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Abstract
In recent decades, the classical public key cryptosystems like RSA and ECC are mainly
holding accountable for the security of information and communication. However,
Shor’s quantum algorithm proposed in 1994 is proved that the hard mathematical prob-
lems underlying RSA or ECC can be solved in polynomial time on a quantum computer,
so the existent cryptosystems will be broken completely in future. Nowadays, with the
increasing threats from recent process of quantum computing, post-quantum cryptogra-
phy (PQC) has become one of the main focuses in cryptography research and real world
applications. Under this situation, NSA showed their intention to move to PQC in the
near future in 2015. Then in 2016, NIST started to call for post-quantum cryptosys-
tems officially to nip in the bud. Among all of the PQC candidates, the lattice-based
cryptography is one of the most compelling candidates in PQC standardization, for its
impressive efficiency derived from the simple and light constructions, and its promising
quantum-resistant features.

It is vital to set the proper parameters for a cryptosystem before putting it into service.
For the cryptanalysis on lattice-based cryptography, one should estimate the concrete
hardness of the underlying hard mathematical problems, such as the shortest vector
problem (SVP), the closest vector problem (CVP), the learning with errors problem
(LWE) and their variants. In our work, we firstly study the BKZ reduction algorithm,
which is one of the most important tools to analyze these hard problems. And then,
we propose an improved progressive BKZ (pBKZ) algorithm and compare its efficiency
with some previous works. By using our pBKZ algorithm, we solved some instances in
the Darmstadt SVP Challenge, the Darmstadt Approximate Ideal Lattice Challenge, and
the Darmstadt LWE Challenge. Simultaneously, we also propose an accurate simulator
to estimate the computational cost of pBKZ algorithm on solving the (approximate) SVP
problem.

Then we apply our pBKZ algorithm and its simulator on solving LWE problem. By
invoking Kannan’s embedding technique, LWE can be reduced to unique-SVP, which
is another hard problem in lattice theory. Based on our experimental results in the
Darmstadt LWE Challenge, we decide the critical parameters in Kannan’s embedding
technique: the number of necessary samplesm and the size of the embedding factorM .
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Using the proper parameter settings and pBKZ simulator, we show how to estimate the
practical hardness of solving the LWE problem.

In the end, we adopt the pBKZ simulator and the M.A. simulator to evaluate the secure
parameter sets for Ding key exchange. We denote by RLWE the ring version of LWE
problem. Ding key exchange is RLWE-based protocol, which is a proposal to NIST PQC
standardization. To guarantee the error rate of key exchange protocol under 2−60, we
gave two proper parameter sets covering the security of AES-128/192/256 respectively,
which satisfy NIST’s security category I, III and V respectively.

Our workmakes contribution to NIST’s PQC standardization project and provides useful
reference for the cryptanalysis in lattice-based cryptography.
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Chapter 1

Introduction

1.1 Post-Quantum Cryptography

Post-quantum cryptography (PQC), also known as “quantum-resistant” or “quantum-
safe” cryptography, is considered to be the next generational cryptographic algorithms
which can withstand the outstanding quantum attacks.

Nowadays, the most widely applied public cryptographic schemes, such as RSA, ECC,
DSA, ElGamal, Diffie-Hellman key exchange, etc., are constructed based on integer
factorization problem (IFP), discrete logarithm problem (DLP) and their elliptic curve
variants in certain groups, etc. With elaborately chosen parameters and implementations,
the above cryptographic schemes are still secure against current computing resources.
However, in 1994, Peter Shor proposed a quantum algorithm which can solve IFP and
DLP on a quantum computer in polynomial time [78]. Therefore, once the sufficiently
powerful quantum computer is developed, all of the above existences are vulnerable
to such quantum computing with Shor’s algorithm. Recently, a prototype quantum
computer with 50 quantum bits was built [41]. Since the above cryptosystems are widely
deployed in real world applications (e.g. HTTPS, online banking, cryptocurrency,
software and updates etc.), it is vital to develop secure and practical post-quantum
alternatives for the upcoming post-quantum world.

Currently there are several approaches to build post-quantum cryptography primitives:
lattice-based cryptography, multivariate-based cryptography, code-based cryptography,
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hash-based cryptography, etc. All these cryptosystems have advantages and limitations,
therefore it is important to find the best trade-off between security and efficiency. Among
them, lattice-based cryptography is considered to have robust security and desirable
efficiency. Its versatility in practice is also remarkable, e.g. encryption, signature, key
exchange, hash functions, homomorphic encryption etc. In 2015, NSA announced that
it is planning the transition to quantum-resistant cryptography suites in near future. NSA
wrote: “Unfortunately, the growth of elliptic curve use has bumped up against the fact of
continued progress in the research on quantum computing, necessitating a re-evaluation
of our cryptographic strategy.” In early 2016, NIST formally published the calls for
new post-quantum cryptographic algorithms [67]. This reinforces the importance and
urgency to develop post-quantum alternatives for the near future. NIST focused on
three primitives: public key encryption, digital signature and key establishment. In
the round 1 submission, there are 69 schemes based on hard problems from lattices,
multivariate polynomial, coding theory, hash functions etc. Lattice-based encryption
and key establishment constructions are the majority of these submissions.

In order to apply the lattice-based cryptography in a practical way, we must precisely
estimate the secure parameters in theory and practice by analyzing the previously known
efficient algorithms for solving the underlying hard mathematical problems.

1.2 Lattice-based Cryptography

Lattices are discrete subgroups of Rm. A lattice L is the set of all integer combi-
nations of linearly independent vectors b1, . . . ,bn in Rm, which can be expressed as
L(b1, . . . ,bn) = {∑

n
i=1 xibi, xi ∈ Z}. These vectors are known as a basis of the lattice

and the integer n is its dimension. One of the most important problem in lattice is the
shortest vector problem (SVP), which asks to find a nonzero lattice vector of the smallest
norm, by a given lattice basis as input. Another famous problem is called the closest
vector problem (CVP). For a given arbitrary vector in addition to the lattice, CVP asks
to find the closest lattice point to that vector. Since Regev introduced the learning with
errors (LWE) problem in 2005, LWE and its variants are also widely studied to build key
exchange and encryption schemes [69]. The LWE problem comes from “learning parity
with noise” by lifting the modulus value, and concreting the probability distribution of
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the “error” term [69]. The search LWE says when given a perturbation-merged LWE in-
stance, one should find the solution. Simultaneously, in the decision LWE problem, one
needs to distinguish if the given instance is holding LWE construction or just sampled
from a uniform distribution.

Lattices in cryptography have been actively used as the foundation for constructing
efficient or high-functional cryptosystems such as public-key encryptions [34, 45, 69],
fully homomorphic encryptions [39, 20], multi-linear pairing [38], and so on [55, 81, 31].
The security of lattice-based cryptography is based on the hardness of solving the above
problems in the underlying lattice theory [26, 55, 62, 63]. Simultaneously, the precise
theoretical and the practical analysis of the relevant security parameter settings are
required before these cryptosystems are adequate to the reality. Hence we can do
cryptanalysis for the lattice-based cryptographic schemes such as NTRU[26], LWE[55]
and GGH[63] ect., by using the algorithms for solving these problems [53, 75, 2, 24, 10].
In order to evaluate the hardness of lattice problems due to different lattice structures,
Germany TU Darmstadt group initiated several challenges for SVP, approximate SVP,
LWE and so on [28, 29, 30, 27]. The platform is public for researchers and some of the
challenges will be comprised in this thesis as well.

1.3 Motivation and Contribution

It is known that cryptanalysis is one of the most essential parts before a cryptographic
scheme is applied to the reality. Generally the hard problems underlying the lattice-based
cryptographic schemes can be reduced to SVP or its variants by some certain coefficients.
Therefore, to determine the proper parameters for the cryptographic schemes, it is a
critical topic to study the hardness of SVP or its variants. Typically, there are two
main practical ways being used to solve these problems. One category consists of
approximation algorithms such as some versions of the LLL algorithm [53] and the
BKZ algorithm [75]. Such algorithms find relatively short vectors, but usually not
the shortest one in high dimension. Another category includes some exact searching
algorithms to output the shortest or nearly shortest vectors, e.g. the Kannan strategy [48],
the enumeration algorithm [75], the sieving algorithm [2], etc. Usually these algorithms
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cost exponential runtime, and especially exponential space are required for sieving series.
In some cases, the searching algorithms are used as subroutines of reduction algorithms.

In this thesis, at first we investigate a variant of the BKZ algorithm, called progressive
BKZ (pBKZ), which performs BKZ reductions by starting with a small blocksize and
gradually switching to larger blocks as the process continues. We discuss techniques
to accelerate the speed of the progressive BKZ algorithm by optimizing the following
parameters: blocksize, searching radius, the success probability for pruning of the local
enumeration algorithm, and the constant in the geometric series assumption (GSA). We
then propose a simulator for predicting the length of the Gram-Schmidt basis obtained
from the BKZ reduction. We also present a model for estimating the computational
cost of the proposed progressive BKZ by considering the efficient implementation of
the local enumeration algorithm and the LLL algorithm. Finally, we compare the cost
of the proposed progressive BKZ with that of other algorithms using instances from the
Darmstadt SVP Challenge. The proposed algorithm is approximately 50 times faster
than BKZ 2.0 (proposed by Chen-Nguyen [24]) for solving the SVP Challenge up to 160
dimensions.

Then, using our proposed progressive BKZ algorithm and its simulator, we evaluate the
practical hardness of solving the LWE problem. At first, invoking Kannan’s embedding
technique, we apply the pBKZ algorithm on the Darmstadt LWE Challenge instances of
σ/q = 0.005. We observe that intuitively the embedding technique is more efficient with
the embedding factor M closer to 1. Then we analyze the optimal number of samples
m for a successful attack on LWE case with secret length of n. Thirdly, based on
this analysis, we show the practical cost estimations using the precise pBKZ simulator.
Simultaneously, our experimental results show that for n ≥ 55 and the fixed σ/q = 0.005,
the embedding technique with pBKZ is more efficient than Xu et al.’s implementation of
the adapted enumeration algorithm in [84][27]. Moreover, by our parameter settings, we
succeed in solving the LWE Challenge over (n,σ/q) = (70,0.005) using 216.8 seconds
(32.73 single core hours).

Finally, we introduce a proper approach to estimate the hardness of the Ring LWE prob-
lem (RLWE). More precisely, we apply the cryptanalysis to the “Ding Key Exchange”
scheme (DKE), which is a new provably secure ephemeral-only RLWE+Rounding-based
key exchange protocol [31]. Note that the main author of this thesis is last named in
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the DKE proposal to NIST PQC standardization. Since DKE is an ephemeral-only key
exchange, it generates only one RLWE sample from protocol execution. In this part
we call it the ONE-sample RLWE problem. Our approach is different from existing
approaches that are based on estimation with multiple RLWE samples. In our security
analysis, at first we reduce the RLWE problem to the short integer solution problem
(SIS). We call it “SIS attack”. Then, we adopt the progressive BKZ simulator as a prac-
tical reference and use the sieving-BKZ (sieving algorithm being used as SVP oracle of
BKZ) estimator as a lower bound. The latter one is also called “M.A. simulator” in this
thesis. We also analyze the exponential memory impact for sieving algorithm of large
dimensions in our parameter settings. Though our analysis is based on some recently
developed techniques in Darmstadt, our type of practical security estimate was never
done before and it produces security estimates substantially different from the estimates
before based on multiple RLWE samples. We present two parameter choices ensuring
2−60 key exchange failure probability, which cover security of AES-128/192/256 with
concrete security analysis and implementation.

1.4 Organization

Chapter 2 recalls the notations and background on lattices, including some lattice prob-
lems and reduction algorithms. We introduce our proposed progressive BKZ algorithm
(pBKZ) and its simulator in Chapter 3. In Chapter 4, using this pBKZ algorithm and
its simulator, we estimate the practical hardness of the LWE problem. The security
analysis for the Ding Key Exchange is shown in Chapter 5. Finally we give conclusion
in Chapter 6.



Chapter 2

Background

In this chapter, we introduce some basic knowledge in lattice theory which will be used
in this thesis, including some definitions, notations, lattice problems and Darmstadt
lattice challenges.

2.1 Mathematical Background of Lattices

Definition 2.1. A latticeL is generated by a basisBwhich is a set of linearly independent
vectors b1, . . . ,bn in Rm: L(b1, . . . ,bn) = {∑

n
i=1 xibi, xi ∈ Z}. Note that in this thesis

we use integral lattices for convenience and we write the basis in a matrix form as
B = (b1, . . . ,bn) ∈ Zm×n. n is the rank of the lattice,which equals to the dimension of
the vector space over a field spanned by L, i.e. n = dim(span(L)). It is called full-rank
lattice whenm = n.

Definition 2.2. The Euclidean norm of a lattice vector v ∈ Rm, also known as l2-
norm, is ∥v∥ ∶=

√
v ⋅ v, where the dot product of any two vectors v = (v1, . . . , vm) and

w = (w1, . . . ,wm) is defined as v ⋅w = ∑
m
i=1 viwi. In some cases, we also denote ∥v∥ by

∥v∥2 as well. Besides, let ∥ ⋅ ∥1 be the l1-norm, ∥ ⋅ ∥∞ be the l∞-norm.

Definition 2.3. The fundamental domain for a lattice L(B) corresponding to the basis
B is the set F(b1, . . . ,bn) = {t1b1 + t2b2 + ⋅ ⋅ ⋅ + tnbn ∶ 0 ≤ ti < 1}. The volume of
an n-dimensional lattice L(B) is the volume of F , which can be denoted by vol(L).

6
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Figure 2.1: Modified Gaussian heuristic constant τi

Particularly for a full-rank lattice L(B), the volume can be computed by the absolute
value of the determinant of the basis B, i.e. vol(L) = ∣det(B)∣.

Any lattice of dimension n ≥ 2 has infinitely many bases and all the bases of L have the
same number n of elements. By multiplying any unimodular matrix in the general linear
group GLn(Z), an n-dimensional lattice basis can be transposed to another basis of the
same lattice. However, despite of the varied bases, the same volume is determined by
the same lattice space.

Moreover, we denote by Balln(R) the n-dimensional Euclidean ball of radius R > 0,
and its volume is given by Vn(R) = Rn ⋅ πn/2

Γ (n/2+1) . Here the gamma function Γ (s) is
defined by Γ (s) = ∫

∞
0 ts−1 ⋅ e−tdt with s > 0. For large positive integer n, Stirling’s

approximation yields Γ (n/2 + 1) ≈ (n/2e)n/2 and Vn(1)−1/n ≈
√
n/(2πe) ≈

√
n/17.

The beta function defined by B(x, y) = ∫
1

0 t
x−1(1 − t)y−1dt is also used in this thesis.

Figure 2.1 is an example of 2-dimensional lattice. b1 and b2 are two basis vectors which
span the lattice space and the “shortest vectors” is introduced as follows.

Definition 2.4 (Shortest Vectors and Successive Minimum). There are at least two non-
zero vectors with same minimal Euclidean norm but contrary sign in a lattice L with
basis B = (b1,b2, . . . ,bn): this norm is called the first minimum λ1(L) of L(B). A
shortest vector of L is of norm λ1(L). We also define the ith successive minimum as

λi(L) = max{min{∥bj∥, j = 1, . . . , i ∣ bj are independent}}.
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The norm of an approximate shortest vector v is slightly relaxed by ∥v∥ ≤ γ(n) ⋅ λ1(L)

for a function γ(n) > 1 of a lattice dimension n.

Definition 2.5 (Gram-Schmidt Orthogonalization). We denote by B∗ = (b∗1, . . . ,b
∗
n)

the associatedGram-Schmidt orthogonal basis of a given lattice basisB = (b1, . . . ,bn).
Here b∗1 = b1 and b∗i = bi −∑

i−1
j=1 µijb

∗
j for 1 ≤ j < i ≤ n, where µij = (bi ⋅b∗j )/∥b

∗
j ∥

2 are
the Gram-Schmidt coefficients (abbreviated as GS-coefficients). We sometimes refer to
∥b∗i ∥ as the Gram-Schmidt lengths (abbreviated as GS-lengths). We also use the Gram-
Schmidt variables (abbreviated asGS-variables) to denote the set of both GS-coefficients
µij and GS-lengths ∥b∗i ∥. The lattice determinant is defined as det(L) ∶=∏

n
i=1 ∥b

∗
i ∥ and

it is equal to the volume vol(L) of the fundamental domain.

B ∈ Rn×m can be decomposed uniquely as B = µ ⋅D ⋅Q. Here µ = (µij) is the n × n
lower-triangular matrix with unit diagonal, D is the diagonal matrix formed by the
GS-lengths ∥b∗i ∥’s, and Q is an n ×m matrix with orthonormal row vectors.

Definition 2.6 (Projective Sublattice). We denote the orthogonal projection by πi ∶
Rm ↦ span(b1, . . . ,bi−1)

⊥ for 1 < i ≤ n. In particular, π1 is used as the identity map.
For natural numbers i and j with i < j, [i ∶ j] is the set of integers {i, i + 1, . . . , j}.
Particularly, [1 ∶ j] is denoted by [j]. We denote the local block by the projective
sublattice

L[i∶j] ∶= L(πi(bi), πi(bi+1), . . . , πi(bj))

for j ∈ {i, i + 1, . . . , n}, whose volume is vol(L[i∶j] = ∏
n
j=i ∥b

∗
j ∥. We sometimes use Bi

instead of B[i∶j] = (πi(bi), . . . , πi(bj)), where j = i + β − 1, to denote the basis of a
β-sized sublattice L[i∶j]. That is, we omit the notation of blocksize β = j − i+ 1 or j, if it
is clear by context. We also denote L[i∶j] by πi(L) in some cases. The notion of the first
minimum is also defined for a projective sublattice as λ1(L[i∶j]) (we occasionally refer
to this as λ1(Bi) in this chapter).

Definition 2.7 (q-ary Lattice). For a positive integer q, a lattice L ⊂ Zm is called a q-ary
lattice if qZm ⊂ L. Let A ∈ Zm×nq (m > n) be a matrix with column vectors. We define
the following twom-dimensional q-ary lattices.

L(A,q) = Λq(A) = {y ∈ Zmq ∣y ≡Ax (mod q) for some x ∈ Zn}
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and
L⊥(A,q) = Λ⊥q(A

T ) = {y ∈ Zmq ∣ATy ≡ 0 (mod q)}.

The first lattice is analogous to the linear code generated by the columns ofAmod q; the
second lattice corresponds to the linear code with parity check matrix equal toAT mod
q. The two q-ary lattices hold vol(Λq(A)) ≥ qm−n and vol(Λ⊥q(A

T )) ≤ qn respectively,
while the condition is equivalent when the columns of A are linearly independent over
Zq. We can construct the basis B of L(A,q), via eliminating the linearly dependent
vectors in the following matrix by an elementary transformation.

(
AT

qIm
) ∈ Z(m+n)×m.

In this thesis, we reduce this basis to a square matrix with Hermite Normal Form.

Definition 2.8 (Hermite Normal Form). The Hermite Normal Form (HNF) of a basis
B satisfies: (1) B is lower triangular; (2) the diagonal entries are positive; (3) any entry
below the diagonal is a non-negative number strictly less than the diagonal entry in same
column.

In this work, we use the HNF module in Victor Shoup’s NTL library [79], which uses
the Domich et al.’s algorithm [32]. Particularly, a basis of q-ary lattice L(A,q) has this
form with some matrix A′

n×(m−n) ∈ Z
n×(m−n)
q :

BHNF =
⎛

⎝

qIm−n 0

A′
n×(m−n) In

⎞

⎠
∈ Zm×m.

Definition 2.9 (Gaussian Heuristic). Given an n-dimensional lattice L and a continuous
(usually convex and symmetric) set S ⊂ Rm, theGaussian heuristic says that the number
of points in S ∩L is approximately vol(S)/vol(L).

In particular, assume S is the origin-centered ball of radius R. The number of lattice
points is approximately Vn(R)/vol(L), which derives the approximate length of shortest
vector λ1 by R so that the volume of the ball is equal to that of the lattice:

λ1(L) ≈ det(L)1/n/Vn(1)
1/n =

(Γ(n/2 + 1)det(L))1/n
√
π
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This is usually called the Gaussian heuristic of a lattice, and we denote it by GH(L) =

det(L)1/n/Vn(1)1/n.

2.2 Lattice Problems

Definition 2.10 (Shortest Vector Problem). Given a basis B = (b1, . . . ,bn) of a lattice
L, the Shortest Vector Problem (SVP) asks to find a non-zero shortest vector in L.
Similarly, we define the approximate version of SVP as follows.

Definition 2.11 (Approximate Shortest Vector Problem). The approximate Shortest
Vector Problem (approx-SVP) gives a relaxed bound in comparison with SVP: Input a
basis B of an n-dimensional lattice L and set a parameter γ(n) > 1, to find a non-zero
short vector v in L, s.t. ∥v∥ ≤ γ(n)λ1(L).

Definition 2.12 (Unique Shortest Vector Problem). TheUnique SVP Problem (uSVP) is
for a given lattice L which satisfies λ1(L) ≪ λ2(L), to find the shortest nonzero vector
in L. It is called γ Unique SVP problem (γ-uSVP) if the gap of λ2(L)/λ1(L) = γ is
known.

Definition 2.13 (Short Integer Solution Problem). Given an integer q and a matrix
A ∈ Zn×mq , Short Integer Solution Problem (SIS) is to compute a short vector y ∈ B s.t.
Ay ≡ 0 mod q, where B is a set of short vectors with some Euclidean norm bound.

Definition 2.14 (Closest Vector Problem). Given an input basis B = (b1, . . . ,bn) of a
lattice L and a vector v ∈ Rm which is not in L, the Closest Vector Problem (CVP) is to
find a vector b ∈ L that minimizes the Euclidean norm ∥v − b∥.

The following BDD problem is a variant of CVP.

Definition 2.15 (Bounded Distance Decoding). In a Euclidean space spanned by a n-
dimensional lattice L, there is a target vector w ∈ Rm which is guaranteed to be within
a distance r ≤ αλ1(L) to some lattice point, where α > 0. The Bounded Distance
Decoding (BDD) outputs a vector b ∈ L s.t. ∥w − b∥ ≤ r.

Let Λ be a discrete subset of Zn. For any vector c ∈ Rn and any positive parameter
σ > 0, let ρσ,c(x) = e−π∥x−c∥

2/σ2 be the Gaussian function on Rn with the center c and the
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parameter σ. Denote ρσ,c(Λ) = ∑x∈Λ ρσ,c(x) be the discrete integral of ρσ,c over Λ, and
DΛ,σ,c be the discrete Gaussian distribution over Λ with the center c and the parameter
σ. For all y ∈ Λ, we have DΛ,σ,c(y) = ρσ,c(y)

ρσ,c(Λ) . In this chapter, we fix Λ to be Zn and c to
be zero vector. For ease of notation, we denote DZn,σ,0 as DZn,σ.

Let $
←Ð χ denote a random sampling according to the distribution χ. Here we represent

Zq as {0,⋯, q − 1} for convenience. However, on occasion, we treat elements in Zq as
elements in {−

q−1
2 ,⋯,

q−1
2 }, but we will remark the switch clearly.

Now we introduce the learning with errors problem (LWE problem) and its ring version
(RLWE problem) as follows.

Definition 2.16 (Learning With Errors Problem [69]). There are four parameters in
LWE problem: the number of samples m ∈ Z, the length n ∈ Z of secret vector,
modulo q ∈ Z and the standard deviation σ ∈ R>0 for the discrete Gaussian distribution
DZn,σ. Sample a matrix A ∈ Zm×nq and a secret vector s ∈ Znq uniformly at random,
and randomly sample a relatively small perturbation vector e ∈ Zmq from Gaussian
distribution DZn,σ, i.e. e

$
←Ð DZn,σ. The LWE distribution Ψ is constructed by pairs

(A,b ≡As + e (mod q)) ∈ (Zm×nq ,Zmq ) sampled as above. The search learning with
errors problem (LWEproblem) is for a given pair (A,b) sampled fromLWEdistribution
Ψ, to compute the pair (s,e). The decision version of LWE problem asks to distinguish
that if the given pair (A,b) is sampled from LWE or from uniform distribution. The
proof of equivalent hardness between these two versions is given in the original LWE
paper [69].

Definition 2.17 (Ring Learning With Errors Problem [59]). Let m ≥ 1 be a power of
2 and q ≥ 2 be an integer. Let Rq = Zq[x]/Φm(x), where Φm(x) = xn + 1 is the
m-th cyclotomic polynomial with n = m/2. Let χ be a β-bounded distribution. For
secret polynomial s $

←Ð χ and error polynomial e $
←Ð χ, choosing a ∈ Rq uniformly at

random, output (a,b = a ⋅ s + e) ∈ (Rq,Rq). The search version of ring learning with
errors problem (RLWE problem) is: for s $

←Ð χ, given poly(n) number of samples
of (a,b = a ⋅ s + e) ∈ (Rq,Rq), find s (and e simultaneously). Decision version of
RLWE problem is: for a ∈ Rq, distinguish b = a ⋅ s + e ∈ Rq from uniformly sampled
polynomials in Rq.
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There is no straight-forward reduction between these two RLWE problems for general
rings. However, normally people reduce the RLWE to the corresponding normal LWE
problem, to evaluate the hardness of RLWE problems.

Definition 2.18 ((Root) Hermite Factor). To evaluate the performance of lattice algo-
rithms for solving SVP and its variants, we use the Hermite Factor defined in [36]
as:

HF(b1, . . . ,bn) = ∥b1∥/Vol(L)1/n.

Also we usually use root Hermite Factor (rHF) in analysis, which is denoted as:

δ = rHF(b1, . . . ,bn) = (∥b1∥/vol(L)1/n)1/n. (2.1)

Intuitively in a n-dimensional lattice, if the (root) Hermite factor is smaller, it means that
the algorithm performs better due to the shorter vector. The Hermite factor depends on
n, while the experimental results in [36] show that the root Hermite factor converges to a
constant which is verified in [61] for largen > 140. Thus, informally we can say the root
Hermite factor depends on the capability of reduction algorithms and their parameter
settings.

Definition 2.19 (Geometric Series Assumption). The Geometric Series Assumption
(GSA) defined in [73] indicates the quality of an LLL-type reduced basis. It says that
the l2 norms of Gram-Schmidt vectors ∥b∗i ∥ in the reduced basis decrease geometrically
with a constant r such as ∥b∗i ∥

2
/∥b1∥

2
= ri−1, for i = 1, . . . , n and r ∈ [3/4,1). The size

of r depends on the reduction algorithm and the corresponding parameter settings.

Proposition 2.20. For a LLL-type reduced basis of large dimension n, the relation of
the GSA constant r and the rHF δ is of r ≈ δ−4.

Proof. Assume the reduced basis of the given lattice L is B = (b1, . . . ,bn), and its
corresponding Gram-Schmidt basis is B∗ = (b∗1, . . . ,b

∗
n). Due to the definition of

GSA: ∥b∗i ∥
2
/∥b1∥

2
= ri−1, and the volume of L: vol(L) = ∏

n
i=1 ∥b

∗
i ∥, we get vol(L) =

rn(n−1)/4 ⋅∥b1∥
n. Substitute vol(L) to the root Hermite Factor (2.1), we get r = δ−4n/(n−1)

and we can get the approximate result for n→∞.
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2.3 Darmstadt Lattice Challenge Series.

To estimate the concrete practical security of lattice bases cryptography, several types of
challenges on lattice problems are published in Technical University of Darmstadt [28,
30, 29, 27]. We summarize the challenges in Table 2.1. Additionally, we give more
details about the LWE Challenge, since it plays the main role in the experiments in
Chapter 4.

Table 2.1: Type of Challenges

Type of instances Target Parameters
Lattice

Challenge [30]
q − ary Lattices ∥b∥ < q q, n

SVP
Challenge [28]

Hermite Normal Form of
Random Lattices

∥b∥ < 1.05GH n

Ideal Lattice
Challenge [29]

Hermite Normal Form of
Random Ideal Lattices

∥b∥ < 1.05GH n

Approx-Ideal
Lattice

Challenge [29]

Hermite Normal Form of
Random Ideal Lattices

∥b∥ < n ⋅ det1/n n

LWE
Challenge [27]

LWE Instances of
(A,b ≡As + e (mod q)) ∈
(Zm×nq ,Zmq )

s m,n, q, σ

Darmstadt LWE Challenge In 2016, TU Darmstadt, in alliance with UC San Diego
and TU Eindhoven, published a platform for the concrete parameter analysis on the LWE
problem [21][27]. In the LWE Challenge, the organizers merge the two parameters σ
and q into the relative error size α such that α = σ/q. n is the length of secret vector
and q is the minimum prime number larger than n2. For each case of length n, they
offer the sampled n column vectors in basis A′ ∈ Zn2×n

q , and one column target vector
b′ ∈ Zn2

q . The length n and the relative error size α are arithmetic sequences from 40 and
0.005, with common differences of 5 and 0.005 respectively. To adapt the current lattice
algorithms used in the attack algorithm, one usually randomly sample m ≪ n2 entries
of the column vectors in the original basisA′ ∈ Zn2×n

q and sample from the target vector
b′ ∈ Zn2

q respectively, i.e. randomly sample from (A′,b′) ∈ (Zn2×n
q ,Zn2

q ) in Darmstadt
LWE Challenge instance to the one of (A,b) ∈ (Zm×nq ,Zmq ). This is called sub-lattice
attack, and we discuss how to choose a suitablem in Section 4.3.4.



Chapter 3

The Improved Progressive BKZ
Algorithm and its Cost Simulator

In this chapter, we introduce our improved progressive BKZ and its cost simulator.
At first we revisit progressive BKZ algorithms, which have been mentioned in several
studies [36, 24, 74, 77, 43]. The main idea of progressive BKZ is starting with a
small blocksize, and performing BKZ iteratively by increasing the blocksize β, which
is practically faster than the direct execution of BKZ with a larger blocksize. The
method used to increase the blocksize β strongly affects the overall computational cost
of progressive BKZ. The research goal here is to find an optimal method of increasing
the blocksize β according to the other parameters in the BKZ algorithms.

Onemajor difference betweenBKZ2.0 [24] and our algorithm is the usage of randomized
enumeration in local blocks. To find a very short vector in each local block efficiently,
BKZ 2.0 uses the randomizing technique in [37]. Then, it reduces each block to decrease
the cost of lattice enumeration. Although it is significantly faster than the enumeration
without pruning, it causes overhead because the bases are not good in practice after they
have been randomized. To avoid this overhead, we adopted the algorithm with a single
enumeration with a low probability.

Moreover, BKZ of a large blocksize with large pruning (i.e., a low probability) is
generally better in both speed and quality of basis than that of a small blocksize with
few pruning (i.e., a high probability), as a rule of thumb. We pursue this idea and add

14



15

the freedom to choose the radius α ⋅GH(L) of the enumeration of the local block; this
value is fixed in BKZ 2.0 as

√
1.1 ⋅GH(L).

To optimize the algorithm, we first discuss techniques for optimizing the BKZ param-
eters of enumeration subroutine, including the blocksize β, success probability p of
enumeration, and α to set the searching radius of enumeration as α ⋅ GH(Bi). We
then show the parameters’ relation that minimizes the computational cost for enumera-
tion of a BKZ-β-reduced basis. Next, we introduce the new usage of full enumeration
cost (FEC), derived from Gama-Nguyen-Regev’s cost estimation [37] with a Gaussian
heuristic radius and without pruning, to define the quality of the basis and to predict
the cost after BKZ-β is performed. Using this metric, we can determine the timing for
increasing blocksize β that provides an optimized strategy; in previous works, the timing
was often heuristic.

Furthermore, we propose a new BKZ simulator to predict the Gram-Schmidt lengths
∥b∗i ∥ after BKZ-β. Some previous works aimed to find a short vector as fast as possible,
and did not consider other quantities. However, additional information is needed to
analyze the security of lattice-based cryptosystems. In literature, a series of works on
lattice basis reduction [73, 36, 24, 25] have attempted to predict the Gram-Schmidt
lengths ∥b∗i ∥ after lattice reduction. In particular, Schnorr’s GSA is the first simulator
of Gram-Schmidt lengths and the information it provides is used to analyze the random
sampling algorithm. We follow this idea, i.e., predicting Gram-Schmidt lengths to
analyze other algorithms.

Our simulator is based on the Gaussian heuristic with some modifications, and is com-
putable directly from the lattice dimension and the blocksize. On the other hand, Chen-
Nguyen’s simulator must compute the values sequentially; it has an inherent problem of
accumulative error, if we use the strategy that changes blocksize many times. We also
investigate the computational cost of our implementation of the new progressive BKZ,
and show our estimation for solving challenge problems in the Darmstadt SVP Chal-
lenge [28] and Ideal Lattice Challenge [29]. Our cost estimation is derived by setting the
computation model and by curve fitting based on results from computer experiments.
Using our improved progressive BKZ, we solved Ideal Lattice Challenge of 600 and
652 dimensions in the exact expected times of 220.7 and 224.0 seconds, respectively, on a
standard PC.
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Finally, we compare our algorithm with several previous algorithms. In particular,
compared with Chen-Nguyen’s BKZ 2.0 algorithm [24, 25] and Schnorr’s blocksize
doubling strategy [77], our algorithm is significantly faster. For example, to find a vector
shorter than 1.05 ⋅GH(L), which is required by the SVP Challenge [28], our algorithm is
approximately 50 times faster than BKZ 2.0 in a simulator-based comparison up to 160
dimensions. Furthermore, we also published our progressive BKZ source code in [11].
The work in this chapter was presented in Eurocrypt 2016 [10].

3.1 Introduction

Currently the most efficient algorithms for solving the SVP are perhaps a series of BKZ
algorithms [75, 76, 24, 25]. Numerous efforts have been made to estimate the security
of lattice-based cryptography by analyzing the BKZ algorithms. Lindner and Peikert
[55] gave an estimation of secure key sizes by connecting the computational cost of BKZ
algorithm with the root Hermite factor from their experiment using the NTL-BKZ [79].
Furthermore, van de Pol and Smart [81] estimated the key sizes of fully homomorphic
encryptions using a simulator based on Chen-Nguyen’s BKZ 2.0 [24]. Lepoint and
Naehrig [54] gave a more precise estimation using the parameters of the full-version of
BKZ 2.0 paper [25]. On the other hand, Liu and Nguyen [56] estimated the secure key
sizes of some LWE-based cryptosystems by considering the BDD in the associated q-ary
lattice. Aono et al. [9] gave another security estimation for LWE-based cryptosystems
by considering the challenge data from the Darmstadt Lattice Challenge [30]. Recently,
Albrecht et al. presented a comprehensive survey on the state-of-the-art of hardness
estimation for the LWE problem [6].

The above analyzing algorithms are usually called “lattice-based attacks”, which have a
generic framework consisting of two parts:

(1)Lattice reduction: This step aims to decrease the norm of vectors in the basis by
performing a lattice reduction algorithm such as the LLL or BKZ algorithm.

(2)Point search: This step finds a short vector in the lattice with the reduced basis by
performing the enumeration algorithm.
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In order to obtain concrete and practical security parameters for lattice-based cryptosys-
tems, it is necessary to investigate the trade-offs between the computational cost of a
lattice reduction and that of a lattice point search.

For our total cost estimation, we further limit the lattice-based attack model by (1) using
our improved progressive BKZ algorithm for lattice reduction, and (2) using the standard
(sometimes randomized) lattice vector enumeration algorithm with sound pruning [37].
To predict the computational cost under this model, we propose a simulation method to
generate the computing time of lattice reduction and the lengths of the Gram-Schmidt
vectors of the basis to be computed.

BKZ Algorithms:

Let B = (b1, . . . ,bn) be the basis of the lattice. The BKZ algorithms perform the
following local point search and update process from index i = 1 to n−1. The local point
search algorithm, which is essentially the same as the algorithm used in the second part of
the lattice-based attacks, finds a short vector in the local block Bi = πi(bi, . . . ,bi+β−1)

of the fixed blocksize β (the blocksize shrinks to n − i + 1 for large i ≥ n − β + 1).
Here, the lengths of vectors are measured under the projection πi which is defined in
Section 2.5. Then, the update process applies lattice reduction for the degenerated basis
(b1, . . . ,bi−1,v, bi, . . . ,bn) after inserting vector v at ith index.

The point search subroutine finds a short vector in some searching radius α ⋅ GH(Bi)

with some probability which is defined over random local blocks of the fixed dimension.
Here, GH(Bi) is an approximation of the length of the shortest vector in the sublattice
generated by Bi.

In the classical BKZ algorithms [76, 75], the local point search calls a single execution
of a lattice vector enumeration algorithm with a reasonable pruning for searching tree.
The BKZ 2.0 algorithm proposed by Chen and Nguyen [24] uses the extreme pruning
technique [37], which performs the lattice enumeration with success probability p for
⌊1/p⌉ different bases G1, . . . ,G⌊1/p⌉ obtained by randomizing the local basis Bi. They
use the fixed searching radius as

√
1.1⋅GH(Bi). We stress that BKZ 2.0 is practically the

fastest algorithm for solving the approximate SVP of large dimensions. Indeed, many
top-records in the Darmstadt Lattice Challenge [30] have been solved by BKZ 2.0.
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Table 3.1: Technical comparison from BKZ 2.0

Technique BKZ 2.0 [24] Our algorithm

Enumeration setting
randomizing basis [37] yes no
optimal pruning [37] yes yes
blocksize β fixed iteratively increasing (Sec. 3.6.1)
search radius α ⋅GH(Bi)

√

1.1 ⋅GH(Bi)
} optimized by GSA (Sec. 3.4)

probability p optimized by simulator
Preprocessing local block optimal BKZ strategy progressive BKZ
Terminating BKZ strategy simulator based (fixed) FEC based (adaptive, Sec. 3.5)
Predicting ∥b∗i ∥ simulator based simulator based (Sec. 3.5.1)

Roadmap: In Section 3.2 we introduce the basic facts on lattices. In Section 3.3 we
give an overview of BKZ algorithms, including Chen-Nguyen’s BKZ 2.0 [24] and its
cost estimation; we also state some heuristic assumptions. In Section 3.4, we propose
the optimized BKZ parameters under the Schnorr’s geometric series assumption (GSA).
In Section 3.5, we explain the basic variant of the proposed progressive BKZ algorithm
and its simulator for the cost estimation. In Section 3.6, we discuss the optimized
block strategy that improved the speed of the proposed progressive BKZ algorithm.
In Section 3.7, we describe the details of our implementation and the cost estimation
for processing local blocks. We then discuss an extended strategy using many random
reduced bases [37] besides our progressive BKZ in Section 3.8. Finally, Section 3.9
gives the results of our simulation to solve the SVP Challenge problems and compares
these results with previous works.

Optimizing the total cost (Sec. 3.8) } BKZ-then-ENUM strategy
↑

Progressive BKZ with optimized blocksize (Sec. 3.6) } Strategy for increasing β
↑

Estimating the cost for ⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

Strategy
for terminating BKZ

the proposed progressive BKZ (Sec. 3.7)
↑

Simulator Sim-GS-lengths(n,β)
for Gram-Schmidt Lengths (Sec. 3.5.1)

↑

Optimal (α, p) for blocksize β by GSA (Sec. 3.4) } Strategy in a tour

Figure 3.1: Roadmap of this paper: optimizing parameters from local to global
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3.2 Preliminaries

For our analysis, we use the following lemma on the randomly generated points.

Lemma 1. Let x1, . . . , xK be K points uniformly sampled from the n-dimensional unit
ball. Then, the expected value of the shortest length of vectors from origin to these
points is

E[ min
i∈[K]

∥xi∥] =K ⋅B(K,
n + 1

n
) ∶=K ⋅ ∫

1

0
t1/n(1 − t)K−1dt.

In particular, letting K = 1, the expected value is n/(n + 1).

Proof. Since the cumulative distribution function of each ∥xi∥ is Fi(r) = rn, the
cumulative function of the shortest length of the vectors is Fmin(r) = 1− (1−Fi(r))K =

1 − (1 − rn)K . Its probability density function is Pmin(r) =
dF
dr = Kn ⋅ rn−1(1 − rn)K−1.

Therefore, the expected value of the shortest length of the vectors is

∫

1

0
rPmin(r)dr =K ⋅ ∫

1

0
t1/n(1 − t)K−1dt.

◻

Throughout this thesis, function log denotes the natural logarithm, log2 denotes logarithm
with base 2.

3.2.1 Enumeration Algorithm [48, 75, 37]

We explain the enumeration algorithm for finding a short vector in the lattice. The
pseudo code of the enumeration algorithm is given in [75, 37]. For given lattice basis
(b1, . . . ,bn), and its Gram-Schmidt basis (b∗1, . . . ,b

∗
n), the enumeration algorithm

considers a search tree whose nodes are labeled by vectors. The root of the search tree is
the zero vector; for each node labeled by v ∈ L at depth k ∈ [n], its children have labels
v+an−k ⋅bn−k (an−k ∈ Z) whose projective length ∥πn−k(∑

n
i=n−k ai ⋅bi)∥ is smaller than

a bounding value Rk+1 ∈ (0, ∥b1∥]. After searching all possible nodes, the enumeration
algorithm finds a lattice vector shorter than Rn at a leaf of depth n, or its projective
length is somehow short at a node of depth k < n. It is clear that by takingRk = ∥b1∥ for
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all k ∈ [n], the enumeration algorithm always finds the shortest vector v1 in the lattice,
namely ∥v1∥ = λ1(L).

Because ∥b1∥ is often larger thanλ1(L), we can set a better searching radiusRn = GH(L)

to decrease the computational cost. We call this the full enumeration algorithm and define
the full enumeration cost FEC(B) as the cost of the algorithm for this basis. With the
same argument in [37], we can evaluate FEC(B) using the following equation.

FEC(B) =
n

∑
k=1

Vk(GH(L))

∏
n
i=n−k+1 ∥b

∗
i ∥
.

Because full enumeration is a cost-intensive algorithm, several improvements have been
proposed by considering the trade-offs between running time, searching radius, and suc-
cess probability [76, 37]. Gama-Nguyen-Regev [37] proposed a cost estimation model
of the lattice enumeration algorithm to optimize the bounding functions of R1, . . . ,Rn,
which were mentioned above. The success probability p of finding a single vector within
a radius c is given by

p = Pr
(x1,...,xn)←c⋅Sn

[
`

∑
i=1

x2
i < R

2
` for ∀ ` ∈ [n]],

where Sn is the surface of the n-dimensional unit ball. Then, the cost of the enumeration
algorithm can be estimated by the number of processed nodes, i.e.,

N =
1

2

n

∑
k=1

vol{(x1, . . . , xk) ∈ Rk ∶ ∑
`
i=1 x

2
i < R

2
` for ∀ ` ∈ [k]}

∏
n
i=n−k+1 ∥b

∗
i ∥

. (3.1)

Note that the factor 1/2 is based on the symmetry. Using the methodology in [37],
Chen-Nguyen proposed a method to find the optimal bounding functions of R1, . . . ,Rn

that minimizes N subject to p.

In this paper, we use the lattice enumeration cost, abbreviated as ENUM cost, to denote
the number N in equation (3.1). For a lattice L defined by a basis B and parameters
α > 0 and p ∈ [0,1], we use ENUMCost(B;α, p) to denote the minimized cost N of
lattice enumeration with radius c = α ⋅GH(L) subject to the success probability p. This
notion is also defined for a projective sublattice.
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3.3 Lattice Reduction Algorithms

Lattice reduction algorithms transform a given lattice basis (b1, . . . ,bn) to another basis
whose Gram-Schmidt lengths are relatively shorter.

LLL algorithm [53]: The LLL algorithm transforms the basis (b1, . . . ,bn) using
the following two operations: size reduction bi ← bi − ⌊µij⌉bj for j ∈ [i − 1], and
neighborhood swaps between bi and bi+1 if ∥b∗i+1∥

2 ≤ 1/2∥b∗i ∥
2 until no update occurs.

BKZ algorithms [75, 76]. For a given lattice basis and a fixed blocksize β, the BKZ
algorithm processes the following operation in the local block Bi, i.e., the projected
sublattice L[i,i+β−1] of blocksize β, starting from the first index i = 1 to i = n − 1. Note
that the blocksize β reluctantly shrinks to n − i + 1 for large i > n − β + 1, and thus we
sometimes use β′ to denote the dimension of Bi, i.e. β′ = min(β,n − i + 1).

At index i, the standard implementation of the BKZ algorithm calls the enumeration
algorithm for the local block Bi. Let v be a shorter vector found by the enumeration
algorithm. Then the BKZ algorithm inserts v into bi−1 and bi, and constructs the
degenerated basis (b1, . . . ,bi−1,v,bi, . . . ,bmin(i+β−1,n)). For this basis, we apply the
LLL algorithm (or BKZwith a smaller blocksize) so that the basis of shorter independent
vectors can be obtained. One set of these procedures from i = 1 to n−1 is usually called
a tour. The original version of the BKZ algorithm stops when no update occurs during
n − 1 iterations. In this paper, we refer to the BKZ algorithm with blocksize β as the
BKZ-β.

HKZreducedbasis: The lattice basis (b1, . . . ,bn) is calledHermite-Korkine-Zolotarev
(HKZ) reduced [65, Chapter 2] if it is size-reduced ∣µij ∣ ≤ 1/2 for all i and j, and πi(bi)
is the shortest vector in the projective sublattice L[i∶n] for all i. We can estimate the
Gram-Schmidt length of the HKZ-reduced basis by using the Gaussian heuristic as
∥b∗i ∥ = GH(L[i∶n]). Since the HKZ-reduced basis is completely reduced in this sense,
we will use this to discuss the lower bound of computing time in Section 3.8.2.
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Figure 3.2: Modified Gaussian heuristic constant τi

3.3.1 Some Heuristic Assumptions in BKZ

Gaussian Heuristic in Small Dimensions: Chen and Nguyen observed that the length
λ1(Bi) of the shortest vector in the local blockBi is usually larger than GH(Bi) in small
dimensions i.e., small β′ [24]. They gave the averaged values of ∥b∗i ∥/det(L)1/n for the
last indexes of highly reduced bases to modify their BKZ simulator, see [24, Appendix
C]. For their 50 simulated values for ∥b∗n−49∥, . . . , ∥b

∗
n∥, we define the modified Gaussian

heuristic constant by

τi ∶=
λ1(πn−i+1(L))

GH(πn−i+1(L))
=

∥b∗n−i+1∥

Vi(1)−1/i ⋅∏
n
j=n−i+1 ∥b

∗
j ∥

1/i . (3.2)

We show the graph of τi in Figure 3.2. Wewill use τi for i ≤ 50 to denote these modifying
constants; for i > 50 we define τi = 1 following Chen-Nguyen’s simulator [24].

In the rest of this paper, we assume that the shortest vector lengths of β-dimensional
local blocks Bi of reduced bases satisfies

λ1(Bi) ≈

⎧⎪⎪
⎨
⎪⎪⎩

τβ ⋅GH(Bi) (β ≤ 50)

GH(Bi) (β > 50)

on average.

We note that there exists a mathematical theory to guarantee τi → 1 for random lattices
when the dimension goes to infinity [71]. Though it does not give the theoretical
guarantee τi = 1 for BKZ local blocks, they are very close in our preliminary experiments.
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Figure 3.3: Semi-log graph of ∥b∗i ∥ of a 240-dimensional highly reduced basis

Geometric Series Assumption (GSA): Schnorr [73] introduced geometric series as-
sumption (GSA), which says that the Gram-Schmidt lengths ∥b∗i ∥ in the BKZ-reduced
basis decay geometrically with quotient r for i = 1, . . . , n, namely, ∥b∗i ∥2/∥b1∥

2 = ri−1,
for some r ∈ [3/4,1). Here r is called the GSA constant. Figure 3.3 shows the Gram-
Schmidt lengths of a 240-dimensional reduced basis after processing BKZ-100 using
our algorithm and parameters.

It is known that GSA does not hold exactly in the first and last indexes [22]. Several
previous works [1, 22, 73] aimed to modify the reduction algorithm that outputs the
reduced basis satisfying GSA. However, it seems difficult to obtain such a reduced basis
in practice. In this paper, we aim to modify the parameters in the first and last indexes
so that the proposed simulator performs with optimal efficiency (See section 3.5.1).

3.3.2 Chen-Nguyen’s BKZ 2.0 Algorithm [24]

We recall Chen-Nguyen’s BKZ 2.0 Algorithm in this section. The outline of the BKZ
2.0 algorithm is described in Algorithm 1.

Speed-up Techniques for BKZ 2.0: BKZ 2.0 employs four major speed-up techniques
that differentiate it from the original BKZ:

1. BKZ 2.0 employs the extreme pruning technique [37], which attempts to find shorter
vectors in the local blocks Bi with low probability p by randomizing basis Bi to more
blocks G1, . . . ,GM whereM = ⌊1/p⌉.
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Algorithm 1 An outline of BKZ 2.0
Input: A lattice basisB of n dimensions, blocksize β, and some terminating condition.
Output: A reduced basis B.
1: B ← LLL(B);
2: for i = 1 to n − 1
3: Set probability p for local block Bi of fixed blocksize β′i = min(β,n − i + 1) and

letM = ⌊1/p⌉;
4: Generate randomized local blocks G1, . . . ,GM from local block Bi, and

preprocess G1, . . . ,GM (reduction by LLL and small blocksize BKZ);
5: Find a vector v by lattice enumeration with radius c = min{∥b∗i ∥,

√
1.1 ⋅GH(Bi)}

for G1, . . . ,GM with probability p;
6: if v satisfies ∥v∥ < ∥b∗i ∥ then update basis B by v;
7: end-for
8: if terminating condition is satisfied then return B;
9: else goto step 2.

2. For the search radius min{∥b∗i ∥, α ⋅ GH(Bi)} in the enumeration algorithm of the
local block Bi, Chen and Nguyen set the value as α =

√
1.1 from their experiments,

while the previous works set the radius as ∥b∗i ∥.

3. In order to reduce the cost of the enumeration algorithm, BKZ 2.0 preprocesses the
local blocks by executing the sequence of BKZ algorithm, e.g., 3 tours of BKZ-50 and
then 5 tours of BKZ-60, and so on. The parameters blocksize, number of rounds and
number of randomized bases, are precomputed to minimize the total enumeration cost.

4. BKZ 2.0 uses the terminating condition introduced in [42], which aborts BKZ within
small number of tours. It can find a short vector faster than the full execution of BKZ.

Chen-Nguyen’s BKZ 2.0 Simulator: In order to predict the computational cost and
the quality of the output basis, they also propose the simulating procedure of the BKZ
2.0 algorithm. Let (`1, . . . , `n) be the simulated values of the GS-lengths ∥b∗i ∥ for
i = 1, . . . , n. Then, the simulated values of the determinant and theGaussian heuristic are
represented by∏n

j=1 `j andGH(Bi) = Vβ′(1)−1/β′∏
i+β′−1
j=i `i where β′ = min{β,n−i+1},

respectively.

They simulate a BKZ tour of blocksize β assuming that each enumeration procedure
finds a vector of projective length GH(Bi). Roughly speaking, their simulator updates
(`i, `i+1) to (`′i, `

′
i+1) for i = 1, . . . , n − 1, where `′i = GH(Bi) and `′i+1 = `i+1 ⋅ (`i/`′i).
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Here, the last 50 GS-lengths are modified using an HKZ reduced basis. The details of
their simulator are given in [24, Algorithm 3].

They also present the upper and lower bounds for the number of processed nodes during
the lattice enumeration of blocksize β. From [25, Table 4], we extrapolate the costs as

log2(Costβ) = 0.000784314β2 + 0.366078β − 6.125 (3.3)

Then, the total enumeration cost of performing the BKZ 2.0 algorithm using blocksize
β and t tours is given by

t ⋅
n−1

∑
i=1

Costmin{β,n−i+1}. (3.4)

To convert the number of nodes into single-threaded time in seconds, we use the rational
constant 4 ⋅ 109/200 = 2 ⋅ 107, because they assumed that processing one node requires
200 clock cycles in a standard CPU, and we assume it can work at 4.0GHz.

We note that there are several models to extrapolate log2(Costβ). Indeed, Lepoint and
Naehrig [54] consider two models by a quadratic interpolation and a linear interpolation
from the table. Albrecht et al. [6] showed another BKZ 2.0 cost estimation that uses an
interpolation using the cost model log2(Costβ) = O(n logn). It is a highly non-trivial
task to find a proper interpolation that estimates a precise cost of the BKZ 2.0 algorithm.

We furthermention that the upper bound of the simulator is somewhat debatable, because
they use the enumeration radius c = min{

√
1.1 ⋅ GH(Bi), ∥b∗i ∥} for i < n − 30 in their

experiment whereas they assume c = GH(Bi) for the cost estimation in their upper
bound simulation. Thus, the actual cost of BKZ 2.0 could differ by a factor of 1.1O(β).

3.4 Optimizing Parameters in Plain BKZ

In this section we consider the plain BKZ algorithm described in Algorithm 2, and
roughly predict the GS-lengths of the output basis, which were computed by the GSA
constant r. Using this analysis, we can obtain the optimal settings for parameters (α, p)
in Step 4 of the plain BKZ algorithm of blocksize β.
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Algorithm 2 Plain BKZ algorithm
Input: A lattice basis B of n dimensions, blocksize β.
Output: A reduced basis B.
1: B ← LLL(B);
2: flag = 1 // set flag = 0 when the basis is updated;
3: for i = 1 to n − 1
4: Set (α, p) for local block Bi of fixed blocksize β′i = min(β,n − i + 1);
5: Execute lattice enumeration with probability p and radius α ⋅GH(Bi);
6: if v satisfies ∥v∥ < α ⋅GH(Bi), then update basis B by v and flag = 0;
7: end-for
8: if flag = 1 then return B else goto Step 2;

3.4.1 Relationship of Parameters α,β, p, r

We fix the values of parameters (α,β) and assume that the lattice dimension n is
sufficiently large.

Suppose that we found a vector v of ∥v∥ < α ⋅GH(Bi) in the local block Bi. We update
the basis Bi by inserting v at ith index, and perform LLL or small blocksize BKZ on
the updated basis.

Theorem 3.1 (Rogers’ theorem [71]). Let S be a convex symmetric Borel set with
measure V . Let L be a lattice of determinant 1 and be of large dimension n. The
number of vector pairs (v,−v) of L in S is asymptotic to the Poisson distribution with
mean 1/2 ⋅ V .

Proof. Please refer to the original paper [71] (the Theorem (3) and its proof).

Due to Rogers’ theorem, approximately αn/2 vector pairs (v,−v) exist within the ball
of radius c = α ⋅GH(L).

Corollary 3.2. Since the pruning probability is defined for a single vector pair, we expect
the actual probability that the enumeration algorithm finds at least one vector shorter
than c is roughly

1 − (1 − p)α
n/2 ≈ p ⋅

αn

2
. (3.5)

The right-hand side of relation (3.5) is roughly computed by the binomial theorem, under
the assumption that p < 1 is very small and n > 1 is not too big. Thus, there may exist
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one lattice vector in the searching space by setting parameter p as

p =
2

αβ
. (3.6)

Remark 3.3. The probability setting of equation (3.6) is an optimal choice under our
assumption. If p is smaller, the enumeration algorithm finds no short vector with high
probability and basis updating at ith index does not occur, which is a waste of time. On
the other hand, if we take a larger p so that there exist p ⋅ αβ/2 > 1 vector pairs, the
computational time of the enumeration algorithm increases more than p ⋅ αβ/2 times
[37]. Although it can find shorter vectors, this is also a waste of time from the viewpoint
of basis updating.

Assume that one vector is found using the enumeration, and also assume that the
distribution of it is the same as the random point in the β-dimensional ball of radius
α ⋅ GH(Bi). Then, the expected value of ∥v∥ is β

β+1α ⋅ GH(Bi) by letting K = 1 in
Lemma 1. Thus, we can expect that this is the value ∥b∗i ∥ after update.

Therefore, after executing a sufficient number of BKZ tours, we can expect that all the
lengths ∥b∗i ∥ of the Gram-Schmidt basis satisfy

∥b∗i ∥ =
β

β + 1
α ⋅GH(Bi) (3.7)

on average. Hence, under Schnorr’s GSA, we have the relation

∥b∗i ∥ =
αβ

β + 1
⋅ Vβ(1)

−1/β∥b∗i ∥
β

∏
j=1

r(j−1)/2β, (3.8)

and the GSA constant is

r = (
β + 1

αβ
)

4
β−1

⋅ Vβ(1)
4

β(β−1) . (3.9)

Therefore, by fixing (α,β), we can set the probability p and obtain r as a rough prediction
of the quality of the output lattice basis. We will use the relations (3.6) and (3.9) to set
our parameters. Note that any two of α,β, p and r are determined from the other two
values.

Remark 3.4. Our estimation is somehow underestimate, i.e., in our experiments, the
found vectors during BKZ algorithm are often shorter than the estimation in equation
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Figure 3.4: Relation between β and r that minimizes the computational cost

(3.7). This gap is mainly from the estimation in (3.5), which can be explained as
follows. Let (R1, . . . ,Rβ) be a bounding function of probability p for a vector of length
∥v∥. Then, the probability p′ for a vector of length ∥v′∥ of a shorter vector is the same as
the scaled bounding function (R′

1, . . . ,R
′
β) where R′

i = min{1,Ri ⋅ ∥v∥/∥v′∥}. Here, p′

is clearly larger than p due to R′
i ≥ Ri for i ∈ [β]. Therefore, when the above parameters

are used, the quality of the output basis is better than that derived from equation (3.9) if
we perform a sufficient number of tours. Hence, within a few tours, our algorithm can
output a basis which has a good quality predicted by our estimation in this section.

3.4.2 Optimizing Parameters

Now for a fixed parameter pair (β, r), the cost ENUMCost(Bi;α, p) of the enumeration
algorithm in local block Bi satisfying GSA is computable. Concretely, we compute
α using the relation (3.9), fix p by (3.6), and simulate the Gram-Schmidt lengths of
Bi using ∥b∗i ∥ = r(i−1)/2. Using the computation technique in [37], for several GSA
constants r, we search for the optimal blocksize β that minimizes the enumeration cost
ENUMCost(Bi;α, p). The small squares in Figure 3.4 show the results. From these
points, we find the functions f1(β) and f2(β), whose graphs are also in the figure.

We explain how to find these functions f1(β) and f2(β). Suppose lattice dimension
n is sufficiently large, and suppose the cost of the enumeration algorithm is roughly
dominated by the probability p times the factor at k = n/2 in the summation (3.1). Then
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ENUMCost(Bi;α, p) is approximately

D = p ⋅
Vβ/2(α ⋅GH(Br))

∏
β
i=β/2+1

∥b∗i ∥
= 2α−β/2

Vβ/2(1)Vβ(1)−1/2

rβ2/16
,

where from equation (3.9) we have obtained

D ≈ Const. × r(β
2−2β)/16 ⋅ (

β

eπ
)

β/4
, and ∂ logD

∂β
≈
β − 1

8
log r +

1

4
+

1

4
log

β

eπ
.

In order to minimize D, we roughly need the above derivative to be zero; thus, we use
the following function of β for our cost estimation with constants ci

log(r) = 2 ⋅ (logβ + 1 − log(eπ))/(1 − β) =
log c1β

c2β + c3

.

From this observation, we fix the fitting function model as f(β) = log(c1β+c2)
c3β+c4 .

By using the least squares method implemented in gnuplot, we find the coefficients ci
so that f(β) is a good approximation of the pairs (βi, log(ri)). In our curve fitting, we
separate the range of β into the interval [40,100], and the larger one. This is needed for
converging to log(r) = 0 when β is sufficiently large; however, our curve fitting using a
single natural function did not achieve it. Curves f1(β) and f2(β) in Figure 3.4 are the
results of our curve fitting for the range [40,100] and the larger one, respectively.

log(r) =

⎧⎪⎪
⎨
⎪⎪⎩

−18.2139/(β + 318.978) (β ≤ 100)

(−1.06889/(β − 31.0345)) ⋅ log(0.417419β − 25.4889) (β > 100)
(3.10)

Moreover, we obtain pairs of β and minimize ENUMCost(Bi;α, p), in accordance with
the above experiments. Using the curvefitting thatminimizes∑β ∣f(β)−log2 ENUMCost(Bi;α, p)∣2

using gnuplot, we find the extrapolating formula

log2 MINCost(β) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0.1375β + 7.153 (β ∈ [60,105])

0.000898β2 + 0.270β − 16.97 (β > 105)
(3.11)
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to log2 ENUMCost(Bi;α, p). We will use this as the standard of the enumeration cost
of blocksize β.

Remark 3.5. Our estimation from the real experiments is 0.25β ⋅ENUMCost(Bi;α, p)

(See, Section 3.7.1), which crosses over the estimation of BKZ 2.0 simulator (3.3) at
β = 873. Thus, the performance of BKZ 2.0 might be better in some extremely high
block sizes, while our algorithm has a better performance in the realizable block sizes
< 200.

3.4.3 Parameter Settings in Step 4 in Algorithm 2

Using the above arguments, we can fix the optimized pair (α, p) for each blocksize β.
That is, to process a local block of blocksize β in Step 4 of the plain BKZ algorithm
in Algorithm 2, we compute the corresponding r by equations (3.10), and additionally
obtain the parameters α by equation (3.9) and p by equation (3.6). These are our basic
parameter settings.

Modifying blocksize at first indexes: We sometimes encounter the phenomenon in
which the actual ENUMCost(Bi;α, p) in small indexes is much smaller than that in
middle indexes. This is because ∥b∗i ∥ is smaller than GH(Bi) in small indexes. In other
words, bi is hard to update using the enumeration of blocksize β. To speed up the lattice
reduction, we use a heuristic method that enlarges the blocksizes as follows.

From the discussion in the above subsection, we know the theoretical value of the
enumeration cost at blocksize β. On the other hand, in the actual computing of BKZ
algorithms, the enumeration cost is increased because the sequence (∥b∗i ∥, . . . , ∥b∗i+β−1∥),
which mainly affects the computing cost, does not follow the GSA of slope r exactly.
In some experiments, we will verify that the enumeration cost is approximately β times
the theoretical value (See, Figure 3.6 in Section 3.7.1). Thus, we define the expected
enumeration cost in blocksize β as β ⋅MINCost(β). With this expectation, we reset the
blocksize as the minimum β satisfying ENUMCost(B[i∶i+β−1];α, p) > β ⋅MINCost(β).

Modifying (α, p) at last indexes: For large indexes such as i > n − β, the blocksize
of a local block shrinks to β′ = min(β,n − i + 1). In our implementation, we increase
the success probability to a new p′, while ENUMCost(Bi;α′, p′) is smaller than β ⋅
MINCost(β). We also reset the radius as α′ = (2/p′)1/β from equation (3.6).
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3.5 Our Proposed Progressive BKZ: Basic Variant

Algorithm 3 Our progressive BKZ algorithm (basic variant)
Input: A lattice basisB ofn dimensions, starting blocksize βstart, and ending blocksize

βend.
Output: A reduced basis B.
1: B ← LLL(B);
2: for β = βstart to βend do
3: while FEC(B) > Sim-FEC(n,β) do
4: for i = 1 to n − 1
5: Set (α, p) for local block Bi of blocksize β′ = min(β,n − i + 1)

using the setting in Section 3.4.3;
6: Preprocess the basis by the progressive BKZ;
7: Execute lattice enumeration with probability p and radius α ⋅GH(Bi);
8: if v satisfies ∥v∥ < α ⋅GH(Bi) then update basis B by v;
9: end-for
10: end-while
11: end-for

In this section, we explain the basic variant of our proposed progressive BKZ algorithm.

In general, if the blocksize of the BKZ algorithm increases, a shorter vector b1 can be
computed; however, the running cost will eventually increase. The progressive BKZ
algorithm starts a BKZ algorithm with a relatively small blocksize βstart and increases
the blocksize to βend by some criteria. The idea of the progressive BKZ algorithm
has been mentioned in several literatures, for example, [24, 74, 77, 43]. The research
challenge in the progressive BKZ algorithm is to find an effective criteria for increasing
blocksizes that minimizes the total running time.

In this paper we employ the full enumeration cost (FEC) in Section 3.2.1, in order
to evaluate the quality of the basis for finding the increasing criteria. Recall that the
FEC of basis B = (b1, . . . ,bn) of n-dimensional lattice L is defined by FEC(B) =

∑
n
k=1

Vk(GH(L))
∏ni=n−k+1 ∥b∗i ∥

, where ∥b∗i ∥ represents the GS-lengths. Note that FEC(B) eventually
decreases after performing several tours of the BKZ algorithm using the fixed blocksize
β.

Moreover, we construct a simulator that evaluates the GS-lengths by the optimized
parameters α,β, p, r for the BKZ algorithm described in the local block discussion in
Section 3.4.3. The simulator for an n-dimensional lattice only depends on the blocksize
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β of the local block; we denote by Sim-GS-lengths(n,β) the simulated GS-lengths
(`1, . . . , `n). The construction of simulator will be presented in Section 3.5.1.

For this purpose, we define some functions defined on the simulated GS-lengths
(`1, . . . , `n). Sim-GH(`1, . . . , `n) = Vn(1)−1/n∏

n
j=1 `

1/n
j is the simulated Gaussian

heuristic. The simulated value of full enumeration cost is

Sim-FEC(`1, . . . , `n) ∶=
n

∑
k=1

Vk(Sim-GH(`1, . . . , `n))

∏
n
i=n−k+1 `i

.

Further, for (`1, . . . , `n) = Sim-GS-lengths(n,β), we use the notation
Sim-FEC(n,β) ∶= Sim-FEC(`1, . . . , `n) in particular. The simulated enumeration cost
Sim-ENUMCost(`1, . . . , `β;α, p) is defined by ENUMCost(B;α, p) for a lattice basis
B that has GS-lengths ∥b∗i ∥ = `i for i ∈ [β].

The key point of our proposed progressive BKZ algorithm is to increase the blocksize
β if FEC(B) becomes smaller than Sim-FEC(n,β). In other words, we perform the
BKZ tours of blocksize β while FEC(B) > Sim-FEC(n,β). We describe the proposed
progressive BKZ in Algorithm 3.

Remark 3.6. In the basic variant of our progressive BKZ described in Section 3.6.1, we
increase the blocksize β in increments of one in Step 2. However, we will present an
optimal strategy for increasing the blocksize in Section 3.6.

3.5.1 Sim-GS-lengths(n,β): Predicting Gram-Schmidt Lengths

In the following, we construct a simulator for predicting the Gram-Schmidt lengths ∥b∗i ∥
obtained from the plain BKZ algorithm of blocksize β.

Our simulator consists of two phases. First, we generate approximated GS-lengths
using Gaussian heuristics; we then modify it for the first and last indexes of GSA
in Section 3.3.1. We will explain how to compute (`1, . . . , `n) as the output of
Sim-GS-lengths(n,β).

First phase: Our simulator computes the initial value of (`1, . . . , `n).

We start from the last index by setting `n = 1, and compute `i backwards. From equations
(3.2) and (3.7) we are able to simulate theGS-lengths `i by solving the following equation
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of `i:

`i = max{
β′

β′ + 1
α, τβ′} ⋅GH(`i, . . . , `i+β′−1), where β′ = min(β,n − i + 1). (3.12)

Here, α is the optimized radius parameter in Section 3.4.3 and τβ′ is the coefficient of
the modified Gaussian heuristic.

This simple simulation in the first phase is sufficient for smaller blocksizes (β < 30).
However, for simulating larger blocksizes, we must modify the GS-lengths of the first
and last indexes in Section 3.3.1.

Second phase: To modify the results of the simple simulation, we consider our two
modifying methods described in Section 3.4.3. We recall that MINCost(β) is the
standard value of the enumeration cost of blocksize β.

We first consider the modification for the last indexes i > n − β + 1, i.e., a situation in
which the blocksize is smaller than β. We select the modified probability pi at index i so
that Sim-ENUMCost(`i, . . . , `n;αi, pi) = β ⋅MINCost(β), where `i, . . . , `n is the result
of the first simulation, and we use αi = (2/pi)n−i+1. After all (αi, pi) for n−β +1 ≤ i ≤ n

are fixed, we modify the GS-lengths by solving the following equation of `i again:

`i = max{
β′

β′ + 1
αi, τβ′} ⋅GH(`i, . . . , `n) where β′ = n − i + 1.

Next, using the modified (`1, . . . , `n), we again modify the first indexes as follows. We
determine the integer parameter b > 0 for the size of enlargement. For b = 1,2, . . ., we
reset the blocksize at index i as βi ∶= β+max{(b− i+1)/2, b−2(i−1)} for i ∈ {1, . . . , b}.
Using these blocksizes, we recompute the GS-lengths by solving equation (3.12) from
i = βi to 1. Then, we compute Sim-ENUMCost(`1, . . . , `β+b;α, p). We select the
maximum b such that this simulated enumeration cost is smaller than 2 ⋅MINCost(β).

Experimental result of our GS-lengths simulator: We performed some experiments
on the GS-lengths for some random lattices from the Darmstadt SVP Challenge [28].
We computed the GS-lengths for 120, 150 and 200 dimensions using the proposed
progressive BKZ algorithm, with ending blocksizes of 40, 60, and 100, respectively
(Note that the starting blocksize is irrelevant to the quality of the GS-lengths). The
simulated result is shown in Figure 3.5. Almost all small squares of the computed
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Figure 3.5: Left figure: Semi-log graph of ∥b∗i ∥ of reduced random lattices from
the SVP Challenge problem generator: Simulation (bold lines) vs. Experiment (small
squares). Right figure: The root Hermite factor of reduced random 300-dimensional

bases after BKZ-β. Simulation (bold red lines) vs. Experiment (thin blue lines).

GS-lengths are plotted on the bold line obtained by our above simulation. Our simulator
can precisely predict the GS-lengths of these lattices. The progress of the first vector,
which uses 300-dimensional lattices, is also shown in the figure.

3.5.2 Expected Number of BKZ Tours at Step 3

At Step 3 in the proposed algorithm (Algorithm 3) we iterate the BKZ tour with block-
size β as long as the full enumeration cost FEC(B) is larger than the simulated cost
Sim-FEC(n,β). In the following we estimate the expected number of BKZ tours (we
denote it as ♯ tours) at blocksize β.

In order to estimate ♯ tours, wefirst compute (`1, . . . , `n) and the output ofSim-GS-lengths(n,β−

1), and update it by using the modified Chen-Nguyen’s BKZ 2.0 simulator described in
Section 3.3.2, until Sim-FEC(`1, . . . , `n) is smaller than Sim-FEC(n,β). We simulate
a BKZ tour by updating the pair (`i, `i+1) to (`′i, `

′
i+1) for i = 1, . . . , n − 1 according to

the following rule:

`′i = max{
β
β+1α, τβ} ⋅GH(`i, . . . , `min(n,i+β−1))

and `′i+1 = `i+1 ⋅ (`i/`′i).

Note that the former one is more important than the latter, since the latter heuristic is to
make sure the accuracy of GH(⋅) in the former one. At the simulation of tth BKZ tour,
write the input GS-lengths (`′1, . . . , `

′
n); i.e., the output of the (t − 1)th BKZ tour. We
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further denote the output of tth BKZ tour as (`1, . . . , `n). Suppose they satisfy

Sim-FEC(`′1, . . . , `
′
n) > Sim-FEC(n,β) > Sim-FEC(`1, . . . , `n).

Then, our estimation of ♯ tours is the interpolated value:

♯ tours = (t − 1) +
Sim-FEC(`′1, . . . , `

′
n) − Sim-FEC(n,β)

Sim-FEC(`′1, . . . , `
′
n) − Sim-FEC(`1, . . . , `n)

. (3.13)

Note that we can use this estimation for other BKZ strategies, although we estimate the
number of BKZ tours from BKZ-(β −1) basis to BKZ-β basis, using BKZ-β algorithm.
We will estimate the tours for other combinations of starting and ending blocksizes, and
use them in the algorithm.

3.6 Optimizing Blocksize Strategy in Progressive BKZ

We propose how to optimally increase the blocksize β in the proposed progressive
BKZ algorithm. Several heuristic strategies for increasing the blocksizes have been
proposed. The following sequences of blocksizes after LLL-reduction have been used
in the previous literatures:

20 → 21 → 22 → 23 → 24 → ⋯ Gama and Nguyen [36]
2 → 4 → 8 → 16 → 32 → ⋯ Schnorr and Shevchenko [77],
2 → 4 → 6 → 8 → 10 → ⋯ Haque, Rahman, and Pieprzyk [43],
50 → 60 → 70 → 80 → 90 → ⋯ Chen and Nguyen [24, 25]

The timings for changing to the next blocksizewere not explicitly given. They sometimes
continue the BKZ tour until no update occurs as the original BKZ. In this section we
try to find the sequence of the blocksizes that minimizes the total cost of the progressive
BKZ to find a BKZ-β reduced basis. To find this strategy, we consider all the possible
combinations of blocksizes used in our BKZ algorithm and the timing to increase the
blocksizes.

Notations on blocksize strategy: We say a lattice basis B of dimension n is β-
reduced when FEC(B) is smaller than Sim-FEC(n,β). For a tuple of blocksizes
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(βalg, βstart, βgoal) satisfying 2 ≤ βstart < βgoal ≤ βalg, the notation

βstart
βalg

→ βgoal

is the process of the BKZ following algorithm. The input is a βstart-reduced basis B,
and the algorithm updates B using the tours of BKZ-βalg algorithm with parameters in
Section 3.4.3. It stops when FEC(B) < Sim-FEC(n,βgoal).

TimeBKZ(n,βstart
βalg

→ βgoal) is the computing time in seconds of this algorithm. We
provide a concrete simulating procedure in this and the next sections. We assume that
TimeBKZ is a function of n,βalg, βstart and βgoal.

To obtain a BKZ-β reduced basis from an LLL reduced basis, many blocksize strategies
are considered as follows:

βgoal0 = LLL
β
alg
1
→ βgoal1

β
alg
2
→ βgoal2

β
alg
3
→ ⋯

β
alg
D
→ βgoalD (= β). (3.14)

We denote this sequence as {(βalgj , βgoalj )}j=1,...,D, and regard it as the progressive BKZ
given in Algorithm 4.

Algorithm 4 Our progressive BKZ algorithm with blocksize strategy

Input: A lattice basis B of n dimensions, Blocksize strategy {(βalgj , βgoalj )}j=1,...,D.
Output: A βgoalD -reduced basis B.
1: B ← LLL(B);
2: for j = 1 to D do
3: while FEC(B) > Sim-FEC(n,βgoalj ) do
4: The same as Step 4-9 in Algorithm 3 with blocksize βalgj
5: end-while
6: end-for

3.6.1 Optimizing Blocksize Strategies

Our goal in this section is to find the optimal sequence that minimizes the total computing
time

D

∑
i=1

TimeBKZ(n,βgoali−1

β
alg
i
→ βgoali ) (3.15)

of the progressive BKZ algorithm to find a BKZ-βgoalD basis.
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Based on our experimental results, which are given in Section 3.7, we can estimate the
computing time of the BKZ algorithm:

TimeBKZ(n,βstart
βalg

→ βgoal) [sec.]

=
♯ tours
∑
t=1

[10−10 ⋅ (βalg)2n3 + 1.5 ⋅ 10−8 ⋅ βalg
n−1

∑
i=1

ENUMCost(Bi;α, p)]
(3.16)

when dimension n is small (n < 400), and

TimeBKZ(n,βstart
βalg

→ βgoal) [sec.]

=
♯ tours
∑
t=1

[2.5 ⋅ 10−4 n − βalg

250 − βalg
⋅ n2. + 1.5 ⋅ 10−8 ⋅ βalg

n−1

∑
i=1

ENUMCost(Bi;α, p)]

(3.17)
when dimension n is large (n ≥ 400). The difference is caused by the difference in the
types to compute Gram-Schmidt variables in implementation. The former and latter
implementation employ quad_float and RR (320 bits) respectively, where RR is the
arbitrary precision floating point type in the NTL library [79]. To compute ♯ tours
we use the procedure in Section 3.5.2. The input of the ENUMCost function is from
Sim-GS-lengths(n,βstart) at the first tour. From the second tour, we use the updated
GS-lengths by the Chen-Nguyen’s simulator with blocksize βalg.

Using these computing time estimations, we discuss how to find the optimal blocksize
strategy (3.14) that minimizes the total computing time. In this optimizing procedure,
the input consists of n and β, the lattice dimension and the goal blocksize. We denote
TimeBKZ(n,βgoal) to be the minimized time in seconds to find a β-reduced basis from
an LLL reduced basis, that is, the minimum of (3.15) from among the possible blocksize
strategies. By definition, we have

TimeBKZ(n,βgoal) = min
β′,βalg

{TimeBKZ(n,β′) +TimeBKZ(n,β′
βalg

→ βgoal)}

where we take the minimum over the pair of blocksizes (β′, βalg) satisfying β′ < βgoal ≤
βalg.

For the given (n,β), our optimizing algorithm computes TimeBKZ(n, β̄) from small
β̄ to the target β̄ = β. As the base case, we define that TimeBKZ(n,20) represents the
time to compute a BKZ-20 reduced basis using a fixed blocksize, starting from an LLL
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reduced basis:

TimeBKZ(n,20) ∶= min
βalg

{TimeBKZ(n,LLL
βalg

→ 20)}.

3.6.2 Simulating Time to Find Short Vectors in Random Lattices

In this section, we give our simulating result of finding short vectors for random lattices.
For the given lattice dimension n and the target length, we simulate the necessary BKZ
blocksize β so that `1 of Sim-GS-lengths(n,β) is smaller than the target length. Then,
we simulate TimeBKZ(n,β) by using the method in Section 3.6.1.

As an example, in Table 3.2, we show the optimized blocksize strategy and computing
time to find a 102-reduced basis in n = 600 dimension. We estimate blocksize 102 is
necessary to find a vector shorter than n ⋅ det(L)1/n, which is the condition to enter the
Hall of Fame in the Approximate Ideal Lattice Challenge [29].

Table 3.2: The optimized blocksize strategy and computational time in seconds in
600-dimensional lattice.

βalg

→ βgoal LLL 32
→ 21

50
→ 36

58
→ 46

65
→ 55

71
→ 61

75
→ 70

81
→ 76

85
→ 84

log2(Time [sec.]) 15.61 15.86 16.04 16.21 16.31 16.51 16.70 17.07
βalg

→ βgoal
89
→ 88

91
→ 90

93
→ 92

99
→ 98

101
→ 100

103
→ 102

log2(Time [sec.]) 17.42 17.67 17.97 18.89 19.49 20.09

Table 3.3 shows the blocksize and predicted total computing time in seconds to find
a vector shorter than n ⋅ GH(L) (this corresponds to the n-approximate SVP from
the learning with errors problem [69].), n ⋅ det(L)1/n (from the Approximate Ideal
Lattice Challenge published in Darmstadt [29]), and

√
n ⋅GH(L). For comparison, the

simulating result of BKZ 2.0 is given to find n⋅det(L)1/n. Recall that their estimated cost
in seconds is given by ♯ENUM/2 ⋅107. From Table 3.3, our algorithm is asymptotically
faster than BKZ 2.0. Moreover, it is remarkable that we solved Ideal Lattice Challenge of
600 and 652 dimensions in the exact expected times of 220.7 and 224.0 seconds respectively
by our improved progressive BKZ.
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Table 3.3: Simulated log2(Time [sec.]) of our algorithm and BKZ 2.0 for large
dimensions to find short vectors. The time is after LLL-reduced basis. Because the
estimate for BKZ 2.0 is only the cost for enumeration, our algorithm appears to be slow

in small blocksizes.

Goal n ⋅GH(L) n ⋅ det(L)1/n √

n ⋅GH(L)

n β log2(Ours) β log2(Ours) log2(BKZ 2.0) β log2(Ours)

600 35 15.8 102 20.1 16.0 145 38.4
650 45 16.6 114 24.3 21.9 157 51.0
700 59 17.3 124 28.3 28.2 169 60.4
800 100 20.8 144 38.6 41.3 193 82.1

3.6.3 Comparing with Other Heuristic Blocksize Strategies

In this section, we compare the blocksize strategy of our progressiveBKZ inAlgorithm4.
Using a random 256-dimensional basis, we experimented and simulated the progressive
BKZ to find a BKZ-128 reduced basis with the three following strategies:

2
4
→ 4

8
→ 8

16
→ 16

32
→ 32

64
→ 64

128
→ 128

(Schnorr-Shevchenko’s doubling strategy [77])
2

20
→ 20

21
→ 21

22
→ 22

23
→ 23

24
→ 24

25
→⋯

128
→ 128

(Simplest step-by-step in Algorithm 3)
2

30
→ 20

35
→ 25

39
→ 29

43
→ 33

47
→ 37

48
→⋯

128
→ 128

(Optimized blocksize strategy in Algorithm 4)

In experiment, our simple and optimized strategy takes about 27.1 minutes and about
11.5 minutes respectively to achieve BKZ-64 basis after the LLL reduction. On the
other hand, Schnorr-Schevchenko’s doubling strategy takes about 21 minutes.

After then, the doubling strategy switches to BKZ-128 and takes about 14 single-core
days to process the first one index, while our strategies comfortably continues the
execution of progressive BKZ.

Our simulator predicts that it takes about 225.3, 225.1 and 237.3 seconds to finish BKZ-128
by our simple, optimized, and Schnorr-Schevchenko’s doubling strategy, respectively.
Our strategy is about 5000 times faster than the doubling strategy.

Interestingly, we find that the computing time of simple blocksize strategy is close to
that of optimized strategy in many simulations when the blocksize is larger than about
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100. Hence, the simple blocksize strategy would be better than the optimizing blocksize
strategy in practice, because the latter needs a heavy precomputing as in Section 3.6.1.

3.7 Our Implementation and Cost Estimation for Pro-
cessing Local Blocks

In this section we describe how to derive the estimation of the computing times of
equations (3.16) and (3.17) of Step 3-10 in Algorithm 3. The total computing time is
the sum of times to process local blocks (corresponds to Step 5-8 in Algorithm 3):

TimeBKZ(n,βstart
βalg

→ βgoal) =
♯ tours
∑
t=1

n−1

∑
i=1

[Time of processing local block Bi with parameters (α, p) ].
(3.18)

Because ♯ tours is already given in Section 3.5.2, we consider the factor of time of
processing local block Bi.

Algorithm 5 One BKZ tour of our implementation to process the local block. These
lines correspond to Step 5-8 in Algorithm 3.
5-1: Compute the Gram-Schmidt lengths ∥b∗i ∥ and coefficients µij
corresponding to the local block Bi of blocksize β′ = min(β,n − i + 1)

5-2: Set (α, p) for Bi using the setting in Section 3.4.3;
6-1: Set near optimized pruning coefficients (R1, . . . ,Rβ) for (Bi, α, p);
6-2: Preprocess Bi by the simple version of progressive BKZ in Section 3.7.1;
6-3: if enumeration cost for Bi computed using (αp,R1, . . . ,Rβ) is large
then optimize the bounding function;

7: {v1, . . . ,vh}← (lattice enumeration for Bi using (αp,R1, . . . ,Rβ));
8-1: Construct the degenerated basis (b1, . . . ,bi−1,vi1 , . . . ,vig ,bi, . . . ,bi+β′−1);
8-2: Apply the LLL algorithm to the basis (b1, . . . ,bi−1,vi1 , . . . ,vig ,bi, . . . ,bi+β′−1)

and erase the zero vectors.
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For the details of analysis, we introduce a pseudo-code of our implementation in Algo-
rithm 5. We decompose the running time over the internal summation as follows.

n−1

∑
i=1

(Time of processing local block Bi with parameters (α, p)) =

TimeGS + TimeOptimize + TimePreprocess + TimeEnum + TimeLLL +misc,

(3.19)

where TimeGS is for Step 5-1, TimePreprocess is for Step 6-2, TimeOptimize is for
6-3, TimeEnum is for Step 7, and TimeLLL is the time for Step 8-2. Note that the
miscellaneous part is the time for all the other steps including the memory allocation
and vector insertion which are negligible.

In the rest of this section, we introduce our implementation1 and give a rough estimating
formula of computing times with some order notations. (Section 3.7.1 and 3.7.2.) Then,
we fix the rational coefficients by using the experimental results. Although some of
implementing techniques are folklore or trivial, we give them for the completeness of
the paper.

How to construct the degenerated basis in Step 8-1: Suppose we have a set of vectors
v1, . . . ,vh found in Step 7. First, compute the projections of vi onto b1, . . . ,bi−1 and
let vi1 be the vector with shortest projection. After choosing the gth vector, vig , the
next vector vig+1 is selected as follows. Compute the projections ∥π′(vi)∥ of vi onto
b1, . . . ,bi−1,vi1 , . . . ,vig . If there exists i such that 0 < ∥π′(vi)∥ < ∥b∗i+g−1∥, then vig+1

is vi that minimizes ∥π′(vi)∥; otherwise, stop this process and output the degenerated
basis (b1, . . . ,bi−1,vi1 , . . . ,vig ,bi, . . . ,bi+β′−1).

1 We published our implementation of our BKZ on the NICT webpage. Please go to
pbkz-info@ml.nict.go.jp for the details.
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3.7.1 Implementation andTimeEstimation of Step 6 and7: TimeOptimize+
TimePreprocess + TimeEnum

We give the details of our implementation from Step 6 to 7 in Algorithm 5. The goal of
this section is to justify

TimeOptimize + TimePreprocess + TimeEnum

=W ⋅ β ⋅
n−1

∑
i=1

Sim-ENUMCost(`′i, . . . , `
′
i+β−1;α, p)

(3.20)

by using a constant W which we will determine in Section 3.7.4. Here, `′i, . . . , `′i+β−1

is a part of output of Sim-GS-lengths(n,β) or its updated values by the simulator in
Section 3.5.1.

Computing bounding coefficients: In Step 6-1, we use Aono’s precomputing technique
[8] to generate the bounding coefficients R1, . . . ,Rβ for pruning in the enumeration
algorithm in Section 3.2.1. We fix this bounding function to predict the enumeration
cost in the preprocessing step 6-2 (see the next paragraph). After preprocessing, in
Step 6-3, we search better bounding coefficients if the expected number of enumeration
searching nodes is larger than 108, which corresponds to a few seconds in a single
thread. The procedure for finding a better bounding coefficients is the simple algorithm
that considers random perturbations of (R1, . . . ,Rβ) as the strategy in [25].

TimeOptimize is the sum of the computing time in Step 6-1 and 6-3. It is significantly
smaller than the cost of lattice vector enumeration. In small blocksizes, Step 6-1 can
be done in about 100 milliseconds and Step 6-3 is skipped. Thus, TimeOptimize ≈

0. Moreover, since the precomputing technique outputs R1, . . . ,Rβ as a function of
the dimension β, target probability and target GSA constant, we can reuse them in
implementation. Thus, the computing times of these steps are very small. Note that the
target GSA constant is computed from the line fitting by the least square method to the
points (i, log2 ∥b

∗
i ∥) when the GS-lengths (∥b∗i ∥, . . . , ∥b∗i+β−1∥) is given.

On the other hand, for large blocksizes (larger than about 80), the time for lattice vector
enumeration is much larger than that of optimization in Step 6-3. Therefore, we can
assume TimeOptimize ≪ TimeEnum in the both situations.
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Implementation of preprocess step: In Step 6-2, we use our progressiveBKZalgorithm
proposed in this paper with small blocksizes. It starts with the blocksize β̄ = 15 and
increases β̄ one by one when FEC(Bi) < Sim-FEC(β, β̄).

At the end of each tour, we compute ENUMCost(Bi;α, p)/persec as the estimation for
the time of main enumeration. Here, ENUMCost(Bi;α, p) is estimated by using near
optimized coefficients generated in Step 6-1. We note that if the bounding coefficients
R1, . . . ,Rβ are fixed, the volume factors in the equation (3.1) are also fixed. Thus,
computing the table of volume factors Vk, we can easily compute the expected number
of processed nodes as

N =
1

2

β

∑
k=1

Vk

∏
β
j=β−k+1 ∥b

∗
i+j−1∥

.

during the preprocessing.

persec is the number of processed nodes in lattice vector enumeration in one second,
which can be determined from our preliminary benchmark. It is about 6.0 ⋅ 107 at
the maximum in a single threaded implementation. On the other hand, it slows down
to about ♯ threads × 3.0 ⋅ 107 when we use the multi-threaded programming. In our
implementation, we use 12 threads which can process about 3.0 ⋅ 108 nodes in one
second. During the preprocessing, we obtain several lattice bases in the ends of tours.
We keep the basis that takes minimum ENUMCost(Bi;α, p) among them and also
keep its minimized cost. The preprocessing subroutine terminates when the elapsed
(wallclock) time exceeds the kept minimum cost in seconds scaled by the benchmark
result. We use the minimum pair (B, cost) for the preprocessing output.

Because our preprocessing subroutine works in a single thread, TimePreprocess is pro-
portional to the recorded minimum cost. While the actual time for the enumeration
decreases by the optimizing bounding coefficients, we do not consider it and assume
that TimePreprocess = APreprocess ⋅ TimeEnum by a constant APreprocess.

Implementation of enumeration step: In Step 7, we implement our modified version
of the lattice vector enumeration subroutine in the NTL library. In order to speed up,
we use double type to keep the Gram-Schmidt coefficients and lengths during the
enumeration while the original version uses quad_float. In addition, we use assembly
codes optimized for a latest CPU.
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Figure 3.6: Maximum (left)/Average (right) of the number of nodes during the first
tour at blocksize β

In the lattice enumeration subroutine, we find many vectors whose projective lengths
are small, although their non-projective lengths are not small enough. In our implemen-
tation, we store the first h = 16 vectors ordered in the lexicographic order of the pair
(β − k, ∥πβ−k(v)∥) satisfying ∥πβ−k(v)∥ ≤ Rk+1. After the enumeration, the output is
the stored vectors v1, . . . ,vh.

Our model and cost estimation of the enumeration step: To estimate TimeEnum, we
performed experiments to compare the numbers of processed nodes and the simulated
values.

Figure 3.6 shows the maximum and average of the number of processed nodes during the
first tour of our progressive BKZ of blocksize β using random lattices of 300 dimensions.
The symbol “+” indicates the actual number of nodes during the enumeration subroutine,
while the bold curve is themaximumand average ofSim-ENUMCost(`i, . . . , `i+β−1;α, p)

for i = 1, . . . , n−β+1, where (`1, . . . , `n) is the output of simulatorSim-GS-lengths(n,β−

1) in Section 3.5.1 and (α, p) is from Section 3.4.3.

As we can see in Figure 3.6, the numbers of processed nodes in our experiment are larger
than the simulated numbers. This phenomenon is mainly caused by the basis updating,
i.e., the vector inserting process in Step 8 in Algorithm 5. By inserting found vectors,
the GS-lengths are changed and the corresponding enumeration cost is increased.

From the above experiments, we find the maximum of actual number of nodes is about
0.25β times the maximum of Sim-ENUMCost(`i, . . . , `i+β−1;α, p) (See the left-hand
side of Figure 3.6). A similar proportional relation is found in the average number of
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nodes (the right-hand side of the figure). Therefore, we assume the actual number of
processed nodes during one BKZ tour for the basis whose GS-lengths are (`1, . . . , `n) is

AEnum ⋅ β ⋅
n−1

∑
i=1

Sim-ENUMCost(`i, . . . , `i+β′−1;α, p),

where AEnum is a rational constant. Thus, TimeEnum in seconds is this value divided
by persec (the number of processed nodes in one second in a single thread).

Total computing time in seconds in Step 6 and 7: Summarizing the above argument,
we have

TimeOptimize + TimePreprocess + TimeEnum [sec.]

=
(APreprocess + 1) ⋅AEnum ⋅ β ⋅∑

n−1
i=1 Sim-ENUMCost(`′i, . . . , `

′
i+β′−1;α, p)

persec
.

Hence, lettingW = (APreprocess+1) ⋅AEnum ⋅/persec, we get the equation (3.20). Note
that we regard AOptimize = 0.

3.7.2 Estimating Time of Step 5-1 and 8-2: TimeGS+TimeLLLwhen
the lattice dimension is small

In this section, we introduce our implementation to compute the GS-variables (i.e., the
Gram-Schmidt lengths ∥b∗i ∥ and the coefficients µij) used from Step 5-2 to 6-3. Then
we show how to update these values in Step 8-2. In our implementation, we use the
different precision types to treat GS-variables. If the lattice dimension n is smaller than
400, we compute and keep the GS-variables by using the quad_float type variables.
Otherwise, we compute and keep them by using RR types which will be explained the
detail in the next subsection.

In small dimensions n < 400, we keep GS-variables in the quad_float type and
compute them directly. In short, Step 5-1 merely consists of copying the necessary parts
∥b∗i′∥ and µi′j′ for i′ ∈ {i, . . . , i + β′ − 1} and j′ ∈ [i′] that corresponds to the local block
Bi.

In Step 8-2, we apply the LLL algorithm to the degenerated basis consisting of the
i + β′ − 1 + g vectors. Since we can assume that the first part of basis (b1, . . . ,bi−1) is
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LLL reduced, the number of swaps can be approximated by that of the LLL algorithm
for the basis consists of β′ + g vectors (πi(vi1 , . . . ,vig ,bi, . . . ,bi+β′−1)).

Hence, from the standard analysis of LLL [64], the number of swaps is Θ((β′ + g)2) =

Θ(β2), and each swap requires the procedure for updating theGram-Schmidt coefficients
that takes Θ(n2) floating point operations when the basis vectors are given bym = O(n)

dimensional vectors 2.

Thus, the required number of floating point operations in Step 8-2 is Θ(β2n2), and the
total computational time in seconds in one BKZ tour is

TimeGS + TimeLLL =
n−1

∑
i=1

Θ(n2 ⋅ β2) = A1 ⋅ β
2n3[sec.] (3.21)

with a rational constant A1.

In this standard implementation using quad_float type, i.e., LLL_QP subroutine in
NTL, about 400 dimension is the limit of stable computing in practice and the loss-
of-precision error occurs in larger n. If we simply replace quad_float with another
high precision type such as RR to avoid this error, the computing time must increase
significantly. Several implementing techniques to reduce the cost of LLL have been
proposed. One idea that we employ is to extract small local block by using small
precision variables as in the next subsection.

3.7.3 Estimating Time of Step 5-1 and 8-2: TimeGS+TimeLLLwhen
the lattice dimension is large

To compute the LLL algorithm correctly, we need to compute the GS-variables in a
sufficient accuracy. A naive method using a high precision floating point variables takes
a large cost for large dimensional lattices, e.g., LLL_RR function in the NTL library. To
decrease such costs, we introduce a heuristic algorithm using two types of floating point
numbers that is used after the vector insertion in Step 8. Although it is a folklore among
the programmers, we precisely define it to analyze the computational cost.

2If we treat a larger dimensionm≫ n, we need to consider an additional termO(mn) of computational
cost.
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We use the notations (mutypei,j ,ctypei ) to denote the variables µij and ∥b∗i ∥ using type ∈

{qf,RR} by which we can treat floating point numbers. Here, qf is the shortened form
of quad_float.

In our implementation, we use (muRRi,j ,cRRi ) to store the all GS-variables, and we also use
(muqfi,j ,c

qf
i ) as a “temporary cache” that stores the GS-variables of a projective sublattice

to process local blocks as shown in Algorithm 5. Hence, a significant amount of basis
updating (Step 8-2 in Algorithm 5) can be done efficiently within the cache variables
with small precision, and the update of (muRRi,j ,cRRi ) does not occur frequently.

We can assume the GS-variables (muRRi,j ,cRRi ) of the basis are computed at the start point
of Step 5-1, since they are computed in the LLL algorithm in Step 1 in Algorithm 3, or
computed in the end of the previous loop.

Implementation: In our experiments, we use RR as the RR type with the 320 bit
precision of the NTL library. The temporary cache is stored as a H ×H matrix where
we set H = 250.

Our implementation is described as follows. In the first step of our BKZ algorithm
(Step 1 in Algorithm 4), we compute the GS-variables of the LLL-reduced basis and
store them to (muRRi,j ,cRRi ). From these high precision variables, we compute the cached
values (muqfi,j ,c

qf
i ) of sizeH starting from index I by constructing a new basis defined by

the following matrix

Bcache =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∥b∗I∥

∥b∗I+1∥ ⋅ µI+1,I ∥b∗I+1∥

⋮ ⋱

∥b∗I+H−1∥ ⋅ µI+H−1,I ⋯ ⋯ ∥b∗I+H−1∥

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, the corresponding GS-variables are merely the copies of (muRRi,j ,cRRi ). This tempo-
rary cache contains the GS-variables of the index from I to I +H − 1. We also keep the
information on how the basis matrix is changed by processing the local block (Step 6-2 to
8-2 in Algorithm 5). The information is a unimodular matrix U that generates the basis
Bcache2 after processing and the basis Bcache before processing: Bcache2 = U ⋅ Bcache.
(We can directly obtain U at Step 8-2, before shifting to the next cache.)
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In Step 5-1, we check whether the indexes [i ∶ i + β − 1] of local block are a subset
of the cache indexes [I ∶ I + H − 1]. Here we recall that the notation [I ∶ J] is the
set of integers between I and J . If these are not contained, we update the entire basis
by multiplying the unimodular matrix U to the part of the basis (bI , . . . ,bI+H−1), and
then apply the LLL algorithm to (b1, . . . ,bn). After applying the LLL algorithm, the
updated (muRRi,j ,cRRi ) is computed. To process the local block, we once again compute the
cache (muqfi,j ,c

qf
i ) with the starting index I = i and size H = min(250, n − I + 1). By this

process, we can assume [i ∶ i + β − 1] ⊂ [I ∶ I +H − 1] at Step 5-2 and the remaining
part can be computed by using the cached variables.

Computational time: We estimate the number of floating point operations for
quad_float and RR variables. First, to estimate the cost of computation in RR vari-
ables, we consider when the entire basis is updated. Since the index starts at i = 1 in
Algorithm 5, the index range of the cache at this time is [1 ∶ H]. By the fact that the
blocksize is β, the updating process at Step 5-1 is occurred at the index i = 2 +H − β

and the new cache is from the indexes [2 +H − β ∶ 2H − β + 1]. By the same argument,
the jth updating is in the index j + (H − β)(j − 1), and the corresponding indexes are
[j + (H − β)(j − 1) ∶ min(jH − (j − 1)(β − 1), n)]. Hence, the number T of the entire
updating in one BKZ tour is the minimum integer T so that TH − (T − 1)(β − 1) > n

and we have T ≈ (n − β)/(H − β).

In Step 5-1, we need to compute the multiplication by the unimodular matrix U and
the LLL reduction in the large precision. We assume that the computational cost of the
LLL is approximated by the time for computing the GS-variables in the caches because
the updated basis is nearly LLL reduced. It is Θ(n2 ⋅H) because Θ(n2) floating point
operations are required to compute one b∗i . The number of multiplication operations by
U is O(n ⋅H2). Thus, the cost at Step 5-1 is Θ(n2 ⋅H)+O(n ⋅H2) = Θ(n2 ⋅H), and in
total Θ(T ⋅ n2 ⋅H) throughout one BKZ tour.

On the other hand, the cost to update the local temporary cache in quad_float vari-
ables is Θ(β2H2). We neglect this in our model for the large dimensions because the
operations in RR are significantly heavier than that in quad_float from the preliminary
experiments.
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Therefore the total cost throughout one BKZ tour is as follows:

TimeGS + TimeLLL = Θ(T ⋅ n2 ⋅H) = A2 ⋅
n − β

H − β
⋅ n2H [sec.]. (3.22)

The rational constant A2 will be fixed by the computer experiments.

3.7.4 Experimental Coefficient Fitting

Substituting equations (3.20), (3.21) and (3.22) to equation (3.19), we obtain our formu-
las for estimating the computational time of the progressive BKZ algorithm. For small
dimensions (< 400) using only quad_float type of computing the GS-variables, the
estimated computational time for finding a BKZ-βgoal reduced basis is as follows:

TimeSim-small(dim,β,A1,W1) =

βgoal

∑
βstart

♯ tours
∑
t=1

[A1 ⋅ β
2n3 +W1 ⋅ β

n−1

∑
i=1

ENUMCost(Bi;α, p) ][sec.].
(3.23)

The computational time for the large dimensions is as follows:

TimeSim-large(dim,β,A2,W2) =
βgoal

∑
βstart

♯ tours
∑
t=1

[A2 ⋅
n − β

H − β
⋅Hn2 +W2 ⋅ β

n−1

∑
i=1

ENUMCost(Bi;α, p)][sec.].
(3.24)

In this section, we conduct the computer experiments with the simple blocksize strategy:

2
20
→ 20

21
→ 21

22
→ 22

23
→ 23

24
→ 24

25
→⋯

and then we estimate the undefined variables W1, W2, A1 and A2 by the experimental
computing time after BKZ-55, i.e., βstart = 55.

Generating method of test lattice bases: The input bases are the Goldstein-Mayer
type random lattices generated by the SVP Challenge problem generator. The instance
of SVP Challenge problem has three parameters: lattice dimension n, random seed s,
and the bit-length parameter b. The determinant of the generated lattice is equal to a
prime p ≈ 2bn, where the default value of b is 10 to generate the published challenge
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problems. However, if we use b = 10, then ∥b∗i ∥ = 1 holds for some last indexes i after
the LLL and BKZ with a small blocksize. When the basis has basis vectors of ∥b∗i ∥ = 1

in last indexes, the FEC of basis does not indicate the reduction level correctly and fails
to increase the blocksize in sharp timings. Indeed, this basis yields no sharp estimation
from our preliminary experiments.

To prevent this, we take b = max(10, ⌈n/20⌉) for basis generation so that ∥b∗n∥ > 1 holds
after the LLL reduction.

Finding the coefficients: The experiments are conducted using a server with two Intel
Xeon CPU E5-2697@2.70GHz processors. The small squares in Figure 3.7 indicate
the single-core seconds of finishing the BKZ-β algorithm. We let the CPU times of
lattice reductions for computing a BKZ-β reduced basis of n dimensional basis be
TimeExp(n,β). In other words, we exclude the time of memory allocation, generating
pruning coefficients, computing Sim-GS-lengths(n,β) and corresponding FEC. We
also exclude the computing time of LLL reduced basis of an input lattice.

Figure 3.7: Result of our parameter fitting for cost estimation. Left Figure: im-
plementation described in Section 3.7.2. Right Figure: implementation described in
Section 3.7.3. In both graphs, experimental results are plotted by small squares and the

simulating results are drawn in bold lines.

We find the suitable coefficients (A1,W1) by using the standard curve fitting method in
semi-log scale, which minimize

∑
dim∈{200,300}

∑
β=55

∣log (T (dim,β,A1,W1)) − log (TimeExp(dim,β))∣
2

,

where T (dim,β,A1,W1) = TimeSim-large(dim,β,A1,W1) in the small dimensional
situation. For the large dimensional situation, we use the result of dim ∈ {600,800} to
fix A2 andW2.
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We find suitable coefficients

A1 = 10−10 and W1 = 1.5 ⋅ 10−8

A2 = 10−6 and W2 = 1.5 ⋅ 10−8.
(3.25)

The fitting results are given in Figure 3.7. Using the equations (3.23) and (3.24) with
the above coefficients (3.25), we can estimate the computing times of our progressive
BKZ algorithm.

3.8 Pre/Post-Processing the Entire Basis

In this section, we consider an extended strategy that enhances the speed of our progres-
sive BKZ by pre/post-processing the entire basis.

In preprocessing we first generate a number of randomized bases for input basis. Each
basis is then reduced by using the proposed progressive BKZ algorithm. Finally we
perform the enumeration algorithm for each reduced basis with some low probability
in the post-processing. This strategy is essentially the same as the extreme pruning
technique [37]. However, it is important to note that we do not generate a randomized
basis inside the progressive BKZ. Our simulator for the proposed progressive BKZ is
so precise that we can also estimate the speedup by the pre/post-processing using our
simulator.

3.8.1 Algorithm for Finding Nearly Shortest Vectors

In the following, we construct an algorithm for finding a vector shorter than γ ⋅GH(L)

with a reasonable probability using the strategy above, and we analyze the total comput-
ing time using our simulator for the BKZ algorithm.

Concretely, for given lattice basis B of dimension n, the preprocessing part generates
M randomized basesBi = UiB by multiplying unimodular matrices Ui for i = 1, . . . ,M .
Next, we apply our progressive BKZ for finding the BKZ-β reduced basis. The cost
to obtain the randomized reduced bases is estimated by M ⋅ (TimeRandomize(n) +
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TimeBKZ(n,β)). Here, TimeRandomize includes the cost of generating a ran-
dom unimodular matrix and matrix multiplication, which is negligibly smaller than
TimeBKZ in general. Thus we assume the computational cost for lattice reduction is
M ⋅TimeBKZ(n,β).

Finally, in the post-processing part, we execute the standard enumeration algorithm with
the searching radius parameter α = γ and probability parameter p = 2 ⋅ γ−n/M . As
with the similar argument in Section 3.4.1, there exist about γn/2 short vector pairs in
Balln(γ ⋅ GH(L)). Therefore, the probability that one enumeration finds the desired
vector is about (γn/2) ⋅ (2 ⋅ γ−n/M) = 1/M and the total probability of success is
1 − (1 − 1/M)M ≈ 0.632.

Consequently, the total computing cost in our model is

M ⋅ (TimeBKZ(n,β) +
ENUMCost(B;γ, p = 2 ⋅ γ−n/M)

6 ⋅ 107
) [sec.], (3.26)

where TimeBKZ(n,β) and ENUMCost(B;γ, p) are defined by Section 3.6.1 and
Section 3.2.1, respectively. We can optimize this total cost by finding the minimum
of formula (3.26) over parameter (β,M). Here, note that the constant 6 ⋅ 107 comes
from our best benchmark record of lattice enumeration. In Table 3.4, we provide the
detailed simulating result with setting γ = 1.05 to analyze the hardness of the Darmstadt
SVP Challenge in several dimensions. A comparison with previous works are given in
Section 3.9 (See the line C in Figure 3.8).

3.8.2 Lower Bound of the Cost by an Idealized Algorithm

Here we discuss the lower bound of the total computing cost of the proposed progressive
BKZ algorithm (or other reduction algorithm) with the pre/post-processing.

The total cost is estimated by the sumof the computational time for the randomization, the
progressive BKZ algorithm, and the enumeration algorithm by the following extremely
idealized situations. Note that we believe that they are beyond the most powerful
cryptanalysis which we can achieve in the future, and thus we say that this is the lower
bound in our model.
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(a)The cost for the randomization becomes negligibly small. The algorithm for ran-
domizing the basis would not only be the method of multiplying random unimodular
bases, and we could find an ideal randomization at a negligibly small cost. Thus,
TimeRandomize(n) = 0.

(b)The cost for the progressive BKZ algorithm does not become lower than that of
computing the Gram-Schmidt lengths. Even though the progressive BKZ algorithm
ideally improved, we always need the Gram-Schmidt basis computation used for the
enumeration algorithm or the LLL algorithm. The computation of the Gram-Schmidt
basis (even though the computation is performed in an approximation using floating
point operations with a sufficient precision) includes Θ(n3) floating point arithmetic
operations via the Cholesky factorization algorithm (See, for example [65, Chapter 5]).
A modern CPU can perform a floating point operation in one clock cycle, and it can
work at about 4.0GHz. Thus, we assume that the lower bound of the time in seconds is
(4.0 ⋅ 109)−1 ⋅ n3.

(c)The reduced basis obtained by the progressive BKZ (or other reduction algorithm)
becomes ideally reduced. We define the simulated γ-approximate HKZ basis Bγ-HKZ
by a basis satisfying

∥b∗i ∥ = τn−i+1GH(L[i∶n]) for i = 2, . . . , n and ∥b1∥ = γ ⋅GH(L).

For any fixed γ and p, we assume this basis minimizes the cost for enumeration over any
basis satisfying ∥b1∥ ≥ γ ⋅GH(L).

Therefore, the lower bound of the total cost of the idealized algorithm in seconds is
given by

min
M∈N

M ⋅ ((4.0 ⋅ 109)−1 ⋅ n3 +
ENUMCost(Bγ-HKZ ;α, p/M)

6 ⋅ 107
) . (3.27)

Setting γ = 1.05, we analyze the lower bound cost to enter the SVP Challenge. (See the
line D in Figure 3.8).
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Table 3.4: The cost of solving SVP Challenge using our optimal blocksize strategy

dim. M log2(Time [sec.]) optimal blocksize strategy in Section 3.6
100 5 10.8 LLL

23→ 20
34→ 32

40→ 37
43→ 41

48→ 47
50→ 49

59→ 58
70→ 69

80→ 79

110 9 15.5 LLL
23→ 20

34→ 31
40→ 38

47→ 43
48→ 47

51→ 49
61→ 59

71→ 70
80→ 79

89→ 89
96→ 96

120 9 20.3 LLL
23→ 20

34→ 29
40→ 37

48→ 47
49→ 48

54→ 52
62→ 60

71→ 70
80→ 80

88→ 88
95→ 95

99→ 99
103→ 103

108→ 107

130 36 25.2 LLL
23→ 20

34→ 32
43→ 40

48→ 47
50→ 48

54→ 51
57→ 55

64→ 62
71→ 70

77→ 77
86→ 86

93→ 93
97→ 97

101→ 101
105→ 105

110→ 110
116→ 115

140 81 30.3 LLL
23→ 20

34→ 30
40→ 36

48→ 47
52→ 50

57→ 54
64→ 61

70→ 68
78→ 77

86→ 86
93→ 93

97→ 97
100→ 100

103→ 103
106→ 106

110→ 110
114→ 114

118→ 117
123→ 122

150 156 35.7 LLL
23→ 20

34→ 29
40→ 37

47→ 44
49→ 48

56→ 54
64→ 60

67→ 65
74→ 72

80→ 79
86→ 86

93→ 93
95→ 95

99→ 99
101→ 101

103→ 103
106→ 106

109→ 109
113→ 113

117→ 117
121→ 121

124→ 123
128→ 127

132→ 130

160 327 41.2 LLL
23→ 20

34→ 29
40→ 36

48→ 47
52→ 49

59→ 57
64→ 61

69→ 66
73→ 71

80→ 78
86→ 85

93→ 93
95→ 95

99→ 99
101→ 101

104→ 104
107→ 107

110→ 110
113→ 113

116→ 116
119→ 119

122→ 122
126→ 126

130→ 129
133→ 132

139→ 137

170 343 46.9 LLL
23→ 20

34→ 29
40→ 37

48→ 47
54→ 52

62→ 60
69→ 65

73→ 70
77→ 75

83→ 81
88→ 87

93→ 93
97→ 97

100→ 100
103→ 103

106→ 106
109→ 109

112→ 112
115→ 115

118→ 118
121→ 121

124→ 124
126→ 126

129→ 129
132→ 131

134→ 133
137→ 136

139→ 138
141→ 139

145→ 143
149→ 146

180 782 52.9 LLL
23→ 20

34→ 28
40→ 36

48→ 47
50→ 48

59→ 57
67→ 65

74→ 70
78→ 75

82→ 80
88→ 86

93→ 92
97→ 97

101→ 101
104→ 104

107→ 107
110→ 110

113→ 113
116→ 116

119→ 119
122→ 122

124→ 124
126→ 126

129→ 129
132→ 132

134→ 134
137→ 136

139→ 138
141→ 140

144→ 143
147→ 145

152→ 150
156→ 153

190 1431 59.0 LLL
23→ 20

34→ 28
40→ 36

48→ 47
54→ 52

64→ 62
72→ 70

77→ 74
81→ 78

84→ 82
89→ 87

92→ 91
93→ 93

95→ 95
99→ 99

103→ 103
107→ 107

110→ 110
113→ 113

116→ 116
119→ 119

122→ 122
124→ 124

126→ 126
129→ 129

131→ 131
133→ 133

136→ 136
138→ 138

142→ 141
145→ 144

148→ 147
150→ 149

154→ 152
157→ 155

160→ 157
163→ 160

200 3648 65.5 LLL
23→ 20

34→ 27
40→ 35

48→ 47
52→ 50

60→ 58
67→ 66

76→ 74
83→ 82

88→ 86
92→ 90

95→ 94
98→ 98

101→ 101
103→ 102

104→ 104
107→ 107

110→ 110
113→ 113

116→ 116
119→ 119

122→ 122
124→ 124

126→ 126
129→ 129

131→ 131
133→ 133

136→ 136
139→ 139

142→ 142
144→ 144

148→ 147
149→ 148

152→ 151
155→ 154

156→ 155
159→ 157

163→ 161
166→ 163

169→ 166

210 11979 72.1 LLL
23→ 20

34→ 27
40→ 35

48→ 47
56→ 54

65→ 63
74→ 73

81→ 80
87→ 84

89→ 87
93→ 93

98→ 97
99→ 99

101→ 101
103→ 103

105→ 105
107→ 107

110→ 110
113→ 113

116→ 116
119→ 119

122→ 122
124→ 124

126→ 126
129→ 129

131→ 131
133→ 133

136→ 136
138→ 138

141→ 141
143→ 143

146→ 146
148→ 148

150→ 150
153→ 152

156→ 155
159→ 158

161→ 160
162→ 161

165→ 163
167→ 165

170→ 168
172→ 169

174→ 171
175→ 172

220 20770 78.9 LLL
23→ 20

34→ 27
40→ 35

48→ 47
52→ 49

59→ 57
68→ 66

76→ 75
82→ 81

88→ 87
93→ 93

98→ 97
101→ 100

101→ 101
103→ 103

105→ 105
107→ 107

109→ 109
111→ 111

113→ 113
116→ 116

119→ 119
122→ 122

124→ 124
126→ 126

129→ 129
131→ 131

134→ 134
136→ 136

138→ 138
141→ 141

144→ 144
148→ 148

151→ 151
153→ 153

154→ 154
155→ 155

159→ 158
164→ 163

166→ 165
167→ 166

169→ 167
171→ 169

173→ 171
175→ 173

177→ 174
181→ 178
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3.9 Simulation Results for SVP Challenge and Compar-
ison

In this section, we give our simulation results using our proposed progressive BKZ
algorithm together with the pre/post-processing strategy in Section 3.8.1 for solving the
Darmstadt SVP Challenge [28], which tries to find a vector shorter than 1.05 ⋅GH(L)

in the random lattice L of dimension n.

We also simulate the cost estimation of Lindner and Peikert [55] and that of Chen and
Nguyen [24] in the same model. The summery of our simulation results and the latest
records published in the SVP Challenge are given in Figure 3.8. The outlines of our
estimations A to D in Figure 3.8 are given below.

From our simulation, the proposed progressive BKZ algorithm is about 50 times faster
than BKZ 2.0 and about 100 times slower than the idealized algorithm that achieves the
lower bound in our model of Section 3.8.2.

A: Lindner-Peikert’s estimation [55]: From the experiments using the BKZ imple-
mentation in the NTL library [79], they estimated that the BKZ algorithm can find a
short vector of length δn det(L)1/n in 21.8/ log2(δ)−110 [sec.] in the n-dimensional lattice.
The computing time of Lindner-Peikert’s model becomes

TimeLP = 21.8/ log2(δ)−110 with δ = 1.051/n ⋅ Vn(1)
−1/n2

,

because this δ attains 1.05 ⋅GH(L) = δn det(L)1/n.

B: Chen-Nguyen’s BKZ 2.0 [24, 25]: We estimated the cost of BKZ 2.0 using the
simulator in Section 3.3.2. Following the original paper [24], we assume that a blocksize
is fixed and the estimation is the minimum of (3.4) over all possible pairs of the blocksize
β and the number t of tours. Again we convert the number of nodes into the single-
threaded time, we divide the number by 2 ⋅ 107.

C: Our estimation: We searched the minimum cost using the estimation (3.26) overM
and β with setting γ = 1.05.
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Figure 3.8: Semi-log graph of comparing cost in seconds. A: Lindner-Peikert estima-
tion [55], B: Chen-Nguyen’s BKZ 2.0 simulation (Sec. 3.3.2),C: Simulating estimation
of our randomized BKZ-then-ENUMalgorithm (Sec. 3.8.1),D: Lower bound in the ran-
domized BKZ-then-ENUM strategy (Sec. 3.8.2). Records in the SVP Challenge [28]
are indicated by the black circles “●", and our experimental results (Sec. 3.8.1) are

indicated by the white circles “○".

D: Lower bound in our model: We searched the minimum cost using the estimation
(3.27) overM with setting γ = 1.05.

Records of SVP Challenge: From the hall of fame in the SVP Challenge [28] and
reporting paper [35], we listed up the records that contain the computing time with a
single thread in Figure 3.8, as black circles “●". Moreover we performed experiments
on our proposed progressive BKZ algorithm using the pre/post-processing strategy in
Section 3.8.1 up to 123 dimensions which are also indicated by the white circles “○" in
Figure 3.8.
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3.10 Conclusions and Future Work

In this chapter, we proposed an improved progressive BKZ algorithm with optimized
parameters and block-increasing strategy. We also gave a simulator that can precisely
predict the Gram-Schmidt lengths computed using the proposed progressive BKZ. Thus,
the total cost of the proposed progressive BKZ algorithm can be precisely evaluated by
the sharp simulator. Simultaneously, we presented the efficient implementation of our
proposed algorithm.

Moreover, we showed a comparison with other algorithms by simulating the cost of solv-
ing the instances from the Darmstadt SVP Challenge. Our progressive BKZ algorithm
is about 50 times faster than the BKZ 2.0 proposed by Chen and Nguyen for solving
the SVP Challenges up to 160 dimensions. Finally, we discussed a computational lower
bound of the proposed progressive BKZ algorithm under certain ideal assumptions.
These simulation results contribute to the estimation of the secure parameter sizes used
in lattice based cryptography.

We outline some future works: (1) constructing a BKZ simulator without using our
ENUMCost, (2) adopting our simulator with other strategies such as BKZ-then-Sieve
strategy for computing a short vector more efficiently, and (3) estimating the secure key
length of lattice-based cryptosystems using the lower bound of the proposed progressive
BKZ.



Chapter 4

Hardness Evaluation for Search LWE
Problem using Progressive BKZ and its
Simulator

In this chapter, we study the practical hardness of the LWE problem, by adapting
Kannan’s embedding technique, and using the improved progressive BKZ algorithm
(pBKZ) introduced in Chapter 3. (In the rest of this thesis, we denote the progressive
BKZ algorithm by pBKZ for short.) The LWE instances used in our experiments
are sampled from Darmstadt LWE Challenge. From our experiments, we find that
the algorithm can derive a better efficiency if the embedding factor M is closer to 1.
We also give a preliminary analysis for the proper parameter settings as the number
of LWE samples m should be used in the attack associate to the secret length n.
Simultaneously we estimate the runtime of solving LWE cases using the BKZ simulator,
whose preciseness is shown in Chapter 3. Moreover, our experimental results in LWE
Challenge are close to the estimations. Especially for n ≥ 55 and the fixed σ/q = 0.005,
our implemented embedding technique with progressive BKZ is more efficient than Xu
et al.’s implementation of the enumeration algorithm in [84][27]. Finally, we get the
records of case (70,0.005) in Darmstadt LWE Challenge, using our extrapolated setting
of m, which takes 32.73 single core hours. The work in this chapter was published in
ICICS 2017 [82].

58
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4.1 Introduction

Nowadays many post-quantum cryptographic schemes as fully homomorphic encryp-
tion and lattice-based signature schemes base their security on some lattice hard prob-
lems as the learning with errors (LWE) problem, short integer solution (SIS) and so
on [69][60][40]. LWE problem was introduced by Regev in 2005 [69] and as an
average-case lattice problem, LWE problem is proved as hard as certain worst-case lat-
tice problems such as GapSVP and SIVP [69], which allows to build many provably
secure lattice-based cryptographic schemes. However, for the practical application, it is
indispensable to estimate the concrete parameters of LWE from sufficient experiments.
In this work, we focus on the more practical lattice-based attack. At first, the LWE prob-
lem can be seen as a particular bounded distance decoding (BDD) instance on a q-ary
lattice. For a given lattice and a target vector close to the lattice points in a reasonable
bound, BDD is to find the closest lattice vector to the target.

There are two main methods to process the BDD instance. One is reducing the lattice
basis first and searching the secret vector by Babai’s NearestPlane [13] algorithm or its
extensive variants [55][56]. Especially in [56], Liu and Nguyen intermingle the short
error vector into an enumeration searching tree, which makes the attack more efficient.
Xu et al.’s group solved some LWE Challenge instances using Liu-Nguyen’s adapted
enumeration technique [56] and they published this result at ACNS 2017 [84].

Another procedure is to reduce BDD to the unique-shortest vector problem (unique-
SVP) by Kannan’s embedding technique [49]. This procedure increases one more
lattice dimension by adding the target vector and a so-called embedding factor M into
the new basis. For parameters used in cryptography, with high probability, the error
vector can be found in a component of the shortest vector in the constructed lattice.
So there is a big gap between the shortest vector and the second shortest vector in the
new lattice, which makes a lattice reduction algorithm or a searching algorithm find the
shortest one more efficiently. Since both methods call the SVP oracle, their complexity
grows exponentially with the dimension increasing.

Related works. Under the situation where one can get arbitrary number of samples,
the hardness of LWE problem is related to three critical parameters: the length n of
secret vector, the modulus q and the deviation σ of error vectors. Concerning with
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Kannan’s embedding technique [49], the theoretical discussion between the embedding
factor t and the optimal number of required samples m was given in [4]. However
they did not quantify the relevant runtime with these two critical parameters. [9]
updated the parameters for LWE proposed in [55], using the improved computational
time model t(δ) = 21.8/ log(δ)−130 where δ is the root Hermite factor. However, the time
model is considered inaccurate and antiquated. [6] used several time models from fplll,
enumeration and sieving, to evaluate the concrete hardness of LWE by invoking different
algorithms such as BKW, SIS, decoding attack, etc. In Asiacrypt 2017, Albrecht et al.
revisited the hardness of LWE using the so called “2016 estimate” and a BKZ timemodel
adopting sieving as SVP oracle [5]. They also updated the parameters for some LWE-
based cryptosystems using this computational lower bound. Some other theoretical
analyses for the hardness of LWE are given as lattice-based attack [55][56], and BKW
type attack [50], but rarely concrete parameters based on experiments were published.
In order to assess the hardness of the LWE problem in practice, TU Darmstadt publishes
a new platform "Darmstadt LWE Challenge" [21][27]. Indeed, we do the practical
analysis of the parameter settings using LWE Challenge in this work.

Roadmap. Section 4.2 recalls the simulators for estimating the cost of BKZ algorithms.
We introduce Kannan’s embedding technique in Section 4.3. Our experimental results
and preliminary analysis on the relevant parameters settings in Kannan’s embedding
technique are shown in Section 4.4. Finally we conclude in Section 4.5.

4.2 Cost Estimation of BKZ Algorithms Revisit

In this section, we will revisit two evaluating methods for BKZ cost: the pBKZ simulator
(pBKZ simulator) we introduced in Chapter 3 and Martin Albrecht’s estimator (M.A.
estimator) [5]. The former one can give a practical estimation and we can get a lower
bound of BKZ runtime using the latter one. Note that the only difference between “M.A.
estimator” and “2016 estimate” is, the cost of sieving-BKZ is considered in the former
one.
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4.2.1 pBKZ Simulator

The input of the pBKZ simulator is (n,β), where n is the dimension and β is the target
blocksize which means the pBKZ will terminate after the β−reduction was processed.
The output is the total cost of the pBKZ. Note that the input parameter β can be replaced
by the target GSA constant r, the enumeration subroutine search radius coefficient α or
enumeration search success probability p, since we can compute the other three from
one using the following the optimized equations (3.6) (3.9) and (3.10), in Section 3.4.

For n ≥ 100 the cost (seconds, or "secs" for short in this thesis) of pBKZ is computed as

TimeBKZ(n,βt)

=

βt

∑
β=10

♯ tours
∑
t=1

[2.5 ⋅ 10−4 ⋅
n − β

250 − β
⋅ n2

+ 1.5 ⋅ 10−8 ⋅ β ⋅
n−1

∑
i=1

ENUMCost(Bi;α, p)].

(4.1)

Here ENUMCost(Bi;α, p) is the number of enumeration search nodes in pBKZ simu-
lator:

ENUMCost(Bi;α, p) = p ⋅
Vβ/2(α ⋅GH(Br))

∏
β
i=β/2+1

∥b∗i ∥2

= 2α−β/2 ⋅
Vβ/2(1) ⋅ Vβ(1)−1/2

rβ2/16

Further details may be found in 3.4 and a reference implementation is freely available
in [11].

4.2.2 M.A. Estimator

Before introducingM.A. estimator, we give simple introduction on the sieving algorithm.
In 2001, Ajtai et al. proposed a sieving algorithm to solve SVP, which requires runtime
of 20.52n+o(n) in n dimension lattice and simultaneously requires exponential storage
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of 20.2n+o(n) [2]. According to recent research results, for a n-dimensional lattice L
and fixed blocksize β in BKZ, the runtime of sieving algorithm can be estimated in
20.292β+o(β) clock cycles for a β-dimensional subroutine [6], and totally BKZ-β costs
8n ⋅ 20.292β+16.4 operations [15]. We will also use this result to evaluate the security of
our parameter choices in Chapter 5.

It is assumed that the BKZ-β reduced basis B of dimension n can give a short vector
∥b1∥2 = δn ⋅ det(B) in [23]. The root Hermite Factor (rHF) δ here is

δ = (((πβ)1/ββ)/(2πe))1/(2(β−1)). (4.2)

In Asiacrypt 2017 [5], Martin Albrecht et al. re-estimated the hardness of LWE problem
using the so called “2016 estimate" from NewHope paper [7]: if the Gaussian Heuristic
and the GSA hold for BKZ-β reduced basis and

√
β/n ⋅ ∥(e∣1)∥ ≈

√
βσ ≤ δ2β−n ⋅ vol(L(A,q))

1/n. (4.3)

then error e can be found by BKZ-β with rHF δ. Here (e∣1) means a vector composed
by e and 1. In Martin Albrecht et al.’s estimator, they replace SVP oracle in BKZ by
Gauss sieve algorithm whose cost is (20.292β+o(β)) [52]. They use the result of

Cost(n,β) = 8n ⋅ 20.292β+16.4 (4.4)

operations [15][3] as the cost of running BKZ-β in n-dimensional lattice. Note that they
claim this runtime estimation can be adapted for β > 90. We call it "M.A. estimator"
where the input is an LWE instance of parameter set (n,σ, q), the output is the target
blocksize β and the runtime of BKZ algorithm to solve the given LWE instance, using
formulas (5.2) (5.1) and (4.4).
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4.3 Overview of Embedding Technique for Solving LWE
Problem

In this section, we recall Kannan’s embedding technique [49], and introduce the param-
eter settings in our experiments.

4.3.1 From LWE to BDD

The LWE problem can be reduced to BDD case as follows.

Input: a lattice L = {v ∈ Zmq ∣v ≡ As (mod q) , s ∈ Zn} and a target vector t with
bounded distance ∥e∥.

Output: a vector v ∈ L close to t, and get s from v ≡As if succeeded.

In 2016, Xu et al. solved some instances of LWE Challenge by reducing LWE to BDD
and using Liu-Nguyen’s adapted enumeration algorithm, which can solve BDD directly
with a considerable success probability. In this work we focus on solving BDD by
embedding technique: further reduce BDD to unique-SVP [49]. The embedding attack
is shown in Algorithm 6. We elaborate on the algorithm in the next section.

4.3.2 Solving LWE via the Embedding Technique

Algorithm 6 Kannan’s embedding technique to solve LWE problem. [49]
Input: An LWE instance (A,b ≡As + e (mod q)) ∈ (Zm×nq ,Zmq ).
Output: The secret vector s ∈ Znq and the short error vector e ∈ Zmq , s.t. b =As + e.
1: Construct the basis B of q-ary lattice

L(A,q) = {v ∈ Zmq ∣ v ≡Ax (mod q),x ∈ Zn}
as B = (

AT

qIm
) ∈ Z(m+n)×m; and compute the HNF of B as

BHNF = (

qIm−n 0
A′
n×(m−n) In

) ∈ Zm×m;

2: Reduce BDD to unique-SVP by rescaling BHNF to B′
= (

BHNF 0
b M

) ∈ Z(m+1)×(m+1);

3: Process B′ using lattice algorithm to derive a short vector w including the error vector e;
4: Use e to compute the secret vector s by Gaussian elimination in (b − e) =As.
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Preprocessing. To solve a given LWE instance, necessary number of samples is consid-
ered. For instance, the Darmstadt LWE Challenge supplies the original basisA′ ∈ Zn2×n

q

for each problem case, thus, a naive construction of matrices in Algorithm 6 requires a
lattice reduction of a large number of matrices even for small LWE dimensions. Hence,
we can choosem (m≪ n2) vectors as a parameter to optimize the computational time, as
from (A′,b′) ∈ (Zn2×n

q ,Zn2

q ) to (A,b) ∈ (Zm×nq ,Zmq ). We will discuss how to compute
the optimalm in Section 4.3.4. Also during the random sampling, we should check the
independence of vectors to make sure: (1) the correctness of the attack algorithm; (2)
the volume of derived q-ary lattice is qm−n, which will be used in section 4.3.4. We give
explanations for each step in Algorithm 6.

Step 1. We follow the method in Section 2.7 to construct and compute the HNF basis
BHNF of q-ary lattice L(A,q) = {v ∈ Zm ∣ v ≡Ax (mod q),x ∈ Zn}.

Step 2. This step is the key point of embedding technique: expand the q-ary basis
BHNF ∈ Zm×n by one dimension, and embed the target vector b and one embedding
factorM into the new basis B′ ∈ Z(m+1)×(m+1).

Step 3. At this step, we process the new basis B′ by lattice algorithms. After the
reduction, we get the error vector e from the output shortest vectorw, since e = b −Bu

and w = B′(u
1 ) = ( e

M ) for some u ∈ Zmq . In our work, we use the progressive BKZ
reduction algorithm [10].

Step 4. Simply get the secret vector s by Gauss elimination.

Theoretically, Algorithm 6 fails means no solution is given within a limited time T or
the algorithm outputs a much shorter vector than the solution due to [4]. Here T is an
input of our implementation. We set T large enough by preliminary experiments for
each parameter set (n, q,α). We note that success rate of experiments are large enough,
namely, > 90%. Hence we claim that our definition of runtime is fair. However, the
latter one occurs with an extremely low rate in general case (indeed not happened in our
experiments). Hence, we define the “fail” in our work by the former one: Algorithm 6
fails means no solution is given within a limited time T . If Algorithm 6 fails, one should
re-randomize the input samples or increase the number of samples m, then re-run the
Algorithm 6. Now we explain four discussion points of the algorithm.
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1) In the embedding procedure of Step 3, if the output vectorw of the lattice algorithm
satisfies

∥w∥ ≤
√

∥e∥2 +M2 ≈ (

√
2mσ

(Mqm−n)1/(m+1))

1/(m+1)

(4.5)

with ∥e∥ ≈
√
mσ, then the answer is correct with high probability.

2) There is a gap between the shortest vector and the linearly independent second
shortest vector in L′(B′), namely we have to solve a unique-SVP in this lattice. The
size of embedding factor M can affect the gap in some sense and we will discuss it in
Section 4.3.3.

3) Since we do not know the exact value of ∥e∥, we can not terminate by condition (4.5).
∥w∥ ≤

√
∥e∥2 +M2 is the condition for a reduction or point searching algorithm to

terminate in Step 4. However, during the update of lattice reduction of basis (b1, . . . ,bn)

in our progressive BKZ, we found that the root Hermite factor δ suddenly drops to a very
small value from value around 1. We can set the algorithm to terminate when δ < 0.7

for convenience.

4) There is a trade-off between the attack efficiency and success rate, depending on the
dimension m of L(A,q)(A ∈ Zm×nq ) and the embedding factor M of the sampled LWE
instances in the embedding algorithm.

In this work, our goal is from experiments to get a preliminary analysis of the effect of
m andM on the runtime for solving Darmstadt LWE Challenge instances.

4.3.3 How to ChooseM at Step 2

The size of ∥e∥ andM intuitively affect the gap of the shortest and the second shortest
vector in the unique-SVP of L(B′) ∈ Z(m+1)×(m+1), since the reduction output is w =

( e
M ). For the entries of error vector e are randomly and linearly independently sampled

from the discrete Gaussian distributionDσ, we can assume that the distribution of ∥e∥2 is
very close to σ2×χ2 when σ andm are sufficiently large. Here χmeans chi distribution.
So ∥e∥2 has expectation of mσ2 and we can estimate ∥e∥ ≈

√
mσ. Lyubashevsky and
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Micciancio [58] suggest that the choice for the embedding factorM ∈ N is ∥e∥. IfM is
bigger, then there is a lower chance to solve the given LWE instance, since the gap in
unique-SVP will become smaller. On the other hand, ifM is too small, with non-zero
probability, there may exist a vector v ∈ L(B′) such that ∥v + c ⋅ ( b

M )∥ < ∥w∥ = ∥( e
M )∥

where c ∈ Z, which causes the algorithm fails to extract the error vector according to [4].
We observe the runtime of attack by increasingM from 1 in Section 4.4.1. .

4.3.4 How to Choosem

In this part, we follow the analysis proposed byMicciancio and Regev [60]. With a small
Gaussian standard deviation sigma, in many cases of instances, we may assume that the
vector (eM) ∈ L′ is the shortest vector and it is much shorter than λ2(L′). According
to the Gaussian heuristic, λ2(L′) = λ1(L) ≈

√
m

2πeq
(m−n)/m. In our experiments, we

observed that the attack is more efficient if the embedding factor M is closer to 1 (see
Section 4.4.1). So we want to enlarge the following gap in unique-SVP for an efficient
attack:

γ(m) =
λ2(L′)

λ1(L′)
≈

√
m

2πeq
(m−n)/m

√
mσ

(4.6)

We need σ ≪ q
m−n
m . Moreover, it is known that the gap γ(m) > c ⋅ δm to solve the

unique-SVP by using a lattice reduction algorithm with a root Hermite factor δ, with a
high probability. The constant c is unknown, so we can maximize q(m−n)/m/δm, to get
the optimal sub-dimensionm of LWE sample instances is

m =
√
n log(q)/ log(δ). (4.7)

This can properly enlarge the gap in γ-unique SVP transformed from BDD, within a re-
duction algorithm’s capability estimated by the rootHermite factor δ = rHF(b1, . . . ,bn) =

(∥b1∥/vol(L)1/n)1/n.

4.4 Experimental Results and Analysis

In this section, we give the details in our experiments on solving LWE problems using
embedding technique (Algorithm 6). All the cases are taken from Darmstadt LWE
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Challenge [27]. In our experiments, we just observe the hardness of small dimensions
from 40 to 60, with the same α = 0.005. As a preparing work, we take δ in the range
[1.010,1.011, . . . ,1.025] and randomly sample m =

√
n log(q)/ log(δ) vector entries

for A ∈ Zm×nq in each LWE case. For each case with parameters (n, δ), we sample 20
different bases. The progressive BKZ algorithm and its open source code of version 1.1
are used in the Step 3 of Algorithm 6. Our implementation using C language and NTL
on Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz with 24 cores. Xu et al. were using
parallel implementation technique and the specifications of hardware are 3.60 GHz Intel
Core i7 processor with eight cores and a cluster consisting of 20 c4.8xlarge instances,
each equipped by 36 cores (hyper-threaded to 72 threads) [84]. The time unit in the
following sections are all single thread seconds. In our work, the “runtime” exactly
means the runtime on solving LWE successfully, namely, for an input LWE sample, we
measure the runtime of the algorithm, until it outputs the corresponding solution within
the limited time T (in this case we say the algorithm succeeds or successful case). On
the other hand, if the algorithm does not halt in the limited time T , we do not measure
the runtime of the algorithm (in this case we say the algorithm fails or failure cases, as
we mentioned in Section 4.3.2). The average runtime in this paper is the average runtime
of the successful cases without failure cases.

4.4.1 Efficiency by changingM .

As we discussed in Section 4.3.3, in the Step 2 of Algorithm 6, the embedding factorM
in basis B′ ∈ Z(m+1)×(m+1) affects the size of gap in the unique-SVP of L(B′). In this
sectionwewill observewhat size ofM is better for an efficient embedding technique. The
fixed dimensionm of L(A,q) is referred to Section 4.4.2, and the embedding factorM is
from 1 to around 55. For each case of parameters n = 40,45,50,55 with fixed α = 0.005,
we sample a same basis A ∈ Zm×n from Darmstadt LWE Challenge respectively. Note
that since we want to observe the efficiency of Algorithm 6 for successful cases, the
margin at runtime T is set by 12 hours, which is large enough to make sure the 100%

success rate. Hence the “runtime” is of successful cases on solving LWEhere. Figure 4.1
shows the runtime of Algorithm 6 for each case with increasing sequence of embedding
factorM . We can observe that with growingM , the runtime of Algorithm 6 is gradually
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Figure 4.1: Runtime for cases (n,α)with fixed bases and increasing embedding factor
M .

increasing. So it is more efficient to solve LWE problem with the embedding factorM
closer to 1.

4.4.2 Optimal Choice ofm for each (n,α)

Due to the equations (4.6) and (4.7) in Section 4.3.4, the dimensionm of latticeL(A,q) in
Step 3 also affects the efficiency of Algorithm 6. A largerm will lead the root Hermite
Factor smaller, which makes the lattice algorithm inefficient. While a smaller m will
reduce the gap of unique-SVP and make the problem harder to solve. In this section, we
observe the affect of sizem on the efficiency of Algorithm 6.

At first for each case of (n,α = 0.005), we fix the embedding factor asM = 1. We take
δ in the range [1.010,1.011, . . . ,1.025] and for each δ calculate m =

√
n log(q)/ log δ.

We did the experiments for n = 40,45,50,55,60,65. Note that for case of (n = 40, α =

0.005), since the runtime are close to each other, we ignore it here. When Algorithm 6
fails, we randomly sample the input basis again and re-run Algorithm 6. When the
random executions had been done up to 20 times (meaning 20 random samples of
A ∈ Zm×nq ), we then increase the number of samplesm (by decreasing delta from 1.025
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Table 4.1: Experimental pBKZ runtime for each (n,α = 0.005) cases with parameter
δ in range [1.01,1.011, . . . ,1.025].

(n,α) δ m
Average pBKZ Minimum pBKZ
cost (log2(secs)) cost (log2(secs))

(45, 0.005) 1.025 118 5.99 4.28
(50, 0.005) 1.019 144 7.51 6.49
(55, 0.005) 1.017 162 9.03 8.08
(60, 0.005) 1.013 195 13.13 10.62
(65, 0.005) 1.012 213 16.04 14.65

to 1.010) and re-run Algorithm 6. In the end, we calculated the runtime of successful
cases. In Table 4.1 the "Average BKZ Runtime" shows the minimum of average runtime
for each δ. Further, the "Minimum BKZ Runtime" is the minimum data for the relevant
δ andm.

Lemma 4.1 ([6], Lamma 9). Given an (n, q,α) LWE instance, any lattice reduction
algorithm achieving log root- Hermite factor:

log δ =
log2

(ε′τα′
√

2e)

4n log q

solves LWE with success probability greater than

ετ ⋅ (1 − (ε′ ⋅ exp(
1 − ε′2

2
))

m

)

for some constant ε′ > 1 and some fixed τ ≤ 1, and 0 < ετ < 1 as a function of τ . Here
α′ = α ⋅

√
2π.

Experimentally τ ≈ 0.3 is derived when the embedding factor M = 1 due to [4]. The
relevant parameter setting in our work is (n, q,α′) = (n,n2,0.005 ⋅

√
2π), hence by a

certain success probability, we can get the approximate relation between m and n as
follows.
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m =

√

n ⋅
log q

log δ

≈

¿
Á
ÁÀn ⋅ 2 ⋅ logn

8 ⋅ n logn

log2
(ε′τα′

√
2e)

≈ n ⋅ logn ⋅
4

log(ε′τα′
√

2e)

≈ n ⋅ logn ⋅ const.

So from experimental results shown in Table 4.1, we can get the following fitting function
of optimalm and n.

Optimal(m) = ⌜0.9634 ⋅ n ⋅ logn − 46.37⌟. (4.8)

Here the mark ⌜. . .⌟means taking a rounding number. Note that our experimental results
being used are of success rate ≥ 90%, while the experimental success rate is about 10%

using the parameter settings in [6]. From the initial experiment of small scale, we set the
limited time T as three days in this experiment. Therefore, we measure the (successful)
runtime of solving LWE using the range ofm computed from equation (4.7). Recall that
the runtime in Table 4.1 is an average and minimum runtime of the successful cases.
Namely, the runtime of the failure cases (less than 10% in our experiments) are not
included in Table 4.1.

4.4.3 Estimating Runtime by pBKZ Simulator

Now we explain how to estimate the cost for solving the LWE cases using pBKZ
simulator. At first, given (n, q,α)−LWE instance, we can get the optimal number of
samples m corresponding to n by equation (4.8). Then we can compute the rHF δ

required for the attack using the equation (4.7). From the Proposition 2.20, we get the
relation between GSA constant r and rHF δ as r = δ−4m/(m−1). So after computing r from
δ we compute the target β from formulas (3.10). Finally we get the input parameter set
(n,β) for pBKZ simulator and the runtime of pBKZ is derived. We plot the simulated
pBKZ cost by a solid blue curve in Figure 4.2. The blue stars in Figure 4.2 are the
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Figure 4.2: The runtime for embedding technique on Darmstadt LWE Challenge of
(n,α = 0.005, q ≈ n2

) cases: The solid line is the estimated cost from pBKZ simulator;
The stars denotes our experimental results; The red crosses are Xu et al.’s records at the
LWE Challenge website; The dot line is computed from M.A. estimator which can be

seen as a lower bound heuristically.

minimum of Average Runtime in each (n,α) cases as showed in Table 4.1. It shows that
our experimental results are close to the pBKZ simulating results.

More precisely, using the constructed function 4.8 from the experimental results of
dimensions ≤ 65 (the stars in figure), we computed the optimal m for each dimension
n ∈ {45,50, . . . ,100} respectively. Simultaneously, we got the corresponding target
root Hermite factor δ from equation 4.7 using the optimal number of samples m. Then
we input m and δ into the pBKZ simulator and got the output of simulated runtime.
Thus, we plotted the blue curve of simulating runtime. Moreover, from Figure 4.2 we
can see that Xu et al.’s LWE Challenge records of α = 0.005 stopped at n = 65 for the
overwhelming runtime and low success probability [83]. Our implemented embedding
technique with progressive BKZ can solve the LWEChallenge instances more efficiently
than Xu et al.’s enumeration implementation for n ≥ 55. We also show M.A. estimation
as an asymptotic lower bound from dimension 75 (the target β > 90) in Figure 4.2.

Furthermore, in Table 4.2, we estimate the necessary dimension m and the relevant
practical runtime by embedding technique on solving LWE Challenge cases n ≥ 70, α =

0.005. Our estimation is using pBKZ simulator.
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Table 4.2: Estimation of effective m and runtime on solving(n ≥ 70, σ = 0.005) in
the LWE Challenge when running the pBKZ algorithm.

(n,α) q δ m pBKZ cost (log2(secs))
(70, 0.005) 4903 1.0104 240 19.22
(75, 0.005) 5639 1.0092 266 29.51
(80, 0.005) 6421 1.0083 291 40.02
(85, 0.005) 7229 1.0075 317 53.69
(90, 0.005) 8101 1.0069 344 71.24
(95, 0.005) 9029 1.0063 370 92.12
(100, 0.005) 10007 1.0059 397 125.26

4.4.4 Record of (n = 70, α = 0.005) in LWE Challenge

For the cases of (n = 70, α = 0.005), we compute the extrapolated m ≈ 240 from
function (4.8). Then we increase the number of samples as m=214, 223, 233, 244
(relevant δ =1.013, 1.012, 1.011, 1.010). From the original matrix of size 4900× 70, we
randomly samplem×70 sized matrices by 5 times for eachm, as inputA in Algorithm 6.
Simultaneously, we use 221 seconds as the time limit T , which is slightly larger than the
simulated 219.22 seconds in Table 4.2. Consequently, there are two cases ofm = 233, 223

(δ = 1.011,1.012) successfully solved by time 216.8, 218.2 seconds respectively. Hence
totally we ran 20 times to solve the challenge and get the solution from two cases.
Therefore, we can say the success probability is 2/20 = 10% in this experiment. We plot
it in Figure 4.2, which are close to the pBKZ estimation.

4.5 Conclusions

In this chapter, we studied Kannan’s embedding technique on solving LWE problem.
Especially we applied the progressive BKZ algorithm on some randomly sampled LWE
instances from Darmstadt LWE Challenge. From our experiments of fixed relative error
size α = σ/q = 0.005, we observed that the algorithm has a more efficient trend if the
embedding factor M is closer to 1. Furthermore, Xu et al.’s LWE Challenge records
of α = 0.005 stopped at n = 55 for the overwhelming runtime, while our experimental
results show that for n ≥ 55, the embedding technique with progressive BKZ can solve
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the LWE Challenge instances more efficiently than Xu et al.’s implementation of Liu-
Nguyen’s enumeration algorithm. Then we proposed a formula to decide the optimal
number of LWE samples m, for given the length n of secret vector s. Using this
formula, we estimated the runtime of solving LWE cases using the pBKZ simulator and
our experimental results are close to the estimations. Finally our LWE Challenge record
of (n,α) = (70,0.005) cases succeeded in 216.8 seconds (32.73 single core hours), which
also lies close to the pBKZ estimations.



Chapter 5

Evaluating Secure Parameters for Ding
Key Exchange

At the beginning of 2016, NIST started the post-quantum cryptography competition
to prepare for the standardization of the next-generation cryptography. Ding et al.
proposed a “Ding Key Exchange" scheme, which is based on the Ring Learning With
Errors Problem (RLWE). The number of samples in their scheme is just one, which is
different from the case of normal integer LWE or other RLWE instances. In this chapter,
we do the security analysis for Ding key exchange by primal attack which is reducing
the RLWE to SIS. Hence we can expand the dimension of the attack basis to double.
We adopt both the progressive BKZ simulator and the M.A. estimator introduced in the
last two chapters 3 and 4. Guaranteeing the error rate of key exchange protocol within
2−60, our parameter choices cover the security of AES-128/192/256 respectively, which
satisfies NIST’s security category I, III and V respectively. This is one part work in the
NIST PQC standardization proposal “Ding Key Exchange” [67].

5.1 Introduction

During recent years, various works are focusing on the lattice-based Ring LearningWith
Errors (RLWE) problem [59], which is the ring variant of Learning With Errors (LWE)
problem [69]. They enjoy high efficiency as well as strong security, making them very

74
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promising towards the post-quantum world. Ever since LWE and RLWE problems were
introduced in 2005 and 2010 respectively, people have tried to seek solutions to construct
key exchange over LWE/RLWE problem. A major advantage for RLWE compared with
LWE is that it has a much reduced key size, and this is more desirable for real world
applications due to smaller communication and storage cost. Therefore, among all
approaches to realize post-quantum cryptography, RLWE-based construction is one of
the most promising and practical replacements for current public key cryptosystems.

At the first stage of NIST “call for PQC protocols", J. Ding, T. Takagi, X. Gao, Y.
Wang (the author of this thesis) proposed a “Ding key exchange" [31], which is an
ephemeral-only RLWE-based key exchange protocol with a new efficient rounding tech-
nique to reduce communication cost. The construction is a RLWE variant of the classic
Diffie-Hellman key exchange protocol, which can be regarded as a direct drop-in re-
placement for current widely-deployed Diffie-Hellman key exchange protocol (and its
variants, e.g. elliptic curve Diffie-Hellman) without significant modifications to cur-
rent security protocols and applications. There are some schemes follow the same
idea of sending additional information – signal value other than public key to con-
struct LWE/RLWE/MLWE-based key exchange/Key Encapsulation Mechanism (KEM)
protocols, as NewHope [7], Frodo [17], Kyber [19], etc.

Roadmap. Section 5.2 recalls the Ding key exchange, including some notations and
functions defined in the protocol. Then we discuss the parameter settings in the spe-
cific ONE-sample RLWE case in Section 5.3. Our cryptanalysis and proposed secure
parameter sets are shown in Section 5.4. Finally we give the conclusion in Section 5.5.

5.2 Ding Key Exchange Review

In this section, we simply recall the Ding key exchange, after give some notations and
core functions being used in the protocol.
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5.2.1 Core Functions in Ding Key Exchange.

We introduce several useful functions and lemmas that will be seen in Ding key exchange
protocol in Section 5.2.2. For the proof of lemmas, please refer to the original proposal in
[31]. In this section, we use the notations defined in Chapter 2 and following additional
ones. Let U[a, b] be the uniform distribution over discrete set {a, a+ 1,⋯, b− 1, b} over
integers. Let ⌊x⌋ be the floor function which outputs the greatest integer that is less than
or equal to x, ⌈x⌉ be ceiling function which outputs the least integer that is greater than
or equal to x, ⌊x⌉ be the rounding function which rounds x to nearest integer.

Lemma 5.1 ([80], lemma 2.5). For σ > 0, r ≥ 1/
√

2π, Pr[∥x∥2 > rσ
√
n;x

$
←Ð DZn,σ] <

(
√

2πer2 ⋅ e−πr
2
)n.

Lemma 5.2. For a,b ∈ Rq, ∥a ⋅ b∥∞ ≤ ∥a∥2 ⋅ ∥b∥2.

Rounding function. For x ∈ Zq, q > p > 0 be integers. x is a coefficient of polynomial
in Rq, q, p are parameters of our protocol.

For the convenience of notation, we change the representation of x ∈ {−
q−1
2 ,⋯,

q−1
2 } to

x ∈ {0,⋯, q − 1} before Round() runs. Function Round(x, p, q) is defined in algorithm
7.

Algorithm 7 Round(x, p, q)
Input: x ∈ Zq, p, q
Output: Rounded value x′ of x
1: t← ⌊2q/p⌋, k ← ⌊x/t⌋

2: if x is odd number then
3: x′ ← 2k + 1

4: else x′ ← 2k

5: if x′ = p then
6: rnd

$
←Ð U[0,1]

7: if rnd = 1 then
8: x′ ← x′ − 2

9: else x′ ← (x′ + 2) mod (p + 1)
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Rounding function is defined for an integer x ∈ Zq. Rounding function for a ∈ Rq is
computed by applying Round() for each coefficient ai ∈ Zq of a ∈ Rq. In this document,
we use the same notation Round() for both rounding functions over Zq and Rq.

Recovering function. Recover() is a deterministic function. q > p > 0 be integers. x′

is one coefficient of rounded polynomial, q, p are parameters of our protocol. Function
Recover(x′, p, q) is defined in algorithm 8.

Algorithm 8 Recover(x′, p, q)
Input: x′, p, q
Output: Recovered value x′′ of x′
1: t← ⌊q/p⌋
2: if x′ is odd number then
3: x′′ ← x′ ⋅ t + 1
4: else x′′ ← (x′ + 1) ⋅ t

In order to be consistent with theoretical analysis, we change representation of x′′ ∈
{0,⋯, q − 1} to x′′ ∈ {−

q−1
2 ,⋯,

q−1
2 } after Recover() runs.

Recovering function is defined for an integer x′. Recovering function for vector a is
computed by applying Recover() for each coefficient ai in vector a. In this document,
we use the same notation “Recover()” for both recovering functions over integer x′ and
vector a.

Lemma 5.3. For parameter p and q, let t = ⌈log2 q⌉ − ⌈log2 p⌉, x = (x1, x2,⋯, xn) be a
vector whose each coefficient is uniformly random sampled integer in Zq, x’ be a vector
whose each coefficient x′i = Recover(Round(xi, p, q),p, q). Let d = x-x’ be a vector whose
each coefficient di = xi − x′i (i ∈ [1, n]). Then di is an even number with possible values
in set {−2t,−2t+2,⋯,2t−2}. Pr[di = −2t] = Pr[di = −2t+2] = ⋯ = Pr[di = 2t−2] = 1

2t

With lemma 5.1 and 5.2, we have 4∥se∥∞ ≤ 4∥s∥2 ⋅ ∥e∥2 ≤ 4(rσ
√
n)

2
= 4r2σ2n, where

r ≥ 1/
√

2π is defined in lemma 5.1 and n is the degree of polynomial. With lemma 5.3,
we have 2∥d′s∥∞ ≤ 2∥d′∥2 ⋅ ∥s∥2 = 2∥d′∥2 ⋅ rσ

√
n. Recall that error tolerance δ = q

4 − 2.
Therefore as long as q ≥ 4 ⋅ [2 + (4r2σ2n) + (2∥d′∥2 ⋅ rσ

√
n)], key exchange failure

probability is estimated to be (
√

2πer2 ⋅ e−πr
2
)n.
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Hint function. Hint functions σ0(x), σ1(x) from Zq to {0,1} are defined as:

σ0(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, x ∈ [−⌊
q
4⌋, ⌊

q
4⌋]

1, otherwise
,

σ1(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, x ∈ [−⌊
q
4⌋ + 1, ⌊ q4⌋ + 1]

1, otherwise

Signal function. A signal function Sig() is defined as:

For any y ∈ Zq, Sig(y) = σb(y), where b
$
← U[0,1]. If Sig(y) = 1, we say y is in the

outer region, otherwise y is in the inner region.

Signal function is defined for an integer x ∈ Zq. Signal function for a ∈ Rq is computed
by applying Sig() for each coefficient ai ∈ Zq of a ∈ Rq. In this document, we use the
same notation “Sig()” for both signal functions over Zq and Rq.

Reconciliation function. Mod2() is a deterministic function with error tolerance δ.
Mod2() is defined as: for any x in Zq and w = Sig(x), Mod2(x,w) = (x + w ⋅

q−1
2

mod q) mod 2. Here we treat elements in Zq as elements in Z before we perform the
modulo 2 operation.

There are some others being used in Ding key exchange as hint function, signal function,
reconciliation funtion, etc. Please refer to [31] for more details.

5.2.2 Ding Key Exchange

The protocol is illustrated in Figure 5.1. Key exchange protocol is instantiated with
following parameters:

• Modulus q

• Degree n of Rq

• σ of distribution DZn,σ to sample s and e

• Rounding parameter p
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Party i Party j

seed
$
← {0,1}128

a = Derive_a() ∈ Rq

Public key: pi = a ⋅ si + 2ei ∈ Rq

Private key: si ∈ Rq

where si, ei
$
←ÐDZn,σ

p′i = Round(pi, p, q)

a = Derive_a() ∈ Rq

Public key: pj = a ⋅ sj + 2ej ∈ Rq

Private key: sj ∈ Rq

where sj, ej
$
←ÐDZn,σ

p′j = Round(pj, p, q)

p′′j = Recover(p′j, p, q) ∈ Rq

ki = p′′j ⋅ si ∈ Rq

ski = Mod2(ki,wj) ∈ {0,1}n

p′′i = Recover(p′i, p, q) ∈ Rq

kj = p′′i ⋅ sj ∈ Rq

wj = Sig(kj) ∈ {0,1}n

skj = Mod2(kj,wj) ∈ {0,1}n

p′i, seed

p′j,wj

Figure 5.1: The Ding key exchange protocol

Proposition 5.4. From cryptanalysis perspective, the RLWE distribution with an even
error polynomial in the Ding key exchange is no difference from the general RLWE
instance.

Proof. Let z = Recover(Round(a ⋅ s + 2e, p, q), p, q) = as + 2e + d = as + 2f ∈ Rq,
where s,e

$
←Ð DZn,σ and 2f = 2e + d. Hence we can regard f as error term e in the

definition of RLWE above. The attack on our protocol is given z and a, output private
key s. This problem is equivalent to:

z = a ⋅ s + 2f mod q

⇔ 2−1z = 2−1a ⋅ s + f mod q

⇔ z′′ = a′′ ⋅ s + f mod q.

Standard deviation of term f is denoted as σf . Note that σf is different from σ notation
as f no longer follows discrete Gaussian distribution (histogram shows similar shape as
Gaussian distribution), therefore σf is computed as the square root of variance.



80

5.3 Parameter Settings for ONE-sample RLWE Case

There are some algorithms to solve the underlying LWE problem: the Blum-Kalai-
Wassermann (BKW) algorithm [16], the decoding attacks [13][56], the embedding
attacks [49] [14], the Arora-Ge attack [12], etc. Thereinto, the BKW attack and Arora-
Ge attack are not practical since they require at least sub-exponential number of samples.
In cases given fixed number of samples in the implementation, amplifying samples leads
a higher noise.

Multiple samples are considered available for the adversary in some existing RLWE-
based key exchange schemes, as BCNS [18], NewHope [7], etc. It is very clear that for
an RLWE-based ephemeral key exchange, an attack can only get one sample, however
existing security analysis mostly relies on techniques which requires multiple RLWE
samples. EachRLWE sample can be expanded tonLWE samples by rotating elements in
the convolution polynomial ring. For the case of only ONE-sample RLWE, when using
the standard embedding method or the decoding attack, the polynomials are extracted
to a lattice of L(A,q) = {v ∈ Zmq ∣ v ≡Ax (mod q),x ∈ Dn

σ} while the lattice is trivial
whenm ≤ n. Recently a new paper [72] developed techniques in solving standard LWE
instances with a restricted number of samples. However it is not adapted in practical
security analysis of RLWE key exchanges directly. Especially we can not adopt the
LWE-estimator [6] directly because of the perturbations from the rounding/recovering
functions in our key exchange scheme. We developed the security analysis of the dual
embedding attack (we call “SIS attack" in this work) on solving ONE-sample RLWE
case.

Further, in Table 5.1 we show the complexity of solving the standard LWE instance
using SIS attack given n and 2n samples. We use Regev’s parameter settings (n,α =

1√
2πn log2 n

, q ≈ n2) in the original LWE paper [69]. We estimate the hardness of standard
LWE forn = {128,512,1024,2048} using the LWE-estimator [6] and restrict the number
of given samples to n and 2n. From the table we can see that the gap of complexities is
distinctly larger with n increasing. Note that the n and 2n samples here can be seen as
extracted from ONE-sample RLWE case and TWO-samples RLWE case respectively.
Hence for the security analysis of RLWE instance, the available number of samples may
lead a big gap for high dimensions.
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Table 5.1: Hardness estimation for restricted number of LWE samples with Regev’s
parameter settings from LWE-estimator.

n 128 512 1024 2048
#{given samples} 128 512 512 1024 1024 2048 2048 4096

#{used samples} 128 228 512 919 1024 1853 2048 3821

logarithmic complexity
(clock cycles)

66.8 57.7 241.4 201.6 497.3 410.2 1043.8 851.5

5.4 Estimating Security of One RLWE Sample

5.4.1 Algorithms for Solving RLWE

There are several algorithms for solving RLWE. In Figure 5.2, we show several possible
attacks on RLWE problem with only one given instance.

Figure 5.2: Possible attacks on search RLWE problem with only one instance. Ref-
erences [HKM15], [AGVW17], [ABPW13] and [BG14] are [44], [5], [9] and [14]

respectively.

We explain how we choose appropriate attacks from available options:

• Firstly, exhaustive search is not efficient.

• Secondly, BKW algorithm can solve LPN problem with 2O(n/ logn) samples and
runtime. Since LWE is a descendant of LPN, BKW algorithm can also be adapted
to solve LWE problem (both decision and search versions) with 2O(n) complexity,
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when modulus q has polynomial size of dimension n. Amplifying technique is
used in BKW algorithm to solve LPN problem and LWE problem [57, 44]. How-
ever, the analysis on amplifying BKW until now are asymptotical and there is no
precise analysis on RLWE problem, i.e. amplifying BKW requires O(n log2(n))

samples which will lead to much larger standard deviation of e.

• Thirdly, complexity analysis of “reduction+ENUM” method is not clear for large
(> 1000) dimensional basis.

• Finally, for security analysis of our protocol, we adapt a conservative primal
method: reduce RLWE problem to SIS problem, then reduce it to unique SVP
problem. Then we process the basis using BKZ reduction algorithm with sieving
algorithm as SVP oracle in BKZ subroutines.

We show the SIS attack on RLWE in Algorithm 9. This algorithm is an adaptation of
the dual-embedding method mentioned in [72] and [14].

5.4.2 Phase Transition of Sieving Algorithm

Now we discuss the memory space consumption for sieving algorithms. If we convert
the memory cost of sieving algorithm to the computational cost, the memory cost in the
sieving overwhelms the computation one. In [15], the authors evaluate the Gauss Sieving
and give the trade off between the runtime and memory space as equal as 20.292β+o(β),
where β is the dimension of given basis or blocksize processed by sieving. Albrecht et
al. replaced o(β) by 16.4 based on the experiments in [51]. Note that the unit of space
complexity here is the number of β-dimensional vectors sampled in sieving algorithm.
We convert it to bits by multiplying β under the assumption that the elements in the
vectors are only 1 bit.

Due to the report of [66] in 2011, the total amount of the data in the world is around 295

exabytes ≈ 268 bits and it grows to 16.1 zettabytes ≈ 277 bits in 2016 [70]. Furthermore,
it is expected to be 10 = 23.3 times larger in the next 10 years [70]. Totally, the number
of atoms in the earth is around 1049 ≈ 2162 bits [33]. Hence there is a phase transition at
277 (whole data) and 2162 (atoms in the earth), namely we can not perform the sieving
physically. The currently used parameters for AES128-equivalent security in almost all
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Algorithm 9 The SIS Attack on Ring LWE Problem
Input: m′ instances from RLWE key exchange: (a,b = a ⋅ s + e) ∈ (Rq,Rq). Here

m′ = poly(n), Rq = Zq[x]/(xn + 1) with q as a prime, where secret polynomial s
and error polynomial e are sampled from Gaussian distributionDZn,σ with standard
deviation σ.

Output: The polynomial e and s s.t. b = a ⋅ s + e ∈ Rq.
1: Rewrite the RLWE instance to Short Integer Solution (SIS) instance by

1 Write the polynomials ai ∈ Rq, bi ∈ Rq, ei
$
←Ð DZn,σ ∈ Rq for i ∈ [1,m′] and the

only one s ∈ Rq as follows:
ai = ai1 + ai2x + ⋅ ⋅ ⋅ + ainxn−1,bi = bi1 + bi2x + ⋅ ⋅ ⋅ + binxn−1,
ei = ei1 + ei2x + ⋅ ⋅ ⋅ + einxn−1 and s = s1 + s2x + ⋅ ⋅ ⋅ + snxn−1

to vector form as
ai = (ai1, ai2,⋯, ain) ∈ Z1×n

q , b′ = (b11, b12,⋯, b1n,⋯, bm′1, bm′2,⋯, bm′n)
T ∈ Zm′n×1

q ,
e′ = (e11, e12,⋯, e1n,⋯, em′1, em′2,⋯, em′n)

T $
←ÐDZm′n,σ ∈ Zm

′n×1
q ,

s = (s1, s2,⋯, sn)T
$
←ÐDZn,σ ∈ Zn×1

q .
2 Rotate polynomials ai = ai1 + ai2x + ⋅ ⋅ ⋅ + ainxn−1 ∈ Rq to get matrices

Ai =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ai1 ai2 . . . ai(n−1) ain
−ain ai1 ai2 . . . ai(n−1)

−ai(n−1) −ain ai1 . . . ai(n−2)
⋮ ⋮ ⋮ ⋮ ⋮

−ai2 −ai3 −ai4 . . . ai1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then composeA′ = [A1A2⋯Am′]T ∈ Zm′n×n
q .

3 Derive A ∈ Zm×nq by sampling m-row vectors from A′ ∈ Zm′n×n
q . Similarly,

derive b ∈ Zmq from b′ ∈ Zm′n×1
q and e ∈ Zmq from e′ ∈ Zm′n×1

q .
Then we get a randomly sampled normal LWE case as (A,b ≡As + e (mod q)) ∈
(Zm×nq ,Zmq ).
4 Transform the randomly sampled LWE instance (A,b ≡As + e mod q) ∈

(Zm×nq ,Zmq ) from 3 to a SIS instance:
Given (A,b) ∈ (Zm×nq ,Zmq ), find a short vector (s ∣ e ∣ 1) ∈ Zm+n+1

q s.t.
(A ∣Im∣−b)(s ∣ e ∣ 1)T = 0 mod q.

2: SetA′′ = (A ∣Im∣−b) ∈ Zm×(m+n+1)
q . Compute basis B of q-ary lattice

L⊥(A′′,q) = {x ∈ Zm+n+1 ∣ A′′x ≡ 0 (mod q)}.
Compute kernel Ker(A′′) ofA′′ over Z(m+n+1)×(n+1).

3: For some matrixA∗, construct basis B = (
Ker(A′′)T
qIm+n+1

) ∈ Z(m+2n+2)×(m+n+1)
q

and compute the HNF of B as BHNF = (
qIm 0

A∗
(n+1)×m In+1

) ∈ Z(m+n+1)×(m+n+1).

4: Apply lattice reduction algorithm (LLL or BKZ) on basis BHNF and get a reduced
basis Red(BHNF). Inside of Red(BHNF), a short vector v = (s ∣ e ∣ 1) if it suc-
ceeded.
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Figure 5.3: The space complexity of sieving algorithm.

NIST submissions are using the gigantic memory beyond the whole data in the world
in 2016 due to the sieving algorithm [67]. The phase transition numbers are mentioned
in NTRUEncrypt [46] and Lotus [68]. Thus NTRUEncrypt, Lotus and a few others are
exceptionally using the enumeration-based method instead of the sieving algorithm.

In Figure 5.3 we give some references of required space to solve the SVP problem using
sieving algorithm. We also show our estimation corresponding to dimensions of 366
and 831 in our parameter settings in Table 5.2. Simultaneously, we mark some records
in ideal lattice challenge [29] which were solved by sieving algorithm: memory space of
20.2β for β = 128 [47] and memory {444341,2759903,4490083} for β = {112,126,130}

in [85] respectively. Moreover, some lattice-based proposals to NIST, as uRound2,
Lizard, Frodo, CRYSTALS, etc. [67] are also considered in Figure 5.3 for a reference.

5.4.3 Significance of Number of Samples in Practical Attack

At first we claim that because of the setting of our key exchange protocol: only one
RLWE instance (a,b = a ⋅ s + e mod q) ∈ (Rq,Rq) is given, Kannan’s embedding
technique [49] and Liu-Nguyen’s decoding attack [56] cannot be adopted since the
lattice L(A,q) = {v ∈ Zmq ∣ v ≡Ax (mod q),x ∈ Dn

σ} is trivial when m ≤ n. Therefore
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our estimator should be different from some other key exchange schemes as NewHope
[7] and Albrecht’s estimator [5] etc. which regard RLWE and normal LWE problem as
having the same difficulty without considering the number of available RLWE samples.
From the discussion in section 5.3 and the estimations in Table 5.1, we observe that there
is a big gap of hardness estimations between ONE-sample RLWE and multiple-samples
RLWE. Note that indeed the lowest numberm of required LWE samples from the M.A.
estimator (Section 5.4.4) are as follows: m is 576 for (n, q, σf) = (512,102833,4.92)

and m is 1097 for (n, q, σf) = (1024,120833,4.72). Therefore, the optimal number
in the M.A. estimator can be obtained only from “more than one RLWE samples"
(m = 576 > n = 512 and m = 1097 > n = 1024). Hence in practical attack, we
can get only one n-dimensional RLWE instance, which can be amplified to 2n + 1

without changing the distribution of error vectors, see Algorithm 9. Therefore the lattice
dimension of solving RLWE in our case is d = 2n + 1.

5.4.4 Our Simulator

For security analysis of our parameter choices, we refer to the approach in bold text
in Figure 5.2. At AsiaCrypt 2017 [5], Albrecht et al. re-estimated the hardness of
LWE problem using Kannan’s embedding and Bai-Gal’s embedding respectively under
estimation in NewHope [7] (denoted as “2016 estimate"). 2016 estimate states that if
the Gaussian Heuristic and the GSA [73] hold for BKZ-β reduced basis and

√
β/d ⋅ ∥(e∣1)∥2 ≈

√
βσ ≤ δ2β−d ⋅Vol(L(A,q))

1/d. (5.1)

Then error e can be found by BKZ-β with root Hermite Factor δ. In our case, we assume
f is the Gaussian distributed error vector plus the uniformly distributed perturbation
sampled from a bounded set due to Rounding-Recovering functions and (s∣f ∣1) is the
target vector in our attack. So there is a gap between the distribution of f and the
Gaussian distribution. However, given a same standard deviation σf , the expected
length of vectors sampled from the hybrid distribution is bigger than the one sampled
from Gaussian distribution on average, by a simple computation using the center limit
theorem. Hence in our estimation we assume f is Gaussian distributed. We adapt the
left side of the inequality (5.1) as

√
β/d ⋅ ∥(s∣f ∣1)∥2 ≈

√
β ⋅ (σe2 + σf 2).



86

Moreover, the Bai-Galbraith’s rescaling technique in [14] may be considered on the
“unbalanced" target vector (s∣f ∣1). The idea is to make s the same standard deviation as
σf , by multiplying a σf -decided parameter σ′f on the former n vectors in the constructed
dual lattice basis. Consequently the volume of the lattice is increased by (σ′f)

n s.t. the
target root Hermite factor is raised, too. However, the rescaling technique is used in
cryptanalysis when ∥e∥2 ≪ ∥f∥2, i.e. the secret vectors are sparse or sampled from
uniform binary or ternary distributions in random. In our case, the secret is Gaussian
distributed and the expected lengths difference between f and e is 3 ∼ 5. Hence the
Bai-Galbraith’s rescaling technique will not improve the security level substantially and
we do not involve this technique in our work.

Using SIS embedding approach to attack the protocol, we can get n samples by iterating
only one given instance z′′ = a′′s+ f ∈ Rq, therefore we need to evaluate the complexity
of processing a d = 2n + 1 dimension basis. For BKZ reduction runtime estimation, we
will give the result of progressive BKZ and Albrecht’s BKZ with sieving estimator.

Step 1. A short vector ∥b1∥2 = δd ⋅det(B) is assumed to be inside of the BKZ-β reduced
basis B of dimension d [23], where the root Hermite Factor is

δ = (((πβ)1/ββ)/(2πe))
1

2(β−1) . (5.2)

Wepre-compute the expected rootHermite factor δ forβ = 10,⋯, n and rewrite inequality
(5.1) as

√
β ⋅ (σe2 + σf 2) ≤ δ2β−d ⋅Vol(L(A,q))

1/d. (5.3)

To compute the target β in the progressive BKZ simulator, we use the correspondence
between δ and the GSA constant r: Given a d-dimensional basis, in order to use
progressive BKZ simulator, we need target βt for our parameter choice. At this stage,
from the Proposition 2.20 in Section 2.2, we can get the target GSA constant rt =
δ−4d/(d−1). Therefore we can compute the terminating blocksize βt in progressive BKZ
corresponding to rt by equation (3.10).

In our case, d = 2n + 1 is the dimension of lattice at step 2 in Algorithm 9 and also
Vol(L(A,q)) = qn. Therefore we can adapt inequality (5.3) to
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√
β ⋅ (σe2 + σf 2) ≤ δ2β−2n−1 ⋅ qn/(2n+1). (5.4)

Since σf can be experimentally derived from σe, we can compute lower bound of σf
in RLWE(n, q, σf) which covers security of AES-128/192/256 using equations (5.7),
(5.2) and (5.4). Note that f no longer follows discrete Gaussian distribution (histogram
shows similar shape as Gaussian distribution). Therefore we take a heuristic approach
to estimate σf .

Step 2. We compute the complexity of BKZ-β with sieving SVP oracle estimated as
8d ⋅20.292β+16.4 double precision floating point operations [15, 3]. We can easily translate
this to complexity of bit unit by

Tsieving−BKZ = 8d ⋅ 20.292β+16.4 ⋅ 64 (bits). (5.5)

Simultaneously, TBKZ can also be replaced by progressive BKZ simulator explained in
section 3.7. We run the progressive BKZ simulator for both n = 512 and n = 1024 cases.
Considering the number of iterations for each fixed blocksize in BKZ, we get following
two fitting functions to estimate the runtime of two cases respectively.

log2(TimepBKZ(secs)) =

⎧⎪⎪
⎨
⎪⎪⎩

0.003924 ⋅ β2 − 0.568 ⋅ β + 41.93 (n = 512)

0.004212 ⋅ β2 − 0.6886 ⋅ β + 55.49 (n = 1024)
(5.6)

Then we compute the complexity of bit unit by:

TpBKZ = TimepBKZ × 2.7 × 109 × 64 (bits). (5.7)

on our Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz server.

We generate 1,000 and 2,000 as + 2e samples for parameter choice (n,σ, q, p) =

(1024,2.6,120833,7552) and (n,σ, q, p) = (512,4.19,120833,7552). For each sample,
we apply Round() and Recover() functions, giving us

z = Recover(Round(a ⋅ s + 2e, p, q), p, q) = a ⋅ s + 2f .
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With z−as
2 = f , we compute standard deviation σf . Results are given in Table 5.2, where

the parameter settings can ensure 2−60 failure probability.

Table 5.2: Our simulation data and parameter settings covering security of AES-
128/192/256

Security level AES-128 AES-192 and AES-256
(n, q, σ) (512,120833,4.19) (1024,120833,2.6)
Method pBKZ 2016 estimate pBKZ 2016 estimate

Logarithmic
computational
complexity

319.14 142.27 1473.09 279.05

Blocksize 330 366 660 831
GSA Const. 0.983 0.991

σ (for s and e) of
our parameter choice 4.19 2.6

σf 4.92 4.72

Due to the uncertainty simulation for runtime with large dimension and large β (> 1000

and > 200 respectively), we are not sure about the simulation results for our key exchange
protocol. We will leave it as future work. However, our parameter choices can cover
results from pBKZ simulator. Therefore we show results from pBKZ simulator in
Table 5.2 as well.

The 2016 estimate for AES-128 and AES-192/256 security gives 142.27 and 279.05 bit
operations respectively. As we discussed in section 5.4.2, the sieving algorithm actually
requires exponential large memory (β ⋅ 20.292∗β+o(β)). Practically such a size memory’s
access will increase the computation cost by at least one magnitude (x10), therefore
we conclude that our parameter choices with n = 512 can achieve at least 145.59 bits
security, n = 1024 can achieve at least 282.37 bits security. With results given in
Table 5.2, we claim that parameter choices given in Ding Key Exchange proposal to
NIST cover security of AES-128/192/256.
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5.4.5 Statistically Analyzing the Gaussian Distribution and the Hy-
brid Distribution in DKE

We call the error distribution in the above analysis as “hybrid”, which includes the
original Gaussian distribution from LWE and the uniform distribution from rounding
function. In this section, we will show that for our parameter settings, the vectors
sampled from hybrid distribution is no shorter than the one sampled from Gauss (which
we used in our analysis). Namely, the RLWE problem with proposed parameters in
practical attack is no easier than our analysis based on the pure Gaussian distribution
thereof.

Assume a random variable X ′ = X + i, where X $
←Ð DZn,σ1 and i $

←Ð U[−8,7] are
independent. Note that σ1 = σ/

√
2π with σ the parameter for s and e in Ding Key

Exchange. Then we can get

E(X2) = σ2
1 and E(i2) =

1

16
((−8)2 + (−7)2 + ⋅ ⋅ ⋅ + 72) = 21.5.

Due to the Lawof LargeNumbers (LLN) andCentral Limit Theorem (CLT), the expected
length of a n−dimensional vector x composed by elements X ′ is

exp(∥x∥) =
√
n ⋅E(X ′2) =

√
n ⋅ (E(X2) +E(2iX) +E(i2)) =

√
n ⋅ (σ2

1 + 21.5)

Table 5.3: The expected length of vectors sampled from the hybrid distribution and
the Gaussian distribution.

Dimension n Hybrid Gauss
512 4.928 ⋅

√
n 4.92 ⋅

√
n

1024 4.75 ⋅
√
n 4.72 ⋅

√
n
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Simultaneously, we can also compute the theoretical value for σf =
√
V(X ′) by the

following results.

E(X ′) = E(X) +E(i) =
1

16
((−8 − 7 − 6 ⋅ ⋅ ⋅ + 6 + 7) = −

1

2
;

V(X ′) = E(X ′2) −E(X ′)2

= E(X2 + 2ix + i2) −
1

4

= σ2
1 + 0 + 21.5 −

1

4

= σ2
1 + 21.25.

The theoretical value of σf for dimensions 512 and 1024 are 4.903 and 4.725, which are
extremely close to the experimental results given in Table 5.2.

5.5 Conclusion

In this chapter, we did cryptanalysis for the Ding key exchange using the progressive
BKZ simulator and the : give secure parameter settings under NIST security category
I, III and V. We use the Short Integer Solution(SIS) attack and our analysis procedure
depending on the progressive BKZ simulation [10] and M.A. estimator [5]. Moreover,
the overwhelming storage cost for sieving algorithm is also considered, which is used as
SVP oracle of BKZ algorithm in M.A. estimator.



Chapter 6

Conclusion

In this thesis, we focus on the BKZ reduction algorithms and their applications in lattice-
based cryptography. Firstly, we proposed an improved progressive BKZ (pBKZ) and
a relevant simulating algorithm to estimate its computational cost. The experimen-
tal results showed the efficiency of our algorithm and the accuracy of the simulator.
Furthermore, we won several Darmstadt challenges, including the SVP Challenge, the
Approximate Ideal Lattice Challenge and the LWE Challenge, which indicate the im-
pressive capability of our progressive BKZ. We also estimated the practical hardness of
the learning with errors problem (LWE) using this proposed progressive BKZ, and gave
a method based on the experimental results to decide the proper number of necessary
samplesm and the size of the embedding factorM in the attack. Simultaneously, using
our method and pBKZ simulator we estimated the computational cost of some rest LWE
challenge instances. In the end, we analyzed the Ring LWE based Ding key exchange
protocol, which is a proposal to NIST PQC standardization project. To insure the error
rate of key exchange protocol under 2−60, we also gave several proper parameter sets
providing the security of AES-128/192/256 respectively, which satisfies NIST’s security
category I, III and V respectively.

91



Bibliography

[1] M. Ajtai. The worst-case behavior of schnorr’s algorithm approximating the short-
est nonzero vector in a lattice. In Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 396–406,
2003.

[2] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In Proceedings of the Thirty-third Annual ACM Symposium on
Theory of Computing, pages 601–610, 2001.

[3] M. R. Albrecht. On dual lattice attacks against small-secret LWE and parameter
choices in helib and SEAL. In Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, Part II, pages 103–129, 2017.

[4] M. R. Albrecht, R. Fitzpatrick, and F. Göpfert. On the efficacy of solving LWE by
reduction to unique-svp. In Information Security and Cryptology - ICISC 2013 -
16th International Conference, Revised Selected Papers, pages 293–310, 2013.

[5] M. R. Albrecht, F. Göpfert, F. Virdia, and T.Wunderer. Revisiting the expected cost
of solving usvp and applications to LWE. In Advances in Cryptology - ASIACRYPT
2017 - 23rd InternationalConference on the Theory andApplications ofCryptology
and Information Security, Proceedings, Part I, pages 297–322, 2017.

[6] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[7] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange-a
new hope. In USENIX Security Symposium, pages 327–343, 2016.

92



93

[8] Y. Aono. A faster method for computing gama-nguyen-regev’s extreme pruning
coefficients. CoRR, abs/1406.0342, 2014.

[9] Y. Aono, X. Boyen, L. T. Phong, and L. Wang. Key-private proxy re-encryption
under LWE. In Progress in Cryptology - INDOCRYPT 2013 - 14th International
Conference on Cryptology in India, Proceedings, pages 1–18, 2013.

[10] Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. Improved progressive BKZ al-
gorithms and their precise cost estimation by sharp simulator. In Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Proceedings, Part I, pages
789–819, 2016.

[11] Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. The progressive bkz code. Available
at http://www2.nict.go.jp/security/pbkzcode/, 2017.

[12] S. Arora and R. Ge. New algorithms for learning in presence of errors. In
Automata, Languages and Programming - 38th International Colloquium, ICALP
2011, Proceedings, Part I, pages 403–415, 2011.

[13] L. Babai. On lovász’ lattice reduction and the nearest lattice point problem (short-
ened version). In STACS 85, 2nd Symposium of Theoretical Aspects of Computer
Science, Proceedings, pages 13–20, 1985.

[14] S. Bai and S. D. Galbraith. Lattice decoding attacks on binary LWE. In Information
Security and Privacy - 19th Australasian Conference, ACISP 2014, Proceedings,
pages 322–337, 2014.

[15] A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, pages 10–24, 2016.

[16] A. Blum, A. Kalai, and H.Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM, 50(4):506–519, 2003.

[17] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghu-
nathan, and D. Stebila. Frodo: Take off the ring! practical, quantum-secure key

http://www2.nict.go.jp/security/pbkzcode/


94

exchange from lwe. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1006–1018. ACM, 2016.

[18] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange
for the tls protocol from the ring learning with errors problem. In Security and
Privacy (SP), 2015 IEEE Symposium on, pages 553–570. IEEE, 2015.

[19] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, and D. Stehlé. CRYSTALS - kyber: a cca-secure module-lattice-
based KEM. IACR Cryptology ePrint Archive, 2017:634, 2017.

[20] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, pages 97–106, 2011.

[21] J. A. Buchmann, N. Büscher, F. Göpfert, S. Katzenbeisser, J. Krämer, D. Mic-
ciancio, S. Siim, C. van Vredendaal, and M. Walter. Creating cryptographic
challenges using multi-party computation: The LWE challenge. In Proceedings
of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, Asi-
aPKC@AsiaCCS, pages 11–20, 2016.

[22] J. A. Buchmann and C. Ludwig. Practical lattice basis sampling reduction. InAlgo-
rithmicNumber Theory, 7th International Symposium, ANTS-VII, Berlin, Germany,
July 23-28, 2006, Proceedings, pages 222–237, 2006.

[23] Y. Chen. Lattice reduction and concrete security of fully homomorphic encryption.
Dept. Informatique, ENS, Paris, France, PhD thesis, 2013.

[24] Y. Chen and P. Q. Nguyen. Bkz 2.0: Better lattice security estimates. In Advances
in Cryptology – ASIACRYPT 2011: 17th International Conference on the Theory
and Application of Cryptology and Information Security, Proceedings, pages 1–20,
2011.

[25] Y. Chen and P. Q. Nguyen. Bkz 2.0: Better lattice security estimates. the full
version, available at http://www.di.ens.fr/~ychen/research/Full_BKZ.
pdf., 2012.

http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf
http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf


95

[26] D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In Advances in Cryptol-
ogy - EUROCRYPT ’97, International Conference on the Theory and Application
of Cryptographic Techniques, Proceeding, pages 52–61, 1997.

[27] T. Darmstadt. Learning with errors challenge. Available at https://www.
latticechallenge.org/lwe_challenge, 2017.

[28] T. Darmstadt. Svp challenge. Available at https://www.latticechallenge.
org/svp-challenge, 2017.

[29] T. Darmstadt. Ideal lattice challenge. Available at https://latticechallenge.
org/ideallattice-challenge, 2018.

[30] T. Darmstadt. Lattice challenge. Available at https://latticechallenge.org,
2018.

[31] J. Ding, T. Takagi, X. Gao, and W. Yuntao. Ding key exchange – a proposal to nist
pqc competition. SCIS 2018, 2018.

[32] P. D. Domich, R. Kannan, and L. E. T. Jr. Hermite normal form computation using
modulo determinant arithmetic. Math. Oper. Res., 12(1):50–59, 1987.

[33] D. FermiGuy. The number of atoms in the world. Available at http://www.
fnal.gov/pub/science/inquiring/questions/atoms.html, 2014.

[34] R. Fischlin and J. Seifert. Tensor-based trapdoors for CVP and their application
to public key cryptography. In Cryptography and Coding, 7th IMA International
Conference, Cirencester, UK, Proceedings, pages 244–257, 1999.

[35] M. Fukase and K. Kashiwabara. An accelerated algorithm for solving SVP based
on statistical analysis. JIP, 23(1):67–80, 2015.

[36] N. Gama and P. Q. Nguyen. Predicting lattice reduction. InAdvances in Cryptology
- EUROCRYPT 2008, 27th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Proceedings, pages 31–51, 2008.

[37] N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning.
In Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Proceedings,
pages 257–278, 2010.

https://www.latticechallenge.org/lwe_challenge
https://www.latticechallenge.org/lwe_challenge
https://www.latticechallenge.org/svp-challenge
https://www.latticechallenge.org/svp-challenge
https://latticechallenge.org/ideallattice-challenge
https://latticechallenge.org/ideallattice-challenge
https://latticechallenge.org
http://www.fnal.gov/pub/science/inquiring/questions/atoms.html
http://www.fnal.gov/pub/science/inquiring/questions/atoms.html


96

[38] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Proceedings,
pages 1–17, 2013.

[39] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pages
169–178, 2009.

[40] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pages 197–206, 2008.

[41] D. Gil. The future is quantum. Available at https://www.ibm.com/blogs/
research/2017/11/the-future-is-quantum/, 2017.

[42] G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using
dynamical systems. In Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, Proceedings, pages 447–464, 2011.

[43] M. Haque, M. O. Rahman, and J. Pieprzyk. Analysing progressive-bkz lattice
reduction algorithm. In 1st National Conference on Intelligent Computing &
Information Technology, NCICIT 2013, Proceedings, pages 73–80, 2013.

[44] G. Herold, E. Kirshanova, and A. May. On the asymptotic complexity of solving
LWE. IACR Cryptology ePrint Archive, 2015:1222, 2015.

[45] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key
cryptosystem. In Algorithmic Number Theory, Third International Symposium,
ANTS-III, Proceedings, pages 267–288, 1998.

[46] J. Hoffstein and J. H. Silverman. Random small hamming weight products with
applications to cryptography. Discrete Applied Mathematics, 130(1):37–49, 2003.

[47] T. Ishiguro, S. Kiyomoto, Y. Miyake, and T. Takagi. Parallel gauss sieve algorithm:
Solving the SVP challenge over a 128-dimensional ideal lattice. In Public-Key
Cryptography - PKC 2014 - 17th International Conference on Practice and Theory
in Public-Key Cryptography, Proceedings, pages 411–428, 2014.

https://www.ibm.com/blogs/research/2017/11/the-future-is-quantum/
https://www.ibm.com/blogs/research/2017/11/the-future-is-quantum/


97

[48] R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, pages 193–206, 1983.

[49] R. Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12(3):415–440, 1987.

[50] P.Kirchner and P. Fouque. An improvedBKWalgorithm for LWEwith applications
to cryptography and lattices. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Proceedings, Part I, pages 43–62, 2015.

[51] T. Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Proceedings, Part I, pages 3–22, 2015.

[52] T. Laarhoven and B. de Weger. Faster sieving for shortest lattice vectors using
spherical locality-sensitive hashing. In Progress in Cryptology - LATINCRYPT
2015 - 4th International Conference on Cryptology and Information Security in
Latin America, Proceedings, pages 101–118, 2015.

[53] A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational coeffi-
cients. Mathematische Annalen, 261:515–534, 1982.

[54] T. Lepoint andM.Naehrig. A comparison of the homomorphic encryption schemes
FV and YASHE. In Progress in Cryptology - AFRICACRYPT 2014 - 7th Interna-
tional Conference on Cryptology in Africa, Proceedings, pages 318–335, 2014.

[55] R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption.
In Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA
Conference 2011, Proceedings, pages 319–339, 2011.

[56] M. Liu and P. Q. Nguyen. Solving BDD by enumeration: An update. In Topics
in Cryptology - CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference
2013, Proceedings, pages 293–309, 2013.

[57] V. Lyubashevsky. The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In Approximation, Randomization and



98

Combinatorial Optimization, Algorithms and Techniques, 8th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems, AP-
PROX 2005 and 9th InternationalWorkshop on Randomization and Computation,
RANDOM 2005, Proceedings, pages 378–389, 2005.

[58] V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique
shortest vectors, and the minimum distance problem. In Advances in Cryptology
- CRYPTO 2009, 29th Annual International Cryptology Conference, Proceedings,
pages 577–594, 2009.

[59] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with er-
rors over rings. InAnnual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 1–23. Springer, 2010.

[60] D. Micciancio and O. Regev. Lattice-based Cryptography, pages 147–191.
Springer, 2009.

[61] D. Micciancio and M. Walter. Practical, predictable lattice basis reduction. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Proceedings,
Part I, pages 820–849, 2016.

[62] P. Q. Nguyen. Cryptanalysis of the goldreich-goldwasser-halevi cryptosystem from
crypto ’97. In Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Proceedings, pages 288–304, 1999.

[63] P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH
and NTRU signatures. In Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, pages 271–288, 2006.

[64] P. Q. Nguyen and D. Stehlé. LLL on the average. In Algorithmic Number Theory,
7th International Symposium, ANTS-VII, Proceedings, pages 238–256, 2006.

[65] P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm - Survey and Applications.
Information Security and Cryptography. Springer, 2010.



99

[66] T. Nguyen. What is the world’s data storage capacity? Available at http://www.
zdnet.com/article/what-is-the-worlds-data-storage-capacity,
2011.

[67] NIST. Post-Quantum Cryptography | CSRC. Available at https://csrc.nist.
gov/projects/post-quantum-cryptography, 2017.

[68] L. T. Phong, T. Hayashi, Y. Aono, and S. Moriai. Lotus: Algorithm specifica-
tions and supporting documentation. Available at https://www2.nict.go.jp/
security/lotus/index.html, 2017.

[69] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
InProceedings of the 37th Annual ACMSymposium on Theory of Computing, pages
84–93, 2005.

[70] D. Reinsel, J. Gantz, and J. Rydning. Data age 2025: The evolution of data to
life-critical. Available at http://www.seagate.com/files/www-content/
our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf,
2017.

[71] C. A. Rogers. The number of lattice points in a set. In Proceedings of the London
Mathematical Society, volume s3-6, 1956.

[72] M. Schmidt and N. Bindel. Estimation of the hardness of the learning with errors
problem with a restricted number of samples. IACR Cryptology ePrint Archive,
2017:140, 2017.

[73] C. Schnorr. Lattice reduction by random sampling and birthday methods. In
STACS 2003, 20th Annual Symposium on Theoretical Aspects of Computer Science,
Proceedings, pages 145–156, 2003.

[74] C. Schnorr. Accelerated slide- and lll-reduction. Electronic Colloquium on Com-
putational Complexity (ECCC), 18:50, 2011.

[75] C. Schnorr andM. Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program., 66:181–199, 1994.

[76] C. Schnorr and H. H. Hörner. Attacking the chor-rivest cryptosystem by improved
lattice reduction. In Advances in Cryptology - EUROCRYPT ’95, International

http://www.zdnet.com/article/what-is-the-worlds-data-storage-capacity
http://www.zdnet.com/article/what-is-the-worlds-data-storage-capacity
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://www2.nict.go.jp/security/lotus/index.html
https://www2.nict.go.jp/security/lotus/index.html
http://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
http://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf


100

Conference on the Theory and Application of Cryptographic Techniques, Proceed-
ing, pages 1–12, 1995.

[77] C. Schnorr and T. Shevchenko. Solving subset sum problems of densioty close
to 1 by "randomized" bkz-reduction. IACR Cryptology ePrint Archive, 2012:620,
2012.

[78] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factor-
ing. In Proceedings 35th Annual Symposium on Foundations of Computer Science,
pages 124–134, 1994.

[79] V. Shoup. NTL, a library for doing number theory. Available at http://www.
shoup.net/ntl/, 2017.

[80] N. Stephens-Davidowitz. Discrete gaussian sampling reduces to cvp and svp. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, pages 1748–1764, 2016.

[81] J. van de Pol and N. P. Smart. Estimating key sizes for high dimensional lattice-
based systems. In Cryptography and Coding - 14th IMA International Conference,
IMACC 2013, Proceedings, pages 290–303, 2013.

[82] Y. Wang, Y. Aono, and T. Takagi. An experimental study of kannan’s embedding
technique for the search LWE problem. In Information and Communications
Security - 19th International Conference, ICICS 2017, Proceedings, pages 541–
553, 2017.

[83] R. Xu. Private communication. 2017.

[84] R. Xu, S. L. Yeo, K. Fukushima, T. Takagi, H. Seo, S. Kiyomoto, and M. Henrick-
sen. An experimental study of the BDD approach for the search LWE problem.
In Applied Cryptography and Network Security - 15th International Conference,
ACNS 2017, Proceedings, pages 253–272, 2017.

[85] S. Yang, P. Kuo, B. Yang, and C. Cheng. Gauss sieve algorithm on gpus. In Topics
in Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference
2017, Proceedings, pages 39–57, 2017.

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Post-Quantum Cryptography
	1.2 Lattice-based Cryptography
	1.3 Motivation and Contribution
	1.4 Organization

	2 Background
	2.1 Mathematical Background of Lattices
	2.2 Lattice Problems
	2.3 Darmstadt Lattice Challenge Series.

	3 The Improved Progressive BKZ Algorithm and its Cost Simulator
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Enumeration Algorithm K83,SE94,GNR10

	3.3 Lattice Reduction Algorithms
	3.3.1 Some Heuristic Assumptions in BKZ
	3.3.2 Chen-Nguyen's BKZ 2.0 Algorithm CN11

	3.4 Optimizing Parameters in Plain BKZ
	3.4.1 Relationship of Parameters , , p, r
	3.4.2 Optimizing Parameters
	3.4.3 Parameter Settings in Step 4 in Algorithm 2

	3.5 Our Proposed Progressive BKZ: Basic Variant
	3.5.1 Sim-GS-lengths(n,): Predicting Gram-Schmidt Lengths
	3.5.2 Expected Number of BKZ Tours at Step 3

	3.6 Optimizing Blocksize Strategy in Progressive BKZ
	3.6.1 Optimizing Blocksize Strategies
	3.6.2 Simulating Time to Find Short Vectors in Random Lattices
	3.6.3 Comparing with Other Heuristic Blocksize Strategies

	3.7 Our Implementation and Cost Estimation for Processing Local Blocks
	3.7.1 Implementation and Time Estimation of Step 6 and 7: TimeOptimize+TimePreprocess+TimeEnum
	3.7.2 Estimating Time of Step 5-1 and 8-2: TimeGS+TimeLLL when the lattice dimension is small
	3.7.3 Estimating Time of Step 5-1 and 8-2: TimeGS+TimeLLL when the lattice dimension is large
	3.7.4 Experimental Coefficient Fitting

	3.8 Pre/Post-Processing the Entire Basis
	3.8.1 Algorithm for Finding Nearly Shortest Vectors
	3.8.2 Lower Bound of the Cost by an Idealized Algorithm

	3.9 Simulation Results for SVP Challenge and Comparison
	3.10 Conclusions and Future Work

	4 Hardness Evaluation for Search LWE Problem using Progressive BKZ and its Simulator
	4.1 Introduction
	4.2 Cost Estimation of BKZ Algorithms Revisit
	4.2.1 pBKZ Simulator
	4.2.2 M.A. Estimator

	4.3 Overview of Embedding Technique for Solving LWE Problem
	4.3.1 From LWE to BDD
	4.3.2 Solving LWE via the Embedding Technique
	4.3.3 How to Choose M at Step 2
	4.3.4 How to Choose m

	4.4 Experimental Results and Analysis
	4.4.1 Efficiency by changing M.
	4.4.2 Optimal Choice of m for each (n,)
	4.4.3 Estimating Runtime by pBKZ Simulator
	4.4.4 Record of (n=70,=0.005) in LWE Challenge

	4.5 Conclusions

	5 Evaluating Secure Parameters for Ding Key Exchange
	5.1 Introduction
	5.2 Ding Key Exchange Review
	5.2.1 Core Functions in Ding Key Exchange.
	5.2.2 Ding Key Exchange

	5.3 Parameter Settings for ONE-sample RLWE Case
	5.4 Estimating Security of One RLWE Sample
	5.4.1 Algorithms for Solving RLWE
	5.4.2 Phase Transition of Sieving Algorithm
	5.4.3 Significance of Number of Samples in Practical Attack
	5.4.4 Our Simulator
	5.4.5 Statistically Analyzing the Gaussian Distribution and the Hybrid Distribution in DKE

	5.5 Conclusion

	6 Conclusion
	Bibliography

