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Abstract 

In todays’ world, aging population or disabilities due to accidents, war or 

congenital diseases have created a society with different abilities which needs a special 

attention and care. Recently, introduction of robotic technologies to the available 

traditional assistive and care taking methodologies, draws more attention from the 

community, due to their intuitiveness and the effective in use. Wearable robots such 

as prostheses or exoskeleton robots are worn by human operators, to supplement the 

function of a limb or to replace it completely. In order for better use of these wearable 

robotic systems, its mechanical design is utmost important. Similarly, in order to 

control the robots according to their wearer’s motion intention, understanding of the 

wearer’s motion intention is also extremely important, yet challenging. Amongst 

different biological and no-biological methods for motion intention identification, 

Electroencephalography (EEG) signals recorded from the scalp of the human head are 

expected to contain information related to motion intention of the wearer. The 

objective of this thesis is to study different approaches to estimate the motion intention 

using EEG signals, towards real-time control of a wearable robot using EEG signals. 

In this thesis, a new approach to control several degrees of freedoms (DoF) in 

a wearable robot is proposed by estimating the users motion intention in real-time, in 

terms of the user’s intended tasks to perform, by using EEG signals measured from the 

scalp of the user. A time-delayed feature matrix constitutes of the power band features 

of EEG signals is introduced to provide inputs to neural network and support vector 

machine (SVM) based classifiers that harvest the dynamic nature of the EEG signals 

for motion intention prediction. In order to estimate the motion intention, individual 

classifiers are trained for each individual subject for both types of classifiers. At the 

same time, another two different classifiers are trained with data from all the subjects. 

The results show that the SVM based classifiers perform better in terms of the 

prediction accuracies. Conversely, quicker predictions were obtained from the neural 

network based classifiers. As a conclusion, the experimental results indicate the 

effectiveness of the proposed methodology in the prediction of user’s motion intention. 



                                                                                            

iv 

 

In addition, an EEG based hierarchical two-stage approach is proposed to 

achieve multi-DoF control of a transhumeral prosthesis. In the proposed method, the 

motion intention for arm reaching or hand lifting is identified using classifiers trained 

with motion-related EEG features. For this purpose, neural network and k-nearest 

neighbor classifiers are used. Then, elbow motion and hand endpoint motion is 

estimated using a different set of neural-network-based classifiers, which are trained 

with motion information recorded using healthy subjects. The predictions from the 

classifiers are compared with residual limb motion to generate a final prediction of 

motion intention. This can then be used to realize multi-DoF control of a prosthesis. 

The experimental results show the feasibility of the proposed method for multi-DoF 

control of a transhumeral prosthesis. This proof of concept study was performed with 

healthy subjects. 

Conversely, the feasibility of using two different approaches to estimate the 

user’s motion intention in terms of velocity are also evaluated in this thesis.  In the 

first method, the activation of the brain is identified in an offline study and the results 

are used to train a neural network based classifiers to estimate the 2 DoF motion 

velocity. This will enable the control of similar number of DoFs of the robot. In the 

latter method, to estimate the velocity of the hand end point, root mean square (RMS) 

based feature matrix introduced as input to the nonlinear autoregressive network with 

an exogenous input. Experiments results show that the proposed methods are capable 

of estimating the user’s motion intention in terms of velocity. 
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1 

Chapter 1 

Introduction 

Chapter Overview 

In todays’ world, aging population or disabilities due to accidents, war or 

congenital diseases have created a society with different abilities which needs a special 

attention and care. Due to the deficiencies, their independency is diminished and the 

social and economic contribution is deteriorated.  Providing a special care or assistance 

by human beings for these individuals further become an obligation for the demanding 

life styles of the healthy individuals having a bad impact to their socio-economic states. 

As a results, the requirement of developing assistive and care taking technologies has 

become a demand towards enabling the differently able community to have an 

individual life style of their own. Among available different assistive technologies, 

wearable devices such as prostheses and orthoses are popular among their users due to 

the easiness of use and the effectiveness.  Prostheses are the replacement for lost limb 

parts and orthoses are worn form outside of the body being a support to the weak body 

parts. With the improvement of the technology, prostheses and orthoses which can be 

actuated electrically have being developed. These are known as wearable robotic 

devices that replace the body powered or non – actuated counterparts. With the 

introduction of the robotic technologies, the capabilities of these wearable devices 

have drastically increased by enabling their wearers to perform multi degrees of 

freedom motions simultaneously to assist their activities of daily living. Similar to the 

improvement to their mechanical aspects, control aspects of these robotic systems also 

demands improvements in catering the requirement for more intuitive control of these 

devices according to the movement intentions of their users. This chapter initially 

introduces available wearable robotic technologies. It will be followed by the 

information of available control approaches for identification of motion intention from 

the human subjects. This will include an explanation about the available BCI based 

control techniques that will be followed by a description of the behavior of the brain.  
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1.1 Motivation 

In 2017, the report on World Population Ageing by the department of economic 

and social affairs of united nations presents the existing status of population growth as 

follows [1].  

“The world’s population is ageing: older persons are increasing in 

number and make up a growing share of the population in virtually every 

country, with implications for nearly all sectors of society, including labor and 

financial markets, the demand for goods and services such as housing, trans-

portation and social protection, as well as family structures and inter-

generational ties. Preparing for the economic and social shifts associated with 

an ageing population is thus essential to fulfil the pledge of the 2030 Agenda 

for Sustainable Development that “no one will be left behind”. Trends in 

population ageing are particularly relevant for the Sustainable Development 

Goals (SDGs) related to poverty eradication, the promotion of health, gender 

equality, employment and sustainable human settlements, as well as those on 

reducing inequality within and across countries and promoting peaceful and 

inclusive societies.” 

In addition, following key points were highlighted in the same report, as the 

current trends with growing of the elderly population. 

 The global population aged 60 years or over numbered 962 million in 

2017, more than twice as large as in 1980 when there were 382 million 

older persons worldwide. The number of older persons is expected to 

double again by 2050, when it is projected to reach nearly 2.1 billion. 

 Across 143 countries or areas with available data, the proportion of 

persons aged 60 or over who live “independently” —alone or with a 

spouse only—varied widely, ranging from a low of 2.3 per cent in 

Afghanistan to a high of 93.4 per cent in the Netherlands. 
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 In Asia, in Africa and in Latin America and the Caribbean, well over 

half of persons aged 60 or over co-resided with a child circa 2010; by 

contrast, in Europe and in Northern America only around 20 per cent 

of older persons co-resided with their children. 

According to the above status, it is evident that the current phase of ageing 

population is increasing over the time as predicted in Figure 1.1., globally. Not only 

that, the dependency of the elderly population also keeps growing with the increment 

in population with time by 2050 as shown in Figure 1.2. 

In addition to this, disability and limb loss also affect the independency of an 

individual. According to the recent census studies based in United States, 

approximately 5.4 million people have some kind of disability caused majorly by 

stroke, multiple sclerosis, spinal cord injury or cerebral palsy [2], whereas an estimated 

 

Fig. 1.1: Percentage of population aged 60 years or over by region, from 1980 to 

2050 (reproduced from [1]) 
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Fig. 1.2: Old age dependency ratio by region, from 1980 to 2050 (reproduced from 

[1]) 

185,000 of people undergo an amputation annually [3], caused by diabetes mellitus, 

dysvascular disease, trauma or malignancy of the bone and joint [4]. Although there is 

no much information about the global status of the disability and ambulatory, it can be 

assumed to have a similar, or only a slight difference in the trend. Therefore, not only 

the ageing but disability also contribute to the increment of dependency.  

In addition, following points in the Assistive Technology Act of 1998 in United 

States are noteworthy [5]. 

 Disability is a natural part of the human experience and in no way diminishes 

the right of individuals to - 

(a) live independently; 

(b) enjoy self-determination and make choices; 

(c) benefit from an education; 
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(d) pursue meaningful careers; and 

(e) enjoy full inclusion and integration in the economic, political, social, 

cultural, and educational mainstream of society in the United States. 

It also defines the term assistive technology device [5]. 

 The term “assistive technology device” means any item, piece of equipment, 

or product system, whether acquired commercially, modified, or customized, 

that is used to increase, maintain, or improve functional capabilities of 

individuals with disabilities. 

Accordingly, due to lack of movability owing to the different deficiencies of 

these individuals with disabilities, their individual life style is affected and the social 

and economic contribution is deteriorated.  Providing a special care or assistance by 

human beings for these individuals with disabilities further become an additional 

obligation for the demanding life styles of the healthy individuals having a bad impact 

on their socio-economic states.  

1.1.1 Caretaking and assistance 

In order to improve the mobility of these individuals with disabilities, to have 

a more independent life, common examples of assistive devices that in use are crutches, 

prostheses, orthoses, wheelchairs and tricycles [6]. Recently, introduction of robotic 

technologies to the available traditional assistive and care taking methodologies, draws 

more attention from the community, due to their intuitiveness and the effective in use. 

Therefore, the goal of assistive robotics, is to develop robotic aids for supporting 

independent living of persons who have chronic or degenerative limitations in motor 

and/or cognitive abilities such as the elderly and persons with severe disabilities [7]. 

Different kinds of assistive robotic devices were developed recently for a variety of 

applications. Robotic prosthesis [8], exoskeleton robots [9], wheel chair robots [10],  

companion robots [11], etc.. are some of them.  
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The focus of this study lies on the assistive robotic devices that can be worn. 

The main two types of wearable robotic devices are robotic prostheses and exoskeleton 

robots. In order for better use of these wearable robotic systems, its mechanical design 

is utmost important. Similarly, in order to control the robots according to their wearer’s 

motion intention, understanding of the wearer’s motion intention is also extremely 

important, yet challenging. In order for this purpose, different non–biological and 

biological methods are available. Amongst, Electroencephalography (EEG) signals 

recorded from the scalp of the human head are expected to contain information related 

to motion intention of the wearer.  

The objective of this thesis is to study different approaches to estimate the 

motion intention using EEG signals, towards control of a wearable robot using EEG 

signals. EEG signals are dynamic in nature, contain high density of information and 

higher noise/signal ratio. The research work presented in this thesis attempts to 

investigate new paradigms to address the issues related to the EEG based motion 

intention identification. The contribution and the overview of the thesis are explained 

in the following sections. 

1.2 Wearable Robots 

As defined by Pons et. al. [12], wearable robots can be defined as person 

oriented robots those worn by human operators, whether to supplement the function of 

a limb or to replace it completely. When they act to supplement a function of a limb, 

they are called orthoses or exoskeletons [9], [13], [14]. When they are used to replace 

a limb completely, they are called prostheses [8], [15], [16].  

1.2.1 Upper Limb Exoskeleton  

Upper limb exoskeleton robots have joints and links that are corresponded to 

the joints and links of the human upper limb and are worn parallel to them. Upper limb 

exoskeleton robots are expected to act as power augment devices, rehabilitation 

devices, haptic interactions or more recently as body evaluation devices. The number  
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                           (a)                                           (b)                                           (c)     

Fig. 1.3: Exoskeleton Robots (a)LIMPACT[17] (b) HEXAR[18] (c) SUEFUL – 7[19] 

of DoFs the exoskeleton robot may depend on the design of the robot and the 

corresponding joints of the human body. To date, number of exoskeleton robots have 

been developed for different applications [17]–[19]. Figure 1.3 shows some of the 

recently developed upper limb exoskeleton robots. HEXAR [18], which is shown in 

Figure 1.3(b), was developed with 3 DoFs for power augmentation of the exoskeleton 

wearer. SUEFUL–7[19] (See Figure 1.3(c)) was developed in SAGA University, 

Japan for power augmentation of physically weak patients with 7 DoFs.  

 1.2.2 Upper Limb Prosthesis 

Upper limb robotic prosthesis will replace a missing upper limb part of an 

amputee. It is expected to regain the lost appearance and functions of the missing limb, 

using the robotic prosthesis. Depending on the amputation level of the upper limb, the 

prosthesis mainly can be a shoulder prosthesis, transhumeral prosthesis, transradial 

prosthesis, hand prosthesis or a finger prosthesis. Recently, different types of upper 

limb prostheses have been developed [20]–[22]. DEKA arm [20] was developed as a 

shoulder prosthesis with active 10 DoFs. It has 3 configurations for shoulder level 

amputees, for transhumetal amputees and for transradial amputees. The generation 3 

of the prosthetic arm can generate human alike motions and is shown in Figure 1.4 (a). 

In [21], a transhumeral robotic arm prosthesis shown in Figure 1.4 (b) was proposed  
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   ,               (a)                                                       (b)                                          (c) 

Fig. 1.4: Robotic Prostheses (a) DEKA Arm (b) UOM – Arm (c) Smarthand 

by a group of researchers in University of Moratuwa of Sri Lanka. It can generate 5 

basic grasping modes in the hand, wrist flexion/extension, wrist ulna/radial deviation, 

forearm supination/pronation and elbow flexion/extension. The smarthand [22] was 

developed in Italy and is an underactuated five fingered prosthetic hand with 16DoFs, 

actuated by 4 motors. Smarthand is shown in Figure 1.4 (c). 

1.2.3 Control of Wearable Robots 

To date, mechanical designs of the wearable robots have achieved the required 

anthropomorphic features in their designs that might please their users to a certain 

extent. However, the development of a suitable control strategy to provide required 

actuation commands to the wearable robot also important in providing a better user 

experience for the wearable robot user. In order to provide correct commands to the 

actuators, it is necessary to identify the users’ motion intention to move. Once the 

motion intension is identified, the required support can be generated by the 

exoskeleton robot or the required motion can be generated by the robotic prosthesis 

with a perfectly built system.  

Among the available techniques to control a wearable robot according to the 

users’ desired motion, biological signal based control techniques have shown a greater 

success. Amongst, electromyography (EMG) based techniques and the brain signal 
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based techniques are popular among the researchers. Next sections explain the details 

associated with EMG and brain signal based motion intention identification methods 

A. EMG based control of wearable robots 

EMG signals are electrical potential differences that can be measured from the 

muscle sites. EMG signals mainly can be classified into two types based on the 

invasiveness [23]. When they are measured from the surface of the muscle non–

invasively, they are called surface EMG (sEMG). When a needle is used inside the 

muscle, it becomes invasive and named intramuscular EMG (iEMG). iEMG provides 

a better accuracy and repeatability than sEMG [24]. However due to the ease of use 

and non–invasiveness, sEMG based control of wearable robots is becoming popular. 

To date, several studies [15], [19] have proposed EMG based control for wearable 

robots.   

EMG based control of a transhumeral prosthesis [15] 

Saga University prosthetic arm was developed for the realization of 5DoF 

upper limb motions for a transhumeral amputee. The hand is controlled using a 

combination of an EMG based controller (EBC) and a task oriented kinematic based 

controller (KBC). In a transhumeral amputee, a part of the biceps and triceps are 

remaining. EMG signals of the amputee’s biceps and triceps are used as the input 

information for the EBC to control elbow flexion/extension and hand grasp/release. 

Forearm supination/pronation, wrist flexion/extension and ulnar/radial deviation get 

controlled from the KBC. Motion intention of the amputee is identified via a task 

classifier using shoulder and prosthesis elbow kinematics. For the scope of this context, 

only the EBC will be considered. EMG based fuzzy controller is the base for EBC. It 

proportionally controls the torque of the elbow and hand actuator according to the 

amount of the EMG signal. The activation of biceps generates the elbow flexion and 

the activation of triceps generates the elbow extension. Hand grasp is realized when 

both triceps and biceps are activated simultaneously. The release position of the hand 

is achieved when the both muscles are not working 
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Fig. 1.5: Structure of the Controller for SEUFUL – 7 (reproduced from [19]) 

SUEFUL–7 [19] 

SUEFUL–7 is an upper limb exoskeleton robot with 7 DoF (3 DoFs for 

Shoulder, 1 DoF for Elbow, 1 DoF for forearm and 2 DoFs for Wrist). In order to 

obtain the real time control, an EMG based, muscle-model-oriented control method 

has been proposed. An impedance controller is applied with the muscle-model-

oriented control method and impedance parameters are then adjusted in real time as a 

function of upper-limb posture and EMG activity level [19]. The controller of the 

SUEFUL–7 [19] uses EMG signals from 16 locations  of the user as the primary input 

information. Also, forearm force, hand force and forearm torque are used as secondary 

input information for the controller [19]. The structure of the controller is shown in 

Figure 1.5. The first stage is the input signal selection and the second stage is muscle 

model oriented EMG based impedance control. Proper input information is selected to 

the controller according to muscle activity levels in the first stage. Depending on the 

RMS of the EMG signal, muscle model oriented EMG based control or sensor based 

force control is selected under the second stage and it is fed as a control command to 

the robot. This hybrid nature of the control method is a guarantee to activate the 

SUEFUL–7 even with low EMG signal level. On the other hand, when EMG signals 

are high, the robot is controlled mainly by the EMG signal generated by user motion. 
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1.3 Brain Computer Interface Systems 

Brain-computer interface (BCI) is a method of communication between the 

human brain and an external device based on neural activity generated in the brain and 

is independent of its normal output pathways of peripheral nerves and muscles [25]. 

Over the recent years, both noninvasive [26]–[34] and invasive [35]–[40] BCI systems 

have been proposed. Before study about the BCI techniques, it is important to 

understand the main functions and structure of the brain. Next sections explain the 

same. A summary of the available BCI systems for motion estimation is shown in 

Table 1.1, at the end of the section. 

1.3.1 Human Brain 

The brain is one of the largest and most complex organs in the human body. It 

is made up of more than 100 billion nerves that communicate in trillions of connections 

called synapses [41]. The brain is a construction of two hemispheres at the right and 

left side. Each hemisphere divided into four lobes. These four lobes are shown in 

Figure 1.6. They are named as frontal lobe, parietal lobe, temporal lobe and occipital 

lobe. Mostly, all of the functions voluntary functions and majority of the involuntary 

functions of the body are governed by the different functional areas of the brain. These  

 

Fig. 1.6 : Lobes of the brain (reproduced from [42]) 
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Fig. 1.7: Functional Cortical Areas of the left Cerebral hemisphere ( reproduced from 

[42]) 

functional cortical areas of the brain are shown in Figure. 1.7. The functions of each 

area can be determined by their names. Such as motor cortex area is mainly responsible 

for voluntary motion planning and execution of the body; the visual cortex area is 

mainly responsible for the visual stimulation recognition [42]. These areas can be 

divided into two major areas know as primary and secondary [42]. In the primary areas, 

they contain beginnings and the terminations of the projection pathways [42].  

With respect to the current study, it is important to understand more details of 

the motor cortex area, which governs the voluntary actuations of the limbs. As shown 

in Figure 1.8, the arrangement of the corresponding functional areas of the motor 

cortex reassembles a human standing on his head with the feat at the border of the 

hemisphere [42]. In comparison to the other parts of the body, the upper–limb has a 

wider range of functional region from shoulder to thumb. However, some recent 

studies [43]–[45] have reported that in addition to the motor cortex areas, some other 

areas in parietal cortex also activated during the motor commands. 
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Fig. 1.8: Functional area map of motor cortex for different motor actions of the body 

(reproduced from [42]) 

1.3.2 Categorization of BCI techniques 

There are various ways of categorizing available BCI techniques, such as used 

modality, feature extraction method, classification method, etc… In this study, the 

available BCI techniques are categorized based on the modality. The identified 

methodology of classification is shown in Figure 1.9. Available modalities can be 

classified under the two categories based on their invasiveness, noninvasive and 

invasive. Invasive techniques further can be categorized to technologies using intra–

cortical electrode arrays and electrocoricography (ECoG, intracranial 

electroencephalography). Noninvasive techniques also can be further categorized into 

electroencephalography (EEG), near infrared spectroscopy (NIRS), 

mechanomyography (MMG). The further chapters of this thesis use EEG as their 

modality for the proposed motion intention estimation methodologies. Available EEG 

based BCI techniques can be categorized into reactive and active BCIs.  
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Figure 1.9: Classification of Brain Computer Interface Techniques 

1.3.4 Invasive BCI techniques. 

Following sections explain the details of the invasive BCI techniques. Initially, 

intra–cortical electrode arrays based BCI are explained which will be followed by the 

ECoG based BCIs.  

A. Intra–Cortical Electrode Array based BCI 

During technology with intra–cortical electrode arrays, a surgical procedure is 

involving to implant an electrode array into the brain. This electrode array will 

penetrate through the brain and capable of recording neuronal level potential changes 

of the brain. Figure 1.10 shows such an implanted electrode in to the human brain. 

Over the recent years, in animal studies intra – cortical neural activities have been 

recorded for natural movement [46], a robot arm was controlled in four dimensions for 

self-feeding tasks [35] and in seven dimensions for orientation and grasping [47]. In 

addition, using of intra–cortical electrode with human subjects also have been reported 

[36], [38]. Methods using intra–cortical electrode arrays to record brain activity are 

superior to existing non-invasive BCI technologies in terms of higher spatial 

specificity, signal-to-noise ratio, and bandwidth.  

Neuro–prosthetic control by an individual with tetraplegia [38] 

Collinger et al.[38] proposed a BCI systems to control a multi DoF, external 

prosthetic arm for a patient with tetraplegia. In this method, two intra-cortical micro  
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Fig. 1.10: Micro Electrode Array (reproduced from[48]) 

 

                        (a)                                                   (b) 

Fig. 1.11: Patient with tetraplegia (a) access method to the implanted electrodes array 

(b) activations of the patient’s brain – black squares approximate postions of the 

electrode arrays on the motor cortex (reproduced from [38]) 

electrode arrays with 96 channels were implanted in the motor cortex areas of the 

patient’s brain. With the information from the intra–cortical micro electrodes, the 

patient had undergone 13 weeks of training for the BCI which has the goal of 

controlling an anthropomorphic prosthetic limb with 7 DoFs including 3 DoFs for 

translation, 3 DoFs for orientation and single DoF for grasping.  The study reports the 

successful control of the prosthetic limb for skillful coordinated reach and grasp 

movement by the patient. The subject participated in the study and her activated areas 

of the brain are shown in Figure 1.11(a) and (b), respectively. 
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Prosthetic arm control by a monkey [35] 

Meel et al. reports a study on embodied control of a prosthetic arm by monkeys 

with implanted intra–cortical electrode arrays in to their brain. In this study, monkeys 

are able use their motor cortical activity to control a mechanized 5 DoF arm replica in 

a self-feeding task in three dimensions and to proportionally control a gripper on the 

end of the arm.  During the real–time control, the endpoint velocity and gripper 

command were extracted from the instantaneous firing rates of simultaneously 

recorded units from the electrode array.  

B. Electrocortocogram (ECoG) Based BCI 

 

Fig. 1.12: Placement of ECoG electrodes in the cortices (reproduced from [49]) 

ECoG is also an invasive BCI technique that is in use. In this process, EcoG 

electrodes are implanted on the brain and they lie on top of the cortex measuring the 

potential changes on the surface of the cortex.  Figure 1.12 shows an implanted 

electrode on top of the cortices of the brain. Over the recent years ECoG signals have 

been used in different BCI applications [39], [50], [51]. Similar to the case with intra–

cortical electrode arrays, methods using ECoG signals are superior to existing non-

invasive BCI technologies in terms of higher spatial specificity, signal-to-noise ratio, 

and bandwidth.  
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Trajectory Prediction with ECoG [51] 

Nakanishi et al. [51], proposed a ECoG based 3 dimensional trajectory 

prediction methodology to reconstruct the motion of a human limb. In the proposed 

method, 15 channel and 60 channel electrodes were placed in the sensorimotor cortex 

of the patient surgically. ECoG signals from the brain and 3D trajectories of the left 

hand motion were recorded simultaneously. Later, using a sparse linear regression 

based method, the joint angles and joint trajectories were estimated. This study proves 

the feasibility of using ECoG based BCI to reconstruct human limb motions in the 3D 

space, which can be adopted to control the wearable robotic devices according to the 

user’s motion intention. 

ECoG based BCI for a patient with tetraplegia [50]  

In [50], Wang et al. proposed a ECoG based for a patient with tetraplegia to 

control a cursor in a screen. Initially, 32 channel high density ECoG electrode grid 

with 28 recording channel was implanted surgically on the left sensorimotor cortex of 

the patient. Later, using an adaptive motion estimation scheme, the subject attempted 

to move a cursor on a screen between given targets using the simultaneous signals 

collected through the ECoG grid, generated for the attempted right arm and hand 

movements. In the adaptive scheme the cursor control was alternated between the 

subject and the neural decoder of the proposed BCI. The neural decoder was updated 

according to the performance of the human subject. The study demonstrate the 

successful integration of sensorimotor cortex based ECoG signals to predict the motion 

intentions for a future application in the area of wearable robotics. 

Control of upper limb prosthesis with ECoG [39]  

Fifer et al. [39], have proposed a system based on ECoG for controlling of a 

modular prosthetic limb. The study comprises of three different components to for 

neural signal acquisition and processing, behavioral kinematic acquisition, and 

artificial limb actuation. In the first phase, ECoG signals are acquired from the 

implanted ECoG electrode array and as features, signal power is extracted for five 
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different frequency bands. Accordingly, signal power is extracted for  𝜇 band, 7 – 

13Hz; 𝛽 band, 16 – 30Hz; low 𝛾 band, 30 – 50Hz; high 𝛾 band, 70 – 100Hz and 100 

– 150Hz frequency bands. Eventually, the integration of the EEG features and the 

behavioral kinematic data resulted in actuating the modular prosthetic arm of 27 DoF 

either in three-dimensional virtual or physical space. 

1.3.5 Noninvasive BCI techniques 

Following sections present details about two main available non– invasive BCI 

modalities (i.e.: Near Infrared Spectroscopy and Electroencephalography).  

A. Near Infrared Spectroscopy based BCIs 

Functional Near Infrared Spectroscopy (fNIRS) [34] are used by researchers 

are widely used as noninvasive BCI modality. During fNIRS, it measures the 

concentration changes of oxy–hemoglobin ([HbO] and deoxy–hemoglobin [HbD]) in 

the superficial layers of the human cortex. fNIRS lacks the temporal resolution [52]. 

Massimiliano et al.[34], proposed a method based on fNIRS to use in gait 

rehabilitation. Lee et al.[53], proposed a control of a hand exoskeleton  

Gait Rehabilitation with fNIRS [34]  

Massimiliano et al. [34], presented a proof of concept study to assess whether 

hemodynamic signals underlying lower limb motor preparation in stroke patients can 

be reliably measured and classified. In the study, fNIRS signals were recorded from 

seven right-handed chronic stroke patients using a 48 channel recording system. The 

recorded brain activity corresponded to the preparation of left and right hip movement 

of seven chronic stroke patients. During the estimation of the intent to move, total 

hemoglobin signal changes over premotor cortex and posterior parietal cortex were 

considered as features to train a linear discriminant analysis based classifier.  
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Hand rehabilitation with NIRS [53] 

In  [53], a hand rehabilitation robot is operated using a NIRS signals acquired 

through the scalp of the stroke patients. During the study NIRS signals were recorded 

from nine channel, of six healthy subjects for open and close motion of the hand. The 

mean and slope of HbO and HbD signals were selected as features to train two type of 

classifier. Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) 

based classifiers were trained and used to predict the real time motion intention for 

single DoF (i.e.: hand opening and closing).  Finally, a single DoF hand exoskeleton 

robot (see Figure 1.13 (a)) was controlled using NIRS, for the similar motion intention 

of the user, providing a more intuitive approach for hand rehabilitation. The octode 

placement for NIRS recordings and experimental setup is shown in Figure 1.13. (b) 

                         

(a)                                              (b) 

Fig. 1.13:  NIRS based hand rehabilitation robot (a) Hand exoskeleton robot (b) 

experimental setup 

B. Electroencephalography based BCIs 

EEG measures the electrical activity fluctuations of the brain from the scalp of 

the human head. Abnormalities of EEG are used to diagnose various kinds of 

neurological disorders, sleep disorders, brain death, tumors, stroke, etc… in clinical 

applications. However, due to the easiness of use, noninvasive nature and higher 

temporal resolution compared to other noninvasive BCI techniques, EEG draws more 

attention to be used as BCI modality frequently. However, EEG recording are prone 
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to contaminate with noise produced by: potentials from the brain (cephalic noise) , 

potentials from the head muscles and skin, eye and tongue (extra cephalic cranial 

noise), potential form the other body parts such as heart (extra cranial physiological 

noise), random microscopic fluctuations of the of the electrodes (thermal noise), noise 

from the movement of the subject (movement artifact), fluctuations of electronic 

recording components (electronic noise), radiations from the surrounding electrical 

components (environment noise) and fluctuations in signal conversions for storing 

(quantization noise) [54], [55]. A higher noise ratio compared to the EEG signal related 

to the motions makes it challenging to develop EEG based BCIs. Despite, several 

studies have proposed BCI systems for different applications [26], [28]–[30], [33], 

[56]–[58].  

Control of a prosthesis with EEG  [28] 

The study [28] reported in 2016 can be considered as astate of the art in control 

a prosthetic arm using EEG signals from a human. In this study, 13 subjects controlled 

a prosthetic arm for a robotic arm with high accuracy for performing tasks requiring 

multiple DoFs. During the study, motor imagery tasks were used to drive two 

dimensional virtual cursor or robotic arm movement. Accordingly, the imagination of 

left hand, right hand, both hands, and relaxation corresponds to the respective left, 

right, up, and down movement of the robotic arm and virtual cursor. In order to control 

the virtual cursor or the robotic arm, band power features were derived from 62 channel 

of EEG recorded around the left and right motor cortex areas of each subject. The 

power activity of the left and right hemispheres were mapped linearly to the velocity 

of the virtual cursor or to the position of the robotic arm. 

BCI for Exoskeleton Control [56] 

The study presented in [56] demonstrated the feasibility of detecting motor 

intention from brain activity of chronic stroke patients using an asynchronous EEG 

based brain BCI. Here, EEG signals recorded from 64 channels were used to control a 

single DoF of an upper–limb exoskeleton. Movement related cortical potentials 
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(MRCP) were used in the calibration stage of the BCI. During the closed loop 

implementation of the BCI, slope, negative peak amplitude, area, and mahalanobis 

distance were computed from the segment epochs during the calibration to be used as 

the features. Thus, in order to improve the system performance in the presence of 

single-trial variability of MRCPs in the injured brain, the important steps were 

followed: (1) an adaptive time window was used during extracting features for the BCI 

calibration; (2) EEG signals are prone to day to day variations.  Therefore, training 

data from two consecutive days were pooled for BCI calibration to increase robustness 

and (3) BMI predictions were gated by residual EMG activity from the impaired arm, 

to improve the final decision of the BCI.  

Meal Assistive Robot [57] 

Perera et al. [57] proposed the control of a meal assistive robot using EEG 

signals that are used to detect the user’s intention. In the proposed method, steady state 

visually evoked potentials (SSVEP) which are related to user’s motion intention are 

detected from the EEG signals. The user can select the robot to feed from given 3 

choices of the bowls. Each bowl is represented by a LED matrix blinking at a different 

frequency. The user has to match the motion intention to the bowl, represented by the 

LED matrix. Thus, the SSVEP signals are extracted from the EEG, which are 

generated due to subject watching the blinking of the LED matrix. The robot will be 

controlled according to motion estimation from the SSVEP signals. Similar approach 

can be followed to identify the motion intention to control wearable robots also.  

Estimation of motion intention for arm Supination/ Pronation [58] 

Kiguchi et al. proposed a motion intention estimation methodology to be used 

for control of a prosthetic arm for a transhumeral amputees. Transhumeral amputees 

do not have enough muscle sites to estimate the distal joint movement by using EMG 

signals. Therefore, this study proposed a neural network based motion estimation of 

the supination/pronation using EEG signals from the subjects.  
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Table 1.1: Summary of BCI systems in use 
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1.4 Setup of experimental platform 

Following sections explain the basic setup of the experimental platform for this 

study. Initially, the electrode placement methodologies are explained. It will be 

followed by a brief explanation to the EEG acquisition system used during the 

experiment. In addition to the EEG signals, user’s motion also recorded during some 

of the experiments performed. A brief introduction to the mainly used motion capture 

systems also included in the final section. 

1.4.1 Electrode placement for EEG recording 

Generally, during the recordings of non–invasive brain signals such as EEG or 

NIRS, 10–20 international system of electrode placement is used. The nomenclature 

of this system is depending on the location of the electrode and underlying lobe. 10  

 

Fig. 1.14: Nomenclature and electrode locations of 10 – 20 electrode system 

(reproduced from [59]) 
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and 20 refers to the distance between electrodes to be either 10% or 20% of the distance 

of fron–back or left–right of the brain. Accordingly, F, P, O and T are used in the 

nomenclature to represent Frontal, Parietal, Occipital, and Temporal lobes. In addition, 

C is used to the central area. Number are also given to the electrode locations. Zeros 

are assigned to the mid plane (Cz, Fz, Cz, ….). Right side of the brain is assigned with 

even numbers (Fp2, F4, C4, ….) while the left side of the brain is assigned with odd 

numbers (Fp1, F3, C3, ….). The nomenclature and their positions are shown in Figure. 

1.14. In addition, 10–20 international system can be extended to different variations, 

based on the percentages of distances between the electrode locations. Thus, 10–10 

international system and the 10–5 international system also can be derived. 

1.4.2 Recording of EEG signals  

Recording the EEG from the human scalp is usually the initial step of any EEG 

based BCI. For this purpose, different commercial EEG acquisition systems [60]–[63] 

are available. EEG signals are detected through electrodes to the acquisition system. 

However, there should be a certain conductive connection between the electrode and 

the skin of the scalp to perform the measurements [54]. Accordingly, there are 

common two type of electrode types in commercially available devices, namely wet 

type and dry type. Wet type is further classified in to gel type and water type.  

In this study, g.LADYbird electrodes, belongs to the gel type from the g.tec co. 

[60] are used for EEG measurements. The used electrodes are shown in Figure 1.15(a).  

 

                                      (a)                                                   (b) 

Fig. 1.15: (a) g.LADYbird electrode (b) g.gammacap 
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Fig. 1.16: Electrical connection system for the EEG recordings 

Electrodes are attached to the g.gammacap [60] (see Figure 1.15(b), from the same 

vendor), according to selected electrode layout from the. Electrical connection of the 

EEG recording setup used in this thesis is shown in Figure 1.16. After the detection of 

the EEG signals from the electrodes, they are sent to the g.gammabox [60] for pre-

amplification before send for the electrical filtering and the amplifications. In this 

study, the systems comprise of equipment form two vendors. Therefore, after the pre 

– amplification the signals are send to the input box of the nihon kohden [64]. It makes 

the connection between the g.tec system and the nihon kohden amplifier. From the 

input box EEG signals are send to the nihon kohden amplifier. The amplifier is 

connected to the Ritech Interface Board (Model No: RIF-171-1) which is connected to 

a desktop computer. In the computer EEG signals are stored in csv format using the 

recording software for further processing and analyzing. 

1.4.3 Recording of motion 

 During the experiments for this study, the user’s upper limb motions were 

recorded for further analysis purposes majorly in identifying the user intended motion. 

For this purpose, two commercial available motion capture systems were used. One of 

them was, a v120: Duo (Optitrack) and the other one was Osprey (Motion Analysis 
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Co.). Both systems used reflective markers attached to the limb segments of the 

subjects to detect the motion. The movement of the reflective markers are detected by 

the camera system of each motion capture system and data will be recorded in to the 

computer. Both motion capture systems operate with their own software for recording 

data. The data recorded contains coordinate positions of the attached markers, which 

can be used to calculate the required information such as posision or velcocity, etc… 

1.5 Contribution of the thesis 

The research work presented in this thesis is mainly focused to study on the 

EEG based motion intention estimation techniques for control of upper limb wearable 

robots.  

 Propose a new approach to control several DoFs in a wearable robot in 

real-time by estimating the users motion intention, in terms of the user’s intended tasks 

to perform, by using EEG signals measured from the scalp of the user. A time-delayed 

feature matrix is introduced to provide inputs to neural network and support vector 

machine (SVM)-based classifiers that harvest the dynamic nature of the EEG signals 

for motion intention prediction. 

 Propose a EEG based hierarchical approach to achieve multi-DoF 

control of a transhumeral prosthesis. Initially, the motion intention for arm reaching or 

hand lifting is identified using a neural network based classifier which is trained with 

motion-related EEG features. Then elbow motion and hand endpoint motion is 

estimated using a different neural network based classifiers, which are trained with 

motion information recorded using healthy subjects.  

 Propose and compare two different approaches to estimate the motion 

intention, in terms velocity. Here, individual joint motions are estimated using a time–

delayed feature matrix as input to a neural network based classifier. In addition, end 

effectors motion is estimated using dynamic feature matrix as input to an 

autoregressive neural network based classifier. 



Chapter 1                                                                                                                    

 

27 

 

Figure 1.17: Thesis Overview 

1.6 Thesis Overview 

This thesis consists of five chapters including first chapter. The overall 

structure of the thesis is illustrated in Figure 1.17. Chapter 2, Chapter 3 and Chapter 4 

are dedicated for the aforementioned contributions. Chapter 2 and Chapter 3 focuses 

on task based motion estimation, whereas Chapter 4 focuses on the velocity based 

motion estimation. Chapter 1 – Chapter 4 start with an introduction on what would be 

the contents of the certain chapter in the section, Chapter Overview. The contents of 

each chapter are organized as follows. 

Chapter 2: Estimation of Motion Intention of ADL Tasks for Upper-Limb 

Wearable Robot with EEG Signals 

Chapter 2 is dedicated to propose a task based motion estimation. Initially, the 

requirement of the proposed study explained with examples from the literature. Then, 

the proposed approach for the motion intention identification of the activities of daily 
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living is introduced. It explains the experimental approach to validate the proposed 

approach. The signal processing techniques, extraction methods and design of the 

classifiers are explained in detailed. In the results, classification accuracies, latency 

between the motion onset and the predicted motion for selected classifiers are 

presented and compared. Finally, the important points of the proposed approach and 

the results are discussed.  

Chapter 3: EEG Based Control Approach for a Transhumeral Prosthesis 

Chapter 3 is also dedicated to propose a task based motion intention estimation. 

The requirement of the current study for the transhumeral prostheses is introduced in 

the initial section of the chapter. Then the proposed hierarchical structure is presented 

and its details are explained. It will be followed by an explanation to the experimental 

approach to confirm the proposed methodology. Then, the signal processing 

techniques, feature extraction methodologies, and the details of the two stage 

classification are introduced in respective manner. The results are presented for both 

proposed stages. At the end, the discussion ins presented.  

Chapter 4: Velocity based Estimation of Motion Intention of Wearable Robot 

Users 

Chapter 4 presents the research work related to the velocity based motion 

intention estimation. Initially, current limitations of the velocity based motion 

intention estimation are identified. Then, the feasibility of two approaches to estimate 

the motion intension is studied by introducing individual joint motion based and 

trajectory based estimation methods. Experimental procedure for both approaches are 

explained. EEG signal processing, feature extraction and classification methodologies 

are explained in details. Finally, the results for both methods and the discussion are 

presented. 
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Chapter 5: Conclusion and Future Directions 

The final chapter includes a summary of the contributions of the thesis, the 

conclusion, a brief discussion, and suggestions for the future directions. 
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Chapter 2 

Estimation of  Motion Intention of ADL Tasks 

for Upper-Limb Wearable Robot with EEG 

Signals 

Chapter Overview 

In BCIs, encoding of brain information to derive the intended motion of the user 

in real-time continues to present a problem with respect to the control of wearable 

robots with multiple degrees of freedom (DoFs). In this chapter, a new approach to 

control several DoFs in a wearable robot is proposed by estimating the users motion 

intention in real-time, in terms of the user’s intended tasks to perform, by using EEG 

signals measured from the scalp of the user. A time-delayed feature matrix constitutes 

of the power band features of EEG signals is introduced to provide inputs to neural 

network and support vector machine (SVM) based classifiers that harvest the dynamic 

nature of the EEG signals for motion intention prediction. In order to estimate the 

motion intention, individual classifiers are trained for each individual subject for both 

types of classifiers. At the same time, another two different classifiers are trained with 

data from all the subjects. The estimation results from both types are presented in this 

chapter and compared. Similarly, prediction latencies are calculated for each 

technique and are presented here with a comparison. As a conclusion, the experimental 

results indicate the effectiveness of the proposed methodology in the prediction of 

user’s motion intention. The structure of the chapter is as follows. Initially, the 

motivation and the requirement of the current study are presented in the introduction. 

It is to be followed by the methodology which explains the proposed approach and the 

experimental setup. Then the results are presented to be followed by the discussion. 
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2.1 Introduction 

A brain-computer interface (BCI) for wearable robots provides a method of 

communication between the human brain and the robot that is based on the neural 

activity generated by the brain and is independent of normal output pathways such as 

the peripheral nerves and muscles [1]. Recently, both noninvasive [2]–[10] and 

invasive [11]–[16] BCI technologies have been proposed for various purposes. 

However, the ultimate goal of the BCIs for wearable robots is to enable 

anthropomorphic movement of wearable robotic devices, such as a prosthesis [17]–

[19] or exoskeleton [20]–[22] acting as an assistive device [4], based on the intended 

motion of the user in real-time for more effective use of these devices in assisting with 

activities of daily living (ADL) or rehabilitation tasks. These devices correspond to 

highly dexterous robotic devices with multiple degrees of freedom (DoFs). Therefore, 

the control signals should be capable of actuating all required DoFs of these robots 

when wearable robots are controlled. Consequently, several DoFs of motion must be 

determined using an electroencephalography (EEG) based method or another motion 

intention identification method. To date, several different motion estimation methods 

[4], [5], [7], [13], [23]–[27] have been proposed for each specific BCI application.  

In one previous study [23], a prosthetic hand was operated with 1 – DoF for its 

open and closed positions by classifying EEG patterns that occurred while the user 

imagined left and right hand movements. Palanker et. al. [24] proposed an EEG-based 

control architecture for a wheelchair-mounted robotic arm. Their method used visual 

stimulation of the subject provided via a visual matrix that includes either a symbolic 

array or an alphabetic array that corresponds to the required motion. In another 

previous study [5], Hayashi et. al. proposed a neural network-based method to identify 

the intended motion of the subject. Their method predicted whether the subject’s 

intention involved either moving or not moving the hand within a single degree of 

freedom (1-DoF). Additionally, several studies [4], [7], [13], [25]–[27] also attempted 

to identify the intended motion of the subject with respect to the intended task. 
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Pfurtscheller et. al. [25] examined the reactivity of the EEG rhythms (known as mu 

rhythms) in association with the subject imagining movement of the right hand, the 

left hand, the foot, and the tongue and attempted to discriminate each individual task 

using the mu rhythms. Another method based on principal component analysis and a 

support vector machine (SVM) classifier was proposed by Anirudh et. al. [26] to 

classify the movements of the left and right hands. In an extant study [27], a steady-

state visually evoked potential (SSVEP)-based meal assistive robot was proposed. In 

this method, the subject selected any solid food item that they wanted to eat from three 

different bowls by looking at the light-emitting diode (LED) matrices corresponding 

to those bowls, which were blinking at different frequencies. The SSVEP generated 

was then used to control the multi-DoFs meal assistive robot. In a previous study [4], 

a motor imagery-based robotic arm control method was proposed to perform reaching 

and grasping tasks. In this method, the subjects performed motor imagery-based tasks 

to control different cursor movements on a computer monitor, and the same motor 

imagery commands were later extended to control a robotic arm with multiple DoFs 

when performing reaching and grasping tasks. 

In most of the studies mentioned above, the motor imagery or motor execution 

by the subject that triggers the EEG pattern differs from the motion that is generated 

by the robot. In contrast, the intended motion of the subjects could be predicted using 

different means. Most studies followed an approach in which they defined a third-party 

brain trigger for a selected DoF or task. Furthermore, in a few of these studies, the 

subject operated only a single DoF of the robot or the simultaneous operation of several 

DoFs was not possible, so this did not provide an intuitive user experience when 

performing ADLs. Conversely, two different approaches were proposed to identify the 

intended motion of the user. One method involved prediction of the direction and the 

speed of the joints that the user wanted to actuate. In this case, a number of predictions 

of individual joint motions were required to predict the user’s upper-limb motion. In 

this approach, the prediction complexity increases with the introduction of each 

additional DoF. In another approach, it was possible to identify the ultimate focus of 
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the user’s intended motion and the guide the robotic device from the initial position to 

the required end position. In this case, it was necessary to predict the intended motion 

in terms of the user’s intended task, and the prediction complexity was independent of 

the number of DoFs involved. A few of the above studies [4], [5], [23] also attempted 

to predict some motor tasks. However, with the exception of one study [27], none of 

the other studies examined or predicted ADLs, although this is more important in the 

control of wearable robots.  

In summary, the available BCI techniques that can be used to operate wearable 

robotic systems include one or both of the following drawbacks, which do not 

correspond to the control requirements for wearable robots. Either the techniques do 

not provide the user with adequate DoFs to allow the required ADL tasks to be 

performed or the motor imagery/execution that is used to trigger the EEG is not always 

similar to the output from the robot. Therefore, the robots cannot be controlled 

intuitively. In addition, EEG signals contain dynamic information about the intended 

motion, and the available methods do not understand this dynamic information 

accurately.  

This chapter therefore proposes a new approach to control several DoFs of a 

wearable robot by estimating the expected motion intention of the user in terms of the 

task to be performed. The study is expected to correspond to an initial study to perform 

the same tasks using noninvasive BCI techniques, e.g., EEG. Initially, the locations 

and frequency ranges of the required brain activations are identified for each task 

during an offline analysis. These brain activations are triggered by the same tasks that 

would perform by the robot. The information from the offline analysis is used along 

with a time-delayed feature matrix to provide input to the classifiers, and this helps the 

classifier to understand the dynamic nature of the EEG features that are introduced in 

the proposed method. Neural network and SVM-based classifiers are also used to 

predict the intended motion in real time. Subsequently, the effectiveness of the neural 

network-based classifier and that of the SVM-based classifier are both compared to 
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that of the proposed approach. The proposed approach can be used to control several 

DoFs of a wearable robot to perform a similar intended human motion in real time 

using a suitable kinematic model for the selected tasks. The next section presents the 

study methodology and the following sections present the results and a discussion of 

the study. Finally, our conclusions are presented. 

2.2 Method 

The key steps in developing a BCI to understand human motion intention can 

be identified as understanding the activation locations of the brain, understanding the 

main frequency ranges of brain activations, making the classifier understand the 

dynamic information included in the EEG signals and finally the estimation of the  

 

Fig. 2.1: Proposed approach for wearable robot control (dark background – offline 

analysis  - raw EEG  - preprocessed EEG  - filtered EEG). 
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human motion intention. accordingly, the proposed methodology for control of the 

wearable robot comprises a data collection process with a two-stage data analysis 

process, composed of offline analysis and real-time motion prediction, and an inverse 

kinematics-based motion generation process to control the robot. The key steps are 

shown in Figure 2. 1.  

Initially, the EEG data are collected from the test subjects for two ADL tasks. 

The subsequent offline analysis (shown in the dark background area in Figure 2.1) 

focuses on identification of the brain behavior because different brain regions are 

activated based on the task to be performed. Additionally, voltages with different 

frequency ranges are emitted by the brain when different tasks are to be performed by 

the body. Therefore, one important step in the development of a real-time controller 

for a wearable robot involves development of a better understanding of the locations 

in the brain and the range of frequencies that are generated for the tasks to be 

performed. In the next step, the subject-specific findings from the offline analysis are 

used to develop a more dynamic prediction methodology for real-time motion 

prediction. Here in order to identify the dynamic information included in the EEG 

features, a time series based feature vector is introduced as inputs to the classifiers.  

The current study focuses solely on estimation of the intended motion based 

on each subject’s EEG signals. However, as shown in Figure 2.1, the results are to be 

extended to control a multi-DoF wearable robot using an inverse kinematic model that 

has been developed appropriately for the expected tasks. To diminish the effects of the 

noise that is generated among the electrodes and to normalize the recordings across all 

the channels, a step that is common to both online and offline processes involves initial 

calculation of the common average reference (CAR) as shown below, where N denotes 

the number of channels used in the recordings, 𝑋𝑖(𝑡) denotes the raw EEG signal from 

the ith channel at time t, 𝑋𝑐𝑎𝑟,𝑖(𝑡)  denotes the CAR-corrected EEG signal of the ith 

channel at time t, and 𝑋𝑘(𝑡) denotes the EEG signal of the kth channel for average 

calculations.  
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        2.1 

Here, all the channels are summed up and the average signal is used as a 

common reference for each channel. This will average the all the recorded channels 

over the scalp.  

The details of each step in the process are explained in the following sections. 

2.2.1 Experimental setup 

In this study, EEG signals were recorded for six healthy male subjects who 

were all aged in the range from 24 to 28 years. A gamma.cap (Gtec Co.) with 16 

electrode locations, a g.Gammabox (Gtec Co.) and a biosignal amplifier (Nihon 

Kohden Co.) were used to record the EEG signals of the test subjects. A standard 10-

20 system was followed for placement of the electrodes on each subject’s scalp and 

into the brain cap. Sixteen electrodes were placed at the F3, F4, F7, F8, C3, C4, T3, 

T4, P3, P4, O1, O2, Fz, Cz, Pz, and Oz positions, as shown in Figure 2.2. The sampling 

frequency for measurement of the EEG signals was set at 1000 Hz. The left ear lobe 

was used as the reference point for the EEG recordings. 

            

Fig. 2.2:. Selected channel locations according to the 10 – 20 system 
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The experimental platform is shown in Figure 2.3. In these experiments, the 

subjects were expected to sit on a chair in front of a table and perform two ADL tasks 

(i.e., movement of an object (see Figure 2.3(a)) and drinking (see Figure 2.3.(b))). The 

experiment begins with an audible cue to the subject: “Start.” The subject remained 

still for the first 10 s of the test. The subject was instructed to relax his hands on his 

legs when a task was not being performed. An object was placed on the table in front 

of the subject at 8 s, and the subject was instructed to perform the task of moving the 

object at 10 s, which involved moving the object from right to left following an audible 

cue corresponding to “Start.” The subject moved back to their relaxed position after 

moving the object to their left. Subsequently, there was a 4 s interval prior to the start 

of the next experiment. A cup was placed on the table in front of the subject at the time 

of 2 s within this interval. At the end of the 4 s interval, the audible “Start” cue was 

again given, and each subject performed the required drinking task by moving the cup 

towards their mouth in a manner similar to the ADL. The subject drank and then 

replaced the cup in its original position before returning to the rest positon. The subject 

was intended to perform these tasks at a self-paced rhythm. These procedures were 

performed 40 times over a period of 357 s. The intervals between each task were  

                   

                              (a)                                                                    (b) 

Fig. 2.3: Experimental setup (a) Moving (b) Drinking 
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Fig. 2.4: Task schedule for twenty-four tasks in the experiment (1: movement; −1: 

drinking; 0: resting). 

randomly selected to be either 3 s or 4 s in length. The order in which the tasks were 

performed was also random. The experimental task schedule for 24 of these tasks is 

shown in Figure 2.4.  

The experimental procedure was approved by the institutional ethical review 

board. All the subjects were given detailed written information about the experiments 

and were given a chance to clarify any doubts. Then the subject signed a consent form 

to confirm their consent to participation of the experiment. 

2.2.2 Offline analysis 

During the offline analysis, the frequency distributions in the raw EEG signals 

were studied using fast Fourier transforms (FFTs), which are expressed as follows in 

Eq. (2.2): 

                (2.2) 

where 𝑋𝑐𝑎𝑟,𝑖(𝑡) denotes the time series EEG signal, and N denotes the total number of 

data points in the signal. FFT analyses were performed individually on each channel 

for the CAR-calculated EEG signals. It was then possible to identify the locations and 

the frequency bands of the activated electrodes by examining the FFT analysis results.  

𝑋 𝑘 =  𝑋𝑐𝑎𝑟 ,𝑖(𝑡)𝑒
−2𝜋𝑗𝑡𝑘

𝑁 

𝑁−1

𝑡=0
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2.2.3 Real-time prediction 

The results that were obtained during the offline analysis procedure were used 

to create the feature matrix required for real-time analysis. 

A. Feature matrix 

The initial step for the real-time prediction process involves extraction of 

features from the raw EEG signals. In this study, the EEG band power [28], [29] is 

used as the feature for the prediction algorithm. The EEG power band was calculated 

based on the results of the offline frequency analysis. Accordingly, the four channel 

locations that showed the best activation results were selected by observation for use 

in the real-time analysis in this study. The CAR-calculated EEG signals were then used 

to calculate the EEG power bands based on the results of the FFT analysis. 

One major challenge in EEG-based studies involves understanding of the 

dynamic information, which changes over time. In this study, a feature matrix of time-

delayed inputs is used by the classifiers for this purpose. Therefore, the feature matrix 

from the selected electrode provides three inputs to the classifier, as shown in Eq. (2.3) 

below, where 𝐼𝑃𝑖(𝑡) denotes the input to the classifier at time t s and 𝐸𝐸𝐺𝑖(𝑡) denotes 

the EEG band power in the selected ith channel at time t: 

               (2.3) 

Therefore, the input training matrix dimensions correspond to ((3 × 𝑛) × 𝑙), 

where n denotes the number of electrodes that were selected from the FFT analysis and 

l denotes the number of time steps. The number of rows corresponds to (3 × 𝑛) because 

each electrode provides three inputs to the classifier at the three different time steps. 

The input feature vector for the classifier thus corresponds to Eq. (2.4) below: 
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(2.4) 

To determine Δt, neural network-based classifications were performed for three 

randomly selected data sets with different Δt values corresponding to 50 ms, 100 ms, 

250 ms, 500 ms, 1 s, and 2 s. Following the evaluation, Δt was selected to be 1s for the 

entire study because the highest classification accuracy was produced for Δt = 1s.  

B. Neural networks 

An artificial neuron is an information processing unit and is the building block 

of neural networks [30]. As in [31], artificial neuron receives input and weights which  

                          

                               (a)                                                                       (b)    

                           

                               (c)                                                                            (d) 

Fig. 2.5:  Different activation functions for neural networks (a) Step (b) Arbitrary are 

used to perform arithmetic summing that will be followed by an activation  

𝐼𝑃(𝑡) =

 
 
 
 
 
 

𝐸𝐸𝐺1(𝑡)

𝐸𝐸𝐺1(𝑡 − ∆𝑡)
𝐸𝐸𝐺1(𝑡 − 2∆𝑡)

𝐸𝐸𝐺2(𝑡)
………

𝐸𝐸𝐺𝑛(𝑡)

𝐸𝐸𝐺1(𝑡 + 1)

𝐸𝐸𝐺1(𝑡 + 1 − ∆𝑡)
𝐸𝐸𝐺1(𝑡 + 1 − 2∆𝑡)

𝐸𝐸𝐺2(𝑡 + 1)
………

𝐸𝐸𝐺𝑛(𝑡 + 1)

𝐸𝐸𝐺1(𝑡 + 2)

𝐸𝐸𝐺1(𝑡 + 2 − ∆𝑡)
𝐸𝐸𝐺1(𝑡 + 2 − 2∆𝑡)

𝐸𝐸𝐺2(𝑡 + 2)
………

𝐸𝐸𝐺𝑛(𝑡 + 1)

………
………………
………………
………

𝐸𝐸𝐺1(𝑙)

𝐸𝐸𝐺1(𝑙 − ∆𝑡)
𝐸𝐸𝐺1(𝑙 − 2∆𝑡)

𝐸𝐸𝐺2(𝑙)
………

𝐸𝐸𝐺𝑛(𝑙)  
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function [32]. Accordingly, the network (N) will be Step (c) Threshold Linear (d) 

Sigmoid 

                 (2.5)

 where 𝑥𝑖  corresponds to the input to the neuron and 𝑤𝑖 corresponds to the 

weight associated for the branch consist of 𝑥𝑖. 

In addition, in order to activate the neuron, several types of activation functions 

are available. Different types of activation functions in Figure 2.5 (a) – (d) respectively 

illustrates step function, arbitrary step function, threshold linear function and sigmoidal 

function. Depending on the function used, it limits the output of the neuron [32].  

A feedforward network comprises of different layers, whereas each unit in a 

layer receives inputs from the units in the immediately preceding layer [32]. Generally, 

multilayered neural network is built from an input layer, one or more hidden layers and 

an output layer [32].  

In this study sigmoidal transfer function was used as the activation function in 

both the hidden and output layers to calculate the outputs from each layer. In addition, 

for the training of the neural network the error-back propagation algorithm was used. 

Thus, during training the mean squared error between the desired output and the actual 

network output is minimized iteratively using the gradient decent algorithm. 

C. Neural Network based prediction 

In this study, seven neural networks were trained; six networks were trained 

using one individual subject’s data and one was trained with the data from all the 

subjects. Each neural network consists of three layers: the input layer, the hidden layer, 

and the output layer. The hidden layer contains 30 neurons and was determined by 

comparison with the results for structures containing 20, 30, 40, and 50 neurons in their 

hidden layers. The neural network structure is shown in Figure 2.6.  

𝑁 =   𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 



Chapter 2                                                                                                                    

 

47 

The entire experiment accounts for three different tasks during the training of 

the neural network, i.e., moving an object, drinking, and resting. With respect to the 

required training values, 1 was assigned to moving the object, −1 was assigned to 

drinking, and 0 was assigned to resting, as shown in Figure 2.4. The output during the 

prediction process from the neural network corresponds to the values ranging from −1 

to 1 that are used to represent each of the above tasks. Therefore, six different neural 

networks were trained for the six subjects using each individual subject’s training data. 

A seventh neural network was trained using a combination of the training data from all 

the subjects. 

 

Fig. 2.6: Structure of the trained neural network. 

D. Support Vector Machine 

The SVM [33] performs classification using linear decision hyperplanes in the 

feature space.  When a linear classifier is defined by a hyperplane’s normal vector w 

and an offset b as in Figure 2.7. Accordingly, as shown in the Figure 2.7, the decision 

boundary will be  

𝑥|(𝑤. 𝑥) + 𝑏 = 0           (2.6) 

In the Figure 2.7, the dark thick line illustrates the decision boundary. The space  
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Fig. 2.7: Linear classifier and margins (Reproduced from [33]) 

on each side of the decision boundary corresponds to a single class of a binary problem.   

During the training state, these hyperplanes are calculated to separate the training data 

using different class labels.  

However, these data are transformed into a new vector space using a kernel 

function when it is not possible to separate the training data in a linear manner.  

In the linear classification procedure, the hyperplane is calculated as shown in 

Eq. 2.7, which is upper bounded in terms of the margin as indicated by Eq. 2.8, as 

shown below [33]: 

𝑦 = 𝑠𝑔𝑛((𝑤. 𝑥𝑖) + 𝑏)                                                                           (2.7) 

𝑦((𝑤. 𝑥𝑖) + 𝑏) ≥ 1, 𝑖 = 1,…… . . , 𝑛      (2.8) 

The SVM is also extended to perform multiclass classification. This study 

focuses on classification of a three-class problem. Given the choice of use of one-

against-many and one-against-one approaches in the SVM, this study used the one-

against-one approach. This approach is more efficient for use with training data from 

the ith and jth classes, and the classification problem is solved as shown in Eq. 2.9 

below:  
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Minimize: 

1

2
(𝑤𝑖𝑗)𝑇𝑤𝑖𝑗 + 𝐶 ∑ (𝜀𝑖𝑗)𝑡𝑡        (2.9) 

Subject to: (𝑤𝑖𝑗)
𝑇
𝜑(𝑥𝑡) + 𝑏𝑖𝑗 ≥ 1 − (𝜀𝑖𝑗)𝑡, if 𝑥𝑖in the ith class, 

       (𝑤𝑖𝑗)
𝑇
𝜑(𝑥𝑡) + 𝑏𝑖𝑗 ≤ −1 + (𝜀𝑖𝑗)𝑡, if 𝑥𝑖in the jth class, and (𝜀𝑖𝑗)𝑡 ≥ 0. 

E. SVM-based prediction 

The SVM classifier was implemented using the LIBSVM library [34]. A radial 

basis function was used as the kernel function. Additionally, C and 𝜀 were randomly 

selected to produce superior classification rates. In a manner similar to the neural 

network approach, six different SVM models were trained for the six subjects using 

their individual training data and a separate SVM model was then trained using a 

combination of the training data for all the subjects.  

2.3 Results 

Results of frequency analysis and the estimation with classifiers are presented 

respectively in the following sections.  

2.3.1 Frequency analysis 

The frequency analysis results show the distributions of the magnitudes of the 

frequencies for each channel. The frequency distributions of channel locations F7 and 

C5 for subject 1 are shown in Figure 2.8 (a) and Figure 2.8 (b), respectively. 

Specifically, F7 shows good activation when compared with the performance of C5. 

For all six subjects, channel locations F7, F8, T3, and T4 showed good activation based 

on observation and comparison processes. These channels were therefore selected for 

use in the real-time prediction procedure. The activations were in the frequency range 

below 4 Hz in all the selected electrode locations above. The selected electrode 



Chapter 2                                                                                                                    

 

50 

locations and their frequency ranges were similar for all six subjects. The EEG signals 

from the selected channels were high-pass filtered at 4 Hz, and the resulting values 

were squared to perform the EEG power band derivation. The resulting time-series 

activations of the EEG patterns at F7 and F8 are shown in Figure 2.9, where M denotes 

the object movement state and D denotes the drinking state. A rhythmic activation was 

observed in both channels for the object movement state. With regard to the drinking 

state, a certain degree of activation did exist, but no rhythmic pattern was observed. 

During the resting state, no activation was observed. The derived band power signals 

were then used to create the input feature matrix for the classifiers and a (3 × 4 × 𝑙) 

feature matrix was created and used as the input. 

  

(a)                                                                 

 

(b) 

Fig. 2.8: FFT results for electrodes (a) F7 and (b) C5 for subject 1. 

 

Fig. 2.9: Activation of electrodes F7 and F8 (where D is drinking and M is moving). 
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2.3.2 Neural network-based prediction  

The trained neural networks for the six subjects were then used to predict the 

intended task. The output from the neural network for the task prediction process of 

two subjects is shown in Figure 2.10 (a) and (c). This predicts values in the range from 

1 to −1 for the expected tasks. The orange color indicates the expected output, and the 

blue color denotes the real output. The output signal from the neural network was 

rounded off, and the corresponding resulting output is shown in Figure 2.10 (b) and 

(c). Similarly, the neural network that was trained using the data from all subjects was 

also used to predict the intended tasks of the six subjects individually. The results that 

were obtained from individual trained neural network based prediction are 

summarized in Table 2.1. The prediction accuracies were calculated based on 

comparisons of the real and predicted classes at each instant in time. For the 

individually trained neural networks, the highest accuracy and the average accuracy  

 

                                   (a)                                                              (b)   

                            

                                    (c)                                                             (d)  

Fig. 2.10: Comparison of actual velocities of elbow flexion/extension with predicted 

velocities for two subjects. (a) Actual output from the neural network. (b) 

Corresponding Rounded output. (c) Actual output from the neural network              

(d) Corresponding Rounded output. 
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Table 2.1: Results for six subjects produced by the neural networks (Individual 

Training). 

Individual Training 

 Resting Moving Drinking Overall 

Subject 1 80.4 61.2 58.2 70.5 

Subject 2 69.1 77.7 51.7 67.0 

Subject 3 72.2 63.0 56.2 66.2 

Subject 4 66.6 73.2 55.8 65.6 

Subject 5 67.0 77.4 44.7 64.2 

Subject 6 65.4 81.6 33.0 61.5 

Average  70.1 72.4 49.9 65.8 

for the resting state corresponded to values of 80.4% and 70.1%, respectively. For the 

object moving state, their highest accuracy and average accuracy values corresponded 

to 81.6% and 72.4%, respectively. For the drinking state, their highest accuracy and 

average accuracy values corresponded to 58.2% and 49.9%, respectively. The highest 

individual accuracy of 70.5% was achieved for subject 1. For all six subjects, the 

average overall accuracy was 65.8%.  

For the neural network that was trained using the data from all six subjects, the 

Table 2.2: Results for six subjects produced by the neural networks (Collective 

Training). 

Collective Training 

 Resting Moving Drinking Overall 

Subject 1 87.4 69.9 43.6 72.8 

Subject 2 75.1 73.1 76.0 74.8 

Subject 3 70.1 72.9 68.5 70.4 

Subject 4 66.4 80.3 52.1 66.3 

Subject 5 70.7 63.4 80.2 71.2 

Subject 6 65.2 75.9 36.3 60.8 

Average  72.5 72.6 59.5 69.4 
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results are summarized in Table 2.2. With this type classifier, the highest accuracy and 

the average accuracy with respect to the resting state corresponded to 87.4% and 

72.5%, respectively. For the object moving state, the highest accuracy and average 

accuracy values corresponded to 80.3% and 72.6%, respectively. For the drinking state, 

the highest accuracy was 80.2%, while the average accuracy was 59.5%. The highest 

individual accuracy of 74.8% was recorded for subject 2. The average overall accuracy 

for all six subjects in this case was 69.4%.  

2.3.3 SVM-based prediction 

In a manner similar to the neural network-based prediction case, the same data 

were used to predict the tasks intended by the subjects that used the trained SVM 

models. Figure 2.11 shows the task prediction results for four subjects. The orange 

color denotes the expected output, while the blue color denotes the real output. Table 

2.3 shows a summary of the results for all six subjects for the SVM models that were 

trained using data from individual subjects. In this type of classifier, the highest 

accuracy with respect to the resting state corresponded to 94.5%, while the average  

 

(a)                                                           (b) 

 

                                   (c)                                                             (d)  

Fig. 2.11: Comparison of actual tasks with predicted tasks for the SVM for four 

subjects (a) Subject 1 (b) Subject 2 (c) Subject 3 (d) Subject 5 
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accuracy corresponded to 86.6%. For the object moving state, the highest accuracy 

was 83.8% and the average accuracy was 77.6%. For the drinking state, the highest 

accuracy was 59.8% and the average accuracy was 39.1%. Subject 2 showed the 

highest overall individual accuracy of 74.6%. The average overall accuracy for all six 

subjects was 73.1 %.  

In contrast, for the SVM model (See Table 2.4 for summarized results) that 

was trained with the data from all six subjects, with regard to the resting state, the 

highest accuracy was 97% and the average accuracy was 90.4%. Additionally, a 

highest accuracy value of 84.3% and an average accuracy of 73.4% were recorded for  

Table 2.3: Results for six subjects produced by the SVM (Individual Training). 

Individual Training 

 Resting Moving Drinking Overall 

Subject 1 77.6 77.8 57.2 72.8 

Subject 2 78.8 80.3 59.8 74.6 

Subject 3 86.5 67.7 54.2 74.3 

Subject 4 92.5 83.8 17.5 72.5 

Subject 5 94.5 81.5 22 74.1 

Subject 6 89.5 74.2 24 70.2 

Average  86.6 77.6 39.1 73.1 

Table 2.4. Results for six subjects produced by the SVM (Collective Training). 

Collective Training 

 Resting Moving Drinking Overall 

Subject 1 87.1 73.6 44.4 73.7 

Subject 2 92.7 71.0 47.4 76.7 

Subject 3 97.0 66.5 4.3 67.6 

Subject 4 94.7 77.2 6.7 69.5 

Subject 5 80.8 84.3 35.4 70.8 

Subject 6 90.1 68.1 27.8 70.0 

Average  90.4 73.4 27.7 71.4 
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the moving state. For the drinking state, the highest accuracy was 47.4%, while the 

average accuracy was 27.7%. However, the model recorded a lowest accuracy of 4.3% 

for the drinking state. The highest overall individual accuracy of 76.7% was recorded 

for subject 2. The average overall accuracy for all six subjects was 71.4%. 

2.3.4 Latency 

In addition to the accuracy, the latency between the real execution of motion 

and the prediction was calculated based on the time difference between the real and 

predicted starting points of the motion. The results for latency for all four type of 

estimation are summarize in Table 2.5. For the individually trained neural network-

based classifier Subject 4 demonstrated the quickest prediction capabilities recording 

the latency to be only 150ms. The highest latency was recorded was 490ms for Subject 

6. Based on the latency of all six subjects, the average latency corresponded to 300 ms.  

For the estimations with the neural network recorded with all six subject’s data, 

the quickest prediction capability was demonstrated by Subject 3 who recorded 80ms 

latency. The highest recorded was 430ms for Subject 5. The overall average latency 

for this type of neural network prediction was 250 ms. 

The quickest estimation when using the SVM models trained for individual  

Table 2.5: Latency of real motion onset and estimated motion onset  

Latency 

 NN_IND NN_ALL SVM_IND SVM_ALL 

Subject 1 0.45 0.33 0.38 0.40 

Subject 2 0.20 0.18 0.47 0.73 

Subject 3 0.23 0.08 0.36 0.62 

Subject 4 0.15 0.15 1.09 1.25 

Subject 5 0.28 0.43 0.51 0.97 

Subject 6 0.49 0.28 0.75 0.18 

Average  0.30 0.24 0.59 0.69 
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subjects was recorded to Subject 3 and corresponded to 360ms. The longest latency of 

1s and 90ms was recorded for Subject 4.  On average, the latency between the real 

execution of motion and the predicted execution was recorded to be 600 ms when 

using the SVM trained for individual subjects. 

The latency for the SVM model trained with all subject’s data recorded a 

minimum latency of 180ms for the Subject 6. However, the highest value recorded for 

this type of estimation was recorded from Subject 4 and corresponded to 1s and 250ms. 

The average latency for all six subjects between the real and predicted motions was 

700ms. 

2.4 Discussion 

This study proposed the use of a task based motion intention prediction method 

to be used for control of a wearable assistive device. The proposed method was used 

to predict three task states, i.e., moving, drinking, and resting of the upper extremity, 

using both neural network and SVM-based classifiers. Each classifier was trained 

using two different types of data, including data from individual subjects and data from 

all six subjects. Therefore, four predictions were made for each individual subject. A  

 

Fig. 2.12:  Analysis of results for all six subjects with four different types of 

prediction. 
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summary of the results of the four predictions for all six subjects is shown in a column 

graph in Figure 2.12.  

All four prediction methods demonstrated higher rates of accuracy for the 

object movement and resting states. However, the accuracy rates for the drinking state 

were low when compared with those for the other two states. This was expected 

because the input signal for the moving state clearly involves a certain degree of 

activation, while there were no clear activation signs for the drinking state. However, 

in neural network-based prediction, when the network was trained using the data from 

all six subjects, a significantly higher accuracy rate was achieved for the drinking state 

when compared with the other three prediction methods. Similarly, when it was trained 

using the data of all six subjects, the neural network-based classifier performs better 

than the corresponding classifiers that were trained using an individual subject’s data 

for all three classes. 

 Conversely, when compared with the overall results, the accuracy of the SVM-

based classification results exceeded that of the neural network-based classification 

results. Unlike the neural network-based classifier case, the individually trained SVM 

models performed better than the SVM model that was trained using the data from all 

subjects. For the resting state, the SVM achieved a maximum accuracy of 94.5%, while  

 

Fig. 2.13: Comparison of results for different subjects 
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the maximum accuracy for the neural networks was 87.4%. For the object moving 

state, the accuracies of the SVM and neural network-based classifications were 84.3% 

and 81.6%, respectively. For the drinking state, the highest accuracies of the SVM and 

of the neural network-based classifications were 59.8% and 80.2%, respectively. 

However, for the drinking state, the lowest success rate for the prediction was an 

accuracy of less than 7% when using the SVM-based classifiers with two subjects, 

when trained with the data from all subjects. Therefore, the average accuracy for the 

drinking state for the SVM (39.1%) was lower than that of the neural networks 

(59.5%).  

 In addition, a subject based comparison of the overall results is shown in Figure 

2.13. For the both instances of the neural network based training, Subject 6 

demonstrate the least performance in comparison to the remaining five subjects. 

Conversely, the best performances of the both instances recorded for different subjects. 

For SVM based estimation it was the opposite of the neural network based training. 

The highest performance was demonstrated by the same subject, Subject 2. However, 

the least performances were demonstrated by two different subjects. Therefore, there 

is no specific pattern in the performances, subject wise. This could be due to the 

individual differences in the brain dynamics in humans and the unpredictable 

adaptation of the performances of the classifies according to the individual differences.  

Fig. 2.14: Latency of predicted motion relative to the expected motion for all six 

subjects. 
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Summary of the results for the analysis of latency is shown in Figure 2.14. The 

neural network based estimation provides faster predictions than the SVM based 

estimation in terms of the latency between the actual motion and the motion predicted 

by the classifiers. While some prediction latency is inevitable, the latency of the neural 

network-based classifier is almost half of that of the SVM-based classifier. 

Furthermore, the brain activity differences for the two different motor tasks 

were apparent in the feature plots in Figure 2.9 and hence in the final results with the 

classifiers. Some studies have shown [38], the difference in the brain activity can be 

explained by identifying the difference of the two motion tasks in terms of self-

involvement. More elaborately, moving task is performed between two random 

different target points in the space, whereas drinking task is performed between a 

random point in the space and a point in the body. The later task (drinking) 

demonstrates more self-involvement according to some studies and involves the 

forward model [35], [36], by using the efference copy [37] of the motor command to 

predict the sensory consequences of the ongoing motor act. For similar kind of tasks 

with higher self-involvement, Blakemore et. al.  [38] showed the brain activations are 

attenuated during the task. Accordingly, less brain activation can be expected for 

drinking tasks, compared to that of the moving task.  

Further, another experiment was carried out to confirm the above assumption. 

Details of the experiments are explained in Appendix i. In the experiment, drinking 

task was replaced by a similar vertical motion, but between two different points of the 

space. Results show that similar vertical motion demonstrate a higher brain activation 

compared to the drinking task, confirming the correctness of the aforementioned 

assumption experimentally.  

Additionally, when compared with the available noninvasive BCIs for control 

of wearable robotics, the proposed approach allows the wearer to perform two ADL 

tasks based on the intention of the exact motion through generation of multi-DoF 

motion for the wearable robot using an inverse kinematic model for the tasks. 
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Furthermore, the prediction capability of the proposed method for expected motion 

tasks exceeds or equals that of the currently available noninvasive BCIs for wearable 

robots. 

Future studies will involve the use of hybrid signal modality to provide 

additional information about the tasks that are performed to obtain the inputs for the 

classifiers. From this perspective, it will be possible to use the inputs from real-time 

video signals, head position information measured using inertia measurement units, 

and functional near infrared spectroscopy signals in conjunction with the EEG signals.  

2.5 Conclusions 

In this study, a noninvasive BCI approach was proposed to examine the 

dynamic features of EEG signals that occurred during two ADL tasks. The proposed 

method was used to predict the task-based motion intentions of users of a wearable 

robot. Initially, the current statuses of the BCI techniques that were available to 

perform such tasks were identified. The proposed methodology accommodates the 

dynamic nature of the EEG signals in its approach through use of time series feature 

inputs in the classifiers. An offline analysis was performed to identify the activated 

brain regions and the frequency ranges for each of the intended user motions. The 

identified signals were then used in real time as inputs to neural network and SVM-

based classifiers to predict the intended motions. The experimental results indicated 

the effectiveness of the proposed method. This study has thus established the feasibility 

of using a task-based approach to control wearable robots with BCIs. 
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Chapter 3 

EEG Based Control Approach for a  

Transhumeral Prosthesis 

Chapter Overview 

Robotic prostheses are expected to allow amputees a greater freedom and mobility. 

The construction of both the mechanical design and the controlling technique are 

equally important to provide a better user experience for the prosthesis users. 

Nowadays, several control techniques based on biological signals are available for 

controlling of the prostheses. Amongst, electromyography (EMG) based control 

techniques are popular with researchers to understand users motion intention to 

command the prosthesis to perform the user intended action. However, available 

options to control robotic prostheses are reduced with increasing amputation level. In 

addition, for EMG based control of prostheses, the residual muscles alone cannot 

generate sufficiently different signals for accurate distal arm function. Thus, 

controlling a multi degree of freedom (DoF) transhumeral prosthesis is challenging 

with currently available techniques. In this chapter, an electroencephalogram (EEG) 

based hierarchical two stage approach is proposed to achieve multi-DoF control of a 

transhumeral prosthesis. During the initial stage of the study, the motion intention for 

arm reaching or hand lifting is identified using a neural network and k – nearest 

neighbor based classifiers which are trained with motion related EEG features. The 

predictions from the classifiers are compared with residual limb motion to generate a 

final prediction of motion intention. In the next stage, elbow motion and hand endpoint 

motion is estimated using different neural network based classifiers, which are trained 

with motion information recorded using healthy subjects. This can then be used to 

realize multi DoF control of a prosthesis. The experimental results show the feasibility 

of the proposed method for multi DoF control of a transhumeral prosthesis. 
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3.1 Introduction 

Transhumeral prostheses are worn by upper elbow amputees to substitute for 

the loss of functions of the upper limb in performing activities of daily living. Early 

transhumeral prostheses were body powered and capable of providing elbow 

flexion/extension, wrist flexion/extension and hand grasping, using a cable operated 

by glenohumeral articulation of the shoulder [1]. According to the motion intention, 

the user had to lock joints manually that were not to be operated. Robotic prosthetic 

devices have been developed to replace these, and to enable more mobility for their 

users conveniently. Recently, several robotic transhumeral prostheses have been 

developed [2]–[9]. These devices generate multi degree of freedom (DoF) motion and 

require identification of the motion intention of the user to properly assist the user.  

Many of these prostheses are controlled based on surface electromyogram 

(EMG) signals from residual muscle sites. An EMG signal is a measureable electric 

current from a muscle, capable of providing control signals according to the user’s 

motion intention [1]. In [2], in order to control a transhumeral prosthesis, forearm and 

wrist motions were estimated using an artificial neural network based on shoulder and 

elbow motions, and hand motion was generated according to fuzzy rules. In [3], DEKA 

arm was proposed with three modular configurations for transradial, transhumeral and 

shoulder disarticulated amputees. Here an EMG controller was used in combination 

with foot controllers and pneumatic bladders for controlling. Lenzi et al. [4] proposed 

a 5 DoF transhumeral prosthesis for elbow, forearm, wrist, and grasping motions that 

used an EMG based low level controller. In [10], a neural network based method was 

proposed to estimate distal arm joint angles to control a transhumeral prosthesis using 

EMG and shoulder orientation. Despite these advances, there is still a gap to be filled 

in controlling simultaneous movements in multi DoF transhumeral prostheses. This is 

made more challenging because as the level of amputation increases, the number of 

functions to be replaced by the prosthesis increases, yet fewer muscle sites are 

available to be used for their control. Further, residual muscle sites after an amputation  
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    (a)                                                         (b) 

Fig. 3.1: Targeted Muscle Reinnervation (reproduced from [11]) 

are not physiologically related to the distal arm functions [1]. 

A method to control a multi DoF transhumeral prosthetic arm has been 

proposed based on targeted muscle reinnervation [12]. In this method, the residual 

nerves of the lost muscles are surgically connected to the residual muscles as illustrated 

in Figure 3.1 [11]. This allows amputees to contract the reinnervated muscle by 

attempting to move the missing limb and EMG signals can be detected related to the 

missing motions. Therefore, EMG signals from these muscles can then be used to 

control prostheses. However, this method is invasive and some difficulties remain, 

related to separating the surface EMG signals from different muscles [1]. Owing to the 

deficiencies in existing methods, electroencephalogram (EEG) is becoming popular 

among researchers [13], [14] for identifying human motion intention for prosthesis 

control. EEG records electrical signals from the surface of the human skull that carry 

information related to all bodily motions. In [13], an EEG based motion estimation 

method was proposed to control forearm supination/pronation of an artificial arm. 

Bright et al. [14] proposed a method to control flexion/ extension of a prosthetic finger 

based on EEG signals. Despite these studies, control methods based on EEG for upper 

limb prostheses lack the capability to control simultaneous multi DoF motion 

according to the exact motion intention of the user.  
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As a solution to this problem, this chapter proposes a new hierarchical 

approach to control a multi-DoF transhumeral prosthesis using EEG signals in 

combination with residual upper-limb motion. The proposed approach comprises three 

main steps: EEG based motion intention identification, collection of motion 

information from healthy subjects to create a database, and estimation of the motion 

of a prosthesis based on residual limb motion. For a transhumeral amputee, with the 

available residual limb it is impossible to physically differentiate between the motion 

intention for hand reaching motion and that for arm lifting. In a healthy human, hand 

reaching involves multi-DoF motion of the upper limb, including shoulder, elbow, 

forearm and wrist motions. For arm lifting, only the shoulder motion will be involved. 

Amputees are able to perform only shoulder motions for both actions. Therefore, in 

the proposed approach, EEG signals are used to differentiate between hand reaching 

and the arm lifting motion intentions. For this purpose, the effectiveness of two 

different types of classifiers are compared to learn the dynamic EEG signals related to 

selected motions. Accordingly, neural networks and k – nearest neighbor classifiers 

are used for motion intention identification. Four different kinds of motion-related 

EEG features (movement related cortical potentials based amplitude, delta band power, 

alpha band power and root mean square) in time series are provided as inputs to the 

classifier. The output from the classifier is used in combination with residual limb 

motion information to estimate elbow motion and hand trajectory, using two different 

neural network based classifiers. To train these classifiers, motion information 

collected from healthy subjects is used.  

Using the predicted elbow joint angle and the hand trajectory, it is possible to 

achieve multi DoF control of transhumeral prostheses for hand reaching or arm lifting. 

The next section of the chapter introduces the proposed methodology for motion 

intention identification. Section 3 presents the results of the proposed motion 

prediction method and the motion analysis. This is followed by the Discussion in 

Section 4 and the Conclusions in Section 5.  
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3.2 Methodology 

  The proposed hierarchical two stage approach for motion intention 

identification are shown in Figure 3.2. In the initial stage, the users’ motion intention 

to move is estimated using classifiers (neural networks, i.e., multilayer perceptron 

networks and k-nearest neighbors) trained with the features of EEG signals recorded 

from the scalp of the user. In the later stage, elbow motion and hand endpoint motion 

is estimated using different neural network based classifiers, which are trained with 

motion information recorded using healthy subjects. Details of each stage are 

explained below. 

 

Fig. 3.2: Proposed Hierarchical Approach 

3.2.1 EEG based motion intention identification 

The main steps and the signal flow chart of the proposed methodology for 

motion intention identification are shown in Figure 3.3. Initially, brain activations for 

the desired motions are recorded experimentally, together with the motion data from 

the participants. Then the data are pre-processed for feature extraction by averaging. 

Next, extracted features are used to train the motion intention classifier. Finally, the 

output from the motion intention classifier is compared with the motion state of the  
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Figure 3.3: Proposed approach for motion identification. CAR – common average 

reference 

residual limb and the final decision is generated. In this study the effectiveness of a 

neural network based classifier and a k-nearest neighbor classifier are evaluated for 

the motion intention classifier.  

3.2.2 Experimental setup 

In the present study, EEG signals were recorded from healthy subjects (4 men, 

1 woman, age 24–28). A Gamma.cap (Gtec Co.) with 16 electrode locations, a 

g.Gammabox (Gtec Co.) and a bio signal amplifier (Nihon Kohden Co.) were used to 

record the EEG signals from the subjects. Standard 10–20 system was followed to  

                 

Fig. 3.4: Electrode layout for experiment 
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(a) (b) 

Fig. 3.5: Recording of the motion data (a)Motion Capture System (b)Reflective 

Markers attached to the upper limb of the subject 

Sixteen electrodes were placed at the Fz, F3, FC2, FC1, FC5, C2, Cz, C1, C3, C5, T3, 

Cp2, Cp1, Cp5, Pz, and P3 positions, as shown in Fig. 3.4. The sampling frequency 

was set to 500 Hz. The right earlobe was used as the reference for EEG 

recordings.record the motion of the upper limb, a v120: Duo (Optitrack) motion 

capture system (See Figure 3.5(a)) was used. Reflective markets were attached to the 

subject’s upper limb in order to identify the corresponding motions with the motion 

capture systems as shown in Figure 3.5(b). During the experiment, the subject is 

expected to perform two upper limb motions: arm lifting motion and hand reaching 

motion. The experiment starts with an audible cue (“start”) and the subject remains 

seated with arms relaxed at the side for the first 10 s, as shown in Figure 3.5(b). During 

the arm lifting the subject is instructed to perform only shoulder motions by lifting the 

arm until it is roughly parallel to the ground (See Figure 3.6(a)). The motion is self-

phased and afterwards the subject moves the arm back to the resting position. During 

the hand-reaching motion, the subject is instructed to perform a reaching task (similar 

to a reaching task in activities of daily living, see Figure 3.6(b)) until the whole arm is 

fully extended to make it roughly parallel to the ground. The motion is self-phased and 



Chapter 3                                                                                                                   

  

 

72 

mainly involves shoulder, elbow, forearm and wrist motions. During the experiment, 

an audible cue is given to instruct the subject to perform the arm lifting. To perform 

the reaching motion, a different audible cue is given. There is a time gap between the 

two commands, set at random to 5 s or 6 s, to avoid any periodic effects in the EEG 

signals. The order of the motions is also set at random. During the experiment, 20 

motion instances are carried out, 10 for each motion. The motion schedule for the first 

16 motions is shown in Figure 3.7. The experimental procedure was approved by the 

Kyushu University ethical review board. All subjects were given detailed written 

information about the experiments and were given a chance to clarify any doubts. Then 

all subjects signed a consent form to confirm their consent to participation in the 

experiment. 

 

                (a)                                                                               (b) 

Fig. 3.6: Motions used in the experiment. (a) Arm lifting. (b) Hand reaching. 

 

Fig. 3.7: Motion schedule (1 = arm lifting motion, 0 = rest, −1 = hand reaching 

motion). 
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3.2.3 Data processing 

To minimize the influence of the noise generated among whole electrodes and 

to normalize the recorded data among every channel, the common average reference 

(CAR) is calculated with the raw EEG data as follows:  

       3.1 

where N is the number of channels used in the recordings, 𝑿𝒊(𝒕) is the raw EEG signal 

from the ith channel at time t, 𝑿𝒄𝒂𝒓,𝒊(𝒕) is the CAR-corrected EEG signal of the ith 

channel at time t, and 𝑿𝒌(𝒕)  is the EEG signal of the kth channel for average 

calculations. After CAR correction, the data are ready for feature extraction. 

3.2.4 Feature extraction 

In the present study, four different features are used as inputs to the classifier: 

movement related cortical potential (MRCP) based amplitude, delta band power, alpha 

band power and root mean square (RMS).  

MRCP can be observed as time domain amplitude fluctuations in the low 

frequency delta band and has been used recently [15], [16] as a feature which 

represents motion preparation and execution and contain information related to speed, 

force and direction of motions [16]. Therefore, information in the MRCP magnitudes 

can be used to detect movements or intentions to move. Accordingly, amplitudes of 

low frequency delta band signals are used as an MRCP based feature in this study. 

CAR-processed EEG signals are passed through a 0.1–2-Hz bandpass filter to prepare 

them for use in classification. Few studies [13], [17], [18] have used delta band EEG 

features for motion intention identification. Current study considers the delta band 

power spectrum and it is obtained by passing the CAR-processed EEG data through a 

0.1–4-Hz bandpass filter. The resulting signal is squared to obtain the power spectrum 
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for the delta band as explained in [19]. Similarly, alpha band features are common to 

represent movement intention in some studies [19], [20]. For the alpha band power, 

CAR-processed EEG data are bandpass filtered through 8 – 12Hz followed by the 

squaring. Using of RMS is also reported in few studies [13]. Accordingly, the 

effectiveness of RMS will also be evaluated in the study and RMS is calculated as: 

                            3.2 

where eik is the EEG signal of the ith channel after filtering the kth sample, Na is the 

sampling number which is selected based on observations for low noise and high 

activation, from one of three choices: 100 ms, 200 ms, or 400ms. In the present study, 

Na is selected to be 400 ms. In addition, the filtering techniques used for bandpass filter 

are based on finite impulse response filters, which in general form presents as [21]: 

        3.3 

whereas y(n) is the output, x(n) is the input, bk is the value of impulse response at kth 

instant and k is the order of the filter and parameters are computed automatically during 

the implementation of the filter using the EEGLAB [26] tool box for a given signal. 

After extracting the features for each subject, the features are plotted for each 

channel. These plots are observed and two prominently activated channels are selected 

for classification of the motion. By observation, FC2 and C2 locations were selected 

for MRCP based amplitudes, RMS and delta power band features. With alpha power 

band the highest activations were observed for P3 and Pz locations. Sample feature 

plots for MRCP amplitudes, delta band power and RMS are shown in Figure 3.8(a), 

Figure 3.8(b) and Figure 3.8(c) respectively. 

𝑅𝑀𝑆 =  
1

𝑁𝑎
 𝑒𝑖𝑘

2

𝑡

𝑘=𝑡−𝑁𝑎+𝑎
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Using the selected channels, a time-delayed feature matrix is prepared as the 

input to the classifier as follows for both training and testing phases: 

         3.4  

where, 𝐸𝐸𝐺𝑖(𝑡) is the EEG feature in the selected ith channel at time t. The time delay 

Δt is determined by performing classification on three data sets selected at random for 

different Δt values of 100 ms, 250 ms, 500 ms, or 1000 ms. After the random 

evaluation, Δt was selected to be 250 ms for the whole study (for both training and 

testing) since this value results in the highest classification accuracy. Using time 

delayed inputs of the same channel to the input matrix, will help the classifier to learn 

the dynamic information contained in the EEG signals.  

 

(a)    

 

 (b)                            

 

 (c) 

Fig. 3.8: Feature plots for channel selection. (a) MRCP. (b) Delta band power. (c) 

RMS. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 =   

𝐸𝐸𝐺𝑖(𝑡)

𝐸𝐸𝐺𝑖(𝑡 − ∆𝑡)

𝐸𝐸𝐺𝑖(𝑡 − 2∆𝑡)
 

𝐸𝐸𝐺𝑖(𝑡 + ∆𝑡)
𝐸𝐸𝐺𝑖(𝑡)

𝐸𝐸𝐺𝑖(𝑡 − ∆𝑡)
  

𝐸𝐸𝐺𝑖(𝑡 + 2∆𝑡)
𝐸𝐸𝐺𝑖(𝑡)
𝐸𝐸𝐺𝑖(𝑡)
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3.2.5 Neural Network based motion intention estimation  

Artificial neural networks have been widely used to solve different 

classification problems. Generally, a classification problem includes training and 

prediction phases. Accordingly, during the training phase of this problem, an input 

feature matrix similar to Eq. 3.3 is fed into a separate feed forward neural network for 

each subject. Each neural network consists of three layers: the input layer, a hidden 

layer, and the output layer. The hidden layer contains 30 neurons. The sigmoidal 

transfer function is used as an activation function in both hidden and output layers, to 

calculate the output of each layer. The output from the neural network is the estimated 

motion intention of the user: arm lifting motion, hand reaching motion, or rest. Each 

neural network is trained using the error back propagation algorithm with feature 

matrices as the input. 

During neural network training a value is assigned to each motion: 1 for arm 

lifting motion, −1 for hand reaching motion, and 0 for resting, as shown in Figure 3.7. 

The output prediction from a neural network is also a value from −1 to 1, representing 

the above classes. For each of the five subject, three different neural networks are 

trained, one for each feature, for a total of 15 neural networks. A summary of the neural  

Table 3.1: Summary of configuration of proposed Neural Networks (NN). 

 NN for motion intention 

prediction 

NN for motion estimation 

of prosthesis 

Number of NNs 25 (5 per feature for 4 features 

and combined feature) 

10 (5 for elbow angle, 5 for 

end point estimation) 

Input to NN Feature matrices of EEG 

features of MRCP, Delta/ 

alpha Power and RMS 

Shoulder Angle of the 

Healthy Subject from the 

collected data base 

Hidden Layers motion 30 10 

Output Users’ motion intention for 

reaching or lifting motions 

Elbow angle and end point 

position 
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network configuration is presented in Table 3.1. The trained neural networks are used 

for prediction of the three motion classes. 

3.2.6 k–nearest neighbor classifier based motion intention estimation 

 k-nn algorithm is a widely used simple classification technique by finding the 

k number of nearest neighbors in a training data set and then mapping the same during 

the estimation process. k-nn algorithm is widely presented in following strategies [22]. 

𝑦(𝑑𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 ∑ 𝑦(𝑥𝑗 , 𝑐𝑘)𝑋𝑗∈𝑘𝑁𝑁                                                   3.5 

𝑦(𝑑𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 ∑ 𝑆𝑖𝑚(𝑑𝑖, 𝑥𝑗)𝑦(𝑥𝑗 , 𝑐𝑘)𝑋𝑗∈𝑘𝑁𝑁                                         3.6 

where, 𝑑𝑖  is a test document, 𝑥𝑗 belongs to class 𝑐𝑘 , Sim(𝑑𝑖, 𝑥𝑗)  is the similarity 

function for 𝑑𝑖 and 𝑥𝑗. In the two strategies, as in [4], the prediction class will be the 

class that has the largest number of member in the k-nn and as in [5], the prediction 

will be the class with the maximum sum among the k-nn. However, it should be noted 

that the value of k is important for the better performance in the classification. 

Therefore, during the implementation phase of the k-nn classifier with MATLAB, 

optimization process also runs simultaneously to the classifier. Optimization algorithm 

automatically determines the best k value and the best metric to be used for the k-nn 

classifier based on the optimization results, suitable for each training data set of each 

feature per subject. During the optimization, parameters are optimized to minimize the 

five-fold cross validation loss. Training and testing data were prepared in a similar 

manner to the neural network based classification. 20 different k-nn models were 

trained for all the 5 subject and for the 4 features used. In addition, 5 additional k-nn 

models were generated by training a single k-nn model for each subject by combining 

all the four feature matrices. The trained k-nn models were used to estimate the motion 

intention. 
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3.2.7 Comparison 

The proposed approach includes a step to compare residual limb motions with 

the neural network output, to improve the accuracy of the prediction. This prevents 

false triggers when the user does not want to perform any motion. The final prediction 

of the proposed method is decided based on the result from the comparison. Based 

only on the movement of the residual limb, it is impossible to identify desired motions. 

However, the proposed method is capable of identifying user intention to move the 

upper limb. Thus, the rules of the comparison are shown in Table 3.2. 

Table 3.2: Rules of comparison for residual limb motion and the Neural Network 

(NN) output. 

Output from NN User’s desire for motion Final prediction 

Rest no Rest 

Hand reaching motion no Rest 

Arm lifting motion no Rest 

Rest yes Rest 

Hand reaching motion yes Hand reaching motion 

Arm lifting motion yes Arm lifting motion 

3.2.8 Motion analysis 

 

Fig. 3.9: Proposed approach for estimation of identified motion (Sn—healthy 

individuals, n—1, 2, 3, …, Ux—residual limb joint angle of the transhumeral 

amputee). 
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In the approach proposed above, it is insufficient to identify only the motion 

intention of the transhumeral amputee for prosthetic control. Therefore, after 

identifying the motion intention of a reaching motion, the method shown in Figure 3.9 

is used to estimate the motion of the prosthesis.  

A transhumeral amputee with a residual limb is typically only able to make 

shoulder motions. Therefore, in this method, initially a database is created from the 

motion information of the desired motions of healthy subjects (S1, S2 ……... Sn) to 

identify the relationships between shoulder motions and distal motions of the upper 

limb. With motion capturing, it is possible to record the motion of the upper limb joints 

experimentally. This information is used to derive the relationships between shoulder 

motions and distal motions of the upper limb (i.e. shoulder joint angle (Ux) with 

respect to the elbow joint angle and shoulder joint angle (Ux) with respect to the end 

point motion of upper limb). Later, information in the database is used to train a 

different set of neural network based classifiers to estimate the motion of the prosthesis.  

Accordingly, 10 different neural networks are trained using the joint 

relationship information obtained during the motion analysis. Five of them are to 

estimate the elbow joint angle for each subject, the remaining five are to estimate the 

hand trajectory for each subject. Each neural network is trained with data from four 

subjects, with one subject excluded in each instance. The excluded subject is assumed 

to be the amputee; the remaining four subjects are assumed to be healthy subjects. The 

neural networks include three layers: input, hidden, and output layers. Each neural 

network is provided with an input from the estimated motion from the previous 

classifier (1 = arm lifting motion, 0 = rest, −1 = hand reaching motion) and three inputs 

of shoulder joint angles positioned at 0 ms, 250 ms and 500 ms. One set of neural 

networks is trained to estimate the elbow joint angle using the error back-propagation 

algorithm. The other set is trained to estimate the hand trajectory values for the x and 

y directions. The hidden layer comprises 10 neurons. Output from the neural networks 

are the elbow joint angle for the prosthesis to be controlled and hand trajectory values. 
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For the clarity of the presentation, a summary of the neural network configurations 

presented in this study are shown in Table 3.1. 

3.3 Results 

Following sections presents the results for the neural network based and k-nn 

based classifiers, respectively. 

3.3.1 Neural network based motion intention estimation 

In total, 20 artificial neural network s were trained to predict the motion 

intention for lifting and reaching motions of the upper limb using EEG signals. The  

Table 3.3: Summarized results for 5 subjects for neural networks. 

 Delta 

band 

power 

Alpha 

Band 

Power 

MRCP 

based 

feature 

RMS Combined 

feature 

Subject 1  72.4 78.1 84.7 79.4 80.9 

Subject 2  75.7 72.4 71.1 82.0 71.6 

Subject 3 74.5 78.9 78.7 71.0 75.9 

Subject 4  66.8 66.1 68.6 74.4 71.3 

Subject 5 66.1 70.3 63.9 61.6 62.7 

Average 71.1 ± 3.9 73.1 ± 4.8 73.4 ± 7.4 73.7 ± 7.2 72.5 ± 6.0 

outputs from these neural networks were then compared with the residual limb motion, 

as shown in Table 3.2. The resulting output for subject 1 for the MRCP is shown in 

Figure 3.10. The results for all five subjects are summarized in Table 3.3. For the delta 

band power, the highest accuracy of 75.7% was achieved with subject 2. The average 

accuracy for the delta power bandwas 71.1%. When alpha band power is used, highest 

accuracy of 78.9% was recorded from the Subject 3. The average was recorded as 

73.4%. With MRCP based feature, the highest accuracy of 84.7% was achieved with 

subject 1, and the recorded average was 73.4%. A highest accuracy of 82.0% was 

achieved for subject 1 with RMS as the feature. The average for RMS was 63.7%. 
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When all the features are combined for training, highest accuracy of 80.9% was 

recorded with Subject 1 and in average an accuracy of 72.5% was recorded. 

3.3.2 k-nn based motion intention estimation 

 Similar to neural network based classifiers, 20 k-nn classifiers were trained to 

predict the motion intention for lifting and reaching motions. During the prediction, 

the outputs from the k-nn models were compared with the residual limb motion, as in 

Table 3.2. Summarized results for the k-nn based motion estimation are shown in 

Table 3.4. When delta power band was used to estimate the motion intention, the 

highest accuracy recorded was 63.6% for Subject 1 with an average of 58.7% for the 

5 subjects. With alpha power band, Subject 1 recorded a highest accuracy of 59.7% 

and the recorded average accuracy was 54.8%. MRCP based feature resulted a highest 

accuracy of 70.0% for Subject 1 and an average accuracy of 60.9% for all five subjects. 

RMS recoded a highest accuracy of 72.6% for Subject 1. The recorded average was 

61.3% for all the five subjects. In addition, when all the features combined to estimate 

the motion intention, higher accuracy was recorded from Subject 1 and corresponded 

to 65.8%. The recorded average was 59.6%. 

Table 3.4. Summarized results for 5 subjects for k –nn classifiers 

 Delta 

band 

power 

Alpha 

Band 

Power 

MRCP based 

feature 

RMS Combined 

feature 

Subject 1 63.6 59.7 70.0 72.6 65.8 

Subject 2 58.9 53.0 62.8 67.9 55.8 

Subject 3 59.6 55.0 62.0 61.6 61.0 

Subject 4 57.4 46.5 58.8 56.6 62.6 

Subject 5 53.9 57.9 51.0 47.9 52.7 

Average 58.7 ± 3.2 54.4 ± 4.6 60.9 ± 6.2 61.3 ± 8.6 59.6 ± 4.7 

3.3.2 Motion relationships 

It is important to identify the relationship between the shoulder angle and the 

elbow angle for prosthetic control. The measured relationship is shown in Figure 3.11  
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Fig. 3.10: Prediction from the system with MRCP for subject 1 (1 = lifting motion, 

−1 = reaching motion, 0 = rest, blue line = prediction, orange line = subject motion). 

 

(a) 

 

(b) 

Fig.3.11: Motion relationships. (a) Elbow flexion/extension angle to the shoulder 

flexion/extension angle for reaching. (b) Variation of the endpoint with the shoulder 

flexion/extension angle 
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(a). The figure shows the variation of the elbow flexion/extension angle with respect 

to shoulder flexion/ extension angle of the residual limb for each subject. It also shows 

the average variation for all subjects. For the lifting motion, the elbow angle remains 

constant at the fully extended position. However, for the reaching motion, the angle 

initially decreases rapidly and then increases until the elbow is fully extended. It is 

also important to realize the relationship between shoulder flexion/extension angle and 

the desired end effector position for prosthesis control. Figure 3.11 (b) shows the 

variation of the endpoint of each subject with the shoulder joint angle. It also shows 

the average for all subjects. For the reaching motion the end-effector positon of the 

hand reaches its maximum point during the initial 20 degrees of shoulder motion.  

Throughout the rest of the shoulder motion, the endpoint remains at the same 

point. In the reverse motion, the endpoint remains at it maximum point until shoulder 

reaches 20 degrees and it returns to the starting point within the final 20 degrees of 

shoulder motion. 

3.3.3 Motion estimation 

Neural network based classifiers trained with the motion relationships of 

healthy subjects were used to estimate the elbow flexion/ extension and hand trajectory 

of the transhumeral prosthesis. The generated results are compared with the motion 

captured experimental results. Similarly, generated elbow flexion/extension results for 

the subject 1 are shown in Figure 3.12 (a). The joint angle generated by the classifier 

is similar to that generated experimentally. Similar results were obtained for the other 

four subjects. Figure 3.12 (b) and Figure 3.12 (c) show that the hand trajectory 

generated by the classifier is similar to that generated experimentally. For the 

remaining four subjects, similar results were obtained.  
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(a) 

 

(b) 

 

(c) 

Fig. 3.12: Comparison of data measured experimentally (blue line) and those 

generated by the neural network classifier (orange line). (a) Estimated elbow 

flexion/extension angle. Hand trajectory in the (b) x direction and (c) y direction. 

3.4 Discussion 

In this study, a hierarchical two-stage motion prediction approach was 

proposed for control of a transhumeral prosthesis. Initially, the user’s motion intention 

for reaching or lifting of the arm was identified using the EEG recordings from the 

scalp. For this purpose, four different kinds of EEG features were used to train two 

different classification techniques. Identified locations for feature extraction were 

related to motor cortex areas of the brain, which will be activated for motor tasks. 

Accordingly, as the motion intention classifier, 20 different neural network models 
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and 20 k-nn models were trained with features of MRCP-based amplitudes, delta band 

power, RMS, and alpha band for the five subjects. Trained classifiers were used to 

predict three different motion classes: hand reaching, arm lifting, and rest. To improve 

the reliability of the estimation, the output from these classifiers was compared (gated) 

with motions of the residual limb. A summary of the results is shown in Figure 3.13. 

neural network based motion estimation performed much better than the k-nn-based 

motion estimation. With the neural network based estimation, the MRCP-based feature, 

RMS, and alpha band power showed almost equal average results for all the five 

subjects. However, alpha band power had the least deviation in the results. A highest 

accuracy was achieved with the MRCP-based feature for Subject 1 (84.75%); the 

lowest was with RMS for Subject 5 (61.6%). Conversely, with k-nn-based estimation, 

RMS achieved the highest average accuracy (61.3%) with a higher deviation. When 

features were combined, the average accuracy was lower than for the other features, 

except for the delta band power with neural network based motion estimation. With k-

nn-based motion estimation, models trained with combined features recorded average 

accuracies higher than those of alpha band power and the delta band power. In this 

study, analysis was carried out by combining all four feature types. However, there are  

 

Fig. 3.13: Summary of the results of the motion intention classifiers (error bars show 

the standard deviation). 
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number of different possibilities for combining the features, such as combining two or 

three different features. In the scope of this study, it does not consider these 

possibilities. 

In addition, the chance levels were computed for the five subjects; they have 

the values of 46.9%, 49.0%, 53.4%, 36.9%, and 37.5% from Subjects 1–5, respectively. 

Percentage accuracy values recorded with the neural-network-based estimation are 

significantly higher than the recorded chance levels for all five subjects. Furthermore, 

a p-value < 0.05 recorded based on the binomial test suggests that the results obtained 

are statistically significant.  

Furthermore, Figure 3.14 and Figure 3.15 summarize and compare the results 

of the motion intention estimation before gating with the residual limb motion and the 

after gating with the residual limb motion. Figure 3.14 and Figure 3.15 shows the 

results of neural network based estimation and results of the k–nn based estimation, 

respectively. Evidently, the proposed gating method has resulted in significant improv-  

 

Fig. 3.14: Comparison of the estimation results for neural network based estimation 

before and after the gating method 
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Fig. 3.15: Comparison of the estimation results for k–nn based estimation before and 

after the gating method 

ement in the estimation results avoiding false triggers of the either of the motions. 

However, only when the estimation before the gating method is considered, alpha 

power band based feature show better results compare to the other four different 

feature sets.  However, after gating with neural network based estimation, the results 

achieve closer value compare to the results before gating. This is due to the avoidance 

of the false triggers during the resting period of the upper-limb motion. Furthermore, 

it was observed that alpha power band based estimation produced more false triggers 

during the resting period compared to other feature types. Despite, the proposed gating 

methods has contributed to the performance enhancement of the motion intention 

identification in this study.  

The relationships among residual shoulder angle, elbow joint angle, and end 

effector position were also investigated. These relationships were used to estimate the 

end effector position and the elbow joint angle of the amputee using the residual 

shoulder angle. Ten individual neural networks were trained with healthy subjects to 

estimate the end effector position and the elbow joint angle. These results show that it 
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is feasible to control the elbow joint of a transhumeral prosthesis, once the motion 

intention is identified. It is also possible to control multi-DoF motion of the prosthesis 

for reaching tasks. However, this requires a properly developed inverse kinematic 

model for the prosthesis, using the relationship between the endpoint and the residual 

shoulder angle. Thus, the proposed method demonstrates the capability of using the 

proposed approach to control multiple DoFs of a transhumeral prosthesis.  

However, this proof of concept study was performed with healthy subjects. In 

[23], Estelle et al. showed that amputees show deteriorated activations of the EEG 

signals compared with healthy subjects during motor execution tasks of absent 

movements of the individual joints of the phantom limb. In the current study, during 

arm lifting and reaching movements, both phantom arm movement and the residual 

limb movements are collaborated. It is not clearly understood what will be the response 

of the brain in such a scenario. On the other hand, some studies [24], [25] have shown 

that the involvement of the brain to perform task-based upper limb motions such as 

reaching, pointing, etc., is different from the individual joint motions. On this note, we 

assume that the current study is applicable to upper limb amputees. 

3.5 Conclusions 

In this chapter, a new approach was proposed to control a multi-DoF 

transhumeral prosthesis taking into account the motion intention of the user based on 

EEG signals. It consists of three major steps: EEG based motion intention 

identification, collection of motion information from healthy subjects to create a 

database, and estimation of the motion of the prosthesis based on residual limb motion. 

The motion intention was predicted for two major upper-limb functions: arm lifting 

and hand reaching. Based on the motion intention prediction and the residual limb 

shoulder angle, appropriate multi DoF motion of the arm prosthesis can be realized. 

To predict the motion intention, three different features were used to provide input to 

the neural network based classifier. Time delayed inputs were provided to the classifier 

to yield dynamic information of the different features. The prediction from the 
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classifier was compared with the residual motion to generate a final prediction of 

motion intention. The results prove the feasibility of the proposed approach to control 

multi DoF motion of a transhumeral prosthesis using EEG signals.  
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Chapter 4 

Velocity based Estimation of Motion Intention of 

Wearable Robot Users 

Chapter Overview 

EEG signals are known to carry a higher amount of information that represent 

physiological and psychological behavior of a human. However, having a higher 

information density and a higher noise ratio compare to other types of BCI modalities, 

it is challenging to extract the only motion related information from the EEG signals. 

However, in the Chapter 3 and Chapter 4 the estimated parameters were related to the 

intermittent motion intention of the human. Accordingly, a task or a certain focused 

motion intent was estimated by using a collection of information over the time series 

information. Conversely, when it comes to the velocity estimation, the estimation 

parameter become a continuous time series prediction. Therefore, during the 

estimation of the velocity, EEG signals should be capable of providing necessary 

adequate information to perform the time series estimation. In this chapter the 

feasibility of using two different approaches to estimate the user’s motion intention in 

terms of velocity are evaluated. In the first method user’s motion is estimated in the 

form of individual joint based velocity for 2DoFs. This will enable the control of 

similar number of DoFs of the robot. In the latter method, user’s motion intention is 

estimated in the form of the velocity of the hand trajectory. This will enable full control 

of the DoFs of the robot corresponding to generate the similar hand trajectory motion. 

In this chapter, the experimental procedures for the evaluation of the proposed 

approaches and the results are presented. 
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4.1 Introduction 

Chapter 3 and Chapter 4 proposed the motion estimation methods of wearable 

robotic wearers, in terms of the expected task to be performed to be used for the 

intuitive control of the wearable robot. In this case, the predictions have to be made 

intermittently based on the time series data from the EEG signals for predefined 

number of tasks. However, with that kind of control the user’s motion range get limited 

only to the estimated tasks by the controller. On the other hand, if it possible to estimate 

the individual joint movements or at least the end point movement in terms of 

continuous time series signal such as velocity it would be the best estimation to control 

a wearable robot similar to a real life situation. Recently several invasive [1], [2] and 

noninvasive [3], [4] attempted velocity based motion estimation using different BCI 

techniques.  

In [1], the endpoint velocity and gripper command were extracted from the 

instantaneous firing rates of simultaneously recorded units from a micro electrode 

array implanted to a monkey control a 5 DoF robotic arm. Nakanishi et. al. [2] 

porposed a joint angles and joint trajectories estimation method using the ECoG 

electrodes implanted to a human brain. In their method, , 15 channel and 60 channel 

electrodes were placed in the sensorimotor cortex of the patient surgically to estimate 

the 3D trajectories of the left hand motion.  

In using the noninvasive techniques, Kiguchi et. al.[3] proposed a neural 

network based 1 DoF joint parameter estimation methodology with EEG signals. In 

this study, the joint angle, angular velocity and angular acceleration of the supination/ 

pronation were estimated using different features of EEG signals to train neural 

network based classifiers. In [4], Jun et. al.  proposed a method to estimate the hand 

movement velocity from EEG signals during a drawing task. In their method, power 

band features of EEG were derived from 0.1 – 4 Hz band and 24 – 28 Hz band to 

reconstructed hand movement velocity by Kalman filtering and a smoothing 

algorithm.  
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In contrast to the task based estimation approaches presented in previous 

chapters, velocity based motion estimation demands the estimation of time series 

parameter continuously from motion onset to the end of the motion. From the 

aforementioned studies, invasive techniques demonstrate the better estimation 

capabilities compared to the noninvasive techniques. During the invasive techniques, 

the signal recording is more localized to the exact area of the brain and the recording 

technology is capable of recording low level activities of the brain activation using the 

micro electrode arrays or the ECoG techniques. 

 Conversely, EEG signals record more global level activity of the human brain 

from the scalp and a single recording from a single channel of EEG might be an 

electrical activity change owing to a bunch of low level brain activities. Even though 

some of the aforementioned studies have shown some success on decoding single DoF 

motions, multi DoF estimation of motion is yet to be achieved. 

Accordingly, this chapter is intended to study the feasibility of using two new 

approaches to predict the user’s motion intention. Initially the user’s motion intention 

to move 2 DoF of the upper limb is estimated in terms of velocity for the wrist flexion/ 

extension and elbow flexion/ extension motions.  In the next method the velocity of 

the motion path of the user’s hand end point is estimated using the EEG signals. In the 

first method, the activation of the brain is identified in an offline study and the results 

are used to train a neural network based classifiers to estimate the 2 DoF motion 

velocity. During the estimation of the hand end point velocity, In order to recognize 

the dynamic information of the EEG signals, root mean square (RMS) based feature 

matrix introduced as input to the nonlinear autoregressive network with an exogenous 

input. Experiments were carried out to test and prove the proposed methodology are 

presented in this chapter. Next sections respectively present the details of the EEG 

measurement, methodology and results. Final section is dedicated for conclusion.  
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4.2 Methodology 

The attempted methodologies to study the feasibility for velocity based 

prediction  

 

(a) 

 

(b) 

Fig. 4.1: Velocity estimation approaches (a)Joint based velocity estimation (b)End – 

point velocity estimation 
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4.2.1 Joint based velocity estimation 

 

Fig. 4.2: Proposed approach for motion intention estimation 

is shown in Figure 4.1. In the first method shown in Figure 4.1. (a) two of the motions 

of the user’s upper limb is selected, in order to attempt multi DoF estimation. 

Accordingly, elbow flexion/ extension and wrist flexion/ extension motions were 

selected. In the later method user’s hand end point motion is estimated using the EEG 

signal, as illustrated in Figure 4.1.(b). Identifying the user’s end point motion also can 

enable the multi DoF controlling of a wearable robot. In the following sections the 

experimental method and the signal processing techniques are explained in detail.  

Proposed approach for the joint based estimation is shown in Figure 4.2. 

Initially, raw EEG signals are recorded from the human scalp simultaneously with the 

motion capture data. Then the EEG signals are analyzed in an offline study, in order 

to understand the motion related activation. During the estimation, the results from the 

offline analysis are used to process the signals to feed into a neural network based 

classifier. Details of each step are explained below.  

A. Experimental Setup 

In this study, EEG signals are recorded at 15 locations on the human scalp 

using gamma.cap (Gtec Co.) and amplifier (Nihon Kohden Co.) systems. Locations of 

the electrodes are placed according to the standard 10-20 system. Fifteen electrodes 

are placed at Fp1, Fp2, F3, F4, C3, C4, P3, P4, F7, F8, T3, T4, Fz, Cz and Pz positions 

as shown in Figure 4.3(a). Setup of the motion capture system and the marker 

placement on the subject’s upper limb is shown in Figure 4.3(b). The sampling  
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                           (a)                                                                    (b)   

Fig. 4.3: Experimental setup (a) Electrode layout (b) Recording environment with 

motion capture system  

frequency of the measurement of EEG signals is 500 Hz. During the experiments, 

subjects perform wrist flexion/extension together with elbow flexion/ extension. 

Simultaneously to the EEG measurement joints angle of the user was recorded with 

Osprey (Motion Analysis Co.) motion capturing system. Subjects carried out the 

motion for 5 seconds after 5 seconds interval and is one cycle. Duration of 1 trial is 

120s and 10cycles of motion. Two healthy male subjects (age: 24 and 31) participated 

for the experiments. 

B. Signal Processing 

In the first step, in order to remove the influence of the noise that is generated 

among whole electrodes and to average the recording over the scalp, Common 

Average Reference (CAR) is calculated as in Eq. 4.1. 

     4.1 

where N is the number of channels used in the recordings, 𝒆𝒊(𝒕) is the raw EEG signal 

from the ith channel at time t, 𝒆𝒄𝒂𝒓,𝒊(𝒕) is the CAR-corrected EEG signal of the ith 

𝑒𝑐𝑎𝑟 ,𝑖(𝑡) = 𝑒𝑖(𝑡) −
1

𝑁
 𝑒𝑘(𝑡)

𝑁

𝑘=1
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channel at time t, and 𝒆𝒌(𝒕)  is the EEG signal of the kth channel for average 

calculations. After CAR correction, the data are ready for further analysis. 

Depending on the performed task, different brain regions are activated. 

Furthermore, different frequency ranges are emitted from brain for different tasks of 

the body. Better understanding of the location and the range of frequencies generated 

for the upper-limb tasks is one of the important steps on estimating the desired motion 

of the wearable robot users. Accordingly, proposed approach to detect the human 

motion intention comprises of two analysis steps, offline analysis and real-time 

analysis as shown in a block diagram in Figure 4.2.  

Initially, power spectrum of the EEG signal is calculated based on the Fast 

Fourier Transform (FFT) analysis on the signal after CAR for each electrode separately 

as a method of analyzing the frequency as in Eq. 4.2. 

       4.2 

where 𝑋𝑐𝑎𝑟,𝑖(𝑡) denotes the time series EEG signal, and N denotes the total number of 

data points in the signal. These results from the frequency analysis can be used in real-

time motion estimation.  

Accordingly, the activated locations of the brain and the frequency ranges are 

identified during the during the frequency analysis. In real-time analysis, only the 

signals from identified electrode locations are considered. Selected signals are passed 

through a frequency filter with the boundary conditions defined according to the 

activated frequency bands.  Resulting signal is then squared to enhance the time series 

properties of the EEG for subject’s motion intention. These time series data contain 

the information of the user’s motion intension for elbow and wrist motions.  

The obtained data is used to construct the training matrix for the neural network 

𝑋 𝑘 =  𝑋𝑐𝑎𝑟 ,𝑖(𝑡)𝑒
−2𝜋𝑗𝑡𝑘

𝑁 

𝑁−1

𝑡=0
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based classifier. Accordingly, the feature matrix is provided with three inputs from a 

selected channel which allows the features to contain dynamic information of EEG. 

Thus the feature matrix looks like EEG1(t), EEG1(t-Δt) and EEG1(t-2Δt), where 

EEG1(t) stands for the EEG signal of a selected channel at a given time t s.  

The feature matrices are used to train two separate feed forward neural 

networks. Each neural network consists of three layers, input layer, hidden layer and 

output layer. Hidden layer contains 10 neurons. Sigmoidal transfer function is used in 

both hidden and output layers in order to calculate the output of each layer. Each neural 

network is trained using error-back propagation algorithm. Each neural network 

provides the velocity of the elbow and wrist motions as their outputs separately.      

4.2.2 Trajectory based velocity estimation 

Proposed approach for the trajectory based velocity estimation is shown in 

Figure 4.4. Initially, raw EEG signals are recorded from the human scalp 

simultaneously with the motion capture data. Then the Root Mean Square (RMS) 

values based EEG features are obtained. The features are used to train a neural network 

based classifier. Details of the followed step are explained below. 

 

Fig. 4.4:  Proposed approach for motion estimation 
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A. Experimental Setup 

In this study, EEG signals are recorded at 16 locations on the human scalp 

using gamma.cap (Gtec Co.) and amplifier (Nihon Kohden Co.) systems. Locations of 

the electrodes are placed according to the standard 10-10 system. Sixteen electrodes 

are placed at Fz, F3, FC2, FC1, FC5, C2, Cz, C1, C3, C5, T3, CP2, CP1, CP5, P3 and 

Pz positions as illustrated in Figure 4.5 (a) . The sampling frequency of the 

measurement of EEG signals is 500 Hz.  

 

                  (a)                                                                      (b) 

Fig. 4.5: Experimental Conditions (a)Electrode Layout (b) Different motion steps 

of reaching motion 

During the experiments, subjects perform arm extension motion similar to a 

reaching motion in daily motions. The basic motion pathway is shown in Figure 4.5 

(b). This motion is mainly a combination of movements of the shoulder, elbow and 

wrist motions of the subject. Simultaneously to the EEG measurement, motion of the 

subject’s hand end point motion is recorded with v120: Duo (Optitrack) motion 

capturing system.  During the experiment, subjects are given an audible cue “start” to 

start a single reaching motion cycle. Starting position of the arm is fully extended 

elbow and perpendicular to the ground. The subject is given the audible cue at every 

5s or 6s interval randomly. Duration of 1 trial is 130s and 20 cycles of motion is carried 

out. One healthy male subjects and one female subject (age: 24, 28 and 26) participated 

for the experiments.  

B. Signal Processing 

Recorded EEG data are CAR processed similar to the same process in 4.1.1 B 
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using the Eq 4.1. After CAR, the resulting signal is band pass filtered in the delta range 

(i.e – 0.1Hz – 4Hz).  

 

Fig. 4.6: Representation of RMS in multiple time widows 

In order to extract features for training of the classifier, RMS values are 

extracted from the filtered delta band signals as in Eq. 4.3, 

𝑅𝑀𝑆 = √
1

𝑁𝑎
∑ 𝑒𝑖𝑘

2𝑡
𝑘=𝑡−𝑁𝑎+𝑎           4.2 

where, eik represents the EEG signals of ith channel after filtering at tth sampling. Na is 

the selected window length for RMS calculation. 

Motion preparation and movement execution and post motion information of 

EEG signals are important in estimating the user’s motion intention. Therefore, in 

order to gather the dynamic features for the classification three different Na values 

were used to calculate the RMS values. Accordingly, 50ms, 250ms and 500ms time 

windows were used for the RMS calculation, at the given time ts. As shown in Figure 

5.6, extracting the RMS from 3 different time windows let the feature matrix to contain 

different time series information, which can be used to make the classifier understand  
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Fig. 4.7: Structure of the neural network used for trajectory estimation 

the motion related dynamic EEG information. Input to the classifier is constructed as 

three inputs from a selected channel that comprises of the three different RMS values.  

Thus the set of features make a 3 × 𝑛 input matrix to the classifier where n in 

the selected number of channels. Channel selection is carried out by observation of the 

feature plots. In this study nonlinear autoregressive network with an exogenous input 

is used as the classifier. This is a type of recurrent neural network with an input from 

the output of the network and comprises of three layers: input, hidden and output. 

Hidden layer contains 36 neurons. The output from the neural network will be the 

velocity of the hand end position. Three different networks are trained for three 

different subjects with experimental data and used for the prediction of velocity of the 

end point of the hand. 

4.3 Results 

 Offline analysis results and motion estimation results for the individual joint 

based velocity estimation are presented below which will be followed by the results 

for the trajectory based velocity estimation results. 

4.3.1 Joint based velocity estimation 

Power spectrum analysis results reveal the activation of brain locations and the 

activated frequency ranges for the different motions performed. Thus obtained results 
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(a) 

 

(b) 

Fig. 4.8: Power spectrum analysis (a) P3 (b) F4 

for P3 and F4 of subject 1 are shown in Figure 4.8(a) and Figure 4.8(b), respectively. 

In comparison, in the range of 0.1 – 4 Hz P3 shows a good activation for the motion 

onsets that that of the F4. In a similar manner the power spectrum for all 16 channels 

were observed. Similar to the activation shown in Figure 4.8(a) for P3, the other 

locations of C3, F7 and T3 show a good activation compared to the other channels. 

Most of the time frequency range below 4Hz shows a better activation in the above 

selected electrode locations. Electrode locations and frequency ranges are similar 

among all subjects. 

According the results from the above analysis, EEG signals from the selected 

channels are band pass filtered at the range of 0.1 – 4Hz. The values of the resulting 

time series are then squared. Such obtained time series signals are shown in Figure 4.9.  

The activations of EEG patterns for F7 and T3 are respectively shown in Figure 4.9(a) 

and 4.9(b), respectively. 

The feature matrix comprises of these time series signals are fed into the 

aforementioned neural networks. During the estimation of motion intention, resulting 

predicted velocities are shown in Figure 4.10. In the Figure blue color lines represent 

the actual recorded velocity and the orange color line shows the estimated velocity  
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(a) F7 

 

(b) T3 

Fig. 4.9: Time series data of selected electrodes 

 

(a) 

 

(b) 

Fig 4.10: Comparison of actual velocity with predicted velocity (a) Elbow flexion/ 

extension (b) wrist flexion/ extension     
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from the classifier. Figure 4.10(a) and (b) respectively shows the comparison of elbow 

flexion/extension velocity and wrist flexion/ extension velocities. According to the 

graphs it can be observed that the direction of the motion intention of the user can be 

predicted accurately for the both upper limb motions. 

4.3.2 Trajectory based velocity estimation 

Initially, the feature plots for all the 16 channel are obtained. The feature plots 

are then observed to identify the best activated locations to be used for the estimation 

of motion intention. Thus based on the activation of the channels, for all subjects FC5, 

C5, T3 and CP1 locations are selected to provide input to the classifier. Feature plots 

for CP1 at 500ms time window are illustrated in Figure 4.11. In order for training, 

selected 4 channel locations make a feature matrix with 12 inputs to the classifier. 

Trained classifiers are used to estimate the end point velocity of the hand. Similarly 

predicted end point velocity of both subjects are illustrated in Figure 4.12. The results 

show that the proposed method can predict the end point velocity of the human hand 

similar to the real velocity for the 1 st subject as in 4.12(a). The results of the subject  

 

Fig 4.11: Feature Plot for CP1 



Chapter 4                                                                                                                 

  

 

107 

 

(a) 

 

(b) 

Fig 4.12: Comparison of predicted velocity with real velocity of end point of hand 

(blue – prediction, orange – real) (a) Subject 1 (b) Subject 2, (smoothed for clarity) 

2 are smooth for better clarity in Figure 4.12(b) and show the estimation is capable of 

providing the direction of the motion. 

4.4 Conclusion 

Based on the final estimation based using the BCI, two different motion 

identification approaches can be identified. In this chapter the feasibility to use two 

different techniques to estimate the motion in terms of velocity was studied. Initially, 

individual joint based velocity was estimated for 2 DoF of upper limb motion. At first 

activated brain region and the frequency ranges for the intended user motions are 

identified in an offline study. The identified signals are used in real-time as input to 

the neural network to estimate the motion intention. Results demonstrated the 

feasibility of using the proposed approach for identification of the motion direction for 

multi DoF motions.  
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In the second step, the velocity of the hand trajectory was estimated for 

reaching task.  In this method, to gather the dynamic information of the EEG signals 

RMS values of multiple time windows were used as features to the classifier. The 

features were used to train a nonlinear autoregressive to estimate the end point velocity 

of the human hand, in order to achieve the multi-DoF controlling of an upper-limb 

wearable robot. The results can be used with an inverse kinematic model of a human 

upper-limb to successfully control multi-DoF upper-limb exoskeleton robot.  

In comparison, hand trajectory based motion estimation demonstrates better 

prediction capabilities than the individual joints based motion estimation. This may be 

expected, as in general humans do not actuate the joints individual to perform a motion 

involving multi DoFs. Instead humans focus on the motion of the end point of the hand 

most of the time for upper limb related motions. Therefore, EEG signals too can be 

expected to contain information related to the motion of the hand end point in 

comparison to the information related to individual joint motion. Furthermore, by 

estimating the motion intention of the end point it would be possible to achieve multi 

DoF controlling irrespective of the actual number of DoFs involving in the final 

motion. On the other hand with individual joint based estimation, prediction will be 

needed to be made for all the DoFs involving.   
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Chapter 5 

Conclusion and Future Work 

5.1. Conclusion 

Wearable robotic systems such as exoskeletons or prostheses play an important 

role in providing the necessary assistant to the physically handicapped people by 

assisting to perform their day to day activities. This is a prevailing and demanding 

requirement towards improving the independency of handicapped community to have 

a better quality of life and is a great deal of importance for the socio – economic 

stability of the society. In order to provide a better user experience for the wearable 

robotic user, the mechanical design of the robot and the controlling of the robot 

according to the intended motions of the user is utmost important. Therefore, in this 

thesis the feasibility of using some novel approaches to estimate the user’s motion 

intention with non – invasive, EEG signals are evaluated.  

The thesis is structured with five chapters. At the beginning of the first chapter, 

it presents the prevailing requirement of assistive technologies to improve the 

independency. The it is dedicated to discuss the presently available motion estimation 

techniques including EMG signals and BCIs. It also provides an understanding to the 

human brain. At the final section of the first chapter, it provides a brief introduction to 

the flow and contents of the thesis. Next two chapters of the thesis are dedicated to 

present the research work towards developing task based motion intention estimation 

techniques.  

In the second chapter, two activities of daily living tasks are estimated together 

with the resting state. Initially, EEG signals were recorded from six healthy male 

subjects simultaneously, for drinking, moving and resting states of the motion. In an 
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offline analysis of the EEG signals, the activation regions of the brain and the 

activation frequency ranges were identified. Then using a feature matrix made from 

power band features of the identified locations in a time series, SVM and neural 

network based classifiers were trained to estimate the user’s intent for the motion. 

During the training of the classifiers, two types of data were used for the training. One 

set of training was carried out using data from the individual subjects. Another training 

was carried out using a single set of data, which comprises of data from all the six 

subjects.  The later type of training data was used to study the generalizability of EEG 

signals over the subjects. Using the trained classifiers, subject’s intended tasks were 

estimated. The estimation results were compared to the actually performed tasks and 

accuracy was calculated. In addition, the latency between the actual motion onset and 

the predicted motion was calculated.  In terms of accuracy, SVM based classifiers 

performed better than the neural network based classifiers for both types of training 

data. With SVM, the SVM models trained with individual subject’s data had better 

estimation capabilities compared to the SVM model trained with the   data from the all 

six subjects. Conversely, the estimation capabilities of the neural network based 

classifiers improved drastically, for the neural network trained with the data from all 

the six subjects compared to the neural networks trained with individual subject’s data. 

In terms of estimation time delay, neural network based classifiers showed better 

results compared to the same with the SVM based classifiers. Above results 

demonstrated feasibility of estimating the motion in terms of performed task. When 

the application is limited an individual or few individuals SVM based estimation 

algorithm can be used to achieve a better accuracy with the tradeoff of the estimation 

delay. However, where there are enough data for classifier training, neural network 

based algorithm may be used to generalize the estimation with better accuracy and 

quicker estimation capabilities. 

Third chapter of the thesis proposed a motion intention estimation approach to 

estimate the motion intention of above elbow amputees to control a transhumeral 
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prosthesis for reaching tasks. The study comprised of EEG based motion intention 

identification which will be followed by the estimation of motion of the elbow and 

hand endpoint.  During the EEG based motion identification, EEG signals were used 

to differentiate the motion between arm lifting, resting and reaching tasks. For a 

transhumeral amputee, the residual limb motion is similar for both arm lifting and 

reaching tasks. MRCP, band power and RMS features were derived from the raw EEG 

data, which were then used to train 15 different neural network for the 5 subjects for 

the 3 types of features. Later the prediction result from the neural network was gated 

with the motion state of the residual limb to avoid false triggers.  Results demonstrated 

the feasibility of differentiating the three motion states, resting, arm lifting and 

reaching. Once a reaching motion is successfully identified, during the next step the 

limb motion parameters are estimated for elbow and hand end point movements. In 

this step, initially a database is created to identify the relationship between the motion 

of elbow angle to the shoulder joint and the end point motion to the shoulder joint 

angle during the reaching motion of the healthy subjects. Later this data is used to train 

a neural network based classifier. During the implementation, residual limb shoulder 

angle of the transhumeral amputee is fed in to the neural network to estimate the 

corresponding elbow and hand end point motion which can be used to control the 

tranhumeral prosthesis.  Results demonstrated successful generalized usability of the 

data recorded from the healthy subjects to estimate the motion of the transhumeral 

amputees for reaching motion.  

During the task based estimation, three types of classifiers were used namely, 

neural network based classifiers with sigmoidal transfer function, support vector 

machine classifier with radial basis function as kernel and k–nearest neighbor classifier 

with optimization technique to select better k value and the matrix. In the first study, 

both SVM and neural network are nonlinear classifiers. However, the SVM 

outperforms the neural network classifier. This could be due to the nature of the radial 

basis function used as the kernel function of the SVM classifier. RBF kernel considers 
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the normal distribution of a data point when defining the boundary of the data point to 

generate the hyper plane for the whole data set. Therefore, the SVM with RBF kernel 

represents the data set better than the sigmoidal function used with the neural network 

based classifier.  

On the other hand, in the second study, neural network based classifier out 

performs the k-nn based classifier. This could be due to the nature of the EEG data, 

which used as input to the both classifier. In general, k-nn is good at representing lower 

dimensional data, compared with the data representation at high dimensional data. 

However, EEG is usually knowing to contain high dimensional data and due to this 

reason k-nn performs less compared with the neural network based classifier. 

In the next chapter, velocity based motion intention approaches are studied. In 

this chapter two types of velocity based motion intention approaches are introduced. 

In one method it estimates the velocity of the individual joints for 2 DoFs. In the second 

method the velocity of the hand endpoint is estimated. In contrast to the task based 

estimation approaches, velocity based approached demand continuous time series 

estimation which may be challenging with the existing signal acquisition and 

processing technologies. During the estimation of the individual joint based motion, 

EEG data is recorded for simultaneous motions of elbow and wrist joints. In an offline 

analysis, the activated regions of the brain and the activated frequency bands are 

identified. Based on the results, power band data is used in a time series to train a 

neural network based classifier to estimate the two motions.  Even though the results 

were not quantified, they demonstrated the feasibility of using EEG to estimate multi 

DoF motion by estimating individual joint parameters. During the trajectory estimation, 

EEG signals were recorded simultaneously to upper limb reaching motions. RMS 

features were extracted in different time windows for the same channel locations.  

RMS from the multiple time windows were combined in the feature matrix to make a 

time series data to be fed into an autoregressive network to estimate the motion 

intention. The estimated motion from the classifiers were compared with the desired 
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trajectory. Results demonstrated the capability of estimating the trajectory velocity 

using the proposed approach. In comparison, trajectory velocity based estimation 

approach performed better than the approach proposed for the estimation of individual 

joint based velocity.  

5.2 Future Work 

The studies presented in this thesis are still in their preliminary stage and can 

be improved in number of ways to be used with wearable robotic users. As mentioned 

in the second chapter, still not a lot of motion intention identifications studies had not 

focused on estimating the activities of daily livings (ADL) of the users. The study 

proposed in this chapter evaluates the concept with two activities of daily living. 

However, the study can be further extended to identify more ADL tasks in a future 

study. At the same time, the ADL tasks may be categorized into few categories based 

on the type DoF involving, movement direction or other identified criteria. Then the 

motion intention estimation can be made in terms of category of the motion. A 

different sensor modality can be employed to identify the exact motion intention out 

of the estimated category of the ADL task.  

In addition, the studies proposed here are carried out with healthy subjects as 

the testing platform. Further, the maximum number of subjects participated in this 

study are limited to 6 subjects. Although there is no exact definition on how many 

subjects should be used to validate the application of a certain BCI, it would be 

important to carry out the validation of the same approaches different classes of 

subjects such as more gender distribution in the subjects, more age distribution in the 

subjects, more ethnical distribution in the subject, different health condition in the 

subjects and more importantly a representation from the real end users of the proposed 

BCI systems.   

Moreover, robust methods for recording and analyzing EEG data should be 

developed. When using the invasive techniques such as intra cortical micro electrode 
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arrays or ECoG, the implants are placed on a small area of the brain and the techniques 

have shown the capability of providing necessary information for motion estimation. 

In a similar manner, during the acquisition of EEG electrodes can be placed in a denser 

manner to record the brain activity. Later during the analysis, techniques to identify 

the motion related EEG features from the dense recordings can be investigated in the 

future. 

 Furthermore, there are different modalities in use to identify user motion 

intension, not only BCI based but also from different types of sensors. In order to 

improve the accuracy of the EEG based BCI, further research can be performed to 

investigate better combination of different sensor technologies such as NIRS, EMG, 

inertia measurement units, visual information from the cameras, motion capture 

systems, etc…  
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Purpose of the experiment: To study the effect of body image on the brain 

activation of different tasks 

In Chapter 2, an approach to estimate the human motion intention was 

proposed in terms of intended tasks for moving and drinking. For moving, a higher 

brain activation was observed compared to that of the drinking. As explained in the 

discussion of Chapter 2, when there is an individual involvement to the performing 

task, the brain activation is attenuated. This experiment is performed to confirm the 

above phenomenon. 

Experimental Setup 

In this experiment EEG signals were recorded from 8 locations of the brain 

from a healthy male subject. A gamacap with 8 locations and ploymate mini, wireless 

Bluetooth EEG system was used to record the EEG signals. Electrodes were placed 

according to the international 10 – 20 system at F7, F3, F4, F8, T7, C3, C4 and T8 

locations (See Figure 1). The sampling frequency for measurement of the EEG signals  

 

Figure 1. Electrode Layout 
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Figure 2. Motion Schedule  

was set at 1000 Hz. The left ear lobe was used as the reference point for the EEG 

recordings. 

The subject sits on a chair in front of a table and perform two different moving 

tasks vertical and horizontal. Horizontal movement tasks are similar to movement 

tasks explained during the section 2.2.1. Vertical movement tasks are expected to 

replace the drinking tasks. This is because drinking as a vertical movement task, the 

end point of the motion corresponds to a point in the body. On the other hand, the   

 

Figure 3. Activation of electrode location of F7 and F8 (H – horizontal, V – vertical 

movement) 
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subject moves a small object between two vertical points in the space during the 

vertical movement task in this experiment. The other experimental procedures and 

schedules are similar to the information presented in section 2.2.1. Figure 2 shows the 

motion schedule of vertical and horizontal movements. 

Signal Processing: 

 Main purpose to study the brain activity for the two movement tasks and 

compare them with the brain activations for the initial experiment as shown in the 

Figure 2.9. Therefore, same techniques followed during the signal processing of the 

2nd chapter was followed during this study. Accordingly, at first the common average 

reference was computed. Then the resulted signal was used to obtain the power band 

between 0.1Hz – 4 Hz. Similar power band was obtained in chapter 2 also.  

Results: 

Resulting brain activations related to the band power 0.1Hz – 4Hz are shown 

in Figure 3 for F7 and F8 locations of the human brain. Motion time ranges for vertical 

and horizontal movements are marked as H and V in the figure, respectively. During 

the both horizontal and vertical motions, higher brain activations can be observed. 

Discussion:  

 Main focus of this study was to make sure, human body related motions 

attenuate the brain activations. In the initial observation with the drinking task, brain 

activations were attenuated compare to that of the horizontal movement as presented 

and explained in the Chapter 2. Two differences in the drinking and horizontal 

movement of an object are two tasks are in two different planes, horizontal and 

vertical; and horizontal movement occurred between two points in the space, but 

drinking task is between a point in the space and the mouth, a point related to the body. 

Therefore, to study the brain activity difference, the drinking task was replaced by a 

vertical movement task, which will occur between two different point in the space, 
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unlikely to the drinking task. When the same brain features are observed, vertical 

movement tasks show better activations compared to that of the drinking tasks. 

Therefore, as explain the discussion in the chapter 2, it can be deduced, that the brain 

activations will get attenuated when a point or points of the body involved with a 

motion task.  
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Consent to Participate in a Research Study 

Kyushu University ● Fukuoka, Japan 

Title of 

Study: 

A Non-Invasive BCI Approach for Predicting Motion Intention of 

ADL Tasks for an Upper-Limb Wearable Robot 

Investigators: 

Name: D.S.V Bandara Dept: Department of Mechanical Engineering 

Name: Jumpei Arata Dept: Department of Mechanical Engineering 

Name: Kazuo Kiguchi Dept: Department of Mechanical Engineering 

Introduction 

 You are being asked to be in a research study of estimation of motion intention of 

upper – limb with EEG signals.    

 You were selected as a possible ant because, the experiment will be performed 

with healthy subjects. 

 We ask that you read this form and ask any questions that you may have before 

agreeing to be in the study.  

Purpose of Study   

 The purpose of the study is to estimate the subject’s motion intention to move the 

upper – limb, using brain signals of the subject. The results from the study are 

expected to be used for developing a EEG based controller for an upper – limb 

wearable robot 

 Ultimately, this research may be published as a journal paper in a peer reviewed 

journal. 

Description of the Study Procedures 

In this study, Gamma.cap (Gtec Co.) with 16 electrode locations, a 

g.Gammabox (Gtec Co.) and bio signal amplifier (Nihon Kohden Co.) will be used to 

record the EEG signals from the subjects. A standard 10-20 system will be followed 

to place the electrodes on the scalp and into the brain cap. Sixteen electrodes will be 

placed at selected positions shown in the Fig. 1. The left ear lobe was used as the 

reference for EEG recordings. 



Appendix  ii                                                                                                            

  

 
x 

 

Figure 1: Locations for placement of electrodes 

In the experiments, the subjects are expected to perform tasks of activities of 

daily living (ADLs) (such as, object moving, drinking, moving arm, etc...).  

As an example, let’s assume two tasks are selected and they are object moving and 

drinking.  

The experiment begins with an audible cue to the subject “Start.” The subject 

remained still during the first 10 s. The subject will be instructed to relax his hands on 

the legs when a task is not performed. An object will be placed on a table in front of 

the subject at 8 s, and the subject will be instructed to perform the task of object moving 

at 10 s by moving the object from right to left with an audible cue corresponding to 

“Start.” The subject will have to move back to the relaxed position after moving the 

object to the left side. Subsequently, a 4 s interval exists prior to the start of the next 

task. A cup will be placed on the table in front of the subject at 2 s in the interval. At 

the end of 4 s in the interval, the audible cue “Start” will be given, and the subject will 

perform the drinking task by moving the cup toward the mouth in a manner similar to 

the ADL. The subject will simulate drinking and place the cup in the original position 

and returned to the rest positon. The subject is supposed to perform tasks at a self-

paced rhythm. These procedures will be performed 40 times for 357 s. The interval 

between each task was randomly selected as either 3 s or 4 s. The order of the tasks 

will also be random. In such way the experimental schedule will be based on the 

selected number of ADLs.  

In addition to the EEG measurements, simultaneously motion of the subject’s 

body parts will be recorded with v120: Duo (Optitrack) motion capturing system. 
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Risks/Discomforts of Being in this Study 

 There are no reasonable foreseeable (or expected) risks.  The whole experiment is 

design to be riskless. The electrodes will be attached to a brain cap and the brain 

cap will be put on to the head. Therefore, the electrode does not have a direct 

contact to the skin. A water soluble gel (g.Gammagel, Gtec Co.) will be used 

between the electrode and the skin. In addition, to be used with the motion 

capturing system markers will be placed on the body joint with adhesive tapes. 

Benefits of Being in the Study 

 There are no benefits of participation for the participants.  

Confidentiality  

 This study is anonymous.  We will not be collecting or retaining any information 

about your identity. We might record a video or take pictures of the experiment. 

However, the face of the subject will not be reveled in the videos or the photos  

Right to Refuse or Withdraw 

 The decision to participate in this study is entirely up to you.  You may refuse to 

take part in the study at any time (even in the middle of an experiment) without 

affecting your relationship with the investigators of this study or Kyushu 

University.  Your decision will not result in any loss or benefits to which you are 

otherwise entitled.   

Right to Ask Questions and Report Concerns 

 You have the right to ask questions about this research study and to have those 

questions answered by me before, during or after the research.  If you have any 

further questions about the study, at any time feel free to contact Prof. Kazuo 

Kiguchi at kiguchi@mech.kyushu-u.ac.jp or by telephone at xxx –xxxx - xxxx.  If 

you like, a summary of the results of the study will be sent to you.  

 If you have any problems or concerns that occur as a result of your participation, 

you can report them to the Prof. Kazuo Kiguchi at the number above.  

 

Consent 

 Your signature below indicates that you have decided to volunteer as a research 

participant    for this study, and that you have read and understood the information 

mailto:kiguchi@mech.kyushu-u.ac.jp
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provided above. You will be given a signed and dated copy of this form to keep, 

along with any other printed materials deemed necessary by the study investigators.    

 

Subject's Name (print):    

Subject's Signature:  Date:  

 

Investigator’s Signature:  Date:  
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% Calculates windowed (over- and non-overlapping) RMS of 

a signal using the specified windowlength 

% 

 

function y = rms(signal, windowlength, overlap, zeropad) 

  

delta = windowlength - overlap; 

  

%% CALCULATE RMS 

  

indices = 1:delta:length(signal); 

% Zeropad signal 

if length(signal) - indices(end) + 1 < windowlength 

    if zeropad 

        signal(end+1:indices(end)+windowlength-1) = 0; 

    else 

        indices = indices(1:find(indices+windowlength-1 

<= length(signal), 1, 'last')); 

    end 

end 

  

y = zeros(1, length(indices)); 

% Square the samples 

signal = signal.^2; 

  

index = 0; 

for i = indices 

    index = index+1; 

    % Average and take the square root of each window 

    y(index) = sqrt(mean(signal(i:i+windowlength-1))); 

end 

 


