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Abstract

The quantum Rabi model is a model in quantum optics used to describe
the interaction between a two-level atom and a single-level photon field. This
model, described in 1963 by Jaynes and Cummings, is the fully quantized ver-
sion of the original semi-classical model proposed in 1936 by Rabi. In previous
years, the study of the properties of Hamiltonian of the quantum Rabi model
and its energy levels (eigenvalues of the Hamiltonian) has been relegated mainly
for two reasons. The first one was the belief that the quantum Rabi model was
not an exactly solvable model, that is, that its energy levels could not be de-
scribed analytically. The second reason is that in the parameter regime achiev-
able at the time in experiments and applications, the quantum Rabi model
could be approximated successfully by the Jaynes-Cummings model, a simpler
model which is known to be exactly solvable.

Both situations changed in recent years. In 2011, Daniel Braak proved
the exact-solvability of the quantum Rabi model by constructing analytical
solutions and defining a transcendental function, the G-function, whose zeros
determine all the spectrum (with the exception of a (possible finite) set of excep-
tional eigenvalues). This pioneering technique has since then been successfully
applied to show the exact-solvability of several models in quantum optics. On
the other hand, due to the advances in experimental physics, starting from the
first decade of this century, experiments have been steadily reaching parameter
regimes where the Jaynes-Cummings model becomes unsuitable for approxi-
mation and in 2014, the experiments by Maissen et al reached regimes where
it is imperative to consider the full Hamiltonian of the quantum Rabi model.
Adding to this, recently there has also been proposals for applications of the
quantum Rabi model in quantum information theory and quantum computing.
For these reasons, there has been a large amount of research done in theoretical
and experimental physics, and, more recently, mathematics on the subject of
the quantum Rabi model, its generalizations and applications.

In this thesis, we study the asymmetric quantum Rabi model, one of the
generalizations of the quantum Rabi model. In this generalization, an addi-
tional non-trivial interaction term is introduced in the Hamiltonian, breaking
the Z/2Z-symmetry of the quantum Rabi Hamiltonian. The presence of this
symmetry in the quantum Rabi model explains the presence of crossings in
the energy levels (degeneracies in the spectrum), so a priori there was no rea-
son to expect degeneracies in the spectrum of the asymmetric version. In this
work, we show that when the coefficient of the symmetry-breaking term is half-
integer, degeneracies appear in the spectrum of the asymmetric quantum Rabi
model. This is done by studying the properties of the constraint polynomials,
polynomials appearing in certain conditions that the parameters of the model
must satisfy in order to have certain eigenvalues, called Juddian eigenvalues.

The spectrum of the asymmetric quantum Rabi model is divided into dif-
ferent sets, an infinite set of regular eigenvalues, the zeros of the G-function
and the exceptional eigenvalues, not captured as zeros of the G-function. The
exceptional spectrum is further classified into Juddian and non-Juddian, ac-
cording to the type of solution in the Segal-Bargmann space realization. These
solutions are also described in terms of the sl2 picture of the Hamiltonian in
terms of irreducible representations of sl2. The case for Juddian and regular
eigenvalues was already known, and in this thesis we complete the picture for
the non-Juddian eigenvalues. Another main result of this work is to character-
ize the degeneracies of the asymmetric quantum Rabi model in terms of the
types of eigenvalues and the parameters. Furthermore, by carefully studying



the poles of the G-function, we define a new G-function whose zeros give the
full spectrum of the asymmetric quantum Rabi model.

Finally, we present a study on continued fractions expansions of integer
powers of the Napier constant e with a nice representation and good conver-
gence properties. This study is a byproduct of the study of certain orthogonal
polynomial families related to the constraint polynomials of the AQRM.



A la memoria de mis abuelos, Maŕıa Márquez y Marcelino Bustos
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Introduction

The quantum Rabi model (QRM), originally described in [24], is the fully quantized
version of the semi-classical model defined in [47] by Isidor Isaac Rabi in 1936 to
describe the effect of a rapidly varying weak magnetic field on an oriented atom
possessing nuclear spin. The QRM is one of the basic models in quantum optics, as
it describes the simplest interaction between a two-level atom and a light field.

The Hamiltonian of the QRM is given by

HRabi = ωa†a + g(a + a†)σx +∆σz,

where σx, σz are the Pauli matrices, ω > 0 is the classical frequency of light field
(modeled by a quantum harmonic oscillator), 2∆ > 0 is the energy difference of
the two-level system and g > 0 is the interaction strength between the two system.
Different combinations of the parameters of the model are classified into parameter
regimes according to the static and dynamic properties of its energy levels and
solutions (see [45] for a discussion on the different parameter regimes).

For a long time, experimental realizations of the QRM achieved parameters
regimes in which the dynamic and static properties could be approximated success-
fully by the Jaynes-Cummings model [24]. The Jaynes-Cummings model was long
known to be exactly solvable, and its physical properties could be compared with the
experimental results. However, recent development in experimental physics [37, 65]
have been able to realize parameter regimes (for instance the nonperturbative ultra-
strong coupling and the deep strong coupling regimes) were the Jaynes-Cummings
model (or other similar approximations) is no longer suitable to describe its physical
properties. These developments, along with the prospect of applications to areas
such as quantum information technologies (see [18, 50, 65]) have made the study
the properties of the QRM and its spectrum a priority in physics.

Despite the simplicity of its definition, using only raising and lowering operators
of a quantum harmonic oscillator and Pauli matrices, only a set of degenerate eigen-
values, known as Juddian eigenvalues [25], was explicitly known for a long time. It
was not until 2011, when Daniel Braak, exploiting the Z/2Z-symmetry found in the
Hamiltonian, was able to construct analytic solutions and describe the eigenvalues
(with the exception of a (possibly finite) set of exceptional eigenvalues) as the zeros
of a transcendental function, called G-function [5]. Since then, several extensions
and generalizations of the QRM have been solved by using techniques derived of
Braak’s work (see e.g. [7, 13]).

The asymmetric quantum Rabi model (AQRM) is one of these generalizations.
The Hamiltonian of the AQRM is obtained by introducing a non-trivial interaction
term that breaks the Z/2Z-symmetry in the Hamiltonian of the QRM. Concretely,
its Hamiltonian is given by

Hε
Rabi = ωa†a +∆σz + gσx(a† + a) + εσx,
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with ε ∈ R. The absence of the Z/2Z-symmetry makes the presence of degeneracies
in this model highly nontrivial, in particular there appears to be no way to define
invariant subspaces (called parity subspaces in the case of the QRM) whose solutions
constitute degeneracies (or crossings). Concretely, by using the symmetry found in
the QRM, it is seen that HRabi = H+∆ ⊕ H−∆ for Hamiltonians H±∆ acting on
appropiate subspaces of the Hilbert space in which HRabi acts. Degeneracies are
then found to appear between one eigenvalue of H+∆ and one eigenvalue of H−∆.
Such a decomposition is not known for the AQRM.

Strikingly, degenerate states were discovered in numerical experiments for the
case ε = 1

2 by Li and Batchelor in [33]. Later, Masato Wakayama in [63] conjectured
the existence of degenerate states for the general half-integer ε case in terms of
divisibility of constraint polynomials and proved the conjecture for the case ε = 1

2 .
The conjecture was recently proved affirmatively for the general case by Kazufumi
Kimoto, Masato Wakayama and the author in [27]. The presence of degenerate
solutions for half-integer parameter actually hints at the possibility of a hidden
symmetry in the AQRM, as it has been discussed in [63, 53].

As in the case of the QRM, there is a G-function Gε(x; g,∆) for the AQRM that
determines the regular eigenvalues, that is, all the eigenvalues with the exception
of a set of exceptional eigenvalues of the form λ = N ± ε − g2, with N ∈ Z≥0. The
exceptional eigenvalues are further classified into two types, Juddian eigenvalues,
when the solutions of the eigenvalue problem in the Segal-Bargmann space HB can
be represented by a polynomial, that is, is a quasi-exact solution, or non-Juddian
exceptional eigenvalues when this is not the case. The presence of the Juddian
eigenvalue λ = N ± ε − g2 is equivalent to the constraint relation

P
(N,±ε)
N ((2g)2,∆2) = 0,

where P
(N,±ε)
N (x, y) is a polynomial of degree N , called constraint polynomial (see

[33] and [31] for the case of the QRM). As it is clear from the definitions, a necessary
condition for two exceptional eigenvalues λ1 = N + ε − g2 and λ2 =M − ε − g2 with
N,M ∈ Z≥0 and N /=M , to be equal is that

ε = M −N
2

= `
2
∈ 1

2
Z,

that is, ε must be half-integer. Since the regular eigenvalues are known to be non-
degenerate (see [5] and Section 2.6 below), this is actually a necessary condition for
the AQRM to have degenerate eigenvalues. Furthermore, as we show in Corollary
4.1.4, there are no degeneracies consisting of a Juddian and a non-Juddian excep-
tional solution. Therefore, any possible degeneracy in the spectrum of the AQRM
must consist of two Juddian solutions. In terms of constraint polynomials, this is
equivalent to the simultaneous satisfaction of the two constraint relations

P
(N,`/2)
N ((2g)2,∆2) = 0 = P (N+`,−`/2)N+` ((2g)2,∆2), (1)

where N ∈ Z≥0 and ` ≥ 0 (for ` < 0 it is enough to switch the roles of N and M in the
discussion above). In addition, if all the roots of the polynomial on the left-hand
side of (1) are roots of the polynomial in the right-hand side, and viceversa, then
all Juddian solutions λ = N + `/2−g2 must be degenerate. Since the polynomials on
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both sides are of different degrees, except in the case of ` = 0 (i.e. the QRM), the
relation (1) is nontrivial.

Following this argumentation, the conjecture given by Masato Wakayama in [63]
is that the divisibility relation

P
(N+`,−`/2)
N+` (x, y) = A`N(x, y)P (N,`/2)N (x, y),

holds for N, ` ∈ Z≥0 and that the polynomials A`N(x, y) have no positive roots for
x, y > 0. In other words, that any Juddian eigenvalue of the AQRM is degenerate
when the parameter ε is half-integer. The proof of the conjecture in [27] was done
by studying certain determinant expressions satisfied by the constraint polynomials.
The proof presented in this thesis is a generalization of the said proof, in fact, we
prove a stronger conjecture, also proposed in [63] (see Section 2.9).

Another important question is to determine whether exceptional solutions do,
in fact, appear in the spectrum for given parameters g,∆ > 0. A result of Li and
Batchelor, presented in [33], gives a lower bound on the number of roots of the
constraint polynomials when the parameter ∆ is in certain intervals. In Section 3.5
we prove a stronger formulation of the result, giving the exact number of solutions
for the same intervals. This result suffices for the case of Juddian eigenvalues.

For non-Juddian exceptional eigenvalues, we define a transcendental constraint

T -function T
(N)
ε (g,∆) such that the equation

T (N)ε (g,∆) = 0

is equivalent to the presence of the non-Juddian exceptional eigenvalue λ = N + ε −
g2. Aside from providing conditions for the existence of non-Juddian exceptional
solutions, these T -functions appear, along with the constraint polynomials, in the
expression of the residues of the G-function of the AQRM. By using this, we define
a generalized G-function Gε(x; g,∆) whose zeros determine the complete spectrum
of the AQRM. In other words, it is essentially (up to a nonvanishing entire factor)
the spectral determinant for the Hamiltonian of the AQRM.

The purpose of this thesis is to give a complete overview of the spectrum of the
AQRM, including the complete characterization of the degeneracies in its spectrum.
The thesis is intended to be a mostly self-contained exposition, however for a number
of results we refer the reader to the original sources.

We begin, in Chapter 1 by giving an overview of the quantum harmonic oscilla-
tor and its raising a† and lowering a operators and their L2(R) and Segal-Bargmann
space HB space realizations. Furthermore, we give basic overview of the represen-
tation theory of the Lie algebra sl2 and its irreducible representations.

In Chapter 2, we present a short historical review of the main research done
on the QRM starting from its definition. In Section 2.2, we give a tour of the
Hamiltonians of several models of quantum optics that describe the interaction
between light and matter. Several of these models are generalizations of the QRM.
In Section 2.3, by considering the realization as a second order pseudo-differential
operator acting on L2(R)⊗C2 we give some of general properties of the Hamiltonian
of the AQRM and its spectrum, the most important being that the spectrum consist
only of the discrete set of eigenvalues. Next, in Section 2.4 we study the realization
of eigenvalue problem of the Hamiltonian of the AQRM in the Segal-Bargmann
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space and reduce it to a system of two linear differential equations, equivalent
to a confluent Heun differential equation. Moreover, this system is captured by
elements of the universal enveloping algebra of sl2. In Section 2.5, we describe
the classification of the eigenvalues of the AQRM into regular eigenvalues, further
discussed in Section 2.6, and exceptional eigenvalues, discussed in 2.7, according to
the Frobenius solutions of the system of linear differential equations of confluent
Heun type. In Section 2.8, we describe how the constraint polynomials are related
to the coefficients of the solutions of the differential equation system, in particular
we prove the equivalence of the constraint relation with the presence of Juddian
eigenvalues. In Section 2.9, we discuss the conjectures on constraint polynomials
that gave the motivation for this research.

In Chapter 3, we study the constraint polynomials and its mathematical prop-
erties. Above all, we see how the “divisibility” of the conjectures follows from
certain determinant expressions related to their definition by three-term recurrence
relations. The positivity follows as well by the properties of the eigenvalues of
the matrices involved in said determinant expressions. The conjectures are finally
proved in Section 3.3. In Section 3.5, we prove the already mentioned result on the
number of positive roots of constraint polynomials when one of the variables is in a
given interval. In Section 3.6 we give some explicit formulas for constraint polyno-
mials that can be used to study the constraint polynomials from the combinatorial
point view.

In Chapter 4 we complete the picture of the spectrum of the AQRM, by describ-
ing the degeneracy structure using the results of the previous chapters. Notably,
in Section 4.1 we characterize the degeneracy of the exceptional spectrum of the
AQRM, this being sufficient to describe the degeneracy structure in the general
case. In Section 4.2, we derive the aforementioned constraint T -function, that,
along with the constraint polynomials, is used to study the residues of the poles of
the G-function in Section 4.3. In Section 4.4 we define the generalized G-function
and prove that its zeros determine the full spectrum of the AQRM. Finally, in Sec-
tion 4.5 we show that exceptional solutions correspond to eigenvectors in irreducible
sl2-modules in the sl2-picture of the eigenvalue problem of the AQRM.

As an addendum to the study of the spectrum of the AQRM, in Chapter 5 we
present certain continued fraction expansions for powers of the Napier constant (or
Euler’s number) en, with n ∈ Z≥0 with good convergence properties. These continued
fraction expansions appeared during the study of certain orthogonal polynomial
families related to the constraint polynomials. This study is intended to give an
example of the rich mathematical structure appearing in the study of the AQRM
and its spectrum.

The year 2016 marked the 80 anniversary of the publication of the original paper
by Rabi describing his original model, see [4] for a review of the QRM commemo-
rating the occasion. Even after 80 years and a large amount of research (a search
on arXiv.org shows more than 100 entries for quantum Rabi model and related
topics since 2011), the list of mysteries and open questions concerning the quantum
Rabi model is very large and is still growing. A short discussion on certain open
problems is given in Chapter 6 with the hope that it motivates further research in
the quantum Rabi model.

As a disclaimer, we note that some of the results of Section 2.8 and Chap-
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ters 3 and 4 are (or are generalizations of) results published in [48], with Masato
Wakayama, and [27], with Kazufumi Kimoto and Masato Wakayama. The results
of Chapter 5 consist of previously unpublished work.
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1. Preliminaries

The purpose of this chapter is to give a brief introduction of the tools and concepts
to be used later in the study of the spectrum of the asymmetric quantum Rabi
model.

First, we give an overview of the theory of the quantum harmonic oscillator,
a model of quantum physics that is used to describe more complicated physical
phenomena. Next, we introduce the Segal-Bargmann space, a Hilbert space of
entire functions in which the realization of the raising and lowering operators of
the harmonic oscillator have a particularly simple expression. In this Hilbert space,
the eigenvalue problem of the quantum Rabi model reduces to a system of ordinary
linear equations of confluent Heun type. As it is well-known, differential equations
can be realized by elements of U (sl2), the universal enveloping algebra of sl2 via
certain representations. For this reason, in the final section we introduce the basic
theory of sl2 representations that we use in later chapters.

1.1 The quantum harmonic oscillator

The quantum harmonic oscillator is one the simplest models in quantum mechanics.
Its importance lies in that it has simple analytic solutions and that a good number
of physical phenomena is modeled using coupled harmonic oscillators. For instance,
the quantum Rabi models studied in this thesis are defined in terms of the the raising
and lowering operators a and a† that appear in the quantum harmonic oscillator.

Let H be a Hilbert space. Consider self-adjoint operators X and P acting on H
satisfying the conmutation relation

[X,P ] = ih̵1,

and the hypothesis of the Stone-von Neumann theorem (see [17], Chapter 14). The
constant h̵ = 1.054× 10−27 erg ⋅ s = 1.054× 10−34 J ⋅ s, is the reduced Planck constant.

The Hamiltonian of the one-dimensional quantum harmonic oscillator (QHO),
or linear oscillator, is given by

H = 1

2
(P

2

m
+ kX2) ,

where m,k > 0. The constant m is interpreted as the mass of the particle.
Introducing the constant ω, called the classical frequency of the oscillator, given

by

ω =
√

k

m
,

the Hamiltonian H is written as

H = 1

2m
(P 2 + (mωX)2) .

6



1.1. The quantum harmonic oscillator

Next, we introduce the raising operator a† and the lowering operator a, by the
formulas

a† = mωX − iP√
2h̵mω

, a = mωX + iP√
2h̵mω

.

The operator a† is also called creation operator , and correspondingly, the operator
a is called annihilation operator. The operator a† is the adjoint of a, justifying the
notation.

By direct computation, we observe that

[a, a†] = 1,

where 1 is the identity operator.
The Hamiltonian H is written in terms of the operators a and a† as

H = h̵ω (a†a + 1

2
1) ,

and therefore the study of the spectrum of the QHO is reduced to the study of the
spectrum of the self-adjoint operator a†a. The spectrum of the operator a†a, and
therefore of the QHO, can be described explicitly. We recall the results here and
refer the reader to [17, 58, 64], for a more detailed discussion.

The following result justifies the name raising and lowering for the operators a†

and a, its proof is immediate from the commutation relation above.

Proposition 1.1.1. Let φ be an eigenfunction of a†a with eigenvalue λ ∈ R. Then,

a†a (aφ) = (λ − 1)φ
a†a (a†φ) = (λ + 1)φ.

Since a and a† are adjoint operators, any eigenvalue λ of a†a is non-negative,
and thus by the proposition above if φ is an eigenfunction of a†a there must be φ0,
a ground state, with a†aφ0 = 0 and φ = (a†)nφ0 for a non-negative integer n. In
particular, λ itself is a non-negative integer.

Proposition 1.1.2. If φ0 is a unit vector with aφ0 = 0, then for n ≥ 0, define

φn = (a†)nφ0.

The following relations hold for n ≥ 0,

a†aφn = nφn
aφn+1 = (n + 1)φn.

Furthermore, the family {φn}n≥0 is orthogonal.

Depending on the choice of Hilbert space H, it may be the case that there
are multiple independent ground states, for example in the Hilbert space L2(R) ⊗
C2, equipped with the inner-product inherited from L2(R), there are two linearly
independent ground states.

7



1.2. The Segal-Bargmann space

Finally, we make some considerations for the case of H = L2(R). In this re-
alization, the eigenvectors are given explicitly by the Hermite functions. Setting,
for simplicity, h̵ = m = ω = 1, we see that the position operator is realized by the
multiplication operator

X = x,

and the momentum operator is realized by the differentiation operator

P = −i d
dx
.

The raising and lowering operators are then given by

a† = 1√
2
(x − d

dx
) , a = 1√

2
(x + d

dx
) ,

and the equation aφ0 = 0 is an ordinary differential equation of order one with
general solution

φ0(x) = Ce−x
2/2,

and where the normalization condition gives immediately C = √
π.

Proposition 1.1.3. The ground state φ0(x) of a†a is given by

φ0(x) =
√
πe−x

2/2,

and the “excited states” φn(x) are given by

φn(x) =Hn(x)φ0(x),

where Hn(x) is the n-th Hermite polynomial, defined by the equation

dn

dxn
(e−

1
2
x2) = (−1)ne−

1
2
x2Hn(x).

Furthermore, the family {φn(x)}≥0 is an orthonormal basis of H = L2(R).

Therefore, in the H = L2(R) realization, the spectrum of the QHO is

Spec(H) = {h̵ω (n + 1

2
) ∶ n ∈ Z≥0},

in particular, the eigenvalues (energy levels) of the QHO differ by integer multiples
of the quantity h̵ω. In this thesis, we assume h̵ = 1 in the sequel, without loss of
generality, to simplify the discussion.

1.2 The Segal-Bargmann space

In this section we give an overview of the Segal-Bargmann space HB (cf. [2]), also
known as Bargmann space, Bargmann Fock space or Fock space. It is often used to
study the spectrum of quantum systems, including the quantum Rabi model and
related models. The space HB was originally defined for holomorphic functions in

8



1.2. The Segal-Bargmann space

Cn, but it suffices to consider the one dimensional case for the applications presented
in this work. We follow the description given in [17].

Let V(C) be the space of holomorphic functions f ∶ C → C. An inner-product
in V(C) is defined for f, g ∈ V(C) by

(f, g)B = ∫
C
f(z)g(z)dµ(z) (1.1)

where the measure dµ(z) is given by dµ(z) = 1
πe

−∣z∣2dxdy for z = x+ iy, and dxdy is
the Lebesgue measure in C ≃ R2.

The Segal-Bargmann space HB is the space of entire functions f ∶ C → C in
V(C) satisfying

∥f∥B = (f, f)1/2
B

= (∫
C
∣f(z)∣2dµ(z))

1/2

< ∞.

Theorem 1.2.1 ([17] Proposition 14.15). The Segal-Bargmann space HB is a com-
plete Hilbert space with respect to the inner product (⋅, ⋅)B given in (1.1). In addition,
the set of (holomorphic) polynomials forms a dense subspace of HB.

An important property of the space HB (see [8]) for the study of the spectrum
of the quantum Rabi model is that it contains entire functions having asymptotic
expansion of the form

eα1zz−α0(c0 + c1z
−1 + c2z

−2 +⋯), (1.2)

as z → ∞. A particular case is that of normal solutions of differential equations
having an unramified irregular singular point of rank 2 at infinity. This fact is
important for the study of the eigensolutions of asymmetric quantum Rabi model.

The multiplication operator Z = z and differentiation operator Y = ∂z = d
dz

acting on HB satisfy the commutation relation

[Y,Z] = 1,

in other words, they satisfy the same commutation relations as the raising and
lowering operators of Section 1.1. In fact, if f, g are (holomorphic) polynomials,
then it holds that

∫
C
(f(z)∂zGdµ(z) = ∫

C
zf(z)g(z)dµ(z).

In general, we have the following result.

Proposition 1.2.2. The multiplication operator Z = z is the adjoint of the differ-
entiation operator Y = ∂z in HB.

In light of the Theorem 1.2.1 and Proposition 1.2.2, the multiplication and differ-
entiation operators are (formally) realizations of the raising and lowering operators
a† and a.

Next, define the operators

A = 1√
2
(Z + Y )

B = i√
2
(Z − Y ) .

9



1.3. Representation theory of sl2

The operators A and B are self-adjoint and satisfy the hypothesis of the Stone-
von Neumann theorem, and thus there is a unitary map U ∶ HB → L2(R) satisfying

UeitAU−1 = eitX

UeitBU−1 = eitP

where X and P are the usual position and momentum operators acting on L2(R).
The inverse of the map U can be computed explicitly and is called the Segal-
Bargmann transform (See [17] Theorem 14.18). This argument shows that the
multiplication Z and differentiation operator Y are indeed equivalent to the raising
and lowering operators introduced in Section 1.1 for the Hilbert space L2(R).

For the study of the spectrum of operators, the Segal-Bargmann HB has the
advantage that the realization the raising and lowering operators is of lower degree
(as a differential operator) than in the standard L2(R) realization. In addition,
elements of HB are functions and not equivalence classes of functions like in L2(R).
We refer the reader to [2, 17] for a more detailed description of the Segal-Bargmann
space and to [52] for more applications to the eigenvalue problem of quantum sys-
tems.

1.3 Representation theory of sl2

In this section we recall some basic representation theory of sl2(R) used in the next
chapter to describe the sl2(R)-picture of the eigenvalue problem of the AQRM. The
reader is directed to [20, 32, 57] for the general theory of sl2-representations.

Let M2(R) the algebra of real 2 × 2 matrices and GL2(R) be the general linear
group of real matrices, that is, the (multiplicative) subgroup of M2(R) consisting of
invertible real matrices. The special linear group SL2(R) is the closed subgroup of
GL2(R) given by

SL2(R) = {M ∈ GL2(R) ∣ det(M) = 1}.
From general theory, we know that SL2(R) is a non-compact and semisimple con-
nected Lie group. The Lie algebra of SL2(R), denoted by sl2, or sl2(R), is given
by

sl2 = {M ∈M2(R) ∣ tr(M) = 0},
is a simple Lie algebra. Denote by gC the complexification of the Lie algebra g, then
it is not difficult to verify that (sl2)C is sl2(C), the Lie algebra of SL2(C)(c.f. [57]).

In Section 2.4, we capture the eigenvalue problem of the asymmetric quantum
Rabi model, reduced to a system of two linear equations of Heun type, by an element
of the universal enveloping algebra U(sl2). Recall that if g is a Lie algebra, define
T0(g) = C, T (n)(g) = g⊗n, with

g⊗n = g⊗ g⊗⋯⊗ g
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

,

then, the tensor algebra T (g) is given by

T (g) =
∞

⊕
n=0

Tn(g).

10



1.3. Representation theory of sl2

Let J be the ideal of T (gC) generated by the elements

[X,Y ] − (X ⊗ Y − Y ⊗X)

with X,Y ∈ gC, then the universal enveloping algebra of g is given by

U(g) = T (gC)/J.

The universal property of U(g) is that every representation of g extends to a rep-
resentation of U(g)(see [20], Section 1.3).

A set of standard generators of sl2 is given by the matrices H,E and F of sl2(R)
defined as

H = [1 0
0 −1

] , E = [0 1
0 0

] , F = [0 0
1 0

] .

These generators satisfy the commutation relations

[H, E] = 2E, [H, F ] = −2F, [E, F ] =H.

Next, let us introduce a representation of sl2, depending on a parameter a ∈ C,
which is used to capture the confluent Heun differential equations in Section 2.4.
The reader is directed to [63] for an extended discussion of this representation. Let

a ∈ C and define the action $a of sl2 on the vector spaces V1 ∶= y−
1
4C[y, y−1] and

V2 ∶= y
1
4C[y, y−1] by

$a(H) ∶= 2y∂y +
1

2
, $a(E) ∶= y2∂y +

1

2
(a + 1

2
)y, $a(F ) ∶= −∂y +

1

2
(a − 1

2
)y−1

with ∂y ∶= d
dy . It is not difficult to verify that this defines infinite dimensional

representations of sl2. Write $j,a ∶= $a∣Vj and put e1,n ∶= yn−
1
4 and e2,n ∶= yn+

1
4 .

Then we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

$1,a(H)e1,n = 2ne1,n,

$1,a(E)e1,n = (n + a
2
)e1,n+1,

$1,a(F )e1,n = ( − n + a
2
)e1,n−1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

$2,a(H)e2,n = (2n + 1)e2,n,

$2,a(E)e2,n = (n + a + 1

2
)e2,n+1,

$2,a(F )e2,n = ( − n + a − 1

2
)e2,n−1.

When a /∈ 2Z (resp. a /∈ 2Z−1) the representation ($1,a,V1) (resp. ($2,a,V2)) is an
irreducible representation, called principal series. Note that there is an equivalence
between $j,a and $j,2−a under the same condition.

For a non-negative integer m, define subspaces D±
2m,F2m−1 of V1,2m(= V1), and

D±
2m+1,F2m of V2,2m+1(= V2) respectively by

D±
2m ∶= ⊕

n≥m
C ⋅ e1,±n, F2m−1 ∶= ⊕

−m+1≤n≤m−1

C ⋅ e1,n,

D−
2m+1 ∶= ⊕

n≥m+1

C ⋅ e2,−n, D+
2m+1 ∶= ⊕

n≥m
C ⋅ e2,n, F2m ∶= ⊕

−m≤n≤m−1

C ⋅ e2,n.

The spaces D±
2m (resp. D±

2m+1) are invariant under the action $1,2m(X), (resp.
$2,2m+1(X)), (X ∈ sl2), and define irreducible representations (having lowest and
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1.3. Representation theory of sl2

highest weight vector respectively) known to be equivalent to (holomorphic and anti-
holomorphic) discrete series for m > 0 of sl2(R). The irreducible representation D±

1

are the (infinitesimal version of) limit of discrete series of sl2(R) (see e.g. [20, 32]).
Moreover, the finite dimensional space Fm (dimC Fm =m), is invariant and defines
irreducible representation of sl2 for a = 2 − 2m when j = 1 and a = 1 − 2m when
j = 2, respectively. We remark here that the finite dimensional representations Fm

are not unitarizable.
The following result describes the irreducible decompositions of ($a, Vj,a) (a =

m ≡ j−1 mod 2) for m ∈ Z≥0 and j = 1,2. In particular, it gives the relation between
the finite representations Fm and the invariant submodules D±

m.

Lemma 1.3.1. Let m ∈ Z≥0.

1. The subspaces D±
2m are irreducible submodules of V1,2m under the action

$1,2m and F2m−1 is an irreducible submodule of V1,2−2m under $1,2−2m. In
the former case, the finite dimensional irreducible representation F2m−1 can
be obtained as the subquotient as V1,2m/D−

2m ⊕ D+
2m ≅ F2m−1. In the latter

case, the discrete series D±
2m can be realized as the irreducible components of

the subquotient representation as V1,2−2m/F2m−1 ≅ D−
2m ⊕D+

2m.

2. The subspaces D±
2m+1 are irreducible submodule of V2,2m+1 under the action

$2,2m+1 and F2m is an irreducible submodule of V2,1−2m under $2,1−2m. In
the former case, the finite dimensional irreducible representation F2m can be
obtained as the subquotient as V2,2m+1/D−

2m+1 ⊕ D+
2m+1 ≅ F2m, while in the

latter case, the discrete series D±
2m+1 can be realized as the irreducible compo-

nents of the subquotient representation as V2,1−2m/F2m ≅ D−
2m+1 ⊕D+

2m+1.

3. The space V2,1 is decomposed as the irreducible sum: V2,1 = D−
1 ⊕D+

1 .

Moreover, the spaces of irreducible submodules D±
m(⊂ Vj,m), Fm(⊂ Vj,1−m) and the

direct sum D+
m ⊕D−

m(⊂ Vj,m) above are the only non-trivial invariant subspaces of
Vj,m for j = 1 (resp. j = 2) when m is even (resp. odd) under the action of U(sl2),
the universal enveloping algebra of sl2.

In Section 4.5, we make use of the isomorphism described in the proposition
above to describe how certain solutions of the eigenvalue problem of the quantum
Rabi model determine elements in irreducible submodules of sl2(R).
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2. The asymmetric quantum Rabi
model

This chapter is an introduction to the study of the quantum Rabi model and its
generalization, the asymmetric quantum Rabi model.

First, in Section 2.1 we give a short historical note on the research done on
the quantum Rabi model and its spectrum, including experimental realizations. In
Section 2.2 we give a tour of the Hamiltonians of various models describing the
interaction of light and matter, including the quantum Rabi model and different
generalizations. After that, in Section 2.3 we focus on the asymmetric quantum
Rabi model and give some general properties of its Hamiltonian when considered
as an operator acting in L2(R) ⊗C2.

In Section 2.4, by using the Segal-Bargmann HB space realization we see that
the eigenvalue problem of the AQRM reduces to a set of two linear ordinary dif-
ferential equations of confluent Heun type and how they can be captured in the
sl2-representation picture. Next, in Section 2.5, we give the classification of the
spectrum of the AQRM according to the type of the solutions of the aforemen-
tioned system. In particular, there is a regular spectrum governed by the zeros of
a G-function, described in Section 2.6. The remaining eigenvalues of the AQRM
are called exceptional, these appear from certain solutions of the differential equa-
tion system where the difference of the exponents are integer. These solutions are
studied in Section 2.7, where we see that there can be polynomial solutions, called
Juddian solutions, and non-polynomial, called non-Juddian exceptional solutions.

The Juddian solutions are determined by the roots of certain polynomials, called
constraint polynomials. In Section 2.8, we see how these polynomials are related
to the coefficients of the solutions of the differential equation system. Finally, in
Section 2.9 we describe, in terms of constraint polynomials, the conjectures on the
degeneracy of the Juddian solutions of the AQRM, proposed by Masato Wakayama
in [63]. In Chapter 3 we prove these conjectures, and in Chapter 4 complete the
degeneracy picture of the asymmetric quantum Rabi model.

2.1 A brief history of the quantum Rabi model

In this section we give a short historical review on the research on the QRM relevant
to the studies in the present thesis. It is important to note that due to the amount
of research done on the QRM, any such list is necessarily incomplete. For more
information on the experimental realizations and parameter regimes of the QRM,
we refer the reader to [45, 51] (see also the discussion on Section 6.3)

In 1936, Isidor Isaac Rabi introduced in [47] a model to discuss the effect of a
rapidly varying weak magnetic field on an oriented atom possessing nuclear spin.
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2.1. A brief history of the quantum Rabi model

This model is the semi-classical version of the model which is now known as the
quantum Rabi model. In 1944, Rabi would go on to receive the Nobel Prize in
Physics for the discovery of nuclear magnetic resonances.

In 1963, E.T. Jaynes and F.W. Cummings considered in [24] the fully quantized
version of the quantum Rabi model for the case where the rotating-wave approx-
imation applies, that is, were the model now known as the the Jaynes-Cummings
model successfully approximates the QRM.

In 1979, Judd described in [25] the presence of quasi-exact solutions which are
now known as Juddian eigenvalues.

In 1987, Kuś showed in [31] the degeneracy of the Juddian eigenvalues and
proved that there are at least n − k degenerate Juddian points for each value of n
for ∆/ω satisfying k < ∆/ω < k + 1.

In 2007, Gleyzes, Kuhr, Guerlin, Bernu, Delèglise, Hoff, Brune, Raimond and
Haroche in [16] realized the QRM experimentally in the strong coupling regime using
a single atom in the context of cavity in microwave cavity quantum electrodynamics
experiments. In this regime, the model can be successfully approximated by the
Jaynes-Cummings model.

In 2009, Anappara, De Liberato, Tredicucci, Ciuti, Biasiol, Sorba and Beltram
in [1] reported signatures of the QRM of the perturbative ultrastrong coupling regime
in a quantum-well intersubband microcavity. In this case, the Jaynes-Cummings
model is not suitable to approximate the properties of the energy levels of the QRM,
however it can still be approximated by the Bloch-Siegert Hamiltonian.

In 2011, Daniel Braak constructed in [3] analytical solutions of the QRM and
gave conditions for existence by showing the existence of a transcendental function
whose zeros exactly describe the eigenvalues of the QRM. He also conjectured that
the spacing between two consecutive eigenvalues of the QRM is always less than
or equal to 2 and gave a (conjectural) description on the number of eigenvalues in
intervals [n,n+1) for n ∈ Z≥0. In the same paper, he defined the AQRM (under the
name of generalized QRM) and extended his results on solvability to it.

In 2012, M. Hirokawa and F. Hiroshima proved in [19] that the ground state of
the quantum Rabi model is non-degenerate.

In 2012, Chen, Wang, He, Liu and Wang reformulated Braak’s result in [9] using
the Bogoliubov transform avoiding the use of Segal-Bargmann space methods.

In 2013, Zhong, Xie, Batchelor and Lee showed in [67] the existence of analytic
solutions using confluent Heun functions. This method is equivalent to the G-
function approach.

In 2013, A.J. Maciejewski and M. Przybylska and T. Stachowiak showed in [36]
the existence of non-Juddian exceptional eigenvalues numerically and gave condi-
tions for their presence in terms of the confluent Heun functions. The existence of
non-Juddian exceptional solutions has not been considered before the publication
of this work.

In 2014, Masato Wakayama proved in [61] (see also [62]) that the eigenvalue
problem of the quantum Rabi model can be captured by a second order element
R ∈ U(sl2) via a confluent process. The element R ∈ U(sl2) is associated to the
eigenvalue problem of the non-commutative harmonic oscillator via certain repre-
sentation, the reader is refered also to [39] for more information.
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2.2. Matter and light interaction models

In 2014, M. Wakayama and T. Yamasaki showed in [60] the existence of a second
order element K ∈ U(sl2) that realizes the eigenvalue problem of the quantum Rabi
model via a representation (described in Section 1.3). This is sl2-representation
picture of the QRM.

In 2014, Maissen, Scalari, Valmorra, Beck, Fais, Cibella, Leoni, Reichl, Char-
pentier and Wegscheider in [37] successfully realized experimentally the QRM in
the nonperturbartive ultrastrong coupling regime using metallic and superconduct-
ing complementary split-ring resonators coupled to the cyclotron transition of two-
dimensional electron gases. In this coupling regime, the Jaynes-Cummings model,
or other approximations like the Bloch-Siegert Hamiltonian, are not appropriate to
study the energy levels of the QRM.

In 2015, Li and Batchelor in [33] made the striking numerically discovery of
degenerate Juddian points in the spectrum of AQRM for the parameter ε = 1

2 .
Furthermore, they explicitly defined the constraint polynomials for the Juddian
solutions and extended some of Kuś results on constraint polynomials (see Section
3.5 for discussion on this result).

In 2015, Pedernales, Lizuain, Felicetti, Romero, Lamata and Solano proposed
in [44] a method to simulate the quantum Rabi model in all parameter regimes
by means of detuned bichromatic sideband excitations of a single trapped ion. In
particular, this proposal permits the simulation of the QRM in the ultrastrong and
deep strong couplings regimes using current setups.

In 2016, Shingo Sugiyama proved in [55] that the spectral zeta function of the
QRM

ζHRabi
(s) = ∑

λ∈Spec(HRabi)

1

λs

can be extended meromorphically to the complex plane with a single pole at s = 1.
In addition, he showed that

NH(T ) ∼ 2T

as T →∞, where NH(T ) is the number of eigenvalues smaller than T ∈ R. Asymp-
totics for the spectrum of the type NH(T ) ∼ 2T are in general called Weyl laws.
This result supports Braak’s conjecture on the distribution of eigenvalues of the
QRM.

In 2017, Masato Wakayama proved in [63] the existence of degenerate Juddian
states for the case ε = 1

2 and conjectured the result for general half-integer ε =
`/2 ∈ 1

2Z in terms of divisibility of constraint polynomials. In addition, he described
how the regular solutions and Juddian solutions can be captured in elements of
irreducible representations in the sl2-representation picture of the AQRM.

In 2017, Yoshihara, Fuse, Ashhab, Kakuyanagi, Saito and Semba in [65] success-
fully achieved the deep strong coupling regime experimentally between a flux qubit
and an LC oscillator. The authors expect that using this method the QRM can be
realized in this parameter regime.

2.2 Matter and light interaction models

In this section we described several quantum models describing the interaction be-
tween light and matter. In general, the Hamiltonian of the models are given in the
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2.2. Matter and light interaction models

following general form

H = HM±
atom

+ HL°
light

+ HI°
interaction terms

where the Hamiltonian HM corresponds to the two-level atom (or in general a two-
level system), expressed by Pauli matrices σx, σy and σz

σx = (0 1
1 0

) , σy = (0 −i
i 0

) , σz = (1 0
0 −1

) ,

the Hamiltonian HL corresponds to a photon field, described by the raising and
lowering operators a†, a of the QHO and, the interaction terms between the two
systems, with Hamiltonian HI . For a more detailed introduction to the study of
these models, we refer the reader to [8].

The first category of models we describe are those where a number of two-
level atoms are interacting with a single level photon field in a cavity. The main
representative of these models is the quantum Rabi model, and the remaining models
can be regarded as generalizations. As we discussed in Section 1.1, the Hamiltonians
of these models are operators acting in a Hilbert spaceH⊗C2M , whereH is a Hilbert
space satisfying the hypothesis of the Stone-von Neumann theorem, with raising and
lowering operators a† and a, and M is the number of two-level atoms.

The quantum Rabi model(QRM) is often called the simplest model in quantum
optics describing the interaction between light and matter. It describes the inter-
action between a two-level atom and a single level photon field. Its Hamiltonian
HRabi is given by

HRabi = ωa†a + g(a + a†)σx +∆σz,

where ω > 0 is the frequency of photon field in the cavity (essentially a QHO), 2∆ > 0
is the energy difference of the two-level system and g > 0 is the interaction strength.
The QRM has a Z/2Z-symmetry, at the level of the Hamiltonian it amounts to the

existence of a parity operator Π = −σz(−1)a†a satisfying [Π,HRabi] = 0 and with
eigenvalues p = ±1 (c.f. [45]).

The main topic of study of this thesis, the asymmetric quantum Rabi model
(AQRM), is a direct generalization of the QRM, defined by the Hamiltonian

Hε
Rabi =HRabi + εσx,

where ε ∈ R. The AQRM has been also referred to as generalized, biased or driven
QRM (see, e.g. [5, 33, 45]). We remark that the QRM is considered to be an
integrable model, but this is not the case for the AQRM. We direct the reader to
[5] for the discussion on integrability of these models.

The presence of the term εσx breaks the Z/2Z-symmetry of the QRM, however a
symmetry can be found by embedding the system into a larger system or by studying
the Segal-Bargmann space realization of the system. We discuss this symmetry in
Section 2.4 and Section 2.6 below.

The quantum Rabi model can be generalized for M two-level atoms interacting
with a single level photon field with frequency ω > 0. The Hamiltonian is defined
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2.2. Matter and light interaction models

as an operator acting on H ⊗ C2M and we denote by σ
(j)
x , σ

(j)
z the Pauli matrices

acting in the j-th atom. Concretely, the matrix σ
(j)
x is given by

σ(j)x = I2 ⊗⋯⊗ I2 ⊗ σx ⊗ I2 ⊗⋯⊗ I2,

where σx, the usual Pauli matrix, is at the j-th position. The matrix I2 is the 2× 2
identity matrix. The definition of σjz is completely analogous.

The Hamiltonian of the M -atom model HMa is

HMa = ωa†a +
M

∑
i=1

∆jσ
(j)
z +

M

∑
j=1

gj(a + a†)σ(j)x .

where the parameters (2∆1,2∆2, . . . ,2∆M) ∈ (R≥0)M and (g1, g2, . . . , gM) ∈ (R≥0)M
are the difference in levels and coupling strengths between each of the two-level
atoms and the photon field, respectively. Clearly, we have H1a =H0

Rabi.
Note that these models receive different names in accordance to certain condi-

tions met by the parameters, for instance, if ∆i = 1
2∆ > 0 for all i = 1,2, . . . ,M the

model is called Dicke model (see for instance [7] for the case M = 3).
We can also introduce the asymmetric M -atom model in the natural way. The

Hamiltonian is given by

Hε
Ma =HM +

M

∑
j=1

εjσ
(j)
x ,

for (ε1, ε2,⋯, εM) ∈ RM . Similarly to the one two-level atom model, the introduction
of the additional term breaks the symmetries in the Hamiltonian HMa.

The following models are used to approximate the QRM and its generalizations
described above. The main advantage of these models is that they are solvable and,
therefore their spectrum is explicitly known.

The Jaynes-Cummings model is the model with Hamiltonian

HJC = ωa†a + g(σ+a + σ−a†) +∆σz,

where σ± = (σx ± iσy)/2. Notice that the QRM can be written as

HRabi = ωa†a + g(σ−a† + σ+a) + g(σ+a† + σ−a) +∆σz,

the term g(σ−a† + σ+a) is called the rotating term and g(σ+a† + σ−a) the counter-
rotating term. From this point of view, the Jaynes-Cummings model is called the
rotating wave approximation (RWA) of the QRM (see [24]) since it is obtained
disregarding the counter rotating terms from the QRM. This model has a continuous
U(1)-symmetry in contrast to the discrete Z/2Z-symmetry of the quantum Rabi
model. The symmetry amounts to the existence of a conserved quantity (operator)
N = a†a + σ+σ− with [HJC,N] = 0. Due to its symmetry the Jaynes-Cummings
model is super-integrable and there is a explicit description of the eigenvalues of the
Hamiltonian.

The generalization of the Jaynes-Cummings model for M two-level atoms is the
Tavis-Cummings model (see [56]). Its Hamiltonian is given by

HTV = ωa†a +
M

∑
i=1

∆jσ
(j)
z +

M

∑
j=1

g(σ(j)+ a + σ(j)− a†),
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2.3. General properties of the asymmetric quantum Rabi model

where σ
(j)
± are defined in a manner analogous to σ

(j)
x . The Tavis-Cummings model

is integrable via Bethe ansatz methods and, like the Jaynes-Cummings model, has
a precise description of its eigenvalues.

We conclude this section by listing certain models related to the QRM, but
having a different structure in the Hamiltonian or in the spectral structure.

The two-photon quantum Rabi model, is the model with Hamiltonian given by

HTP = ωa†a + g((a)2 + (a†)2)σx +∆σz.

The spectrum of this model behaves very differently than the QRM under the
changes of parameters. In particular, it exhibits a spectral collapse phenomena (c.f.
[12]). Note that in the same way it is possible to formally define M-photon quantum
Rabi model, however it is known that these models are ill-defined for M ≥ 3.

The quantum Rabi-Stark model is a model describing an experiment where the
single-level photon in a cavity is subject to two auxiliary laser beams. Its Hamilto-
nian is given by

HRS =H0
Rabi + γσza†a.

Note that, compared to the QRM, the interaction includes the nonlinear term a†a.
Its spectrum has been studied by adapting a method similar to the one used in the
QRM (see [13]).

The last model that we describe in this section is not a generalization of the
QRM. The non-commutative harmonic oscillator(NcHO), defined by Parmeggiani
and Wakayama[42] in 2001, is the model with the Hamiltonian (acting on L2(R) ⊗
C2) given by

Q = [α 0
0 β

](−1

2

d2

dx2
+ 1

2
x2) + [0 −1

1 0
](x d

dx
+ 1

2
) ,

for real parameters α,β. It is a formal model (it does not correspond to known phys-
ical phenomena) but a mysterious relation with the QRM has been found through
a confluent process (c.f. [62]). The reader is refered to [43, 40] for an extensive
introduction to the theory of the NcHO and to [41] for a review of recent research
on the topic.

2.3 General properties of the asymmetric quantum
Rabi model

The asymmetric quantum Rabi model (AQRM), already introduced in Section 2.2,
is the main topic of study of this thesis. In this section we give some of its basic
properties of the Hamiltonian as a linear operator acting on L2(R) ⊗C2.

Recall that the Hamiltonian Hε
Rabi of the AQRM is given by

Hε
Rabi = ωa†a +∆σz + gσx(a† + a) + εσx, (2.1)

where a† and a are the raising and lowering operators, 2∆ is the energy difference
between the two levels, g denotes the coupling strength between the two-level atom
and single-mode photon field with frequency ω (subsequently, we set ω = 1 without
loss of generality) and ε is a real parameter.

18



2.4. The confluent Heun and sl2-representation theoretic pictures of the AQRM

In the L2(R) ⊗C2 realization, it is clear that Hε
Rabi is a unbounded, closed and

symmetric operator. In particular, it can be regarded as a elliptic global pseudo-
differential operator of order 2 in the sense described in Chapter 3 of [40]. Then,
using the results on the spectral properties of global pseudo-differential operators
given in Section 3.3 of [40] one can prove the following result.

Proposition 2.3.1 (Prop. 2.1-2.3 of [55]). The operator Hε
Rabi is self-adjoint. In

addition, the spectrum of Hε
Rabi consist only of the (discrete) set of eigenvalues of

Hε
Rabi, that is, the continuous and residual spectra are empty.

We remark that since the matrices involved in the AQRM are constant, self-
adjointness in the L2(R) realization can also be shown by using the Kato-Rellich
theorem (see Theorems 9.37 and 9.38 of [17]).

In the previous sections (for instance, in Section 2.2 above), we purposedly
omitted the discussion on the domain of the operator Hε

Rabi as we were discussion
in terms of an abstract Hilbert space with raising and lowering operators a† and a
satisfying the hypothesis of the Stone-von Neumann theorem. In the L2(R) ⊗ C2

realization, it can be shown that

D(Hε
Rabi) = B2(R) ⊗C2,

where B2(R) is a Shubin-Sobolev space, dense and compactly embedded in L2(R).
The reader is direct to [55] for a complete discussion for the case of the QRM.

Finally, following the proof of Proposition 2.2 of [55], it is easy to see the eigen-
values are bounded below, that is, there is finite ground state eigenvalue.

Proposition 2.3.2. The eigenvalues λ of Hε
Rabi satisfy

λ ≥ −g2 −∆ − 2∣ε∣.

The facts above suffice to begin the study of the spectrum of the AQRM and its
degeneracy. Note that starting from Section 2.4 below, we use the Segal-Bargmann
space realization of the Hamiltonian Hε

Rabi.

2.4 The confluent Heun and sl2-representation
theoretic pictures of the AQRM

In this section we study the eigenvalue problem of Hε
Rabi in the Segal-Bargmann

space HB introduced in Section 1.2 and see how it is formulated as a system of
linear differential equations of confluent Heun type. In this form, it can be realized
as the image of an element of the universal enveloping algebra U(sl2) under the
representation discussed in Section 1.3.

The Hamiltonian Hε
Rabi, realized as an operator acting on HB⊗C2, corresponds

to the operator

H̃ε
Rabi ∶= [ z∂z +∆ g(z + ∂z) + ε

g(z + ∂z) + ε z∂z −∆
] .
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2.4. The confluent Heun and sl2-representation theoretic pictures of the AQRM

Then, the time-independent Schrödinger equation Hε
Rabiϕ = λϕ (λ ∈ R) is equivalent

to the system of first order differential equations

H̃ε
Rabiψ = λψ, ψ = [ψ1(z)

ψ2(z)
] ,

where eigenfunctions of Hε
Rabi associated to a given eigenvalue λ ∈ R correspond to

solutions ψi ∈ HB i = 1,2, that is ψ ∈ HB ⊗C2.
Therefore, the eigenvalue problem of the AQRM amounts to finding entire func-

tions ψ1, ψ2 ∈ HB and real number λ satisfying

{
(z∂z +∆)ψ1 + (g(z + ∂z) + ε)ψ2 = λψ1,

(g(z + ∂z) + ε)ψ1 + (z∂z −∆)ψ2 = λψ2.

Now, by setting f± = ψ1 ± ψ2, we get

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(z + g) d
dz
f+ + (gz + ε − λ)f+ +∆f− = 0,

(z − g) d
dz
f− − (gz + ε + λ)f− +∆f+ = 0.

(2.2)

Notice that the system (2.2) has an (unramified) irregular singular point at
z = ∞ in addition to regular singular points at z = ±g (c.f. [8]).Therefore, by the
discussion in Section 1.2 (see equation (1.2)) any entire solution ψ of (2.2) is actually
ψ ∈ HB ⊗C2.

By using the substitution φ1,±(z) ∶= egzf±(z) and the change of variable y = g+z
2g ,

we obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y
d

dy
φ1,+(y) = (λ + g2 − ε)φ1,+(y) −∆φ1,−(y),

(y − 1) d
dy
φ1,−(y) = (λ + g2 − ε − 4g2 + 4g2y + 2ε)φ1,−(y) −∆φ1,+(y).

(2.3)

Defining a ∶= −(λ + g2 − ε), we get

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y
d

dy
φ1,+(y) = −aφ1,+(y) −∆φ1,−(y),

(y − 1) d
dy
φ1,−(y) = −(4g2 − 4g2y + a − 2ε)φ1,−(y) −∆φ1,+(y).

(2.4)

Similarly, by applying the substitutions φ2,±(z) ∶= e−gzf±(z) and ȳ = g−z
2g to the

system (2.2), we get

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ȳ − 1) d
dȳ
φ2,+(ȳ) = −(4g2 − 4g2ȳ + a)φ2,+(ȳ) −∆φ2,−(ȳ),

ȳ
d

dȳ
φ2,−(ȳ) = −(a − 2ε)φ2,−(ȳ) −∆φ2,+(ȳ).

(2.5)

Note that a − 2ε = −(λ + g2 + ε). This system gives another (possible) solution
(φ2,+(ȳ), φ2,−(ȳ)) to the eigenvalue problem. Notice also that ȳ = 1 − y, where y is
the variable used in (2.4). Note that by applying the substitution y → ȳ = 1 − y
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2.4. The confluent Heun and sl2-representation theoretic pictures of the AQRM

and ε→ −ε to (2.4) we obtain (2.5) (up to labeling of the equations). In particular,
the application of this transformation to a solution furnishes another solution of
the eigenvalues problem, this is the manifestation of the Z/2Z-symmetry that was
mentioned in Section 2.2. This symmetry is essential to the verification of the
analyticity of the solutions on the complex plane.

The finite singularities of system (2.4) and (2.5) at y = 0 and y = 1 are regular.
The exponents of the equation system can be obtained by standard computation,
and are shown in Table 2.1 for reference.

Table 2.1: Exponents of systems (2.4) and (2.5).

φ1,−(y) φ1,+(y) φ2,−(1 − y) φ2,+(1 − y)
y = 0 0,−a + 1 0,−a 0,−a + 1 0,−a
y = 1 0,−a + 2ε 0,−a + 2ε + 1 0,−a + 2ε 0,−a + 2ε + 1

We remark here that due to the presence of finite singularities, solutions of (2.4)
(or (2.5)) are not to be automatically assumed to correspond to solutions of the
eigenvalue problem of the AQRM. In other words, it is imperative to verify the
analyticity of the solutions in the complex plane. The verification for solutions with
λ /= N ±ε−g2, for N ∈ Z≥0 leads to the study of G-functions (see Section 2.6 below).
In the case λ = N ± ε − g2, the solutions are either polynomial (see Section 2.7) or
power series, in the former case the solutions are immediately entire, In the later
case this leads to the study of the T -function (see Section 4.1). Note that when
solutions are not polynomial we need to consider solutions of both systems in order
to have analyticity.

For the case ε /= `/2 ∈ 1
2Z, it is known that the regular solutions are non-

degenerate (see [5]). In general, since the linearly independent solutions of the
confluent Heun system (2.4) (resp. (2.5)) are at most two, the foregoing discus-
sion shows that the multiplicity of the eigenvalues is in general at most 2 (see also
Corollary 4.1.4).

The representation theoretical picture of the AQRM

In this section by using the representation of a particular element of the universal
enveloping algebra U(sl2) we capture the confluent Heun differential equations cor-
responding to the eigenvalue problem of AQRM in the Bargmann space, that is, the
second order differential equations corresponding to systems (2.4) and (2.5). Let
(α,β, γ,C) ∈ R4. Define a second order element K = K(α,β, γ;C) ∈ U(sl2) and a
constant λa = λa(α,β, γ) depending on the representation $a as follows:

K(α,β, γ;C) ∶= [1

2
H −E + α] (F + β) + γ [H − 1

2
] +C,

λa(α,β, γ) ∶=β (1

2
a + α) + γ (a − 1

2
) .

By the elementary identity y−
1
2
(a− 1

2
) y∂y y

1
2
(a− 1

2
) = y∂y + 1

2(a −
1
2), we obtain the

following lemma.

21



2.5. The spectrum of the AQRM

Lemma 2.4.1 ([63, 60]). We have the following expression.

y−
1
2
(a− 1

2
)$a(K(α,β, γ;C))y 1

2
(a− 1

2
)

y(y − 1)

= d
2

dy2
+ { − β +

1
2a + α
y

+
1
2a + 2γ − α
y − 1

} d
dy

+ −aβy + λa(α,β, γ) +C
y(y − 1) .

Now, by choosing suitable parameters (α,β, γ;C) we define from K = K(α,β, γ;C)
two second order elements K and K̃ ∈ U(sl2) that capture the eigenvalue problem
of the Hamiltonian Hε

Rabi of the AQRM. In the following proposition, Hε1 is the
second order differential operator (confluent Heun ODE [14, 54]) corresponding to
the solution φ1,+ in the system (2.3). Similarly, Hε2 is the second order differential
operator (confluent Heun ODE) corresponding to φ2,+ of (2.5).

Proposition 2.4.2. Let λ be an eigenvalue of Hε
Rabi. Set a = −(λ + g2 − ε), a′ =

a − 2ε + 1 and µ = (λ + g2)2 − 4g2(λ + g2) −∆2.

1. Define

K ∶= K(1 + a
2
,4g2,

a′

2
; µ + 4εg2 − ε2) ∈ U(sl2),

Λa ∶= λa(1 − a
2
,4g2,

a′

2
).

Then
y(y − 1)Hε1(λ) = y−

1
2
(a− 1

2
)($a(K) −Λa)y

1
2
(a− 1

2
). (2.6)

2. Define

K̃ ∶= K( − 1 + a
′

2
,4g2,

a

2
; µ − 4εg2 − ε2) ∈ U(sl2),

Λ̃a′ ∶= λa′( − 1 + a
′

2
,4g2,

a

2
).

Then
y(y − 1)Hε2(λ) = y−

1
2
(a′− 1

2
)($a′(K̃) − Λ̃a′)y

1
2
(a′− 1

2
). (2.7)

In Section 4.5, we use this realization of the eigenvalue problem of the AQRM
to describe the solutions in terms of irreducible representations of sl2.

2.5 The spectrum of the AQRM

Recall from Proposition 2.3.1 that the continuous and residual spectrum of the
Hε

Rabi is empty, so the spectrum consists only of a discrete set of eigenvalues. In
this section we introduce the classification of the spectrum of the AQRM based
on the study of the solutions of the confluent Heun picture of the ARQM given in
Section 2.4 above.

Let λ ∈ R is an eigenvalue of Hε
Rabi, then

1. if there is an integer N ∈ Z such that λ = N ± ε − g2, λ is called exceptional
eigenvalue,
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2.6. Regular spectrum and the G-function of the AQRM

2. if λ is not an exceptional eigenvalue, we say that λ is a regular eigenvalue.

If λ is a regular (resp. exceptional) eigenvalue, then the associated eigenfunction
is also called regular (resp. exceptional) eigenfunctions (or solutions).

There is finer classification of the exceptional eigenvalues. If λ is an exceptional
eigenvalue, and the solution of the system (2.4) consists of polynomial functions
(that is, terminating power series) the solutions (resp. the eigenvalue) is called
Juddian . Otherwise, we say it is a non-Juddian exceptional eigenvalue.

Historically, the first eigenvalues of QRM to be described were the Juddian
eigenvalues, studied by Judd in [25] and Kuś in [31]. Concretely, Kuś showed
the presence of degenerate eigenvalues of the form λ = N − g2 in the spectrum of
the QRM, subject to a polynomial equation. We discuss the generalization of the
polynomial condition for the AQRM in Section 2.8. The existence of non-Juddian
exceptional eigenvalues in the QRM was first discovered numerically by Maciejewski,
Przybylska and Stachowiak[36].

In 2011, Daniel Braak described the regular spectrum of the AQRM analytically.
This is done by defining a G-function that gives the conditions for a regular solution
of system (2.4) to be entire, then all the zeros of said function (all other parameters
being fixed) correspond to the regular spectrum of the AQRM. We give a sketch of
the argument in Section 2.6.

To finish this section, from the confluent Heun picture, we give an important
property of the spectrum of the AQRM.

Proposition 2.5.1. The spectrum of the Hamiltonian Hε
Rabi of AQRM depends

only on ∣ε∣. In other words, the spectrum of Hamiltonian H−ε
Rabi coincides with that

of Hε
Rabi.

Proof. It follows also from the comparison of the two systems of differential equa-
tions (2.4) and (2.5) under the application of the transformation ε→ −ε.

2.6 Regular spectrum and the G-function of the
AQRM

In this section we begin the description of the solutions of (2.4) corresponding to
solutions of the eigenvalue problem of the AQRM. If a = −(λ + g2 − ε) is not an
integer, by Table 2.1 the difference between the exponents in (2.4) is not an integer.
In particular, around the singularity y = 0 the Frobenius solution is

φ1,−(y) = yb
∞

∑
n=0

Kny
n,

where b ∈ {ρ−1 , ρ−2} is one of the exponents of the system. In order for the solution
to be entire the only option is to take the exponent ρ−1 = 0. Integration of the first
equation of (2.17) gives

φ1,+(y) = −∆
∞

∑
n=0

Kn

n + ay
n,

with constant c ∈ C. Moreover, we can get recurrence relations to determine the
coefficients Kn. However, as we mentioned before in Section 2.4 above, to show

23



2.6. Regular spectrum and the G-function of the AQRM

that this solution is a solution of the eigenvalue problem of AQRM, it is necessary
to prove that the solution is entire. The conditions are given by the G-function
of Braak. For consistency with the existing literature, we describe the G-function
with the original notation.

Definition 2.6.1. The G-function for the Hamiltonian Hε
Rabi is defined as

Gε(x; g,∆) ∶= ∆2R̄+(x; g,∆, ε)R̄−(x; g,∆, ε) −R+(x; g,∆, ε)R−(x; g,∆, ε)

where

R±(x; g,∆, ε) =
∞

∑
n=0

K±
n(x)gn and R̄±(x; g,∆, ε) =

∞

∑
n=0

K±
n(x)

x − n ± εg
n, (2.8)

whenever x∓ε /∈ Z≥0, respectively. For n ∈ Z≥0, define the functions f±n = f±n (x, g,∆, ε)
by

f±n (x, g,∆, ε) = 2g + 1

2g
(n − x ± ε + ∆2

x − n ± ε), (2.9)

then, the coefficients K±
n(x) =K±

n(x, g,∆, ε) are given by the recurrence relation

nK±
n(x) = f±n−1(x, g,∆, ε)K±

n−1(x) −K±
n−2(x) (n ≥ 1) (2.10)

with initial condition K±
−1 = 0 and K±

0 = 1.

It is well-known (e.g. [5, 6, 45]) that for fixed parameters {g,∆, ε} the zeros xn
of Gε(x; g,∆) correspond to regular eigenvalues λn = xn − g2 of Hε

Rabi. We sketch
the proof next, following the argument of Braak in [6]. The eigenvalue equation
for Hε

Rabi, that is (2.2), is equivalent via embedding to the system of differential
equations given by

d

dz
Ψ(z) = A(z)Ψ(z), (2.11)

where

A(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ−ε−gz
z+g 0 0 −∆

z+g

0 λ+ε−gz
z+g

−∆
z+g 0

0 −∆
z−g

λ−ε+gz
z−g 0

−∆
z−g 0 0 λ+ε+gz

z−g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.12)

for the vector valued function

Ψ(z) ∶= t(ψ1(z), ψ2(z), ψ̄1(z), ψ̄2(z)).

The functions ψi, ψ̄i are essentially the solutions to system (2.2) and a transforma-
tion (similar to the case of (2.4) and (2.5)). The system (2.11) has a Z/2Z-symmetry:
if ψ(z) is a solution then

Φ(z) ∶= t(ψ̄1(−z), ψ̄2(−z), ψ1(−z), ψ2(−z)),

is also a solution of (2.11). Notice that if the solution Ψ(z) is expanded in power
series around the critical point −g (resp. Φ(z) is expanded around the critical point
g ) with convergence radius of 2g, then in any (ordinary) point z0 in the common
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2.6. Regular spectrum and the G-function of the AQRM

domain of convergence of φ(z) and ψ(z) and the solutions are linearly dependent
we must necessarily have Ψ(z0) = cΦ(z0) for some constant c ∈ C. Moreover, the
solution is actually holomorphically continued to the whole complex plane. As we
have discussed before, this is enough for the solution Ψ(z0) to be an element of
the Segal-Bargmann space and thus a solutions to the eigenvalue problem of the
AQRM. Let z0 be as described above, then the equation Ψ(z0) = cΦ(z0) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−gz0
∞

∑
n=0

∆K−
n

x − ε − n(z0 + g)n = c egz0
∞

∑
n=0

K+
n(z0 − g)n,

egz0
∞

∑
n=0

K−
n(z0 + g)n = c e−gz0

∞

∑
n=0

∆K+
n

x + ε − n(z0 + g)n,

egz0
∞

∑
n=0

∆K−
n

x − ε − n(z0 − g)n = c e−gz0
∞

∑
n=0

K+
n(z0 + g)n,

e−gz0
∞

∑
n=0

K−
n(z0 + g)n = c egz0

∞

∑
n=0

∆K+
n

x + ε − n(z0 − g)n,

(2.13)

For z0 = 0, it is obvious that the first and third (resp. second and forth) equations
are equivalent, and the system reduces to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞

∑
n=0

[cK+
n −

∆K−
n

x − ε − n] gn = 0

∞

∑
n=0

[K−
n −

c∆K+
n

x − ε − n] gn = 0

(2.14)

for some non-zero constant c. By eliminating the constant c we obtain the equation

Gε(x; g,∆) = 0,

justifying the definition of the G-function. Likewise, starting from a zero of the
G-function it is possible to construct the entire solution corresponding to the zero,
proving the claim. We refer the reader to the already cited literature for further
details.

Remark 2.6.2. We remark that in the case of the QRM (i.e. ε = 0), we have
G0(x; g,∆) = G+(x) ⋅ G−(x), G±(x) being the G-functions corresponding to the
parity defined as

G±(x) =
∞

∑
n=0

Kn(x)(1 ∓ ∆

x − n)gn,

where Kn(x) = K±
n(x, g,∆,0) [5]. Note also that there are no degeneracies within

each parity subspace, that is there are no common zeros of G+(x) and G−(x).
The following result is obvious from the definitions and the equality

K±
n(x, g,∆,−ε) =K∓

n(x, g,∆, ε), (2.15)

obtained by direct computation.

Lemma 2.6.3. The G-functions of Hε
Rabi coincides with that of H−ε

Rabi:

Gε(x; g,∆) = G−ε(x; g,∆). (2.16)

In other words, the regular spectrum of Hε
Rabi depends only on ∣ε∣.
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2.7. Exceptional spectrum and exceptional solutions

We conclude this section by showing in Figure 2.1 the graphs of Gε(x; g,∆),
as a function of x, for different values of ∆ and g. As we have discussed in this
section, the zeros of the function Gε(x; g,∆), represented in the figures by the
crossings of the graph of Gε(x; g,∆) with the horizontal line y = 0, correspond to
regular eigenvalues of the AQRM for the given parameters g and ∆. Furthermore,
we notice that for certain parameters the poles at x = N ± ε, N ∈ Z≥0, of the G-
function vanish, as shown in Figure 2.1(a) and Figure 2.1(b). In Chapter 4 we will
see that this is related to the presence of exceptional eigenvalues in the spectrum of
the AQRM. The analysis of the poles and the characterization of the vanishing, or
lifting, of poles is done in Section 4.3, after we have given a precise description of
the exceptional eigenvalues.

-1 -0.3 0.3 0.7 1 1.3 1.7 2 2.3
x

G

(a) ε = 0.3, g ≈ 0.5809,∆ = 1/2

-1 -0.5 0.5 1 1.5 2 2.5 3 3.5
x

G

(b) ε = 0.5, g = 0.5,∆ = 1

Figure 2.1: Plot ofGε(x; g,∆) for fixed g and ∆, corresponding to roots of constraint

polynomials P
(N,ε)
N ((2g)2,∆2). Notice the vanishing of the poles (indicated with

red circles) at x = N + ε for N = 1 in (a) and (b).

2.7 Exceptional spectrum and exceptional solutions

In this section we study the exceptional solutions of the AQRM. Recall that an
eigenvalue λ of Hε

Rabi is called exceptional if there is an integer N ∈ Z≥0 such that
λ = N±ε−g2. For the case λ = N+ε−g2, this corresponds to taking −a = (λ+g2−ε) =
N ∈ Z≥0. The system (2.4) of differential equations is then given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y
d

dy
φ1,+(y) = Nφ1,+(y) −∆φ1,−(y)

(y − 1) d
dy
φ1,−(y) = (N − 4g2 + 4g2y + 2ε)φ1,−(y) −∆φ1,+(y).

(2.17)

The exponents of φ1,− at y = 0 are ρ−1 = 0, ρ−2 = N + 1. Likewise, the exponents of
φ1,+ at y = 0 are ρ+1 = 0, ρ+2 = N . Since the difference between the exponents is a
positive integer, the local analytic solutions may develop a logarithmic branch-cut
at y = 0.

The case λ = N−ε−g2 corresponds to taking −a = (λ+g2−ε) = N−2ε. The system
(2.5) is then equivalent to system (2.17) under the transformations y → ȳ = 1 − y
and ε → −ε. Due to this, in this section and in the remainder of the chapter we
consider only the case λ = N + ε − g2 without loss of generality.
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2.7. Exceptional spectrum and exceptional solutions

Solutions corresponding to the smallest exponent

The local Frobenius solution corresponding to the smallest exponent ρ−1 = 0 has the
form

φ1,−(y)(= φ1,−(y; ε)) =
∞

∑
n=0

K(N,ε)n yn, (2.18)

where K
(N,ε)
0 /= 0 and K

(N,ε)
n = K(N,ε)n (g,∆). Integration of the first equation of

(2.17) gives

φ1,+(y) (= φ1,+(y; ε)) = cyN −∆
∞

∑
n≠N

K
(N,ε)
n

n −N yn −∆K
(N,ε)
N yN log y, (2.19)

with constant c ∈ C. A necessary condition for φ1,+(y) to be an element of the

Segal-Bargmann space HB is that φ1,+(y) is an entire function, forcing K
(N,ε)
N = 0

to make the logarithmic term vanish. Suppose φ1,+(y) ∈ HB, then by using the
second equation of (2.17) we obtain the recurrence relation for the coefficients

(n + 1)K(N,ε)n+1 + (N − n − (2g)2 + ∆2

n −N + 2ε)K(N,ε)n + (2g)2K
(N,ε)
n−1 = 0, (2.20)

valid for n /= N . This recurrence relation clearly shows the dependence of the

coefficients K
(N,ε)
n = K(N,ε)n (g,∆) on the parameters of the system. Additionally,

for n = N , by the second equation of (2.17), we have

∆c = (2g)2K
(N,ε)
N−1 + (N + 1)K(N,ε)N+1 . (2.21)

Setting c = (2g)2K
(N,ε)
N−1 /∆ makes K

(N,ε)
N+1 vanish, and then, by repeated use of the

recurrence (2.20), we see that for all positive integers k the coefficients K
(N,ε)
N+k also

vanish. Thus, the solutions of (2.17) given by

φ1,−(y) =
N−1

∑
n=0

K(N,ε)n yn,

φ1,+(y) =
4g2K

(N,ε)
N−1

∆
yN −∆

N−1

∑
n=0

K
(N,ε)
n

n −N yn, (2.22)

are polynomial solutions. Since polynomials solutions are entire, these solutions,
called Juddian solutions, Judd solutions or Juddian points, are automatically solu-
tions of the eigenvalue problem of the AQRM.

Conversely, note that given the condition

K
(N,ε)
N = 0,

we can always construct solutions of the type given above. This is the key observa-
tion for the study of Juddian solutions.

To finish this subsection, we make a note on Juddian solutions in light of the
already described symmetry in the solutions of the AQRM (between (2.4) and (2.5)).
If ε /∈ 1

2Z, then, upon applying y → 1 − y and ε → −ε, to (2.17), we obtain a system
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2.7. Exceptional spectrum and exceptional solutions

of equations where the difference between the exponents is not an integer, and thus
the solution should correspond to a regular solution. However, as we discussed on
Section 2.6, such solution cannot be entire (entireness requires the use of solutions
to both systems for the G-function), and therefore the Juddian solution in this case
is non-degenerate. On the other hand, in the case of ε = 1

2Z there may a case of a
doubly degenerate Juddian solution, we further discuss this case in Section 2.9.

Solutions corresponding to the largest exponent

The largest exponent of φ1,− at y = 0 is ρ−2 = N + 1, therefore it follows then that
there is a local Frobenius solution analytic at y = 0 of the form

φ1,−(y)(= φ1,−(y; ε)) =
∞

∑
n=N+1

K̄(N,ε)n yn, (2.23)

where K̄
(N,ε)
N+1 ≠ 0 and K̄

(N,ε)
n = K̄(N,ε)n (g,∆). Integration of the first equation of

(2.17) gives

φ1,+(y)(= φ1,+(y; ε)) = cyN −∆
∞

∑
n=N+1

K̄
(N,ε)
n

n −N yn, (2.24)

with constant c ∈ C. The second equation of (2.17) gives the recurrence relation

(n + 1)K̄(N,ε)n+1 + (N − n − (2g)2 + ∆2

n −N + 2ε)K̄(N,ε)n + (2g)2K̄
(N,ε)
n−1 = 0, (2.25)

for n ≥ N + 1 with initial conditions K̄
(N,ε)
N+1 = 1 and K̄

(N,ε)
N = 0. Furthermore, we

also have the condition

(N + 1)K̄(N,ε)N+1 = (N + 1) = c∆,

which determines value of the constant c = (N + 1)/∆. Notice that the radius
of convergence of each series above equals 1 from the defining recurrence relation
(2.25).

Summarizing, the solutions for the largest exponent are of the form

φ1,−(y) =
∞

∑
n=N+1

K̄(N,ε)n yn

φ1,+(y) =
(N + 1)

∆
yN −∆

∞

∑
n=N+1

K̄
(N,ε)
n

n −N yn, (2.26)

when these solutions correspond to solutions of the eigenvalue problem of AQRM,
these are called non-Juddian exceptional solutions.

As in the case of the regular spectrum, it is necessary to verify the analyticity
of the solution in the complex plane. We do this by defining a T -function for
non-Juddian exceptional eigenvalues in Section 4.2.
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2.8 Exceptional solutions and constraint polynomials

In 2.7 we discussed how the Juddian eigenvalues, exceptional solutions correspond-

ing to the smaller exponent, are determined by the condition K
(N,ε)
N = 0. The

coefficient K
(N,ε)
N is in general a rational function on its parameters g and ∆. Thus,

it is convenient to introduce a polynomial that has the same zeros as K
(N,ε)
N , this

polynomial is the constraint polynomial P
(N,ε)
N (x, y) of the AQRM.

Definition 2.8.1. Let N ∈ Z≥0. The polynomials P
(N,ε)
k (x, y) of degree k are defined

recursively by

P
(N,ε)
0 (x, y) = 1,

P
(N,ε)
1 (x, y) = x + y − 1 − 2ε,

P
(N,ε)
k (x, y) = (kx + y − k(k + 2ε))P (N,ε)k−1 (x, y) − k(k − 1)(N − k + 1)xP (N,ε)k−2 (x, y).

In order to work with polynomials satisfying a three term recurrence relation,
we introduce some notations here. For a tridiagonal matrix we write

tridiag [ai bi
ci

]
1≤i≤n

∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 0 ⋯ 0
c1 a2 b2 0 ⋯ 0
0 c2 a3 b3 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 cn−2 an−1 bn−1

0 ⋯ 0 0 cn−1 an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The symbol (a)n denotes the Pochhammer symbol, or raising factorial, that is,

(a)n ∶= a(a + 1)⋯(a + n − 1) = Γ(a + n)
Γ(a)

for a ∈ C and a non-negative integer n.
Recall that the determinant Jn of a tridiagonal matrix

Jn = det tridiag [ai bi
ci

]
1≤i≤n

is called continuant (see [38]). It satisfies the three-term recurrence relation

Jn = anJn−1 − bn−1cn−1Jn−2, (2.27)

with initial condition J−1 = 0, J0 = 1. As a consequence of this, notice that the
continuant equivalence

det tridiag [ai bi
ci

]
1≤i≤n

= det tridiag [ai b′i
c′i

]
1≤i≤n

(2.28)

holds whenever bici = b′ic′i for all i = 1,2,⋯, n−1, since the continuants on both sides
of the equation define the same recurrence relations with the same initial conditions.

The next result allows to work using constraint polynomials in the study of the
Juddian eigenvalues of the AQRM.
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2.8. Exceptional solutions and constraint polynomials

Proposition 2.8.2 ([27]). Let N ∈ Z≥0 and fix ∆ > 0. Then, the zeros g of K
(N,ε)
N =

K
(N,ε)
N (g,∆) defined by (2.20) and P

(N,ε)
N ((2g)2,∆2) coincide. In particular, if g

is a zero of P
(N,ε)
N ((2g)2,∆2), then λ = N + ε− g2 is an exceptional eigenvalue with

corresponding Juddian solution given by φ1,+(y) and φ1,−(y) in (2.22).

Proof. By multiplying K
(N,ε)
n by (K(N,ε)0 )−1 for all n ∈ Z≥0, we can assume that

K
(N,ε)
0 = 1. Then, we can rewrite the recurrence relation for the coefficients K

(N,ε)
n

as

K(N,ε)n = 1

n
((2g)2 + ∆2

N − n + 1
+ n − 1 −N − 2ε)K(N,ε)n−1 − 1

n
(2g)2K

(N,ε)
n−2 ,

for n ≤ N . We easily see that K
(N,ε)
N has the determinant expression

K
(N,ε)
N = det tridiag [

1
N−i+1((2g)

2 + ∆2

i − i − 2ε) 2g
N−i+1

2g
]

1≤i≤N

.

Next, for i = 1,2, . . . ,N , factor 1
i(N+1−i) from the i-th row in the determinant to get

the expression of K
(N,ε)
N as

1

(N !)2
det tridiag [i(2g)

2 +∆2 − i2 − 2iε 2ig
(2N − 1 − i)g ]

1≤i≤N

.

The recurrence relation corresponding to this continuant is the same as the recur-

rence relation of Definition 2.8.1 for the constraint polynomials P
(N,ε)
k ((2g)2,∆2),

including the initial conditions. Thus

K
(N,ε)
N (N + ε; g,∆, ε) = 1

(N !)2
P
(N,ε)
N ((2g)2,∆2),

completing the proof.

Remark 2.8.3. We note that there are different ways to prove that the constraint
relation

P
(N,ε)
N ((2g)2,∆2) = 0

gives rise to Juddian solutions. We refer the reader to [33, 63] for other arguments.

In order to describe the behavior of the G-function at the poles in Section 4.3, we
need to prove a relation between the coefficients of the G-function and the constraint
polynomials in the following lemma. The proof can be done in the same manner as
Proposition 2.8.2.

Lemma 2.8.4 ([27]). Let N ∈ Z≥0. Then the following relation hold for g > 0.

(N !)2(2g)NK−
N(N + ε; g,∆, ε) = P (N,ε)N ((2g)2,∆2), (2.29)

In addition, if ε = `/2 (` ∈ Z), it also holds that

((N + `)!)2(2g)N+`K+
N+`(N + `/2; g,∆, `/2) = P (N+`,−`/2)N+` ((2g)2,∆2).
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2.8. Exceptional solutions and constraint polynomials

To finish this section, we give some generalizations of Lemma 2.8.4. First, we
note a simple but important relation between the coefficients K−

n(N + ε; g,∆, ε)
and K−

n(n + ε; g,∆, ε) of the G-functions and the corresponding relation between
constraint polynomials.

Lemma 2.8.5. For N,n ∈ Z≥0 with n ≤ N , then

K−
n(N + ε; g,∆, ε) =K−

n(n + ε; g,∆, ε) + q0(g,∆, ε, n,N),
where (2g)nq0(g,∆, ε, n,N) ∈ Z[g,∆, ε, n,N] and q0(g,∆, ε,N,N) = q0(g,∆, ε, n, n) =
0. Moreover,

P
(N,ε)
k (x, y) = P (k,ε)k (x, y) + q̄0(g,∆, ε, n,N),

where q̄0(g,∆, ε, n,N) ∈ Z[g,∆, ε, n,N] and q̄0(g,∆, ε,N,N) = q̄0(g,∆, ε, n, n) = 0.

Proof. We give the proof for the polynomials P
(N,ε)
k (x, y) as the proof for the coeffi-

cients K−
n(N + ε; g,∆, ε) is done in a completely analogous way. In the determinant

expression (3.1) for P
(N,ε)
k (x, y), in each term λi = i(i − 1)(N − i + 1), we write

N = k +(N −k) and then factor out the terms including N −k by the multilinearity
of the determinant. This gives the result.

For n ≤ N , consider the polynomials P
(N,n,ε)
k (x, y) defined by the three-term

recurrence relation

P
(N,n,ε)
k (x, y) =((N − n + k)x + y − (N − n + k)2 − 2(N − n + k)ε)P (N,n,ε)k−1 (x, y)

− (N − n + k)(N − n + k − 1)(n − k + 1)xP (N,n,ε)k−2 , (2.30)

with initial conditions P
(N,n,ε)
0 (x, y) = 1 and P

(N,n,ε)
1 (x, y) = (N −n+ 1)x+ y − (N −

n + 1)2 − 2(N − n + 1)ε. Note that setting n = N gives P
(N,N,ε)
k (x, y) = P (N,ε)k (x, y).

Lemma 2.8.6. For N,n ∈ Z≥0 with n ≤ N , we have

n!(N − n + 1)n(2g)nK−
n(N + ε; g,∆, ε) = P (N,n,ε)n ((2g)2,∆2).

Moreover, it holds that

n!(N − n + 1)n(2g)nK−
n(N + ε; g,∆, ε) = P (n,ε)n ((2g)2,∆2) + q1(x, y;N,n, ε),

with q1(x, y;N,n, ε) ∈ Z[x, y,N,n, ε] such that q1(x, y;N,N, ε) = q1(x, y;n,n, ε) = 0.

Proof. The proof of the first claim follows in the same way as Lemma 2.8.4. For
the second claim it is enough to factor out the elements containing N − n from the
determinant associated to the three-term recurrence relation (2.30).

From Lemmas 2.8.5 and 2.8.6, we immediately have the following Corollary.

Corollary 2.8.7. For N,n ∈ Z≥0 with n ≤ N , we have

P (N,ε)n ((2g)2,∆2) = (n!)2(2g)kK−
n(N + ε; g,∆, ε) + q2(g2,∆2, n,N),

where q2(g2,∆2, n,N) ∈ Z[g2,∆2,N,n, ε] such that q2(g2,∆2, n, n) = q2(g2,∆2,N,N) =
0.

Furthermore, we have

P (N,ε)n ((2g)2,∆2) = (n!)2(2g)kK−
n(n + ε; g,∆, ε) + q̄2(g2,∆2, n,N),

with q̄2(g2,∆2, n,N) satisfying the same properties as q2(g2,∆2, n,N)
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2.9. Degeneracy of Juddian eigenvalues of the AQRM

2.9 Degeneracy of Juddian eigenvalues of the AQRM

In this section we return to the discussion of degeneracy of exceptional solutions in
the AQRM, starting with a numerical experiment to illustrate the situation.

In Figure 2.2, we show the spectral graphs for fixed ∆ = 1 and ε = 0, 3
2 . In the

graphs, the blue dashed lines represent the exceptional energy curves y = i+ `/2−g2

for i ∈ Z≥0, any crossings of these curves with the spectral curves correspond to
exceptional eigenvalues.

The crossings of the eigenvalue curves in the exceptional points correspond to
degenerate solutions, we will see later that, in fact, these degenerate solutions are
of Juddian type. Notice also the non-degenerate exceptional points in the curves,
in turn we will see that these points correspond to non-Juddian exceptional eigen-
values.

(a) ε = 0 (b) ε = 1.5

Figure 2.2: Spectral curves for the case of ∆ = 1 for the cases ε ∈ {0,1.5} for
0 ≤ g ≤ 2.7 and energy (E) −1.5 ≤ E ≤ 5.5 .

The degeneracy of Juddian eigenvalues in the AQRM was first observed numer-
ically by Li and Batchelor in [33] for the case ε = 1

2 . In general, the presence of
degenerate Juddian solutions in terms of constraint polynomials was formulated by
Masato Wakayama in [63].

Conjecture 2.9.1 ([63]). For `,N ∈ Z≥0, there exists a polynomial A`N(x, y) ∈
Z[x, y] such that

P
(N+`,−`/2)
N+` (x, y) = A`N(x, y)P (N,`/2)N (x, y). (2.31)

Moreover, the polynomial A`N(x, y) is positive for any x, y > 0.

If Conjecture 2.9.1 holds and the parameters g,∆ > 0 satisfy P
(N,`/2)
N ((2g)2,∆2) =

0, the exceptional eigenvalue λ = N + `/2 − g2(= (N + `) − `/2 − g2) of H
`/2
Rabi is de-

generate.
In order to complete the argument, it is necessary to prove that the associated

solutions are linearly independent. For the case 0 /= ε ∈ 1
2Z this is trivial, since

the associated solution (2.22) are polynomials of different degree N and N + `.
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2.9. Degeneracy of Juddian eigenvalues of the AQRM

The case ε = 0 was originally proved in [31] by Kuś by direct verification. For an
elegant argument using the representation theoretical picture of the solutions, see
Proposition 6.6 of [63].

The condition A`N(x, y) > 0 of Conjecture 2.9.1 ensures that for N ∈ Z≥0 there
are no non-degenerate exceptional eigenvalues λ = N + `/2 − g2 corresponding to
Juddian solutions (see Corollary 4.1.3 below).

Using the results in Section 2.8, we can interpret the divisibility of constraint
polynomials in terms of the coefficients of the G-function.

Corollary 2.9.2 (Assuming Conjecture 2.9.1). For N, ` ∈ Z≥0, we have

K+
N+`(N + `/2; g,∆, `/2) = ( N !

(N + `)!)
2

(2g)−`A`N((2g)2,∆2)K−
N(N + ε; g,∆, ε),

In the same paper, Masato Wakayama also proposed the following more general
conjecture.

Conjecture 2.9.3. For ` ∈ Z≥0, there exist polynomials A
(N,`/2)
k (x, y) ∈ Z[x, y] and

B
(N,`/2)
k (x, y) ∈ Z[x, y] (k = 0,1, . . . ,N) such that

P
(N+`,−`/2)
k+` (x, y) = A(N,`/2)k (x, y)P (N,`/2)k (x, y) +B(N,`/2)k (x, y), (2.32)

with B
(N,`/2)
N (x, y) = B(N,`/2)0 (x, y) = 0. Moreover, the polynomials A

(N,`/2)
k (x, y)

are positive for any x, y > 0.

Clearly, Conjecture 2.9.3 implies Conjecture 2.9.1. The proof of Conjecture
2.9.1 was given by Kazufumi Kimoto, Masato Wakayama and the author in [27]. In
Chapter 3 we give a proof of Conjecture 2.9.1 by proving Conjecture 2.9.3 using a
related method.

In addition, by applying the identities of Section 2.8 to Conjecture 3.2.3, we get
the divisibility conditions for the coefficients of the G-function.

Corollary 2.9.4 (Assuming Conjecture 2.9.3). For N, `, n ∈ Z≥0, we have

K+
n+`(N+`/2; g,∆, `/2) = ( n!

(n + `)!)
2

(2g)−`A(N,`/2)n ((2g)2,∆2)K−
n(N+ε; g,∆, ε)+q(g2,∆2, n,N),

with q(g2,∆2, n,N) ∈ Z[g2,∆2,N,n, ε] such that q(g2,∆2, n, n) = q(g2,∆2,N,N) =
0.

Note that by Lemma 2.8.5 we can replace K+
n+`(N+`/2; g,∆, `/2) (resp. K−

n(N+
ε; g,∆, ε)) in the left-hand side (resp. right-hand side) with K+

n+`(n + `/2; g,∆, `/2)
(resp. K−

n(n + ε; g,∆, ε) ) and obtain a similar identity.
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3. Constraint polynomials

In this chapter, we study the properties of the constraint polynomials and their
defining families from a strictly mathematical point of view. The main objective
of this section is to prove Conjecture 2.9.3. This is done in two parts. First, in

Section 3.2 we show the existence of the polynomial A
(`)
k (x, y) by showing that

P
(N,`/2)
k (x, y) divides P

(N+`,−`/2)
k+` (x, y) modulo N − k (under an appropiate inter-

pretation) as polynomials in Z[x, y]. This method gives an explicit determinant

expression for the polynomial A
(N,`/2)
k (x, y). The proof is completed in Section 3.3

by studying the eigenvalues of the matrices involved in the determinant expressions

for A
(N,`/2)
k (x, y).

In Section 3.5, we give an estimate on the number of positive roots of constraint
polynomials when one of the variables is in a given interval, this is done by using
certain interlacing properties of the roots of the constraint polynomials studied
in Section 3.4. Finally, in Section 3.6 we give an explicit formula for constraint
polynomials that can be used for the combinatorial study of its coefficients (see for
example [48]). The results of this chapter generalize the results first given in [27] to
prove Conjecture 2.9.1.

In this section, bold font is reserved for matrices and vectors, subscript denotes
the dimensions of the square matrices and the superscript denotes dependence on
parameters. Moreover, N always denotes a nonnegative integer and ε ∈ R≥0.

3.1 Determinant expressions for constraint and
related polynomials

In this section we give determinant expressions for constraint polynomials and their
defining families. It is well-known that orthogonal polynomials can be expressed
as determinants of tridiagonal matrices. Those determinant expressions are derived
from the fact that orthogonal polynomials satisfy three-term recurrence relations.

It is not difficult to verify that the polynomials {P (N,ε)k (x, y)}k≥0 do not constitute
families of orthogonal polynomials with respect to either of their variables (see
Section 5.1 for a related construction of orthogonal polynomials). Nevertheless,
since they are defined by three-term recurrence relations we can derive determinant
expressions using the same methods. We direct the reader to [10] or [26] for an
introduction for the case of orthogonal polynomials.

Recall from Section 2.8 the definition of the constraint polynomials.

Definition 3.1.1. Let N ∈ Z≥0. The polynomials P
(N,ε)
k (x, y) of degree k are defined
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3.1. Determinant expressions for constraint and related polynomials

recursively by

P
(N,ε)
0 (x, y) = 1,

P
(N,ε)
1 (x, y) = x + y − 1 − 2ε,

P
(N,ε)
k (x, y) = (kx + y − k(k + 2ε))P (N,ε)k−1 (x, y) − k(k − 1)(N − k + 1)xP (N,ε)k−2 (x, y).

Example 3.1.2. For k = 2,3, the first few polynomials are

P
(N,ε)
2 (x, y) = 2x2 + 3xy + y2 − 2(N + 2(1 + 2ε))x − (5 + 6ε)y + 2(1 + 2ε)(2 + 2ε),
P
(N,ε)
3 (x, y) = 6x3 + 11x2y + 6xy2 + y3 − 6(2N + 3(1 + 2ε))x2

− 2(4N + 17 + 22ε)xy − 2(7 + 6ε)y2 + 6(2N + 3(1 + 2ε))(2 + 2ε)x
+ (49 + 4ε(24 + 11ε))y − 6(1 + 2ε)(2 + 2ε)(3 + 2ε).

For brevity, we set c
(ε)
k = k(k + 2ε) and λk = k(k − 1)(N −k + 1). It is easy to see

that the polynomial P
(N,ε)
k (x, y) is the determinant of a k × k tridiagonal matrix

P
(N,ε)
k (x, y) = det(Iky +A

(N)
k x +U

(ε)
k ) (3.1)

where Ik is the identity matrix of size k and

A
(N)
k = tridiag [ i 0

λi+1
]

1≤i≤k

, U
(ε)
k = tridiag [−c

(ε)
i 1
0

]
1≤i≤k

.

We need the following lemma.

Lemma 3.1.3. For 1 ≤ k ≤ N , the eigenvalues of A
(N)
k are {1,2, . . . , k} and the

eigenvectors are given by the columns of the lower triangular matrix E
(N)
k given by

(E(N)k )i,j = (−1)i−j(i
j
)(i − 1)!(N − j)!
(j − 1)!(N − i)! ,

for 1 ≤ i, j ≤ k.

Proof. We have to check that (A(N)k E
(N)
k )i,j = j(E(N)k )i,j for every i, j. By defini-

tion, we see that

(A(N)k E
(N)
k )i,j = j(E(N)k )i,j ⇐⇒ (j − i)(E(N)k )i,j = λi(E(N)k )i−1,j

⇐⇒ (j − i)(i
j
) = −i(i − 1

j
),

and the last equality is easily verified.

In general, the polynomials P
(N,ε)
k (x, y) can be expressed as the determinant of

a tridiagonal matrix plus a rank-1 matrix.

Proposition 3.1.4. Let k ∈ Z≥0, then

P
(N,ε)
k = det (Iky +Dkx +C

(N,ε)
k + ek

Tu) ,
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3.1. Determinant expressions for constraint and related polynomials

where Ik is the identity matrix, Dk = diag(1,2, . . . , k) and C
(N,ε)
k is the tridiagonal

matrix given by

C
(N,ε)
k = tridiag [

−i(2(N − i) + 1 + 2ε) 1

i(i + 1)c(ε)N−i
]

1≤i≤k

,

ek ∈ Rk is the k-th standard basis vector and u ∈ Rk is given entrywise by

uj = (−1)k−j+2(k + 1

j
) k!(N − j)!
(j − 1)!(N − k − 1)!

Proof. By Lemma 3.1.3, the eigenvalues of A
(N)
k are {1,2, . . . , k} and the eigenvec-

tors are given by the columns of the lower triangular matrix E
(N)
k given by

(E(N)k )i,j = (−1)i−j(i
j
)(i − 1)!(N − j)!
(j − 1)!(N − i)! .

Then, it suffices to verify that

U
(ε)
k E

(N)
k = E

(N)
k C

(N,ε)
k +E

(N)
k ek

Tu. (3.2)

Note that the k-th column of E
(N)
k is ek, therefore the last summand reduces to

ek
Tu. Let

dij = (−1)i−j(i
j
)(i − 1)!(N − j)!
(j − 1)!(N − i)! .

For i, j ≤ k, the equation

− c(ε)i dij + di+1,j + j(2(N − j) + 1 + 2ε)dij − di,j−1 − j(j + 1)c(ε)N−jdi,j+1, (3.3)

by using the elementary relations

j(j + 1)c(ε)N−jdi,j+1 = −(i − j)(N − j + 2ε)dij ,

di+1,j − di,j−1 = (i2 + j2 + ij − j − iN − jN)dij ,

is seen to be equal to zero. For i, j ≤ k, dij = (E(N,ε)k )i,j and therefore (3.3) directly
gives (3.2) for 1 ≤ j ≤ k and 1 ≤ i ≤ k − 1. For i = k, formula (3.3) reads

(U(ε)k E
(N)
k −E

(N)
k C

(N,ε)
k )k,j = −dk+1,j ,

and the right-hand side is equal to the i-th entry of u, as desired.

Note that when k = N , by the definition of the entries, the vector u is equal to
the zero vector, and the proposition above reduces to Proposition 4.2 of [27].

Corollary 3.1.5. Let k ∈ Z≥0, then

P
(N,ε)
k (x, y) = det (Iky +Dkx +C

(N,ε)
k ) +Q(N,ε)k (x, y),

for a polynomial Q
(N,ε)
k ∈ R[x, y] with Q

(N,ε)
N (x, y) = 0.
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3.1. Determinant expressions for constraint and related polynomials

Proof. It well-known that if A is a square matrix, then

det(A + vTu) = det(A) + Tv adj(A)u,

where adj(A) is the adjugate matrix, the transpose of the matrix of cofactors of A.
Applying this result along with Proposition 3.1.4, we get the determinant expression.
Furthermore, we see that

Q
(N,ε)
k (x, y) = Tek adj (Iky +Dkx +C

(N,ε)
k )u,

is a polynomial, since det (Iky +Dkx +C
(N,ε)
k ) is clearly a polynomial. As men-

tioned above, u = 0 when N = k, and thus the second claim follows.

We prove the divisibility part of Conjecture 2.9.3 in Section 3.2. In the remaining
of this section we show some special properties of the constraint polynomials (the
case k = N).

Corollary 3.1.6. Let N ∈ Z≥0. We have

P
(N,ε)
N (x, y) = det (INy +DNx + S

(N,ε)
N ) ,

where DN is the diagonal matrix of Proposition 3.1.4 and S
(N,ε)
N is the symmetric

matrix given by

S
(N,ε)
N = tridiag

⎡⎢⎢⎢⎢⎣

−i(2(N − i) + 1 + 2ε)
√
i(i + 1)c(ε)N−i√

i(i + 1)c(ε)N−i

⎤⎥⎥⎥⎥⎦1≤i≤N

.

Proof. Consider the case k = N in Proposition 3.1.4. Notice that the matrices

INy + DNx + C
(N,ε)
N and INy + DNx + S

(N,ε)
N are tridiagonal. Then, it is clear by

the continuant equivalence (2.28) that the determinants of the matrices are equal,
establishing the result.

As a corollary to the discussion on the determinant expression (3.1) we have
the following result used in Section 3.3 to prove the positivity of the polynomial
A`N(x, y).

Corollary 3.1.7. For x ≥ 0, ε ∈ R and N,k ∈ Z≥0, all the roots of P
(N,ε)
k (x, y) with

respect to y are real.

Proof. When x ≥ 0, using the continuant equivalence (2.28) on the determinant

expression (3.1) of P
(N,ε)
k (x, y) we can find an equivalent expression det(Iky−Vk(x))

for a real symmetric matrix Vk(x). Since the roots of P
(N,ε)
k (x, y) with respect

to y are the eigenvalues of the real symmetric matrix Vk(x), the result follows
immediately.

In the case of the constraint polynomials P
(N,ε)
N (x, y), the determinant expres-

sion of Corollary 3.1.6 gives the following result of similar type, used for the esti-
mation of positive roots of constraint polynomials in Section 3.5.
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3.2. Divisibility of constraint and related polynomials

Theorem 3.1.8. Let N ∈ Z≥0 and ε > −1/2. Then, for fixed x ∈ R (resp. y ∈ R), all

the roots of P
(N,ε)
N (x, y) with respect to y (resp. x) are real.

Proof. Upon setting x = α ∈ R, the zeros of P
(N,ε)
N (α, y) are the eigenvalues of

the matrix −(DNα + S
(N,ε)
N ). For ε > −1/2, the matrix is real symmetric, so the

eigenvalues, therefore the zeros, are real. The case of y = β ∈ R is completely

analogous since P
(N,ε)
N (x,β) = detDN det(INx +D−1

N β +D
−1/2
N S

(N,ε)
N D

−1/2
N ).

The next example shows that we should not expect a determinant expression of

the type of Corollary 3.1.6 for general P
(N,ε)
k (x, y) with k ≠ N .

Example 3.1.9. For a fixed y, the roots of the polynomial

P
(6,0)
2 (x, y) = 2x2 + y2 − 16x + 3xy − 5y + 4,

are given by
1

4
(16 − 3y ±

√
y2 − 56y + 224) .

Clearly, this polynomial may have non-real roots for general y ∈ R.

3.2 Divisibility of constraint and related polynomials

When the parameter ε is half-integer, i.e. ε = `/2 ∈ 1
2Z, we have special divisibility

properties for the polynomials P
(N,ε)
k (x, y). In this section, using these properties

we prove the divisibility part of Conjecture 2.9.3.

Proposition 3.2.1. Let `, k ∈ Z≥0, then

P
(N+`,− `+N−k

2
)

k+` (x, y) = Ā(N,`)k (x, y)P (N,
`+N−k

2
)

k (x, y) + B̄(N,`)k (x, y)

with B̄
(N,`)
N (x, y) = 0. Moreover, the polynomial Ā

(N,`)
k (x, y) is given by

Ā
(N,`)
k (x, y) = (k + `)!

k!
det tridiag

⎡⎢⎢⎢⎢⎣

x + y
k+i + 2i − 1 + k −N − ` 1

c
(N+`−k

2
)

−i

⎤⎥⎥⎥⎥⎦1≤i≤`

.

By taking N to be a variable, this result, along with Theorem 3.2.3 below, can
be interpreted as divisibility modulo N − k, that is,

P
(N+`,− `+N−k

2
)

k+` (x, y) ≡ Ā(N,`)k (x, y)P (N,
`+N−k

2
)

k (x, y) (mod N − k).

To simplify the proofs we make this assumption in the remaining of this section.

Proof. We begin with the determinant expression of Corollary 3.1.5 for P
(N+`,− `+N−k

2
)

k+` (x, y),
that is

P
(N+`,− `+N−k

2
)

k+` (x, y) = det(Ik+`y +Dk+`x +C
(N+`,− `+N−k

2
)

k+` ) + qk+`(x, y),
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3.2. Divisibility of constraint and related polynomials

where qk+`(x, y) is a polynomial divisible byN−k. The tridiagonal matrix C
(N+`,− `+N−k

2
)

k+`
is given by

C
(N+`,− `+N−k

2
)

k+` = tridiag [ −i(−2i + 1 + ` +N + k) 1
i(i + 1)(N + ` − i)(k − i) ]

1≤i≤k+`

.

Note that when i = k, the off-diagonal element i(i + 1)(N + ` − i)(k − i) vanishes

and det(Ik+`y +Dk+`x +C
(N+`,− `+N−k

2
)

k+` ) can be computed as the product of the

determinant of a k × k matrix and the determinant of a ` × ` matrix.
Let us first consider the determinant of the ` × `-matrix factor. It is given by

det tridiag [y + (k + i)x − (k + i)(−2(k + i) + 1 + ` +N + k) 1
(k + i)(k + i + 1)(N + ` − k − i)(−i) ]

1≤i≤`

which is easily seen to be equal to

Ā
(N,`)
k (x, y) = (k + `)!

k!
det tridiag

⎡⎢⎢⎢⎢⎣

x + y
k+i + 2i − 1 + k −N − `) 1

c
(N+`−k

2
)

−i

⎤⎥⎥⎥⎥⎦1≤i≤`

.

Let us denote by q(x, y;N, `, k) the remaining factor, that is,

q(x, y;N, `, k) = det tridiag [ix + y − i(−2i + 1 + ` +N + k) 1
i(i + 1)(N + ` − i)(k − i) ]

1≤i≤k

.

By Corollary 3.1.5, we have

P
(N, `+N−k

2
)

k (x, y) −Q(N,
`+N−k

2
)

k = det tridiag [ ix + y − i(3N − 2i + 1 + ` − k) 1
i(i + 1)(N − i)(2N − i + ` − k) ]

1≤i≤k

,

the right-hand side can be written as

det tridiag [ ix + y − i(−2i + 1 + ` +N + k + 2(N − k)) 1
i(i + 1)(k − i + (N − k))(N + ` − i + (N − k)) ]

1≤i≤k

,

and noticing that entrywise, the entries of the matrix of the determinant differ to
those in the determinant expression of q(x, y;N, `, k) only by factors of N − k, we
obtain

q(x, y;N, `, k) = P (N,
`+N−k

2
)

k (x, y) + q′(x, y;N, `, k)

for a polynomial q′(x, y;N, `, k) satisfying q′(x, y;N, `,N) = 0. This completes the
proof.

The following lemma is used to obtain the main result.

Lemma 3.2.2. Let k ∈ Z≥0 and δ ∈ R. Then, we have

P
(N,ε+δ)
k (x, y) = P (N,ε)k (x, y) + 2δq

(N,ε)
k (x, y),

for some polynomial q(N,ε)(x, y) ∈ R[x, y].
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3.2. Divisibility of constraint and related polynomials

Proof. It is clear that q
(N,ε)
0 (x, y) = 0 and q

(N,ε)
1 (x, y) = 1. Then, assume that it

holds for all i ≤ k for some k ∈ Z≥0. We have,

P
(N,ε+a)
k (x, y) = (kx + y − c(ε+a)k )P (N,ε+a)k−1 (x, y) − λkxP ((N,ε+a))k−2 (x, y)

= P (N,ε)k (x, y) − 2kaP
(N,ε)
k−1 (x, y) + 2a(kx + y − c(ε+a)k )q(N,ε)k−1

− 2aλkxq
(N,ε)
k−2 (x, y)

= P (N,ε)k (x, y) + 2aq
(N,ε)
k (x, y)

and the result follows by induction.

Finally, we can prove the “divisibility” part of Conjecture 2.9.3.

Theorem 3.2.3. Let `, k ∈ Z≥0, then

P
(N+`,− `

2
)

k+` (x, y) = A(`)k (x, y)P (N,
`
2
)

k (x, y) +B(N,`)k (x, y)

with B
(N,`)
N (x, y) = 0. Moreover, the polynomial A

(`)
k (x, y) is given by

A
(`)
k (x, y) = (k + `)!

k!
det tridiag

⎡⎢⎢⎢⎢⎣

x + y
k+i + 2i − 1 − ` 1

c
( `
2
)

−i

⎤⎥⎥⎥⎥⎦1≤i≤`

Note that the polynomial A
(`)
k (x, y) does not depend on the parameter N . In the

sequel we use this notation for the polynomial A
(N,`/2)
k (x, y) appearing in Conjecture

2.9.3.

Proof. First, by using Lemma 3.2.2 above on the polynomials at both sides of Propo-
sition 3.2.1, it is easy to see that

P
(N+`,− `

2
)

k+` (x, y) = Ā(N,`)k (x, y)P (N,
`
2
)

k (x, y) + C̄(N,`)k (x, y)

for some polynomial C̄
(N,`)
k (x, y) satisfying C̄

(N,`)
N (x, y) = 0. Note that the matrices

in the determinant expressions of Ā
(`)
k (x, y) and A

(N,`)
k (x, y) differ entrywise at most

by factor of N − k, therefore

A
(`)
k (x, y) = Ā(N,`)k (x, y) + (N − k)q(N,`)(x, y)

for some polynomial q(N,`)(x, y) ∈ Z[x, y] completing the proof.

To complete the proof of Conjecture 2.9.3, it remains to prove that A
(`)
k (x, y) > 0

for x, y > 0. This is done in Section 3.3 below.
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3.3. Proof of the positivity of A
(`)
N (x, y)

Example 3.2.4. ([48]) For small values of `, the explicit form of A`N(x, y) is given
by

A1
k(x, y) = (k + 1)x + y,

A2
k(x, y) = (k + 1)2x

2 + (
2

∑
i=1

(k + i))xy + y(1 + y),

A3
k(x, y) = (k + 1)3x

3 + (
3

∑
i<j

(k + i)(k + j))x2y + (k + 2)x(3y + 4)y + y(2 + y)2,

A4
k(x, y) = (k + 1)4x

4 + (
4

∑
i<j<k

(k + i)(k + j)(k + j))x3y

+ (
4

∑
i<j

(k + i)(k + j))x2y2 + 2(
4

∑
i<j

(k + i)(k + j) − (k + 2)(k + 3))x2y

+ (
4

∑
i=1

(k + i))xy(y + 2)(y + 3) + y(3 + y)2(4 + y).

3.3 Proof of the positivity of A
(`)
N (x, y)

In this subsection we complete the proof of Conjecture 2.9.1 by proving the positivity

of the polynomial A
(`)
k (x, y) for x, y > 0. Let k ∈ Z≥0 and ` ∈ Z>0 be fixed. From

Theorem 3.2.3 and the continuant equivalence (2.28), we see that the polynomial

A
(`)
k (x, y) has the determinant expression

(k + `)!
k!

det(D(k)` y +B`(x))

where B`(x) is an matrix-valued function given by

B`(x) = tridiag [
x − ` + 2i − 1 1

c
(`/2)
−i

]
1≤i≤`

. (3.4)

Next, multiplying the
(k+`)!
k! factor into the determinant in such a way that the

i-th row is multiplied by k + i, we obtain the expression

A
(`)
k (x, y) = det(I`y +M

(k)
` (x)) = ∏

λ∈Spec(M
(k)
`
(x))

(y + λ) (3.5)

with

M
(k)
` (x) = tridiag [

(k + i)(x − ` + 2i − 1) k + i
(k + i + 1)c(`/2)

−i

]
1≤i≤`

.

Thus, it suffices to show that all the eigenvalues of M
(k)
` (x) are positive for x > 0

to prove that A
(`)
k (x, y) > 0 when x, y > 0.

First, we compute the determinant of the matrix M
(k)
` (x), or equivalently, the

value of A
(`)
k (x,0).
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3.3. Proof of the positivity of A
(`)
N (x, y)

Lemma 3.3.1. We have

det(M(k)
` (x)) = A(`)k (x,0) = (k + `)!

k!
x`.

Proof. Consider the recurrence relation

Ji(x) = (x + ` + 1 − 2i)Ji−1(x) + (i − 1)(` + 1 − i)Ji−2(x),

with initial conditions J0(x) = 1 and J−1(x) = 0. Notice that this recurrence relation
corresponds to the continuant detB`(x) (compare with (3.4) above) and therefore,
(k+`)!
k! J`(x) = (k+`)!

k! detB`(x) = det(M(k)
` (x)). We claim that Ji(x) = ∑ij=0(` −

i)j(ij)x
i−j . Clearly, the claim holds for J0(x) = 1 and J1(x) = x+ `− 1. Assuming it

holds for integers up to a fixed i, we have

Ji+1(x) = (x + ` − 1 − 2i)
i

∑
j=0

(` − i)j(
i

j
)xi−j + i(` − i)

i−1

∑
j=0

(` − i + 1)j(
i − 1

j
)xi−1−j

=
i

∑
j=0

(` − i)j(
i

j
)xi+1−j + (` − 1 − 2i)

i

∑
j=0

(` − i)j(
i

j
)xi−j

+ i(` − i)
i−1

∑
j=0

(` − i + 1)j(
i − 1

j
)xi−1−j ,

by grouping the terms in the sums we obtain

xi+1 + (` − i − 1)xi + (` − i − 1)i+1

+
i−1

∑
j=1

(` − i)j ((` − i + j)(
i

j + 1
) + (` − 1 − 2i)( i

k
) + j(i

j
))xi−j .

The sum on the expression above is

i−1

∑
j=1

(` − i)j(
i

j
)((` − i + j)(i − j)

j + 1
+ ` − 1 − 2i + j)xi−j

=
i−1

∑
j=1

(` − i)j(
i

j
)((i + 1)(` − i − 1)

j + 1
)xi−j =

i

∑
j=2

(` − i − 1)j(
i + 1

j
)xi+1−j ,

and the claim follows by joining the remaining terms into the sum. Finally, notice
that J`(x) = ∑ij=0(0)j(`j)x

`−j = x`, as desired.

From the lemma above, we immediately obtain the

Corollary 3.3.2. For N ∈ Z≥0, the eigenvalue λ = 0 is in Spec(M(k)
` (x)) if and

only if x = 0.

The next result collects some basic properties of the eigenvalues of the matrix

M
(k)
` (x) that are used in the proof of the positivity of A

(`)
k (x, y).

Lemma 3.3.3. Denote the spectrum of the matrix M
(k)
` (x) by Spec(M(k)

` (x)).
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3.3. Proof of the positivity of A
(`)
N (x, y)

1. For x ≥ 0, the eigenvalues λ ∈ Spec(M(k)
` (x)) are real.

2. We have Spec(M(k)
` (0)) = {i(`−i) ∶ i = 1,2,⋯, `}. In particular, 0 ∈ Spec(M(k)

` (0))
is a simple eigenvalue and any eigenvalue λ ∈ Spec(M(k)

` (0)) satisfies λ ≥ 0.

3. If x′ > ` − 1, all eigenvalues λ ∈ Spec(M(k)
` (x′)) satisfy λ > 0.

Proof. Note that by setting N = k in Corollary 3.1.7 and the divisibility of Theorem

3.2.3, wee see that if x ≥ 0 all the roots of A
(`)
k (x, y) with respect to y are real. By

definition, the same holds for the elements of Spec(M(k)
` (x)), proving the first claim.

From the defining recurrence relation, we see that P
(k,ε)
k (0, y) = ∏ki=1(y − i(i + 2ε)),

and by divisibility we have A
(`)
k (0, y) = ∏`i=1(y − i(i − `)) proving the second claim.

For the third claim, notice that when x′ > `−1 all the diagonal elements of M
(k)
` (x′)

are positive. Therefore, the continuant (3.5) defines a recurrence relation with

positive coefficients, so that A
(`)
k (x′, y) is a polynomial in y with positive coefficients

and real roots. Since y = 0 is not a root of A
(`)
k (x′, y) by Corollary 3.3.2, all of the

roots of A
(`)
k (x′, y) must be negative and the third claim follows.

With these preparations, we come to the proof of the positivity of the polynomial

A
(`)
k (x, y).

Theorem 3.3.4. With the notation of Theorem 3.2.3, A
(`)
k (x, y) > 0 for x, y > 0.

Proof. By virtue of (3.5), it is enough to show that all the eigenvalues of M
(k)
` (x) are

positive if x > 0. Notice that each eigenvalue of M
(k)
` (x) is a real-valued continuous

function in x. Assume that there is a positive x′ such that M
(k)
` (x′) has a negative

eigenvalue. Then, there also exists x′′ such that x′ < x′′ < ` and 0 ∈ Spec(M(k)
` (x′′))

since all eigenvalues of M
(k)
` (`) are positive by Lemma 3.3.3 (3). This contradicts

to Corollary 3.3.2.

A consequence of the positivity of A
(`)
N (x, y) in Theorem 4.1.1 is that all the

positive roots of the constraint polynomials P
(N,`/2)
N (x, y) and P

(N+`,−`/2)
N+` (x, y)

(N, ` ∈ Z≥0) must coincide.

Note that since A
(`)
0 (x, y) = P (`,−`/2)` (x, y) and P

(0,`/2)
0 (x, y) = 1 /= 0, the posi-

tivity of A
(`)
0 (x, y) also implies the absence of Juddian eigenvalues λ = `/2 − g2 for

` > 0. In fact, the positivity can be extended to a larger set of constraint polynomials

P
(k,−`/2)
k (x, y).

Proposition 3.3.5. Let ` ∈ Z>0 and 1 ≤ k ≤ `. Then the constraint polynomial

P
(k,−`/2)
k (x, y) is positive for x, y > 0.

Proof. For 1 ≤ k ≤ `, define the k × k matrix

Mk(x) = tridiag [
x + ` − 1 − 2(k − i) i

(i + 1)c(−`/2)k−i

]
1≤i≤k
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3.4. Interlacing of roots for constraint polynomials

then P
(k,−`/2)
k (x, y) = det(Iky+Mk(x)) and the roots of P

(k,−`/2)
k (x, y) with respect

to y are the eigenvalues of the matrix −Mk(x). Thus, as in the case of A`N(x, y), it
suffices to prove that all the eigenvalues of Mk(x) are positive for x > 0.

First, we see that det(Mk(x)) = P (k,−`/2)k (x,0) = k!∑kj=0(`− k)j(kj)x
k−j . Indeed,

we directly verify that det(Mk(x)) = k!Jk(x) where {Ji(x)}i≥0 is the recurrence
relation defined in Lemma 3.3.1. In particular, det(Mk(x)) is a polynomial with
positive coefficients and thus it never vanishes for x > 0.

Next, we verify that the matrix Mk(x) has the properties of the matrices

M
(N)
` (x) given in Lemma 3.3.3. From Corollary 3.1.7, it is clear that for x ≥ 0

the eigenvalues of Mk(x) are real. By the definition of the constraint polynomials,
it is obvious that Spec(Mk(0)) = {i(` − i) ∶ i = 1,2,⋯, k}, hence any eigenvalue
λ ∈ Spec(Mk(0)) is non-negative. Finally, as in the proof of Lemma 3.3.3, we see
that for x′ > max(0,2k − ` − 1) all eigenvalues λ ∈ Spec(Mk(x′)) satisfy λ > 0.

The proof of positivity then follows exactly as in the proof of Theorem 3.3.4.

3.4 Interlacing of roots for constraint polynomials

When considered as polynomials in R[y][x], there is non-trivial interlacing among

the roots of the constraint polynomials P
(N,ε)
N (x, y). This interlacing is essential

for the proof of the upper bound on the number of positive roots of the constraint
polynomials in the next sections.

For N ∈ Z≥0, let

P
(N,ε)
N (x, y) =

N

∑
i=0

a
(N)
i (y)xi.

Noticing that deg(a(N)i (y)) = N −i, the interlacing property is given in the following
lemma.

Lemma 3.4.1. Let N ∈ Z≥0 and ε > −1/2. Then the roots of a
(N)
j (y) (0 ≤ j ≤ N −1)

are real. Denote the roots of a
(N)
j (y) by ξ

(j)
1 ≤ ξ

(j)
2 ≤ ⋯ ≤ ξ

(j)
N−j. Then, for j =

0,1, . . . ,N − 2 we have

ξ
(j)
i < ξ(j+1)

i < ξ(j)i+1

for i = 1,2, . . . ,N − j − 1.

The constraint polynomials P
(N,ε)
N (x, y), with ε > −1

2 , belong to a special class of
polynomials in two variables, the class P2 (see [15]). The class P2 is a generalization
of polynomials of one variable with all real roots. A polynomial p(x, y) of degree n
belongs to the class P2 if it satisfies the following conditions:

• For any α ∈ R, the polynomials p(α, y) and p(x,α) have all real roots.

• Monomials of degree n in p(x, y) all have positive coefficients.

Equivalently, a polynomial p(x, y) is in the class P2 if it has a determinant expression

p(x, y) = det (Iny +Dnx + Sn) ,

with Dn a diagonal matrix with positive entries and Sn a real symmetric matrix.
Recall the following property of polynomials of the class P2.
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Lemma 3.4.2 (Lemma 9.63 of [15]). Let f(x, y) ∈ P2 and set

f(x, y) = f0(x) + f1(x)y +⋯ + fn(x)yn.

If f(x,0) has all distinct roots, then all fi have distinct roots, and the roots of fi
and fi+1 interlace.

Note that the lemma above tacitly implies that the roots of the polynomials fi
are real. With these preparations, we prove Lemma 3.4.1.

Proof of Lemma 3.4.1. By Corollary 3.1.6, P
(N,ε)
N (x, y) ∈ P2. Since P

(N,ε)
N (0, y) =

∏Ni=i(y − i(i + 2ε)), for ε > −1/2, the roots are different and the lemma applies,
establishing the result.

3.5 Number of positive roots of constraint polynomials

In this section we give an estimation on the number of positive roots of constraint
polynomials. In particular, this result proves the existence of exceptional eigenvalues
corresponding to Juddian solutions in the spectrum of the AQRM. We note that
although Theorem 3.5.1 was stated for open intervals by Li and Batchelor in [34], the
proof provided by the authors only gives a lower bound on the number of positive
roots.

Theorem 3.5.1. Let ε > −1
2 . For each k (0 ≤ k < N), there are exactly N − k

positive roots (in the variable x) of the constraint polynomial P
(N,ε)
N (x, y) for y in

the range
k(k + 2ε) ≤ y < (k + 1)(k + 1 + 2ε).

Furthermore, when y ≥ N(N +2ε), the polynomial P
(N,ε)
N (x, y) has no positive roots

with respect to x.

We illustrate numerically the proposition for the case N = 6 and ε = 0.4 in Figure
3.1. For fixed ∆ > 0 satisfying k(k+2ε) ≤ ∆2 < (k+1)(k+1+2ε) (k ∈ {1,2, . . . ,N}),

the number of points (g,∆) with g > 0 in the curve P
(N,ε)
N ((2g)2,∆2) = 0 is exactly

N − k. Likewise, as it is clear in the figure, there are no points (g,∆) in the curve
with g > 0 and ∆2 ≥ N(N + 2ε).

First, we establish a lower bound on the number of positive roots for the con-
straint polynomials. The following Lemma extends Li and Batchelor’s result ([34],
Theorem), to the case of semi-closed intervals.

Lemma 3.5.2. Let ε > −1
2 . For each k (0 ≤ k < N), there are at least N −k positive

roots (in the variable x) of the constraint polynomial P
(N,ε)
N (x, y) for y in the range

k(k + 2ε) ≤ y < (k + 1)(k + 1 + 2ε).

Remark 3.5.3. The proof is a modification to the argument given in [34] (Appendix
B), which is based on the proof of Kuś for the case of the (symmetric) quantum
Rabi model ([31], Section IV, Thm. 3).
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3.5. Number of positive roots of constraint polynomials

Figure 3.1: Curve P
(6,ε)
6 ((2g)2,∆2) = 0 with ε = 0.4 (for g,∆ > 0)

Proof. Define the normalized polynomials S
(N,ε)
k (x, y) by

S
(N,ε)
k (x, y) =

P
(N,ε)
k (x, y)

k!
.

Fix y and consider the polynomials S
(N,ε)
k (x, y) as polynomials in the variable x

and write S
(N,ε)
k (x) for simplicity. Set αi = (i(i + 2ε) − y)/i and βi = N − i + 1, then

the recurrence relation becomes

S
(N,ε)
0 (x) = 1, S

(N,ε)
1 (x) = x − α1

S
(N,ε)
k (x) = (x − αk)S(N,ε)k−1 (x) − βkxS(N,ε)k−2 (x). (3.6)

Let k (0 ≤ k < N) be fixed. If k(k + 2ε) < y < (k + 1)(k + 1+ 2ε), then it is clear that
αi < 0 for i < k, αi > 0 for i > k and βi > 0 for 0 ≤ i < N . Moreover, when y = k(k+2ε)
we have αk = 0 and, from (3.6), we see that x = 0 is a root of all polynomials Sk+i(x)
for i = 1, . . . ,N − k.

For i = 0,1, . . . ,N − k, set

S̃k+i(x) =
⎧⎪⎪⎨⎪⎪⎩

Sk+i(x) if y ≠ k(k + 2ε)
(1/x)Sk+i(x) if y = k(k + 2ε)

.

With this modification, the proof follows as in [31]. First, notice that

sgn(S(N,ε)l (0)) = sgn((−1)lα1α2 . . . , αl) = (−1)2l = 1

for l < k. Similarly, sgn(S(N,ε)k (0)) = 1 if y /= k(k + 2ε) and sgn(S(N,ε)k (0)) = 0 if
y = k(k + 2ε). On the other hand, for i = 1, . . . ,N − k, we have

sgn(S̃(N,ε)k+i (0)) =
⎧⎪⎪⎨⎪⎪⎩

sgn((−1)k+iα1 . . . αk−1αkαk+1 . . . αk+i) = (−1)i, if y /= k(k + 2ε)
sgn((−1)k+i−1α1 . . . αk−1αk+1 . . . αk+i) = (−1)i, if y = k(k + 2ε)

.

In addition, from the recurrence relation (3.6) we easily see the following

• if S
(N,ε)
i (a) = 0 for a > 0, then S

(N,ε)
i+1 (a) and S

(N,ε)
i−1 (a) have opposite signs,

46



3.5. Number of positive roots of constraint polynomials

• S
(N,ε)
i (x) and S

(N,ε)
i−1 (x) cannot have the same positive root.

These remarks are easily seen to hold for the auxiliary polynomials S̃k+i(x) as well.
Next, denote by V (x) the number of change of signs of the sequence

S̃
(N,ε)
N (x), S̃(N,ε)N−1 (x), . . . , S̃(N,ε)k+1 (x), S(N,ε)k (x), S(N,ε)k−1 (x), . . . , S(N,ε)0 (x).

By the remarks above, variations of V (x) by ±1 occur only at zeros of S̃
(N,ε)
N (x)

or S̃
(N,ε)
0 (x) = 1. At x = 0, the first terms of the sequence are (−1)N−k−i for

i = 0, . . . ,N − k − 1, then 0 if y = k(k + 2ε) and all the remaining terms are 1,
hence V (0) = N − k. On the other hand, it is clear that as x tends to infinity

sgn(S(N,ε)i (x)) = 1 and sgn(S̃(N,ε)k+i (x)) = 1. This proves that there are at least N −k
positive roots of the polynomial S̃

(N,ε)
N (x) and the same holds for P

(N,ε)
N (x).

To complete the proof we give an upper bound to the number of positive roots
using Descartes’ rule of signs (see e.g. [26], Theorem 7.5). This result states that
the number of positive roots of a polynomial does not exceed the number of the
sign changes in its coefficients.

Lemma 3.5.4. Let ε > −1
2 . When y ≥ N(N + 2ε), the polynomial P

(N,ε)
N (x, y) has

no positive roots with respect to x.

Proof. First, using the notation of Section 3.4, we note that y = N(N + 2ε) is the

largest root of aN0 (y) = P (N,ε)N (0, y). Then, by the interlacing of the roots of aNi (y)
(i = 0,1, . . . ,N − 1) of Lemma 3.4.1, all aNi (y) must be non-negative. Thus, there

are no changes of signs in the coefficients of P
(N,ε)
N (x, y) (as a polynomial in x) and

the result follows by Descartes’ rule of signs.

Lemma 3.5.5. Let ε > −1
2 . For each k (0 ≤ k < N), there are at most N −k positive

roots (in the variable x) of the constraint polynomial P
(N,ε)
N (x, y) for y in the range

k(k + 2ε) ≤ y < (k + 1)(k + 1 + 2ε).

Proof. First, note as in Lemma 3.5.4 that when y ≥ N(N + 2ε), all the coefficients

a
(N)
i (y) of the polynomial P

(N,ε)
N (x, y) are non-negative, with the notation of §3.4.

For (N − 1)(N − 1 + 2ε) < y < N(N + 2ε), by Lemma 3.4.1 the sign sequence

(sgna
(N)
N (y) , sgna

(N)
N−1(y), . . ., sgna

(N)
0 (y)) is given by

+,+,⋯,+,−,−,⋯,−,−,

that is, it consists of a subsequence +,+, . . . ,+ of positive signs followed by a sub-
sequence −,−, . . . ,− of negative signs. Thus, by Descartes’ rule of signs we have at

most 1 = N−(N−1) positive roots for P
(N,ε)
N (x, y). When y = (N−1)(N−1+2ε), we

have a
(N)
0 (y) = 0 and the sequence is the same except for a 0 at the end, so the result

holds without change. Continuing this process, we see that for (N −2)(N −2+2ε) <
y < (N − 1)(N − 1 + 2ε), the sign sequence given by

+,+,⋯,+,−,−,⋯,−,+,+, . . . ,+
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3.6. Explicit formulas of the constraint polynomials

from where it holds that the polynomial hast at most 2 = N − (N − 2) roots (with
respect to x). We continue this process until we reach 0 < y < 1(1 + 2ε), where we
have

+,−,+,−, . . . , (−1)N−1, (−1)N

giving N = N − 0 roots (with respect to x) by Descartes’ rule of signs. There-
fore, to finish the proof we prove that the number of sign changes in the se-

quence (sgna
(N)
N (y), sgna

(N)
N−1(y) , . . ., sgna

(N)
0 (y)) does not vary for y satisfying

(k−1)(k−1+2ε) < y < k(k+2ε), and that there is exactly an additional sign change
when y crosses (k − 1)(k − 1 + 2ε). To see this, note that due to the interlacing of
roots given in Lemma 3.4.1, the next sign change in a subsequence +,+,⋯,+ (or
−,−,⋯,−) of contiguous coefficients with same sign must happen at right end of
the subsequence. When the subsequence +,+,⋯,+ (or −,−,⋯,−) is at the rightmost

end of the complete sign sequence (sgna
(N)
N (y), sgna

(N)
N−1(y), . . . , sgna

(N)
0 (y)) there

is an additional sign change in the complete sequence and the sign change occurs
at roots of a0(y), that is, when y = k(k + 2ε) for k ∈ {1,2, . . . ,N − 1}. In any other
case there is no additional sign change. This completes the proof.

The combination of Lemmas 3.5.2 and 3.5.5 immediately gives Theorem 3.5.1.

3.6 Explicit formulas of the constraint polynomials

In this section we give an explicit expression of the constraint polynomials, these
can be used to obtain combinatorial expression for the coefficients, see for example
[48] The approach we use to find the coefficients of the constrain polynomials is
to compute the derivatives at all orders by differentiating the defining recurrence
formula.

Proposition 3.6.1. For m ∈ N, we have

∂mx P
(N,`/2)
k (x, y) =mk(∂m−1

x P
(N,`/2)
k−1 (x, y) − (k − 1)(N − k + 1)∂m−1

x P
(N,`/2)
k−2 (x, y))

+ (kx + y − k(k + `))∂mx P
(N,`/2)
k−1 (x, y) − k(k − 1)(N − k + 1)x∂mx P

(N,`/2)
k−2 (x, y).

Proof. Differentiating the defining recurrence relation for P
(N,`/2)
k , we obtain

∂xP
(N,`/2)
k (x, y) = k(P (N,`/2)k−1 (x, y) − (k − 1)(N − k + 1)P (N,`/2)k−2 (x, y))

+ (kx + y − k(k + `))∂xP (N,`/2)k−1 (x, y) − k(k − 1)(N − k + 1)x∂xP (N,`/2)k−2 (x, y).

Repeating this process m times gives the result.

To find the coefficients of the constraint polynomials, it is enough to consider the
constant term of the polynomials given by the partial derivatives, in other words,
the case x = 0.

Corollary 3.6.2. For m ∈ N, we have

∂mx P
(N,`/2)
k (0, y)

=m
k

∏
i=1

(y − c(`)i )
k

∑
j=m

j(∂m−1
x P

(N,`/2)
j−1 (0, y) − (j − 1)(N − j + 1)∂m−1

x P
(N,`/2)
j−2 (0, y))

∏ji=1(y − c
(`)
j )

.
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Here we use the convention that P
(N,ε)
−1 (x, y) = 0.

Proof. The result is obtained by expanding the recurrence relation for ∂mx P
(N,`/2)
k (x, y)

in Proposition 3.6.1 and setting x = 0.

These formulas can be used to recursively compute the partial derivatives of the

constraint polynomials starting from m = 1 by computing ∂m−1
x P

(N,`/2)
j−1 (0, y) − (j −

1)(N − j + 1)∂m−1
x P

(N,`/2)
j−2 (0, y) for each m. For instance, it follows from Corollary

3.6.2 that

∂xP
(N,`/2)
k (0, y) =

k

∏
i=1

(y − c(`)i )
k

∑
j=1

j(y − (j − 1)(N + `))
(y − c(`)j )(y − c(`)j−1)

.

To generalize this expression, we introduce the expressions ψi(j), with i, j ∈ N, by

ψ1(j) =
j(y − (j − 1)(N + `))
(y − c(`)j )(y − c(`)j−1)

,

ψi(j) =
j

(y − c(`)j )
ψi−1(j − 1),

Note that for fixed i and j, the expression is a rational function in the variable y.
We extend the definition to i, j ∈ Z by setting ψi(j) = 0 whenever i ≤ 0 or j ≤ 0.
With this notation, by using Corollary 3.6.2, we can directly compute

∂2
xP
(N,`/2)
k (0, y) =

k

∏
i=1

(y − c(`)i )
⎛
⎝
k

∑
j=2

ψ2(j) +
k

∑
i1=2

ψ1(i1)
i1−2

∑
i2=1

ψ1(i2)
⎞
⎠
.

To express the general form of the derivatives of the constraint polynomials, we
need a general form for sums of functions ψi of the kind appearing in the compu-

tation of ∂2
xP
(N,`/2)
k (0, y) above. Fix m ≤ k, a positive integer α ≤ m and a vector

ν = (ν1, ν2, . . . , να) ∈ Nα, with ∣ν∣1 ∶= ν1+ν2+⋯+να =m. Define the rational function

Ψ
(m)
ν (k) = Ψ

(m)
ν (k)(y) in y as

Ψ(m)ν (k) =
k

∑
i1=m

ψν1(i1)
i1−ν1−1

∑
i2=m−ν1

ψν2(i2)⋯
in−1−νn−1−1

∑
in=m−∑

n−1
i=1 νj

ψνn(in)⋯
iα−1−να−1−1

∑
iα=m−∑

α−1
i=1 νj

ψνα(iα).

By splitting the first sum in Ψ
(m)
ν (k), we derive an elementary identity, which is

needed later in the proof of the main result of this section. Namely, for ν ∈ Nα, it
holds that

Ψ(m)ν (k) = ψν1(k)Ψ
(m−ν1)
ν′ (k − 1 − ν1) +Ψ(m)ν (k − 1), (3.7)

where ν′ ∈ Nα−1 is obtained by dropping the first component ν1 of ν. If ν ∈ N1, we

set Ψ
(i)
ν′ (j) = 1 for any i, j ∈ N.

Summarizing the discussion above, we have the following explicit expressions of
the constraint polynomials.
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Theorem 3.6.3. We have

P
(N,`/2)
k (x, y) =

k

∑
m=0

k

∏
i=1

(y − c(`)i )

⎡⎢⎢⎢⎢⎢⎢⎣

m

∑
α=1

∑
ν∈Nα
∣ν∣1=m

Ψ(m)ν (k)(y)

⎤⎥⎥⎥⎥⎥⎥⎦

xm.

Proof. To establish the result it is enough to show, for m ≤ k, that

∂mx P
(N,`/2)
k (0, y) =m!

k

∏
i=1

(y − c(`)i )

⎡⎢⎢⎢⎢⎢⎢⎣

m

∑
α=1

∑
ν∈Nα
∣ν∣1=m

Ψ(m)ν (k)

⎤⎥⎥⎥⎥⎥⎥⎦

.

The proof is by induction, the cases m = 0,1 were already established above. Assume
the identity holds for m ∈ N. Computing directly from Corollary 3.6.2 and using
the induction hypothesis we obtain

∂m+1
x P

(N,`/2)
k (0, y)

=(m + 1)
k

∏
i=1

(y − c(`)i )
k

∑
j=m+1

j(∂mx P
(N,`/2)
j−1 (0, y) − (j − 1)(N − j + 1)∂mx P

(N,`/2)
j−2 (0, y))

∏ji=1(y − c
(`)
j )

=(m + 1)!
k

∏
i=1

(y − c(`)i )
k

∑
j=m+1

1

(y − cj)(y − cj−1)
(j(y − cj−1)

m

∑
α=1

∑
ν∈Nα
∣ν∣1=m

Ψ(m)ν (j − 1)

− j(j − 1)(N − j + 1)
m

∑
α=1

∑
ν∈Nα
∣ν∣1=m

Ψ(m)ν (j − 2)).

Then, applying the identity (3.7) and factoring, we get

(m + 1)!
k

∏
i=1

(y − c(`)i )(
m

∑
α=1

∑
ν∈Nα
∣ν∣1=m

k

∑
j=m+1

j

(y − cj)
ψν1(j − 1)Ψ(m−ν1)ν′ (j − 2 − ν1)

+
k

∑
j=m+1

j(y − (j − 1)(N + `)
(y − cj)(y − cj−1)

m

∑
α=1

∑
ν∈Nα
∣ν∣1=m

Ψ(m)ν (j − 2))

=(m + 1)!
k

∏
i=1

(y − c(`)i )(
m

∑
α=1

∑
ν∈Nα
∣ν∣1=m

k

∑
j=m+1

ψν1+1(j)Ψ(m−ν1)ν′ (j − 2 − ν1)

+
m

∑
α=1

∑
ν∈Nα
∣ν∣1=m

k

∑
j=m+1

ψ1(j)Ψ(m)ν (j − 2))

=(m + 1)!
k

∏
i=1

(y − c(`)i )(
m

∑
α=1

∑
ν∈Nα
∣ν∣1=m+1
ν1≠1

Ψ(m+1)
ν (k) +

m+1

∑
α=2

∑
ν∈Nα
∣ν∣1=m+1
ν1=1

Ψ(m+1)
ν (k))

=(m + 1)!
k

∏
i=1

(y − c(`)i )
m+1

∑
α=1

∑
ν∈Nα
∣ν∣1=m+1

Ψ(m+1)
ν (k).

Hence the desired result follows.
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1

2

3 1+2

1+1

2+1 1+1+1

Figure 3.2: Compositions for n = 1,2,3.

Remark 3.6.4. The vectors ν ∈ Nα with ∣ν∣1 = m in the sum Ψ
(m)
ν (k) represent the

compositions (ordered partitions) of the integer m that consist of α elements. For
instance, for the case m = 2 above, there are only two compositions, {2,1+1}. These
are precisely the indices of the functions ψi involved in the sums in the expression

for ∂2
xP
(N,`/2)
k (0, y). In fact, the use of identity (3.7) in the proof of Theorem 3.6.3

resembles the way of constructing compositions of a number n starting with the
compositions of n − 1. Suppose a1 + a2 + . . . + ak is a composition of n − 1, then we
construct two compositions (a1 + 1) + a2 + . . . + ak and 1 + a1 + a2 + . . . + ak of n. It
is easy to verify that this algorithm produces all compositions of n. For n = 1,2,3
we illustrate the algorithm as a tree in Figure 3.2.
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4. The spectrum of the AQRM

In this chapter, we apply the results of Chapter 3 to complete the picture of the
spectrum of the AQRM. For instance, in Section 4.1 we describe the degeneracy
structure of the exceptional spectrum of the AQRM, since the regular spectrum is
non-degenerate, this is enough to characterize the degeneracy for the general case.

In Section 4.2, we define a T -function that gives a constraint condition for non-
Juddian exceptional eigenvalues in the same way that the G-function controls the
regular eigenvalues. This function, along with the constraint polynomials, is used
to study the residues of the poles of the G-function in Section 4.3. In Section 4.4
we define a generalized G-function in such a way that its zeros determine the full
spectrum of the AQRM.

Finally, in Section 4.5 we show how exceptional solutions are captured in irre-
ducible sl2-modules, following the study of the representation theoretical picture of
the AQRM, started in in Section 2.4.

4.1 Structure of the exceptional spectrum

The statement of Conjecture 2.9.1, now proved by virtue of 3.2.3 and 3.3.4, is now
reformulated in terms of the parameters g,∆ of the AQRM.

Theorem 4.1.1. For `,N ∈ Z≥0, there exists a polynomial A`N(x, y) ∈ Z[x, y] such
that

P
(N+`,−`/2)
N+` ((2g)2,∆2) = A`N((2g)2,∆2)P (N,`/2)N ((2g)2,∆2). (4.1)

for g,∆ > 0. Moreover, the polynomial A`N(x, y) is positive for any x, y > 0.

For the remaining Juddian eigenvalues not covered in Theorem 4.1.1 above, we
have the following result.

Corollary 4.1.2. For ` ∈ Z>0 and 0 ≤ k ≤ ` there are no Juddian eigenvalues

λ = k − `/2 − g2 in H
`/2
Rabi.

Proof. The case k = ` was already proved in the discussion above and the case k = 0

is trivial since P
(0,−`/2)
0 ((2g)2,∆2) = 1 /= 0. For 1 ≤ k < `, if λ = k − `/2 − g2 is a

Juddian eigenvalue then P
(k,−`/2)
k ((2g)2,∆2) = 0 for some parameters g,∆ > 0. This

is a contradiction to Proposition 3.3.5. Note that in this case there is no possi-
bility of a contribution of Juddian eigenvalues by roots of constraint polynomials

P
(N,`/2)
N ((2g)2,∆2) as this would necessarily require N = k − ` < 0.

In Proposition 5.8 of [63], it is shown that the roots of the constraint polynomials

P
(N,ε)
N (x, y) are simple. In particular, this implies that for ε /∈ 1

2Z, there are no
degenerate exceptional eigenvalues consisting of two Juddian solutions.
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Since the multiplicity of the eigenvalues is at most two, as a corollary of Theorem
4.1.1 and Corollary 4.1.2, we have the following result.

Corollary 4.1.3. If x = (2g)2 is a root of the equation P
(N,`/2)
N (x,∆2) = 0, then the

(Juddian) eigenvalue λ = N + `/2 − g2 must be a degenerate exceptional eigenvalue.
In fact, the multiplicity of the exceptional eigenvalue λ is exactly 2 and the two
linearly independent solutions are Juddian.

We now present the following result about the general structure on the degen-
eracy of the spectrum of the AQRM.

Corollary 4.1.4 ([27]). The degeneracy of the spectrum of Hε
Rabi occurs only when

ε = `/2 for ` ∈ Z≥0 and P
(N,`/2)
N ((2g)2,∆2) = 0. In particular, any non-Juddian

exceptional solution is non-degenerate.

Proof. We first consider the case N ≠ 0. When P
(N,ε)
N ((2g)2,∆2) ≠ 0 if we look

at the local Frobenius solutions at y = 0, then there is always a local solution con-
taining a log-term as seen in Section 2.7 (see Proposition 2.8.2), so the solutions
corresponding to the smaller exponent cannot be components of the eigenfunction.
Then, the solution corresponds to the largest exponent (i.e. non-Juddian excep-
tional) and this implies that the dimension of the corresponding eigenspace is at
most one (cf. [5, 66]). We note that in the case ε = `/2 (` ∈ Z) there is no chance of a

contribution of Juddian solution (i.e. P
(N+`,−`/2)
N+` ((2g)2,∆2) = 0) by Theorem 4.1.1.

Suppose next that P
(N,ε)
N ((2g)2,∆2) = 0 for ε ∉ 1

2Z≥0. Looking at the local Frobenius
solutions at y = 1, since the exponent different from 0 is not a non-negative integer
(see Table 2.1), we observe that only the solution corresponding to the exponent
0 can give a eigensolution of Hε

Rabi so that the dimension of the eigenspace is also
at most one. By Corollary 4.1.3, there is no non-Juddian exceptional eigensolution

when P
(N,`/2)
N ((2g)2,∆2) = 0 for ` ∈ Z≥0.

On the other hand, if N = 0, the exponents of the system (2.17) are ρ−1 =
0 and ρ−2 = 1, therefore there is one holomorphic Frobenius solution and a local
solution with a log-term. This implies that the corresponding eigenstate cannot be

degenerate. In addition, note that if K
(N,ε)
0 (g,∆) = 0, the log-term in the Frobenius

solution with smaller exponent (2.18) vanishes making it identical to the solution
(2.23) (corresponding to the larger exponent). Hence, the exceptional eigenvalue
λ = ±ε − g2 must be non-Juddian exceptional, and thus, non-degenerate. Since

P
(0,±ε)
0 ((2g)2,∆2) = 1 /= 0 and P

(`,−`/2)
` ((2g)2,∆2) /= 0 for g,∆ > 0 and ` > 0 (cf.

Proposition 3.3.5), the desired claim follows.

Remark 4.1.5. The non-degeneracy of the ground state for the QRM was first shown
in [19].

Thus, summarizing the results so far obtained in Theorem 4.1.1 with Corollary
4.1.3 and Corollary 4.1.4, we have the following result.

Theorem 4.1.6. The spectrum of the AQRM possesses a degenerate eigenvalue if
and only if the parameter ε is a half integer. Furthermore, all degenerate eigenvalues
of the AQRM are Juddian.
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4.2 A constraint function for non-Juddian exceptional
eigenvalues

In this subsection, we study the condition for a solution of the system (2.4) to be a
non-Juddian exceptional eigenvalues of the AQRM. As in the case of the G-function
and regular solutions, we define an appropriate constraint function by studying the
conditions for entireness of solutions using the symmetry between the system (2.4)
and the system (2.5).

Concretely, we define a constraint T -function T
(N)
ε (g,∆) that vanishes for pa-

rameters g and ∆ for which Hε
Rabi has the exceptional eigenvalue λ = N +ε−g2 with

non-Juddian solution (see [8] for the case of the quantum Rabi model).

In order to define the function T
(N)
ε (g,∆), we first describe the local Frobenius

solutions of system of differential equations (2.4) and (2.5) at the regular singular
points y = 0,1 (cf. Section 2.7).

Define the functions as follows:

φ1,+(y; ε) = (N + 1)
∆

yN −∆
∞

∑
n=N+1

K̄−
n(N + ε; g,∆, ε)

n −N yn, (4.2)

φ1,−(y; ε) =
∞

∑
n=N+1

K̄−
n(N + ε; g,∆, ε)yn, (4.3)

with initial conditions K̄−
n(N + ε; g,∆, ε) = 0 (n ≤ N), K̄−

N+1(N + ε; g,∆, ε) = 1 and

(n + 1)K̄−
n+1(N + ε; g,∆, ε)

= (n −N + (2g)2 − 2ε + ∆2

N − n) K̄−
n(N + ε; g,∆, ε) − (2g)2K̄−

n−1(N + ε; g,∆, ε),

for n ≥ N + 1. Then, t(φ1,+(y; ε), φ1,−(y; ε)) is the local Frobenius solution corre-
sponding to the largest exponent of the system (2.4) at y = 0.

Next, consider the solutions at y = 1. For the case N + 2ε /∈ Z≥0 (i.e. ε /∈ 1
2Z or

ε = −`/2 (` ∈ Z≥0) and N − ` < 0 ) we define

φ2,+(ȳ;−ε) = ∆
∞

∑
n=0

K̄+
n(N + ε; g,∆, ε)
N + 2ε − n ȳn, (4.4)

φ2,−(ȳ;−ε) =
∞

∑
n=0

K̄+
n(N + ε; g,∆, ε)ȳn, (4.5)

with initial conditions K̄+
n(N + ε; g,∆, ε) = 0 (n < 0), K̄+

0 (N + ε; g,∆, ε) = 1, while
for the case N + 2ε ∈ Z≥0 (i.e. ε = `/2 (` ∈ Z≥0) or ε = −`/2 (` ∈ Z≥0) and N − ` ≥ 0)
we define

φ2,+(ȳ;−`/2) = (N + ` + 1)
∆

ȳN+` −∆
∞

∑
n=N+`+1

K̄+
n(N + `/2; g,∆, `/2)

n −N − ` ȳn, (4.6)

φ2,−(ȳ;−`/2) =
∞

∑
n=N+`+1

K̄+
n(N + `/2; g,∆, `/2)ȳn, (4.7)
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4.2. A constraint function for non-Juddian exceptional eigenvalues

with initial conditions K̄+
n(N+`/2; g,∆, `/2) = 0 (n ≤ N+`), K̄+

N+`+1(N+`/2; g,∆, `/2) =
1 and in both cases the coefficients satisfy

(n + 1)K̄+
n+1(N + ε; g,∆, ε)

= (n −N + (2g)2 + ∆2

N + 2ε − n) K̄+
n(N + ε; g,∆, ε) − (2g)2K̄+

n−1(N + ε; g,∆, ε).

Then t(φ2,+(ȳ;−ε), φ2,−(ȳ;−ε)) is the local Frobenius solution of the system (2.5)
at ȳ = 0, where ȳ = 1 − y. Note also that the radius of convergence of each series
above equals 1.

To define the constraint function for the non-Juddian exceptional solutions we
adapt the argument used for regular eigenvalues and the G-function in Section 2.6.
In particular, any solution to the eigenvalue problem of AQRM satisfies the system

d

dz
Ψ(z) = A(z)Ψ(z), (4.8)

where

A(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ−ε−gz
z+g 0 0 −∆

z+g

0 λ+ε−gz
z+g

−∆
z+g 0

0 −∆
z−g

λ−ε+gz
z−g 0

−∆
z−g 0 0 λ+ε+gz

z−g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.9)

for the vector valued function

Ψ(z) ∶= t(e−gzφ1,+(
g + z
2g

; ε), egzφ1,−(
g − z
2g

; ε), egzφ1,+(
g − z
2g

; ε), e−gzφ1,−(
g + z
2g

; ε)).

It is not difficult to see that the function

Φ(z) ∶= t(egzφ2,−(
g − z
2g

;−ε), e−gzφ2,+(
g + z
2g

;−ε), e−gzφ2,−(
g + z
2g

;−ε), egzφ2,+(
g − z
2g

;−ε))

also satisfies (4.8). Hence, in order for a non-Juddian exceptional solution to exist
it is necessary and sufficient that for some z0 (−g < z0 < g) (an ordinary point of the
system), there exists a non-zero constant c = cN(g,∆, ε) and such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−gz0φ1,+(
g + z0

2g
; ε) = c egz0φ2,−(

g − z0

2g
;−ε),

egz0φ1,−(
g − z0

2g
; ε) = c e−gz0φ2,+(

g + z0

2g
;−ε),

egz0φ1,+(
g − z0

2g
; ε) = c e−gz0φ2,−(

g + z0

2g
;−ε),

e−gz0φ1,−(
g + z0

2g
; ε) = c egz0φ2,+(

g − z0

2g
;−ε).

(4.10)

For z0 = 0, it is obvious that the first and third (resp. the second and forth equations)
are equivalent. Namely, the four equations reduce to the following two equations
when y = ȳ = 1

2 .

{
φ1,−(y; ε) = cφ2,+(ȳ;−ε) = cφ2,+(1 − y;−ε),
φ1,+(y; ε) = cφ2,−(ȳ;−ε) = cφ2,−(1 − y;−ε).

(4.11)
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4.2. A constraint function for non-Juddian exceptional eigenvalues

for some non-zero constant c (as can be seen by applying the substitutions y → ȳ =
1 − y and ε → −ε to the system (2.17)). Therefore, by setting y = 1/2 (z = 0 in the
original variable, an ordinary point of the system) and eliminating the constant c
in these linear relations give

T (N)ε (g,∆) = 0,

giving rise to the definition below.

Definition 4.2.1 ([27]). The constraint T -function T
(N)
ε (g,∆) of the AQRM is

given by

T (N)ε (g,∆) = R̄(N,+)(g,∆; ε)R̄(N,−)(g,∆; ε) −R(N,+)(g,∆; ε)R(N,−)(g,∆; ε), (4.12)

with

R̄(N,−)(g,∆; ε) = φ1,+(
1

2
; ε), R̄(N,+)(g,∆; ε) = φ2,+(

1

2
;−ε), (4.13)

R(N,−)(g,∆; ε) = φ1,−(
1

2
; ε), R(N,+)(g,∆; ε) = φ2,−(

1

2
;−ε). (4.14)

Conversely, if there exists such c = cN(g,∆, ε)(/= 0), λ = N+ε−g2 is a non-Juddian
exceptional eigenvalue and the corresponding functions (φj,+, φj,−) (j = 1,2) satisfy
(4.11) and (4.10) (cf. [23]).

Remark 4.2.2. When ε = 0 we observe that

T
(N)
0 (g,∆) = (R̄(N,+)(g,∆,0) −R(N,+)(g,∆,0)) (R̄(N,+)(g,∆,0) +R(N,+)(g,∆,0))

since R(N,+)(g,∆,0) = R(N,−)(g,∆,0)) and R̄(N,+)(g,∆,0) = R̄(N,−)(g,∆,0)). It is
interesting to compare this property with Remark 2.6.2 and the discussion in [8] for
non-Juddian exceptional solutions of the QRM.

Remark 4.2.3. By Corollary 4.1.4, for any fixed ∆ > 0, there are no common zeros be-

tween the constraint polynomial P
(N,ε)
N ((2g)2,∆2) and the T -function T

(N)
ε (g,∆).

In the same manner, we can define a T -function T̃
(N)
ε (g,∆) that vanishes for

values g,∆ corresponding to the non-Juddian exceptional eigenvalue λ = N − ε− g2.

Clearly, we have T̃
(N)
0 (g,∆) = T (N)0 (g,∆), and in general it is straightforward to

verify that the identity

T̃ (N)ε (g,∆) = T (N)−ε (g,∆) (4.15)

holds (up to a constant) as in the case of constraint polynomials P̃
(N,ε)
N ((2g)2,∆2)

(see [63] and also [33]).
We consider the particular case of ε = `/2 (` ∈ Z≥0). Then, from (4.11) we have

φ1,−(y; `/2) = cφ2,+(1 − y;−`/2) and φ1,+(y; `/2) = cφ2,−(1 − y;−`/2). This shows
that the non-Juddian exceptional solution corresponding to λ = (N + `) − `/2 − g2 =
N +`/2−g2 whose existence is guaranteed by the constraint equation T

(N)
`/2

(g,∆) = 0

(resp. T̃
(N+`)
`/2

(g,∆) = 0) are identical up to a scalar multiple. Since the non-Juddian

exceptional solution is non-degenerate, the compatibility of this fact, that is, that

T
(N)
`/2

(g,∆) and T̃
(N+`)
`/2

(g,∆) have the same zero with respect to g for a fixed ∆, is

confirmed by the lemma below.
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4.2. A constraint function for non-Juddian exceptional eigenvalues

Lemma 4.2.4. For `,N ∈ Z≥0 we have

T̃
(N+`)
`/2

(g,∆) = T (N)
`/2

(g,∆). (4.16)

Proof. Directly from the definitions, we have K̄±
n(N − `/2; g,∆,−`/2) = K̄∓

n(N +
`/2; g,∆, `/2), giving

R̄(N+`,±)(g,∆,−`/2) = R̄(N,∓)(g,∆, `/2),
R(N+`,±)(g,∆,−`/2) = R(N,∓)(g,∆, `/2).

It follows hence that

T̃
(N+`)
`/2

(g,∆) = T (N+`)
−`/2

(g,∆)

= R̄(N+`,+)(g,∆;−`/2)R̄(N+`,−)(g,∆;−`/2) −R(N+`,+)(g,∆;−`/2)R(N+`,−)(g,∆;−`/2)
= R̄(N,−)(g,∆; `/2)R̄(N,+)(g,∆; `/2) −R(N,−)(g,∆; `/2)R(N,+)(g,∆; `/2) = T (N)

`/2
(g,∆).

This proves the lemma.

By the discussion above, the condition T
(N)
ε (g,∆) = 0 (resp. T̃

(N)
ε (g,∆) = 0)

can be indeed be regarded as the constraint equation for the exceptional eigenvalues
λ = N + ε − g2 (resp. λ = N − ε − g2) with non-Juddian exceptional solutions.

We illustrate numerically the constraint relations P
(N,ε)
N ((2g)2,∆2) = 0 (for

Juddian eigenvalues) and T
(N)
ε (g,∆) = 0 (for non-Juddian exceptional eigenvalues)

in Figure 4.1 showing the curves in the (g,∆)-plane defined by these relations for
ε = 0.45 and N = 3. Concretely, Figures 4.1(a) and 4.1(b) depict the graph of the
curve Gε(x, g,∆) = 0 for the values x = 3.2 and x = 3.4, while Figure 4.1(c) shows

the graph of the curve T
(3)
ε (g,∆) = 0 in continuous line and P

(3,ε)
3 ((2g)2,∆2) = 0 in

dashed line. Notice that as x → 3.45 adjacent closed curves near the origin in the
graph of Gε(x, g,∆) = 0 approach each other. Some of these curves join to form the

closed curves (ovals) of P
(N,ε)
N ((2g)2,∆2) = 0, corresponding to Juddian eigenvalues,

while others form curves in the graph of T
(N)
ε (g,∆) = 0, corresponding to non-

Juddian exceptional eigenvalues. Also observe that we have ovals (corresponding to
non-Juddian solutions) near the origin of the graph in Figure 4.1(c), some of them
very close to dashed ovals (corresponding to Juddian eigenvalues).

On the other hand, the case ε ∈ 1
2Z≥0 is illustrated in Figure 4.2. As in the case

above, Figures 4.2(a) and 4.2(b) depict the curves given by the relation Gε(x, g,∆) =
0 for the values x = 3.2 and x = 3.4, while Figure 4.2(c) shows the graph of the curve

T
(3)
ε (g,∆) = 0 (N = 3) in continuous line and P

(3,ε)
3 ((2g)2,∆2) = 0 in dashed line.

Different from the case ε /∈ 1
2Z≥0 above, there are no continuous ovals (non-Juddian)

near the origin in Figure 4.2(c). Actually, we can observe there are both dashed
(Juddian) and continuous (non-Juddian) ovals when ε = 0.45 in Figure 4.1(c), while
the continuous ovals disappear when ε = 1

2(∈
1
2Z) in Figure 4.2(c) (see Corollary

4.1.3).
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(a) ε = 0.45, x = 3.2 (b) ε = 0.45, x = 3.4 (c) ε = 0.45,N = 3, x = 3.45

Figure 4.1: Curves of constraint relations for fixed regular eigenvalues ((a),(b)) and
exceptional eigenvalues ((c)) for ε = 0.45 for −3 ≤ g ≤ 3 and −10 ≤ ∆ ≤ 10.

(a) ε = 1
2
, x = 3.2 (b) ε = 1

2
, x = 3.4 (c) ε = 1

2
,N = 3, x = N +ε = 3.5

Figure 4.2: Curves of constraint relations for fixed regular eigenvalues ((a),(b)) and
exceptional eigenvalues ((c), Juddian: dashed line; non-Juddian: continuous) for
ε = 1

2 for −3 ≤ g ≤ 3 and −10 ≤ ∆ ≤ 10.

4.3 Exceptional solutions and G-functions

In this subsection, we discuss the residues the poles and residues of the G-function.
Formally, to study the behavior of the G-function Gε(x; g,∆) at a point x = N ±

ε (N ∈ Z≥0) we consider a sufficiently small punctured disc centered at a fixed point
x = N ± ε and compute the residue of Gε(x; g,∆) as a function of the parameters g
and ∆. According to the value of the residue for the parameters g and ∆ we classify
the singularity as a removable singularity or a pole. In the case of a removable
singularity we consider the G-function Gε(x; g,∆) as a function defined at x = N ±ε
for the particular parameters g and ∆. It is clear from the definition that the only
singularities of Gε(x; g,∆) (as a function of x) appear at the points x = N ± ε (N ∈
Z≥0) and that all singularities are either removable singularities or poles. To simplify
the notation, we say that a function has a pole of order ≤ N when it has a removable
singularity or a pole of order at most N .

We consider the case ε /∈ 1
2Z and ε ∈ 1

2Z by separate. For the case of ε /∈ 1
2Z,
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