharacteristics} (7.3)
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Our dependent variable is self-reported LS rating. Income is the reported gross annual

household income (the log of the value is used herein). Environment contains the esti-

mated air pollutant concentrations of SO2, NO2, PM10 and PM2.5 at various times as well

as temporal changes estimated per respondent. Personal characteristics is a set of control

variables including age, gender, subjective health condition, employment status, marriage

status, household members, mood, personality and commuting-related factors. Spatial

and temporal control variables include distance to the CBD from the residence, weather

and temperature of survey data. Table 7.3 presents the descriptions and statistics of all

the employed variables.

In addition, using the estimated coefficients, this study estimates the monetary value

of air pollution, which indicates the trade-off between household income and pollutant

concentrations when holding people’s LS constant. This study calculates the monetary

valuation (MV) of pollution based on the OLS estimation without taking interaction

variables into account.

MV = −incomei
βair

βincome

(7.4)

βair is the estimated coefficient of each pollutant, and βincome is the coefficient of income.

Table 7.3: Variable description

Mean (Std. Dev.)

Variable Description Beijing Shanghai

Subjective well-being

Life satisfaction ”Please imagine ladder with steps numbered

from 0-10 at the top. The top of the ladder

represents the best possible life for you and the

bottom of the ladder represents the worst pos-

sible life for you. On which step of the ladder

would you say you personally feel you stand at

this time?” 0 (worst possible life) - 10 (best pos-

sible life) scale

6.82

(1.74)

6.22

(1.75)

Air pollutantsa

SO2
Ambient concentration (µg/m3), interpolated

from monitoring concentration reading by using

Ordinary Kriging spatial interpolation method

24.23

(16.15)

26.98

(11.71)
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NO2 54.62

(27.77)

61.01

(22.60)

PM10 63.60

(31.72)

100.27

(44.22)

PM2.5 57.38

(42.71)

75.81

(45.36)

Demographic and personal indicators

Income Respondent’s household gross income (thou-

sand CNY), which is the mid-point of self-

reported income range (i.e. if the respondent

selected 108,000-119,999 CNY, then that would

be 114,000 CNY)

174,106

(105,132)

161,501

(82,441)

Age The reported age of respondent 40.63

(11.57)

40.81

(11.95)

Age-squared The square of reported age 1,784.64

(941.03)

1808.51

(1,037.26)

Female Dummy: 1 if the respondent is female, 0 other-

wise

0.47

(0.49)

0.51

(0.50)

College graduate Dummy: 1 if the respondent has graduated from

university or college, 0 otherwise

0.88

(0.32)

0.86

(0.34)

Poor health Dummy: 1 if the respondent chose his/her

health state as ”poor” or ”very poor”, 0 oth-

erwise

0.05

(0.21)

0.06

(0.25)

Marital status

Single Dummy: 1 if the respondent has never married,

0 otherwise

0.14

(0.45)

0.19

(0.39)

Married Dummy: 1 if the respondent has been married,

0 otherwise

0.83

(0.36)

0.78

(0.41)

Divorced or widowed Dummy: 1 if the respondent has been divorced

or widowed, 0 otherwise

0.01

(0.11)

0.03

(0.18)

Household with chil-

dren

Dummy: 1 if the respondent has one or more

children, 0 otherwise

0.77

(0.41)

0.79

(0.56)

Household with young

children

Dummy: 1 if the respondent has one or more

children under 6 years old, 0 otherwise

0.51

(0.50)

0.26

(0.43)

Unemployed Dummy: 1if the respondent currently has no

full-time job, 0 otherwise

0.02

(0.12)

0.02

(0.15)

Residential categories

Rented apartment Dummy: 1 if the respondent is living in a rented

apartment, 0 otherwise

0.084

(0.24)

0.072

(0.26)

Owned apartment Dummy: 1 if the respondent is living in a pri-

vately owned apartment, 0 otherwise

0.78

(0.41)

0.83

(0.37)
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Rented house Dummy: 1 if the respondent is living in a rented

single family house, 0 otherwise

0.011

(0.11)

0.016

(0.12)

Owned house Dummy: 1 if the respondent is living in a pri-

vately owned single family house, 0 otherwise

0.11

(0.32)

0.067

(0.25)

Neighborhood safety Dummy: 1 if the respondent regard his residen-

tial neighborhood is somewhat or very safe

0.87

(0.32)

0.88

(0.32)

Trust Dummy: 1 if respondent think to be able to

trust people/organizations is very or somewhat

important, 0 otherwise

0.94

(0.22)

0.91

(0.29)

Enjoy ”How often have you fell enjoyment today?” 1

(not at all) - 4 (often) scale

3.44

(0.69)

3.22

(0.76)

Sad ”How often have you feel sad today?” 1 (not at

all) - 4 (often) scale

2.01

(0.82)

1.92

(0.83)

Personality

Stable Ten different personality descriptions were

presented in the survey and the respondent was

asked to rank whether these descriptions are

applied to them. Then, factor analysis is used

to find the most important factors from

observed data, as a result, three personalities

are extracted

-0.0025

(0.74)

0.06

(0.78)

Passive -0.0058

(0.68)

0.16

(0.77)

Outgoing 0.0015

(0.64)

-0.03

(0.67)

Commuting means

By cars Dummy: 1 if the respondent usually go to work

or school by cars, 0 otherwise

0.46

(0.49)

0.35

(0.48)

By public transmit Dummy: 1 if the respondent usually go to work

or school by bus or subway, 0 otherwise

0.53

(0.49)

0.55

(0.49)

By motorcycle, bicy-

cle or walking

Dummy: 1 if the respondent usually got to work

or school by motorcycle, bicycle or walking, 0

otherwise

0.67

(0.46)

0.31

(0.46)

Congestion time The average congestion hours that the respon-

dent experienced in one month, calculated by

reported commuting hours with congestion mi-

nus that without congestion

0.41

(1.16)

0.34

(0.56)

Knowledge level of air

pollution

Self-reported knowledge level of air pollution:

”please select an option that appropriately de-

scribes your level of knowledge for air pollution”

1 (do not have any knowledge) - 5 (very knowl-

edgeable)

4.48

(0.82)

3.94

(0.75)

Spatial and temporal controls

Sunny Dummy: 1 if the survey date was sunny, 0 oth-

erwise

0.71

(0.45)

0.39

(0.49)

Temperature The average temperature of the survey date

(centigrade)

-3.34

(3.46)

3.15

(3.36)
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Distance to CBD The distance of respondent’s home to nearest

CBD (km)

7.24

(8.13)

7.87

(8.94)

Notes: a Air pollutants’ concentrations with various time-specifications were estimated and

matched with respondents’ survey dates, including 1) ”today” which denotes the concentration

of the day when the respondent took the survey; 2) ”yesterday” which denotes the concentration

of one day before the survey date; 3) ”week” which denotes the average concentration in one

week before the survey date. In this study, the time-specification of ”today” is used as the main

pollution indicator, its average and standard deviation over all respondent are shown in the right

columns.

7.3 Empirical results and discussion

7.3.1 The effect of air pollution on life satisfaction

This study uses the estimated average air pollution exposure for every respondent at

various time specifications, including the day of the survey, the day before the survey,

and a one-week moving average prior to the survey date, to examine the impact of air

pollution on LS. This study uses the average air pollution exposure on the survey date

as the primary pollution indicator. Table 7.4 and Table 7.5 show the baseline and full

regression results for the main indicator. The data indicates that there are both spatial

temporal variation of pollution. This study does not consider the spatial and temporal

variation of air pollution separately; however, this does not undermine the purpose of

the analysis to measure the impact of variation in pollution on variation in individual

well-being.

The results of the baseline models in Table 7.4 indicate that all four pollutants have a

significant negative impact on LS in Beijing, although only NO2 has a significant negative

impact on LS in Shanghai. There may be a concern regarding low R-squared of the model

in which his study only includes pollutants as independent variables. Denote that this

observation should not be a critical concern in our analysis and discussion given the

following two points: 1) R-squared does not determine whether the coefficient estimates
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Table 7.4: Baseline models with using pollutant’s concentration of ”today” as the only
independent variable and the LS as dependent variable

Beijing
1 2 3 4

SO2 -0.0107***
(0.00346)

NO2 0.00675***
(0.00205)

PM10 -0.00437**
(0.00176)

PM2.5 -0.00339***
(0.00131)

Constant 7.089*** 7.199*** 7.108*** 7.024***
(0.101) (0.125) (0.125) (0.0933)

Observations 958 958 958 958
R-squared 0.01 0.011 0.006 0.007

Shanghai
5 6 7 8

SO2 -0.000576
(0.00504)

NO2 -0.00781***
(0.0026)

PM10 0.00086
(0.00133)

PM2.5 0.000541
(0.0013)

Constant 6.236*** 6.697*** 6.134*** 6.179***
(0.148) (0.169) (0.146) (0.115)

Observations 881 881 881 881
R-squared 0 0.01 0 0

Notes: Standard errors in parentheses. *** p¡0.01, ** p¡0.05, * p¡0.1.

are bias, 2) the interpretations of the statistically significant variables are unchanged by

regardless of R-squared; the significant coefficients still represent the mean change in the

response for one unit of change in the predictor while holding all the other independent

variables in the model constant. This study uses statistical significance and the coefficient

to make comparative discussion between the two cities.

Table ?? presents the results of the full models with control variables. In Beijing, the

regression coefficients of all four pollutants remain negative and statistically significant.
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In Shanghai, PM10 and PM2.5 remain insignificant, although SO2 has a statistically sig-

nificant impact at the 5% level in the full model. These results are consistent with the

results of multi-country analyses in Welsch (2006); namely, NO2 has a significant impact

on LS. Nevertheless, in terms of the magnitude of the impacts, i.e., the coefficients, the

absolute magnitude of the impact is smaller in Shanghai than in Beijing for all of the

pollutants except SO2. The results generally indicate relatively stronger awareness of air

pollution by Beijing residents compared to Shanghai residents.
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Figure 7.3: Interpolation maps of daily average concentration of four pollutants in Beijing
for Jan. 26, 2016
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Figure 7.4: Interpolation maps of weekly average concentration of four pollutants in
Beijing for Jan. 26, 2016
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Figure 7.5: Interpolation maps of daily average concentration of four pollutants in Shang-
hai for Jan. 26, 2016
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Figure 7.6: Interpolation maps of weekly average concentration of four pollutants in
Shanghai for Jan. 26, 2016
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Figure 7.7: Temporal variations of interpolated air pollution exposures in Beijing and
Shanghai

170



T
ab

le
7.

5:
M

ai
n

m
o
d
el

s
w

it
h

u
si

n
g

p
ol

lu
ta

n
t’

s
co

n
ce

n
tr

at
io

n
of

”t
o
d
ay

”
as

ai
r

p
ol

lu
ti

on
in

d
ic

at
or

s
an

d
th

e
L

S
as

d
ep

en
d
en

t
va

ri
ab

le
s

B
ei

ji
n

g
S

h
a
n

g
h

a
i

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

S
O

2
-0

.0
10

9*
**

-0
.0

12
5*

*

(0
.0

03
28

)
(0

.0
05

62
)

N
O

2
-0

.0
06

12
**

*
-0

.0
0
5
1
3
*
*

(0
.0

02
02

)
(0

.0
02

3
6
)

P
M

1
0

-0
.0

04
75

**
*

-0
.0

0
1
8
4

(0
.0

01
76

)
(0

.0
0
1
5
6
)

P
M

2
.5

-0
.0

02
83

**
-0

.0
0
2
4
5

(0
.0

01
22

)
(0

.0
0
1
7
6
)

L
og

(i
n

co
m

e)
0.

14
3*

*
0.

14
3*

*
0.

13
9*

*
0.

14
0*

*
0.

13
9*

*
0.

14
6
*
*

0
.1

3
9
*
*

0
.1

3
8
*
*

(0
.0

60
1)

(0
.0

60
2)

(0
.0

60
2)

(0
.0

60
3)

(0
.0

64
1)

(0
.0

64
2
)

(0
.0

6
4
2
)

(0
.0

6
4
2
)

A
ge

-0
.0

04
15

-0
.0

04
33

-0
.0

02
56

-0
.0

02
84

-0
.0

04
73

-0
.0

06
5
2

-0
.0

0
4
8
5

-0
.0

0
5
0
6

(0
.0

06
40

)
(0

.0
06

42
)

(0
.0

06
37

)
(0

.0
06

39
)

(0
.0

06
32

)
(0

.0
0
6
3
9
)

(0
.0

0
6
3
4
)

(0
.0

0
6
3
5
)

A
ge

-s
q
u

ar
ed

-0
.0

00
22

7
-0

.0
00

22
8

-0
.0

00
24

0
-0

.0
00

18
5

0.
00

06
38

*
0.

00
0
6
4
6
*

0
.0

0
0
6
6
0
*

0
.0

0
0
6
6
9
*
*

(0
.0

00
42

1)
(0

.0
00

42
2)

(0
.0

00
42

3)
(0

.0
00

42
2)

(0
.0

00
33

9)
(0

.0
0
0
3
3
9
)

(0
.0

0
0
3
3
9
)

(0
.0

0
0
3
3
9
)

F
em

al
e

0.
08

44
0.

09
04

0.
09

36
0.

08
57

0.
25

5*
*

0.
26

4*
*

0
.2

5
2
*
*

0
.2

4
7
*
*

(0
.0

98
5)

(0
.0

98
7)

(0
.0

98
9)

(0
.0

98
9)

(0
.1

04
)

(0
.1

0
5
)

(0
.1

0
5
)

(0
.1

0
4
)

C
ol

la
ge

gr
ad

u
at

e
-0

.2
14

-0
.2

01
-0

.2
16

-0
.2

16
0.

21
5

0.
20

6
0
.2

0
9

0
.2

0
8

(0
.1

55
)

(0
.1

55
)

(0
.1

55
)

(0
.1

55
)

(0
.1

58
)

(0
.1

5
8
)

(0
.1

5
8
)

(0
.1

5
8
)

P
o
or

h
ea

lt
h

-1
.2

69
**

*
-1

.3
03

**
*

-1
.2

87
**

*
-1

.2
82

**
*

-1
.0

10
**

*
-0

.9
6
8
*
*
*

-0
.9

8
7
*
*
*

-0
.9

9
7
*
*
*

(0
.2

34
)

(0
.2

34
)

(0
.2

35
)

(0
.2

35
)

(0
.2

18
)

(0
.2

1
8
)

(0
.2

1
8
)

(0
.2

1
9
)

S
in

gl
e

0.
02

43
0.

02
45

0.
03

70
0.

03
94

-0
.1

94
-0

.2
11

-0
.2

0
3

-0
.2

0
9

(0
.2

16
)

(0
.2

16
)

(0
.2

17
)

(0
.2

17
)

(0
.1

90
)

(0
.1

9
0
)

(0
.1

9
1
)

(0
.1

9
1
)

D
iv

or
ce

d
or

w
id

ow
ed

-0
.4

69
-0

.4
70

-0
.4

96
-0

.4
80

-0
.2

07
-0

.1
41

-0
.1

8
3

-0
.2

0
8

(0
.4

30
)

(0
.4

31
)

(0
.4

32
)

(0
.4

32
)

(0
.2

97
)

(0
.2

9
8
)

(0
.2

9
7
)

(0
.2

9
8
)

171



H
ou

se
h

ol
d

w
it

h
0.

19
8

0.
19

8
0.

19
9

0.
21

5
0.

24
0*

0.
24

5*
0
.2

4
3
*

0
.2

4
5
*

ch
il

d
re

n
(0

.1
91

)
(0

.1
91

)
(0

.1
91

)
(0

.1
91

)
(0

.1
31

)
(0

.1
31

)
(0

.1
3
1
)

(0
.1

3
1
)

H
ou

se
h

ol
d

w
it

h
-0

.1
59

-0
.1

60
-0

.1
62

-0
.1

51
0.

20
9

0.
20

3
0
.2

2
0

0
.2

1
1

yo
u

n
g

ch
il

d
re

n
(0

.1
45

)
(0

.1
46

)
(0

.1
46

)
(0

.1
46

)
(0

.1
43

)
(0

.1
44

)
(0

.1
4
4
)

(0
.1

4
4
)

U
n

em
p

lo
ye

d
-0

.1
34

-0
.1

45
-0

.1
53

-0
.1

48
0.

01
59

0.
04

71
0
.0

2
4
0

0
.0

3
4
0

(0
.4

19
)

(0
.4

20
)

(0
.4

20
)

(0
.4

20
)

(0
.3

38
)

(0
.3

38
)

(0
.3

3
9
)

(0
.3

3
9
)

R
es

id
en

t
in

re
n
te

d
ap

ar
tm

en
t

-0
.9

18
**

*
-0

.9
34

**
*

-0
.9

27
**

*
-0

.9
41

**
*

-0
.5

27
**

-0
.5

4
3
*
*

-0
.5

2
2
*
*

-0
.5

1
1
*

(0
.2

35
)

(0
.2

35
)

(0
.2

35
)

(0
.2

35
)

(0
.2

62
)

(0
.2

62
)

(0
.2

6
3
)

(0
.2

6
3
)

R
es

id
en

t
in

ow
n

ed
ap

ar
tm

en
t

-0
.1

70
-0

.1
82

-0
.1

86
-0

.1
82

-0
.2

07
-0

.2
2
6

-0
.2

1
7

-0
.2

0
5

(0
.1

40
)

(0
.1

40
)

(0
.1

40
)

(0
.1

40
)

(0
.1

92
)

(0
.1

92
)

(0
.1

9
2
)

(0
.1

9
3
)

R
es

id
en

t
in

re
n
te

d
h

ou
se

-0
.0

22
0

-0
.0

46
5

-0
.0

40
2

-0
.0

24
1

-0
.1

43
-0

.1
97

-0
.2

1
0

-0
.1

8
3

(0
.4

64
)

(0
.4

65
)

(0
.4

65
)

(0
.4

66
)

(0
.4

44
)

(0
.4

43
)

(0
.4

4
4
)

(0
.4

4
4
)

N
ei

gh
b

or
h

o
o
d

sa
fe

ty
0.

48
9*

**
0.

48
6*

**
0.

50
2*

**
0.

50
7*

**
0.

58
0*

**
0.

57
6*

*
*

0
.5

6
9
*
*
*

0
.5

6
9
*
*
*

(0
.1

50
)

(0
.1

50
)

(0
.1

50
)

(0
.1

50
)

(0
.1

65
)

(0
.1

65
)

(0
.1

6
5
)

(0
.1

6
5
)

T
ru

st
0.

98
2*

**
0.

96
4*

**
0.

98
0*

**
0.

97
3*

**
0.

11
2

0.
13

2
0
.1

2
0

0
.1

1
7

(0
.2

15
)

(0
.2

15
)

(0
.2

16
)

(0
.2

16
)

(0
.1

75
)

(0
.1

75
)

(0
.1

7
5
)

(0
.1

7
5
)

E
n

jo
y

0.
45

2*
**

0.
44

0*
**

0.
44

1*
**

0.
44

5*
**

0.
59

1*
**

0.
58

8*
*
*

0
.5

9
5
*
*
*

0
.5

8
9
*
*
*

(0
.0

68
3)

(0
.0

68
5)

(0
.0

68
6)

(0
.0

68
6)

(0
.0

71
6)

(0
.0

7
1
7
)

(0
.0

7
1
8
)

(0
.0

7
1
9
)

S
ad

-0
.1

61
**

-0
.1

57
**

-0
.1

52
**

-0
.1

54
**

-0
.3

45
**

*
-0

.3
45

*
*
*

-0
.3

5
1
*
*
*

-0
.3

5
1
*
*
*

(0
.0

62
7)

(0
.0

62
7)

(0
.0

62
7)

(0
.0

62
8)

(0
.0

65
9)

(0
.0

6
5
9
)

(0
.0

6
6
0
)

(0
.0

6
6
0
)

P
er

so
n

al
it

y
-s

ta
b

le
-0

.0
05

47
-0

.0
09

93
-0

.0
17

1
-0

.0
10

9
0.

06
58

0.
06

26
0
.0

6
0
6

0
.0

6
4
1

(0
.0

69
4)

(0
.0

69
3)

(0
.0

69
3)

(0
.0

69
6)

(0
.0

66
9)

(0
.0

6
6
9
)

(0
.0

6
7
0
)

(0
.0

6
7
0
)

P
er

so
n

al
it

y
-p

as
si

v
e

-0
.1

32
*

-0
.1

29
*

-0
.1

42
*

-0
.1

34
*

0.
04

42
0.

04
46

0
.0

4
5
6

0
.0

4
9
0

(0
.0

77
5)

(0
.0

77
6)

(0
.0

77
6)

(0
.0

77
7)

(0
.0

72
5)

(0
.0

7
2
5
)

(0
.0

7
2
7
)

(0
.0

7
2
6
)

P
er

so
n

al
it

y
-o

u
tg

oi
n

g
0.

43
0*

**
0.

43
3*

**
0.

42
5*

**
0.

43
0*

**
0.

24
2*

**
0.

23
7*

*
*

0
.2

4
4
*
*
*

0
.2

4
4
*
*
*

(0
.0

82
2)

(0
.0

82
4)

(0
.0

82
4)

(0
.0

82
5)

(0
.0

80
8)

(0
.0

8
0
8
)

(0
.0

8
0
9
)

(0
.0

8
0
9
)

C
ar

-c
om

m
u

ti
n

g
0.

06
10

0.
06

51
0.

07
23

0.
06

07
0.

51
5*

**
0.

50
4*

*
*

0
.5

1
5
*
*
*

0
.5

1
6
*
*
*

(0
.1

10
)

(0
.1

10
)

(0
.1

10
)

(0
.1

10
)

(0
.1

21
)

(0
.1

21
)

(0
.1

2
1
)

(0
.1

2
1
)

P
u

b
li

c
tr

an
si

t-
co

m
m

u
ti

n
g

-0
.1

34
-0

.1
29

-0
.1

39
-0

.1
32

0.
08

83
0.

08
22

0
.0

8
7
7

0
.0

8
7
3

(0
.1

02
)

(0
.1

03
)

(0
.1

03
)

(0
.1

03
)

(0
.1

10
)

(0
.1

10
)

(0
.1

1
0
)

(0
.1

1
0
)

172



C
on

ge
st

io
n

ti
m

e
-0

.1
38

**
*

-0
.1

36
**

*
-0

.1
37

**
*

-0
.1

36
**

*
-0

.0
64

5
-0

.0
61

8
-0

.0
6
4
1

-0
.0

6
6
4

(0
.0

42
5)

(0
.0

42
5)

(0
.0

42
6)

(0
.0

42
6)

(0
.0

90
9)

(0
.0

9
0
9
)

(0
.0

9
1
1
)

(0
.0

9
1
1
)

K
n

ow
le

d
ge

le
ve

l
of

ai
r

p
ol

lu
-

ti
on

-0
.3

34
**

*
-0

.3
32

**
*

-0
.3

32
**

*
-0

.3
34

**
*

-0
.1

47
**

-0
.1

5
4
*
*

-0
.1

4
7
*
*

-0
.1

4
7
*
*

(0
.0

61
3)

(0
.0

61
4)

(0
.0

61
4)

(0
.0

61
5)

(0
.0

70
2)

(0
.0

7
0
2
)

(0
.0

7
0
3
)

(0
.0

7
0
3
)

S
u

n
n
y

0.
18

3
0.

14
2

0.
17

9
0.

12
6

0.
12

5
-0

.0
54

1
0
.0

4
2
6

0
.1

0
4

(0
.1

28
)

(0
.1

25
)

(0
.1

31
)

(0
.1

26
)

(0
.1

40
)

(0
.1

10
)

(0
.1

4
4
)

(0
.1

6
5
)

T
em

p
er

at
u
re

0.
00

63
8

0.
00

93
7

0.
00

87
3

-0
.0

00
82

8
-0

.0
13

1
-0

.0
0
3
9
0

-0
.0

0
9
9
3

-0
.0

0
7
3
0

(0
.0

16
7)

(0
.0

17
4)

(0
.0

17
8)

(0
.0

16
6)

(0
.0

15
1)

(0
.0

1
5
5
)

(0
.0

1
5
2
)

(0
.0

1
5
4
)

D
is

ta
n

ce
to

C
B

D
-1

.2
84

**
*

-1
.3

85
**

*
-1

.2
89

**
*

-1
.1

69
**

-0
.0

62
5

0.
00

5
2
6

-0
.0

5
5
4

-0
.0

7
2
6

(0
.4

65
)

(0
.4

67
)

(0
.4

66
)

(0
.4

67
)

(0
.4

58
)

(0
.4

58
)

(0
.4

6
0
)

(0
.4

6
0
)

C
on

st
an

t
5.

90
2*

**
6.

03
9*

**
5.

98
0*

**
5.

78
6*

**
3.

11
1*

**
3.

08
2*

*
*

2
.9

7
9
*
*
*

2
.9

8
1
*
*
*

(0
.5

65
)

(0
.5

77
)

(0
.5

76
)

(0
.5

65
)

(0
.8

69
)

(0
.8

68
)

(0
.8

7
0
)

(0
.8

6
8
)

O
b

se
rv

at
io

n
s

95
8

95
8

95
8

95
8

87
8

87
8

8
7
8

8
7
8

R
-s

q
u

ar
ed

0.
33

0
0.

32
9

0.
32

7
0.

32
6

0.
32

1
0.

32
1

0
.3

1
9

0
.3

1
9

173



The coefficients indicate the change in LS rating with a 1-µg/m3 change in a pollu-

tant’s concentration, and the magnitudes of impact vary across pollutants. This study

calculates the possible LS improvement from reducing air pollutant concentration to a

lower health risk level based on the Chinese and the U.S. air quality index (AQI); the

results are presented in Table 7.6. In AQI standards, air pollution concentrations are

categorized into different levels that correspond to certain health risk levels. The U.S.

and Chinese standards are similar for all pollutants except the thresholds of PM2.5.

Table 7.6: Upper limit of pollutant concentrations in China and the U.S. AQI standards

China
AQI category SO2 NO2 PM10 PM2.5

Good 50 40 50 35
Moderate 150 80 150 75
Unhealthy for sensitive groups 475 180 250 115
Unhealthy 800 280 350 150
Very unhealthy 1600 565 420 250
Hazardous 2100 750 500 350
Severe 2620 940 600 500

U.S.
AQI category SO2 NO2 PM10 PM2.5

Good – – 54 12
Moderate – – 154 35.4
Unhealthy for sensitive groups – – 254 55.4
Unhealthy – – 354 150.4
Very unhealthy – – 424 250.4
Hazardous – – 604 500.4

Notes:

1. Unit: µg/m3. Breakpoints of each category are the 24-hours average concentrations.

2. The breakpoints of SO2 and NO2 in U.S. AQI standard are given as one-hour average concentration,

which cannot be directly quantitatively compared with the counterparts in China’s standard that are

24-hours average. Therefore, they are blank here.

Current average pollution levels in our samples correspond to the following health risk

levels in China’s AQI standards: SO2 concentrations are in the ”Good” category for both

cities (24 µg/m3 and 26 µg/m3 for Beijing and Shanghai, respectively); NO2 and PM10

concentrations are in the ”Moderate” category (54 µg/m3 and 61 µg/m3 for NO2 and
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63 µg/m3 and 100 µg/m3 for PM10 for Beijing and Shanghai, respectively) according to

both Chinese and U.S. standards; PM2.5 is at the higher end of the ”Moderate” category

according to the Chinese standard and in the ”Unhealthy” category according to the U.S.

standard (57 µg/m3 and 75 µg/m3 for Beijing and Shanghai, respectively). If the average

levels of NO2, PM10 and PM2.5 in Beijing were to decrease to the upper-limit concentration

of the ”Good” category according to China’s standard, the LS of Beijing residents would

improve on average by approximately 0.09, 0.06, and 0.09 points, respectively. If the level

of PM2.5 in Beijing is to decrease to the upper-limit concentration of the ”Good” category

according to U.S. standard, LS would improve on average by approximately 0.12 points.

Thus, reducing the levels of each pollutant to the ”Good” category of the AQI standards

would improve LS by 0.24∼0.27.

Based on the corresponding AQI standards, PM2.5 pollution is much more serious

than the other three pollutants; PM2.5 is relatively more detrimental to people’s health

than other pollutants (Dockery et al., 1993; Muller and Mendelsohn, 2007; Beelen et al.,

2014). However, the magnitude of the impacts on LS does not appear to reflect the

relative health risks from pollution exposure. In Beijing, the coefficients for PM2.5 and

PM10 are smaller than those of SO2 and NO2, and they do not impact the LS of Shanghai

residents. One explanation for this phenomenon is that SO2 has been widely discussed

for a relatively long period of time in China, whereas PM2.5 and PM10 have started to

receive attention more recently because of the exponential increase in the occurrence of

haze episodes. People may be more sensitive to industrial pollution and emissions from

cars and may also blame SO2 and NO2 for haze and health concerns that are actually

caused by PM2.5 and PM10 due to a lack of knowledge and understanding of the differences

between pollutants.

In addition, according to the results provided in Table 7.5, the subjective knowledge

level of air pollution has statistically significant negative relationship with the LS of both

Beijing and Shanghai residents. This result indicates that people, who have reported

higher knowledge level of air pollution, have relatively lower life satisfaction in both cities.
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The estimated coefficients of knowledge level of air pollution in Beijing and Shanghai are

approximately -0.334 and -0.147, respectively. The difference between the coefficients

indicates that the LS scores of Beijing residents are more negatively affected by the

reported knowledge level of air pollution compared to that of Shanghai residents. Given

that the variable of knowledge level of air pollution is self-reported subjective knowledge

level rather than the object knowledge level, this variable may be closely associated with

people’s awareness to air pollution. Hence, the regression result implies that the awareness

of air pollution may decrease people’s LS, and this effect is particularly serious in Beijing

because the issue of air pollution is more politicized and widely reported in Beijing than

in Shanghai.

7.3.2 The impact of temporal changes in air pollution levels

In addition to analyzing pollution levels based on the survey data, this study examines

the impact of temporal changes in pollutant concentrations on LS. In particular, this

study are interested in whether people are negatively affected by worsening air pollution

conditions. First, this study takes the difference between the pollution concentration

on the survey date and both the concentration from the day before and the average

concentration from one week prior to the survey date. A positive difference indicates

that the air pollution condition worsened on the survey date compared to the day before

or the average pollution over the previous 7 days. This study then separately uses the

generated two variables to rerun the full model. The regression results for the air pollution

indicators are shown in Table 7.7.
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Moreover, this study observes that Beijing residents are affected by the difference in

pollution between the survey date and the one-week average. This result indicates that

although pollution exposure on the survey day is important for LS, the residents appear

to compare the current pollution level with the levels in the previous days: if the pol-

lution level is relatively worse, the residents feel worse, and vice versa. In contrast, in

Shanghai, temporal changes in pollution levels do not affect respondents’ LS, possibly be-

cause Shanghai residents have lower awareness of air pollution than do Beijing residents

and are generally disinterested in the politicized pollution issues. Furthermore, Shanghai

residents are comparatively wealthier than Beijing residents, and money can buy insula-

tion from pollution exposure; this difference might also explain the lack of a significant

effect of pollution exposure or changes in pollution level on LS in Shanghai. However,

the data do not support such a mechanism, as this study found no significant impact of

an interaction between estimated pollution level and any variable potentially associated

with insulation, such as household income, car as commuting mode and privately owned

residence.

7.3.3 The monetary valuation of air pollution

Table 7.8 shows the estimated average monetary values for different income groups for

each pollutant and the statistical significance of the regression coefficients for estimated

pollution concentration and household income in the main models. The results of the

main regression models show that household income has a positive impact on the LS

of the residents of both cities. The precision of the magnitude of the coefficients is

important, as a biased coefficient would affect the accuracy of the average monetary

valuation. In particular, the over-estimation of the income coefficient due to insufficient

control of asset/wealth-related factors is a concern. As expected, the income coefficients

in the estimation models without controlling for asset/wealth-related variables such as

car-commuting and residential type dummies are approximately one forth higher than
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those in the models in which these variables are controlled. By controlling for other

determinants that might be associated with income, such as health and living in a safe

neighborhood, this study heavily mitigates the possible upward bias of income coefficient.

Table 7.8: Estimated monetary valuation of air pollution

Beijing Shanghai
SO2 95% lower bound of

income
US$ 175 (CNY 1,143) US$ 207 (CNY 1,348)

Average income US$ 1,899 (CNY 12,348) US$ 2,234 (CNY 14,523)
95% higher bound of
income

US$ 4,573 (CNY 29,727) US$ 4,012 (CNY 26,079)

NO2 95% lower bound of
income

US$ 98 (CNY 641) US$ 81 (CNY 527)

Average income US$ 1,066 (CNY 6,933) US$ 873 (CNY 5,674)
95% higher bound of
income

US$ 2,567 (CNY 16,690) US$ 1,567 (CNY 10,189)

PM10 95% lower bound of
income

US$ 78 (CNY 512) –

Average income US$ 851 (CNY 5,535) –
95% higher bound of
income

US$ 2,050 (CNY 13,327) –

PM2.5 95% lower bound of
income

US$ 46 (CNY 303) –

Average income US$ 503 (CNY 3,274) –
95% higher bound of
income

US$ 1,212 (CNY 7,883) –

Notes:

1. Exchange rate: 1US$ = 6.5 CNY

2. Given that air pollution is negative amenity, the estimated MV has negative value in people’s utility.

It can be also considered as a dollar value that residents are willing to pay for pollution reduction.

These estimated monetary values can be considered as proxies for the amount that

people are willing to pay for a 1 µg/m3 concentration decrease (vice versa) per year.

According to the estimated results, on average, the monetary values of SO2, NO2, PM10,

and PM2.5 for Beijing residents are 1,899 USD (12,348 CNY), 1,066 USD (6,933 CNY), 851

USD (5,535 CNY), and 503 USD (3,274 CNY), respectively. The monetary values of SO2

and NO2 for Shanghai residents are 2,234 USD (14,523 CNY) and 873 USD (5,674 CNY),

respectively. Hence, Beijing residents place almost the same value on SO2 reduction as do
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Shanghai residents but approximately 1.5 times more value on NO2 reduction, on average.

Although this study uses different data and methodology, the estimated monetary values

seem to be comparable to the ones that found in previous studies. Estimated average

monetary valuation of NO2 for 10 European countries reported by Welsch (2006) was

854 USD per unit reduction; this valuation is very close to the valuation in Shanghai.

Similarly, Levinson (2012) reported 1,057 USD per unit reduction of PM10 in the US,

which is also close to the evaluation in Beijing. Zhang et al. (2017) reported a substantially

lower average willingness-to-pay of 42 USD (258 CNY) for 1 µg/m3 reduction in PM2.5

for average Chinese; given that Beijing residents have a much higher income level and

relatively more aware and sensitive about air pollution condition than the residents in

other parts of China.

7.3.4 The impacts of other determinants

There are several notable differences in significance of individual and household charac-

teristics across cities that allow us to examine different characteristics of the residents in

the two cities. Household income has a positive impact on LS for the residents in both

cities, but the magnitude of the impact is larger in Shanghai. Commuting by car raises

the LS only in Shanghai. Beijing residents value other people’s trust, whereas trust does

not appear to affect the LS of Shanghai residents. The subjective well-being of Shanghai

residents appears to be more sensitive to current mood.

These results appear to support the general characterization of ”Shanghainese” as

money-oriented and striving for higher living standards. The effect of age is also different

for the two cities; age affects the LS for Beijing, whereas the U-shaped effect of age,

reported in previous studies, appears to hold in Shanghai. With respect to gender, females

in Shanghai have higher LS than do males, where there is no effect of gender in Beijing.

Furthermore, this study observes different impacts of distance to the CBD between the

cities: The LS of Beijing residents decreases with increasing distance between residence
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and the CBD, whereas that of Shanghai residents is unaffected by the distance to the

CBD. This result may be partially explained by the relatively slow development of the

Beijing suburb areas compared to the Shanghai suburbs, which exhibit characteristics of

suburbs in developed countries, with a high concentration of upper-income-class residents.

There are also determinants that have similar impacts in both cities. A college degree,

marriage, and having children/young children (under 6 years old) do not explain the

variation in LS and do not follow the empirical evidence from previous studies (Welsch,

2009,?). These results can be partly explained by the absence of a premium on higher

education because it has become more common to attend a university, while having a

degree does not guarantee a better job or a higher social status in the recent business

environment. Moreover, the high stress and environment of the extremely competitive

job market and high living expenses, marriage, and children in these cities may have

cancelled out the possible benefits of having a family, which is partially supported by the

increasing divorce rates in the two cities. In contrast, individuals with a good subjective

health condition, with outgoing personalities or living in safe communities have relatively

higher LS in both cities. This study found no significant effect of temperature or weather

in either city.

7.3.5 Robustness check

This study provides three robustness checks: regression analyses with an alternative

air pollution exposure estimation technique, an alternative regression method, and an

alternative LS indicator (Table 7.9).
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To validate the performance of estimating air pollution exposure using the OK method,

this study calculates the pollution exposure indicator for the survey date by simply match-

ing the pollution level of the nearest monitoring station from the geo-coded residents’

locations. As show in Table 7.9, the regression results for the pollutants with alternative

pollution indicators are similar to the main results. The pollution indicators have higher

statistical significance in the main result in which the pollution level is estimated using

the OK method; hence, the original results are more robust. Therefore, this study rec-

ommends the use of a more sophisticated spatial interpolation method in SWB studies

to improve the performance of empirical analyses, especially when rich spatial objective

data, such as pollution data from various monitoring sites, are available.

Although it was discussed in Section 5 that OLS is the preferred method according

to previous studies, this study examines the impacts of air pollution on LS using an

ordered probit model. The signs and statistical significances are consistent with the

results from OLS for both pollution indicators and other control variables, which indicate

the robustness of our regression results and the validity of the comparative results of

Beijing and Shanghai that well-being of Beijing residents are more susceptible to air

pollution.

Lastly, this study uses an alternative SWB indicator to examine whether the effect of

air pollutions found in the main results still hold. The alternative measure is the response

to the following question: ”All things considered, how satisfied are you with your life as

a whole these days?” Respondents answered by choosing from a 10-point scale ranging

from 1 (very dissatisfied) to 10 (very satisfied). Overall, the impacts of pollutants are less

significant compared to the results of main results that use Cantril ladder as the SWB

measure and the results do not indicate clear trend of statistically negative impacts of

air pollution, especially for the Beijing residents.

Nonetheless, the results of alternative SWB indicator does not necessary undermine

the above-mentioned main results given the difference in the context of question. The
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most distinctive feature of Cantril ladder measure is that it does not use ”happiness” or

”life satisfaction” within the question, while the alternative measures ask to rate ”life

satisfaction” directly. According to the previous studies, SWB questions that include the

”happiness” or ”life satisfaction” could direct respondents to use narrow definition of well-

being compared with more general questions without particular words to that describe

the state of well-being. Moreover, usage of ”happiness” or ”life satisfaction” in the

question tend to induce respondents to provide relatively more subjective and sentimental

evaluations of their life compared to the questions without those words under certain

cultural and language circumstances. Especially in Chinese language, the respondents

are more likely to be sensitive to the usage of particular wording of well-being (Chui and

Wong, 2016). Given that air pollution is rather objective daily problems, the Cantril

ladder measure that this study uses in the main analysis fits the purpose of examining

its impact on SWB.

7.4 Summary

This paper has examined the role of environmental quality in determining people’s well-

being by empirical analyzing the impacts of various air pollutants in Beijing and Shang-

hai using self-reported life satisfaction data from an original Internet survey conducted

in 2016. This study combines the survey data and air pollution data for four major pol-

lutants (SO2, NO2, PM10 and PM2.5) collected from 35 and 12 monitoring sites in Beijing

and Shanghai, respectively. This study uses a GIS interpolation technique to estimate

the residents’ pollution exposure to provide more reliable air pollution effects compared

to matching respondents’ data with pollution level from the nearest monitoring site from

their residences.

The results of empirical analysis highlight the importance of air pollution as a de-

terminant of people’s life satisfaction and people’s perception of pollutants may digress
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from the actual severity or threat. Also, our results show that the pollution environment

and people’s perceptions vary across cities; Both SO2 and NO2 negatively affect the LS

of residents in both cities but the magnitude of the impacts for SO2 and NO2 are com-

paratively smaller in Shanghai, and PM10 and PM2.5 negatively impact Beijing residents

but do not have a statistically significant impact on LS for Shanghai residents. The

residents in both cities have similar valuation for 1-µg/m3 of SO2, whereas for NO2, the

1-µg/m3 value of Beijing residents is approximately 1.5-fold that of Shanghai residents.

This finding indicates that pollution reduction would more effectively improve the LS of

Beijing residents. Moreover, the LS of Beijing residents is also sensitive to changes in the

pollution level leading up to the survey date, while Shanghai residents are unaffected by

the pollution level on previous days. When the pollution level exceeds the previous days’

level or 7-day averages, it has a negative effect on Beijing residents but no statistically

significant impact on Shanghai residents.

The empirical evidence indicates relative interest and concern for pollution by Beijing

residents compared to their counterparts in Shanghai, although the pollution level for the

period of analysis is either evenly matched or slightly higher in Shanghai. While these two

cities are the largest Chinese cities and are globally recognized, our results support the

general characterization of the two rival cities: Beijing as political center and Shanghai

as a financial and business center. As the pollution issue becomes more politicized, the

concern and sensitivity of Beijing residents may increase, while the everyday well-being of

Shanghai residents may remain relatively less affected by pollution. For example, when

this study asked respondents to report their knowledge on air pollution, approximately

65% of Beijing respondents responded ’very knowledgeable’, whereas only approximately

20% of Shanghai respondents did so. Although self-reported knowledge level does not

necessarily accurately correspond to actual knowledge level, the findings provide some

support for a difference between Beijing and Shanghai residents in the attention given to

the pollution issue.

In addition, the regression results indicate that the residents, who reported higher
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knowledge regarding air pollution, seem to have relatively lower LS. Given that the

knowledge variable in the analysis is subjective and is on air pollution as a whole, the

variable may reflect people’s general awareness rather than their actual knowledge level.

Hence, while it is possible to consider the case in which official policies and activities

could effectively modify people’s subjective awareness of air pollution to increase their

life satisfaction, this study needs to be cautious to claim the impacts of additional or

suppressing information; further analyses would be required to confirm the impact of

information availability and control about air pollution on LS.
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Chapter 8

Conclusion

In order to provide supportive technique and evidence for promoting the sustainable

development of urban area in Japan and China, this study enhanced and extended the

land use change (LUC) modeling framework in a highly-developed metropolitan area

– the Greater Tokyo Area, and also estimated the monetary values of air pollution in

Beijing and Shanghai, and northeast region in China.

This study enhanced the LUC modeling from three perspectives: 1) enhances the

stochastic modeling with tree-based ensemble algorithms; 2) enhances the spatial model-

ing with convolutional neural networks (CNN); 3) enhances the temporal modeling with

recurrent neural networks (RNN). LUC models incorporating tree-based algorithms were

developed and evaluated in Greater Tokyo Area, which has complicated LU transition

rules; LUC models incorporating CNN were developed and evaluated in Saitama prefec-

ture, which has complex and scattered spatial pattern of LU; LUC models incorporating

RNN were developed and evaluated in Tsukuba City, which is undergoing continuous and

stable urban expansion in the past decades.

This study integrates cellular automata (CA) with four tree-based ensemble algo-

rithms, which are bagged decision tree (bagged DT), bagged gradient boosting decision
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tree (bagged GBDT), random forests (RF) and extremely randomized trees (ERT). The

four algorithms differ in the degree of randomness in the mechanism. The results show

that all four tree ensemble models outperform a multi-layer perceptron (MLP) model,

which is a popular in previous LUC modeling studies, by approximately 5% ∼ 30%. The

results also show that tree ensemble models with higher degree of randomness achieve bet-

ter predictive performances. In particular, ERT, which incorporates the highest degree of

randomness among the four algorithms, achieves the best predictive performance. These

results indicate that introducing randomness into LUC modeling by tree-based ensemble

algorithms improves the predictive performance of LUC in Greater Tokyo Area.

In terms of the LUC modeling with CNN, this study developed integrated convo-

lutional neural networks (conv-net) and integrated convolutional denoising autoencoder

and MLP (cdae-net) to enhance the prediction of LU transition probability. The conv-

net and cdae-net combine manually designed geographical features and hidden spatial

features extracted from satellite images. According to the comparison results of conv-net

/ cdae-net and a LUC model that uses only geographical features (geo-net), both conv-

net and cdae-net significantly outperform the geo-net in terms of prediction accuracy of

both transition probability and final LU map by approximately 15 ∼ 30%. This result

indicates that incorporating spatial features by convolutional-based method can improve

the predictive performance of conventional LUC modeling approach. Moreover, the pre-

dictive performances of conv-net and cdae-net depend on the data; conv-net generally

outperforms cdae-net, while cdae-net outperforms conv-net when data is noisy.

In terms of the LUC modeling with RNN, this study constructed two categories of

RNN models, which are simple RNN which is the basic RNN variant, and RNN vari-

ants with gated architecture (long short-term memory (LSTM), LSTM with peephole

connection (LSTM-peephole) and gated recurrent unit (GRU)). Results show that RNN

variants with gated architecture (LSTM, LSTM-peephole, GRU) significantly outperform

simple RNN. Given that RNN variants with gated architecture have stronger capability

of modeling long-term temporal dependency than simple RNN, these results indicate the
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positive effect of modeling long-term dependency for improving the performance of LUC

modeling. In addition, out of the three RNN variants with gated architecture, LSTM-

peephole exhibits the highest predictive performance.

Given the above results, this study provided enhanced approaches for modeling the

LUC process in Greater Tokyo Area, and showed the effectiveness of these approaches

for improving the modeling performances. By using these approaches, more reliable LU

prediction could be generated and used to better support the decision-making of strategic

urban planning in Greater Tokyo Area. Moreover, the modeling approaches developed

in Greater Tokyo Area (including the whole area, Saitama prefecture and Tsukuba city)

could be applied in other highly developed metropolitan areas, which share similarities

with Greater Tokyo Area, such as New York or London metropolitan area. In addition,

the modeling approaches in this study were designed and developed for addressing specific

characteristics of modeling area (i.e., complex LU transition rules, complex spatial pattern

of LU distribution, or long-term slow urban expansion). These approaches can be flexibly

combined according to the characteristics of specific task.

With respect to the air pollution assessment, this study uses SWB approach to assess

the impact of air pollution on people’s well-being and to estimate the monetary value of

air pollution. SWB measures and other individual characteristics are collected from an

original Internet survey conducted in China during January and February in 2016. Air

pollution data are collected from official statistical yearbook or measurement of moni-

toring sites.The results of regression analyses show the statistically significant negative

effect of air pollution on Chinese people’s well-being. The magnitude of impact of air

pollution varies with the regions. In particular, PM2.5 has statistically significant effects

on the well-being of residents in Northeastern region and Beijing, but does not seem to

have robust impact on the well-being of Shanghai residents. Furthermore, the well-being

of Beijing residents are more affected by the NO2 compared with Shanghai residents, but

are less affected by NO2 compared with Shanghai residents.
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Based on these regression results, the estimated average monetary value of PM2.5

with time specification of one month is approximately USD 900 in Northeastern region

of China; the estimated average monetary value of PM2.5 with time specification of one

day is approximately USD 500 in Beijing. These results indicate that, although the

northeastern Chinese residents are relatively less wealthy, they are willing to pay more to

compensate for their loss of SWB caused by the same unit of air pollution when compared

with Beijing residents.

The assessment results provide several policy implications for Chinese policy-makers.

Firstly, although air pollution problem in big cities such as Beijing and Shanghai received

great attention from the public and government, the results of this study show that

northeast Chinese residents suffer more from air pollution than Beijing and Shanghai

residents. This finding also indicates that the air pollution mitigation in Northeast China

has higher marginal benefits compared with that in Beijing or Shanghai. Thus, Chinese

government is suggested to pay higher attention and investment to the air pollution

mitigation in less-developed area such as northeast region of China.

Second, the magnitude of negative impact of air pollution varies with the individual

characteristics, particularly subjective health condition, household with young children

and expenditure in environmental activities. Individuals’ worries to their and their chil-

dren’s health condition may lead to the aggravation of negative impact of air pollution; on

the other hand, individuals who have spent a lot money on environmental activities may

be troubled by the fact that air quality does not significantly become better regardless

of their efforts either by voluntary or by mandatory. Therefore, Chinese government is

suggested to take measures to relieve individuals’ anxiety on their and their children’s

health by propagation or education. In addition, government is also suggested to curb

the trend of financial contribution in environmental activities.

Lastly, different air pollutants have negative impacts on individuals’ well-being with

varying magnitudes. However, it is not suggested to over-interpret this result. For in-
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stance, the finding, which is that PM10 and PM2.5 have no statistically significant negative

impact on Shanghai residents’ well-being, does not imply that the pollution control of

PM10 and PM2.5 is unnecessary in Shanghai. Instead, government is suggested to 1)

investigate whether individuals hold biased recognition to the effects of different air pol-

lutants; 2) take the varying effects of air pollutants on people’s well-being into account

when proposing air pollution mitigation goals or policy.

This study still has several limitations, and can be further improved in future work.

Although this study has developed approaches to enhance the LUC modeling in a com-

plex urban system, due to the limitations of spatial availability and computation power,

LUC models were developed in different urban areas, which fails to allow an unbiased

examination and comparison of varying modeling techniques and strategies. In addition,

this study present useful findings for two important and highly prioritized urban envi-

ronmental issues by examining the Japan and China areas. Nonetheless, the future work

should consider the connection between the two environmental issues, land use change

and air pollution, by combining the findings of this study to build a modeling and as-

sessment framework. Updating the modeling framework would allow for a modeling flow

to forecast the future LU map, then to estimate the future spatial distribution of air

pollution, and finally to assess the possible impact of current urban planning scenario on

people’s well-being.
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Greff, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R., Schmidhuber, J., 2017.

Lstm: A search space odyssey. IEEE transactions on neural networks and learning

systems.

Grekousis, G., Manetos, P., Photis, Y. N., 2013. Modeling urban evolution using neural

networks, fuzzy logic and GIS: The case of the Athens metropolitan area. Cities 30 (1),

193–203.

URL http://dx.doi.org/10.1016/j.cities.2012.03.006

Guan, Q., Wang, L., Clarke, K. C., 2005. An Artificial-Neural-Network-based, Con-

strained CA Model for Simulating Urban Growth. Cartography and Geographic Infor-

mation Science 32 (4), 369–380.

URL http://www.tandfonline.com/doi/abs/10.1559/152304005775194746

Hagen, A., 2003. Fuzzy set approach to assessing similarity of categorical maps. Interna-

tional Journal of Geographical Information Science 17 (3), 235–249.

Hagoort, M., Geertman, S., Ottens, H., 2008. Spatial externalities, neighbourhood rules

and ca land-use modelling. The Annals of Regional Science 42 (1), 39–56.

Han, L., Zhou, W., Li, W., Meshesha, D. T., Li, L., Zheng, M., 2015. Meteorological

and urban landscape factors on severe air pollution in Beijing. Journal of the Air and

Waste Management Association 65 (December), 782–787.

URL http://dx.doi.org/10.1080/10962247.2015.1007220

Hassan, A. M., Lee, H., 2015. Toward the sustainable development of urban areas: An

overview of global trends in trials and policies. Land Use Policy 48, 199–212.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.

770–778.

URL http://ieeexplore.ieee.org/document/7780459/

Hefron, R. G., Borghetti, B. J., Christensen, J. C., Kabban, C. M., 2017. Deep long short-

term memory structures model temporal dependencies improving cognitive workload

estimation. Pattern Recognition Letters 94, 96–104.

Herold, M., Goldstein, N. C., Clarke, K. C., 2003. The spatiotemporal form of urban

growth: Measurement, analysis and modeling. Remote Sensing of Environment 86 (3),

286–302.

200

http://dx.doi.org/10.1016/j.cities.2012.03.006
http://www.tandfonline.com/doi/abs/10.1559/152304005775194746
http://dx.doi.org/10.1080/10962247.2015.1007220
http://ieeexplore.ieee.org/document/7780459/


Hirzel, A., Guisan, A., 2002. Which is the optimal sampling strategy for habitat suitability

modelling. Ecological modelling 157 (2), 331–341.

Huang, B., Zhang, L., Wu, B., 2009. Spatiotemporal analysis of rural–urban land con-

version. International Journal of Geographical Information Science 23 (3), 379–398.

Huang, J., Wu, S., Deng, S., 2016. Relative Income, Relative Assets, and Happiness in

Urban China. Social Indicators Research 126 (3), 971–985.

Hunsaker, C. T., Levine, D. A., 1995. Hierarchical approaches to the study of water

quality in rivers. BioScience 45 (3), 193–203.

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In: International Conference on Machine Learning.

pp. 448–456.

Irwin, E. G., Geoghegan, J., 2001. Theory, data, methods: developing spatially explicit

economic models of land use change. Agriculture, Ecosystems & Environment 85 (1),

7–24.

Jansen, L. J., Veldkamp, T., 2012. Evaluation of the variation in semantic contents of class

sets on modelling dynamics of land-use changes. International Journal of Geographical

Information Science 26 (4), 717–746.

Jerrett, M., Arain, A., Kanaroglou, P., Beckerman, B., Potoglou, D., Sahsuvaroglu, T.,

Morrison, J., Giovis, C., 2005. A review and evaluation of intraurban air pollution

exposure models.

Jiang, S., Lu, M., Sato, H., 2012. Identity, Inequality, and Happiness: Evidence from

Urban China. World Development 40 (6), 1190–1200.

Kamusoko, C., Gamba, J., 2015. Simulating Urban Growth Using a Random Forest-

Cellular Automata (RF-CA) Model. ISPRS International Journal of Geo-Information

4 (2), 447–470.

Keivani, R., 2010. A review of the main challenges to urban sustainability. International

Journal of Urban Sustainable Development 1 (1-2), 5–16.

Kim, C. W., Phipps, T. T., Anselin, L., 2003. Measuring the benefits of air quality

improvement: A spatial hedonic approach. Journal of Environmental Economics and

Management 45 (1), 24–39.

Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. ImageNet Classification with Deep

Convolutional Neural Networks. Advances In Neural Information Processing Systems,

1–9.

201



Kuang, W., 2011. Simulating dynamic urban expansion at regional scale in Beijing-

Tianjin-Tangshan Metropolitan Area. Journal of Geographical Sciences 21 (2), 317–

330.

Landis, J. R., Koch, G. G., 1977. The measurement of observer agreement for categorical

data. biometrics, 159–174.

Lange, T., 2010. Culture and life satisfaction in developed and less developed nations.

Applied Economics Letters 17 (9), 901–906.

Lau, A. L. D., Cummins, R. A., McPherson, W., 2005. An investigation into the cross-

cultural equivalence of the Personal Wellbeing Index. Social Indicators Research 72 (3),

403–430.

Le, J. A., El-Askary, H. M., Allali, M., Struppa, D. C., 2017. Application of recurrent

neural networks for drought projections in California. Atmospheric Research 188, 100–

106.
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